deba@703
|
1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*-
|
deba@703
|
2 |
*
|
deba@703
|
3 |
* This file is a part of LEMON, a generic C++ optimization library.
|
deba@703
|
4 |
*
|
deba@703
|
5 |
* Copyright (C) 2003-2009
|
deba@703
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
|
deba@703
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES).
|
deba@703
|
8 |
*
|
deba@703
|
9 |
* Permission to use, modify and distribute this software is granted
|
deba@703
|
10 |
* provided that this copyright notice appears in all copies. For
|
deba@703
|
11 |
* precise terms see the accompanying LICENSE file.
|
deba@703
|
12 |
*
|
deba@703
|
13 |
* This software is provided "AS IS" with no warranty of any kind,
|
deba@703
|
14 |
* express or implied, and with no claim as to its suitability for any
|
deba@703
|
15 |
* purpose.
|
deba@703
|
16 |
*
|
deba@703
|
17 |
*/
|
deba@703
|
18 |
|
deba@703
|
19 |
#ifndef LEMON_FIB_HEAP_H
|
deba@703
|
20 |
#define LEMON_FIB_HEAP_H
|
deba@703
|
21 |
|
deba@703
|
22 |
///\file
|
deba@703
|
23 |
///\ingroup auxdat
|
deba@703
|
24 |
///\brief Fibonacci Heap implementation.
|
deba@703
|
25 |
|
deba@703
|
26 |
#include <vector>
|
deba@703
|
27 |
#include <functional>
|
deba@703
|
28 |
#include <lemon/math.h>
|
deba@703
|
29 |
|
deba@703
|
30 |
namespace lemon {
|
deba@703
|
31 |
|
deba@703
|
32 |
/// \ingroup auxdat
|
deba@703
|
33 |
///
|
deba@703
|
34 |
///\brief Fibonacci Heap.
|
deba@703
|
35 |
///
|
deba@703
|
36 |
///This class implements the \e Fibonacci \e heap data structure. A \e heap
|
deba@703
|
37 |
///is a data structure for storing items with specified values called \e
|
deba@703
|
38 |
///priorities in such a way that finding the item with minimum priority is
|
deba@705
|
39 |
///efficient. \c CMP specifies the ordering of the priorities. In a heap
|
deba@703
|
40 |
///one can change the priority of an item, add or erase an item, etc.
|
deba@703
|
41 |
///
|
deba@703
|
42 |
///The methods \ref increase and \ref erase are not efficient in a Fibonacci
|
deba@703
|
43 |
///heap. In case of many calls to these operations, it is better to use a
|
deba@703
|
44 |
///\ref BinHeap "binary heap".
|
deba@703
|
45 |
///
|
deba@705
|
46 |
///\param PRIO Type of the priority of the items.
|
deba@705
|
47 |
///\param IM A read and writable Item int map, used internally
|
deba@703
|
48 |
///to handle the cross references.
|
deba@705
|
49 |
///\param CMP A class for the ordering of the priorities. The
|
deba@705
|
50 |
///default is \c std::less<PRIO>.
|
deba@703
|
51 |
///
|
deba@703
|
52 |
///\sa BinHeap
|
deba@703
|
53 |
///\sa Dijkstra
|
deba@703
|
54 |
#ifdef DOXYGEN
|
deba@705
|
55 |
template <typename PRIO, typename IM, typename CMP>
|
deba@703
|
56 |
#else
|
deba@705
|
57 |
template <typename PRIO, typename IM, typename CMP = std::less<PRIO> >
|
deba@703
|
58 |
#endif
|
deba@703
|
59 |
class FibHeap {
|
deba@703
|
60 |
public:
|
deba@703
|
61 |
///\e
|
deba@705
|
62 |
typedef IM ItemIntMap;
|
deba@703
|
63 |
///\e
|
deba@705
|
64 |
typedef PRIO Prio;
|
deba@703
|
65 |
///\e
|
deba@703
|
66 |
typedef typename ItemIntMap::Key Item;
|
deba@703
|
67 |
///\e
|
deba@703
|
68 |
typedef std::pair<Item,Prio> Pair;
|
deba@703
|
69 |
///\e
|
deba@705
|
70 |
typedef CMP Compare;
|
deba@703
|
71 |
|
deba@703
|
72 |
private:
|
deba@705
|
73 |
class Store;
|
deba@703
|
74 |
|
deba@705
|
75 |
std::vector<Store> _data;
|
deba@705
|
76 |
int _minimum;
|
deba@705
|
77 |
ItemIntMap &_iim;
|
deba@705
|
78 |
Compare _comp;
|
deba@705
|
79 |
int _num;
|
deba@703
|
80 |
|
deba@703
|
81 |
public:
|
deba@705
|
82 |
|
deba@705
|
83 |
/// \brief Type to represent the items states.
|
deba@705
|
84 |
///
|
deba@705
|
85 |
/// Each Item element have a state associated to it. It may be "in heap",
|
deba@705
|
86 |
/// "pre heap" or "post heap". The latter two are indifferent from the
|
deba@705
|
87 |
/// heap's point of view, but may be useful to the user.
|
deba@705
|
88 |
///
|
deba@705
|
89 |
/// The item-int map must be initialized in such way that it assigns
|
deba@705
|
90 |
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap.
|
deba@703
|
91 |
enum State {
|
deba@705
|
92 |
IN_HEAP = 0, ///< = 0.
|
deba@705
|
93 |
PRE_HEAP = -1, ///< = -1.
|
deba@705
|
94 |
POST_HEAP = -2 ///< = -2.
|
deba@703
|
95 |
};
|
deba@703
|
96 |
|
deba@703
|
97 |
/// \brief The constructor
|
deba@703
|
98 |
///
|
deba@705
|
99 |
/// \c map should be given to the constructor, since it is
|
deba@703
|
100 |
/// used internally to handle the cross references.
|
deba@705
|
101 |
explicit FibHeap(ItemIntMap &map)
|
deba@705
|
102 |
: _minimum(0), _iim(map), _num() {}
|
deba@703
|
103 |
|
deba@703
|
104 |
/// \brief The constructor
|
deba@703
|
105 |
///
|
deba@705
|
106 |
/// \c map should be given to the constructor, since it is used
|
deba@705
|
107 |
/// internally to handle the cross references. \c comp is an
|
deba@703
|
108 |
/// object for ordering of the priorities.
|
deba@705
|
109 |
FibHeap(ItemIntMap &map, const Compare &comp)
|
deba@705
|
110 |
: _minimum(0), _iim(map), _comp(comp), _num() {}
|
deba@703
|
111 |
|
deba@703
|
112 |
/// \brief The number of items stored in the heap.
|
deba@703
|
113 |
///
|
deba@703
|
114 |
/// Returns the number of items stored in the heap.
|
deba@705
|
115 |
int size() const { return _num; }
|
deba@703
|
116 |
|
deba@703
|
117 |
/// \brief Checks if the heap stores no items.
|
deba@703
|
118 |
///
|
deba@703
|
119 |
/// Returns \c true if and only if the heap stores no items.
|
deba@705
|
120 |
bool empty() const { return _num==0; }
|
deba@703
|
121 |
|
deba@703
|
122 |
/// \brief Make empty this heap.
|
deba@703
|
123 |
///
|
deba@703
|
124 |
/// Make empty this heap. It does not change the cross reference
|
deba@703
|
125 |
/// map. If you want to reuse a heap what is not surely empty you
|
deba@703
|
126 |
/// should first clear the heap and after that you should set the
|
deba@703
|
127 |
/// cross reference map for each item to \c PRE_HEAP.
|
deba@703
|
128 |
void clear() {
|
deba@705
|
129 |
_data.clear(); _minimum = 0; _num = 0;
|
deba@703
|
130 |
}
|
deba@703
|
131 |
|
deba@703
|
132 |
/// \brief \c item gets to the heap with priority \c value independently
|
deba@703
|
133 |
/// if \c item was already there.
|
deba@703
|
134 |
///
|
deba@703
|
135 |
/// This method calls \ref push(\c item, \c value) if \c item is not
|
deba@703
|
136 |
/// stored in the heap and it calls \ref decrease(\c item, \c value) or
|
deba@703
|
137 |
/// \ref increase(\c item, \c value) otherwise.
|
deba@703
|
138 |
void set (const Item& item, const Prio& value) {
|
deba@705
|
139 |
int i=_iim[item];
|
deba@705
|
140 |
if ( i >= 0 && _data[i].in ) {
|
deba@705
|
141 |
if ( _comp(value, _data[i].prio) ) decrease(item, value);
|
deba@705
|
142 |
if ( _comp(_data[i].prio, value) ) increase(item, value);
|
deba@703
|
143 |
} else push(item, value);
|
deba@703
|
144 |
}
|
deba@703
|
145 |
|
deba@703
|
146 |
/// \brief Adds \c item to the heap with priority \c value.
|
deba@703
|
147 |
///
|
deba@703
|
148 |
/// Adds \c item to the heap with priority \c value.
|
deba@703
|
149 |
/// \pre \c item must not be stored in the heap.
|
deba@703
|
150 |
void push (const Item& item, const Prio& value) {
|
deba@705
|
151 |
int i=_iim[item];
|
deba@703
|
152 |
if ( i < 0 ) {
|
deba@705
|
153 |
int s=_data.size();
|
deba@705
|
154 |
_iim.set( item, s );
|
deba@705
|
155 |
Store st;
|
deba@703
|
156 |
st.name=item;
|
deba@705
|
157 |
_data.push_back(st);
|
deba@703
|
158 |
i=s;
|
deba@703
|
159 |
} else {
|
deba@705
|
160 |
_data[i].parent=_data[i].child=-1;
|
deba@705
|
161 |
_data[i].degree=0;
|
deba@705
|
162 |
_data[i].in=true;
|
deba@705
|
163 |
_data[i].marked=false;
|
deba@703
|
164 |
}
|
deba@703
|
165 |
|
deba@705
|
166 |
if ( _num ) {
|
deba@705
|
167 |
_data[_data[_minimum].right_neighbor].left_neighbor=i;
|
deba@705
|
168 |
_data[i].right_neighbor=_data[_minimum].right_neighbor;
|
deba@705
|
169 |
_data[_minimum].right_neighbor=i;
|
deba@705
|
170 |
_data[i].left_neighbor=_minimum;
|
deba@705
|
171 |
if ( _comp( value, _data[_minimum].prio) ) _minimum=i;
|
deba@703
|
172 |
} else {
|
deba@705
|
173 |
_data[i].right_neighbor=_data[i].left_neighbor=i;
|
deba@705
|
174 |
_minimum=i;
|
deba@703
|
175 |
}
|
deba@705
|
176 |
_data[i].prio=value;
|
deba@705
|
177 |
++_num;
|
deba@703
|
178 |
}
|
deba@703
|
179 |
|
deba@703
|
180 |
/// \brief Returns the item with minimum priority relative to \c Compare.
|
deba@703
|
181 |
///
|
deba@703
|
182 |
/// This method returns the item with minimum priority relative to \c
|
deba@703
|
183 |
/// Compare.
|
deba@703
|
184 |
/// \pre The heap must be nonempty.
|
deba@705
|
185 |
Item top() const { return _data[_minimum].name; }
|
deba@703
|
186 |
|
deba@703
|
187 |
/// \brief Returns the minimum priority relative to \c Compare.
|
deba@703
|
188 |
///
|
deba@703
|
189 |
/// It returns the minimum priority relative to \c Compare.
|
deba@703
|
190 |
/// \pre The heap must be nonempty.
|
deba@705
|
191 |
const Prio& prio() const { return _data[_minimum].prio; }
|
deba@703
|
192 |
|
deba@703
|
193 |
/// \brief Returns the priority of \c item.
|
deba@703
|
194 |
///
|
deba@703
|
195 |
/// It returns the priority of \c item.
|
deba@703
|
196 |
/// \pre \c item must be in the heap.
|
deba@703
|
197 |
const Prio& operator[](const Item& item) const {
|
deba@705
|
198 |
return _data[_iim[item]].prio;
|
deba@703
|
199 |
}
|
deba@703
|
200 |
|
deba@703
|
201 |
/// \brief Deletes the item with minimum priority relative to \c Compare.
|
deba@703
|
202 |
///
|
deba@703
|
203 |
/// This method deletes the item with minimum priority relative to \c
|
deba@703
|
204 |
/// Compare from the heap.
|
deba@703
|
205 |
/// \pre The heap must be non-empty.
|
deba@703
|
206 |
void pop() {
|
deba@703
|
207 |
/*The first case is that there are only one root.*/
|
deba@705
|
208 |
if ( _data[_minimum].left_neighbor==_minimum ) {
|
deba@705
|
209 |
_data[_minimum].in=false;
|
deba@705
|
210 |
if ( _data[_minimum].degree!=0 ) {
|
deba@705
|
211 |
makeroot(_data[_minimum].child);
|
deba@705
|
212 |
_minimum=_data[_minimum].child;
|
deba@703
|
213 |
balance();
|
deba@703
|
214 |
}
|
deba@703
|
215 |
} else {
|
deba@705
|
216 |
int right=_data[_minimum].right_neighbor;
|
deba@705
|
217 |
unlace(_minimum);
|
deba@705
|
218 |
_data[_minimum].in=false;
|
deba@705
|
219 |
if ( _data[_minimum].degree > 0 ) {
|
deba@705
|
220 |
int left=_data[_minimum].left_neighbor;
|
deba@705
|
221 |
int child=_data[_minimum].child;
|
deba@705
|
222 |
int last_child=_data[child].left_neighbor;
|
deba@703
|
223 |
|
deba@703
|
224 |
makeroot(child);
|
deba@703
|
225 |
|
deba@705
|
226 |
_data[left].right_neighbor=child;
|
deba@705
|
227 |
_data[child].left_neighbor=left;
|
deba@705
|
228 |
_data[right].left_neighbor=last_child;
|
deba@705
|
229 |
_data[last_child].right_neighbor=right;
|
deba@703
|
230 |
}
|
deba@705
|
231 |
_minimum=right;
|
deba@703
|
232 |
balance();
|
deba@703
|
233 |
} // the case where there are more roots
|
deba@705
|
234 |
--_num;
|
deba@703
|
235 |
}
|
deba@703
|
236 |
|
deba@703
|
237 |
/// \brief Deletes \c item from the heap.
|
deba@703
|
238 |
///
|
deba@703
|
239 |
/// This method deletes \c item from the heap, if \c item was already
|
deba@703
|
240 |
/// stored in the heap. It is quite inefficient in Fibonacci heaps.
|
deba@703
|
241 |
void erase (const Item& item) {
|
deba@705
|
242 |
int i=_iim[item];
|
deba@703
|
243 |
|
deba@705
|
244 |
if ( i >= 0 && _data[i].in ) {
|
deba@705
|
245 |
if ( _data[i].parent!=-1 ) {
|
deba@705
|
246 |
int p=_data[i].parent;
|
deba@703
|
247 |
cut(i,p);
|
deba@703
|
248 |
cascade(p);
|
deba@703
|
249 |
}
|
deba@705
|
250 |
_minimum=i; //As if its prio would be -infinity
|
deba@703
|
251 |
pop();
|
deba@703
|
252 |
}
|
deba@703
|
253 |
}
|
deba@703
|
254 |
|
deba@703
|
255 |
/// \brief Decreases the priority of \c item to \c value.
|
deba@703
|
256 |
///
|
deba@703
|
257 |
/// This method decreases the priority of \c item to \c value.
|
deba@703
|
258 |
/// \pre \c item must be stored in the heap with priority at least \c
|
deba@703
|
259 |
/// value relative to \c Compare.
|
deba@703
|
260 |
void decrease (Item item, const Prio& value) {
|
deba@705
|
261 |
int i=_iim[item];
|
deba@705
|
262 |
_data[i].prio=value;
|
deba@705
|
263 |
int p=_data[i].parent;
|
deba@703
|
264 |
|
deba@705
|
265 |
if ( p!=-1 && _comp(value, _data[p].prio) ) {
|
deba@703
|
266 |
cut(i,p);
|
deba@703
|
267 |
cascade(p);
|
deba@703
|
268 |
}
|
deba@705
|
269 |
if ( _comp(value, _data[_minimum].prio) ) _minimum=i;
|
deba@703
|
270 |
}
|
deba@703
|
271 |
|
deba@703
|
272 |
/// \brief Increases the priority of \c item to \c value.
|
deba@703
|
273 |
///
|
deba@703
|
274 |
/// This method sets the priority of \c item to \c value. Though
|
deba@703
|
275 |
/// there is no precondition on the priority of \c item, this
|
deba@703
|
276 |
/// method should be used only if it is indeed necessary to increase
|
deba@703
|
277 |
/// (relative to \c Compare) the priority of \c item, because this
|
deba@703
|
278 |
/// method is inefficient.
|
deba@703
|
279 |
void increase (Item item, const Prio& value) {
|
deba@703
|
280 |
erase(item);
|
deba@703
|
281 |
push(item, value);
|
deba@703
|
282 |
}
|
deba@703
|
283 |
|
deba@703
|
284 |
|
deba@703
|
285 |
/// \brief Returns if \c item is in, has already been in, or has never
|
deba@703
|
286 |
/// been in the heap.
|
deba@703
|
287 |
///
|
deba@703
|
288 |
/// This method returns PRE_HEAP if \c item has never been in the
|
deba@703
|
289 |
/// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP
|
deba@703
|
290 |
/// otherwise. In the latter case it is possible that \c item will
|
deba@703
|
291 |
/// get back to the heap again.
|
deba@703
|
292 |
State state(const Item &item) const {
|
deba@705
|
293 |
int i=_iim[item];
|
deba@703
|
294 |
if( i>=0 ) {
|
deba@705
|
295 |
if ( _data[i].in ) i=0;
|
deba@703
|
296 |
else i=-2;
|
deba@703
|
297 |
}
|
deba@703
|
298 |
return State(i);
|
deba@703
|
299 |
}
|
deba@703
|
300 |
|
deba@703
|
301 |
/// \brief Sets the state of the \c item in the heap.
|
deba@703
|
302 |
///
|
deba@703
|
303 |
/// Sets the state of the \c item in the heap. It can be used to
|
deba@703
|
304 |
/// manually clear the heap when it is important to achive the
|
deba@705
|
305 |
/// better time _complexity.
|
deba@703
|
306 |
/// \param i The item.
|
deba@703
|
307 |
/// \param st The state. It should not be \c IN_HEAP.
|
deba@703
|
308 |
void state(const Item& i, State st) {
|
deba@703
|
309 |
switch (st) {
|
deba@703
|
310 |
case POST_HEAP:
|
deba@703
|
311 |
case PRE_HEAP:
|
deba@703
|
312 |
if (state(i) == IN_HEAP) {
|
deba@703
|
313 |
erase(i);
|
deba@703
|
314 |
}
|
deba@705
|
315 |
_iim[i] = st;
|
deba@703
|
316 |
break;
|
deba@703
|
317 |
case IN_HEAP:
|
deba@703
|
318 |
break;
|
deba@703
|
319 |
}
|
deba@703
|
320 |
}
|
deba@703
|
321 |
|
deba@703
|
322 |
private:
|
deba@703
|
323 |
|
deba@703
|
324 |
void balance() {
|
deba@703
|
325 |
|
deba@705
|
326 |
int maxdeg=int( std::floor( 2.08*log(double(_data.size()))))+1;
|
deba@703
|
327 |
|
deba@703
|
328 |
std::vector<int> A(maxdeg,-1);
|
deba@703
|
329 |
|
deba@703
|
330 |
/*
|
deba@703
|
331 |
*Recall that now minimum does not point to the minimum prio element.
|
deba@703
|
332 |
*We set minimum to this during balance().
|
deba@703
|
333 |
*/
|
deba@705
|
334 |
int anchor=_data[_minimum].left_neighbor;
|
deba@705
|
335 |
int next=_minimum;
|
deba@703
|
336 |
bool end=false;
|
deba@703
|
337 |
|
deba@703
|
338 |
do {
|
deba@703
|
339 |
int active=next;
|
deba@703
|
340 |
if ( anchor==active ) end=true;
|
deba@705
|
341 |
int d=_data[active].degree;
|
deba@705
|
342 |
next=_data[active].right_neighbor;
|
deba@703
|
343 |
|
deba@703
|
344 |
while (A[d]!=-1) {
|
deba@705
|
345 |
if( _comp(_data[active].prio, _data[A[d]].prio) ) {
|
deba@703
|
346 |
fuse(active,A[d]);
|
deba@703
|
347 |
} else {
|
deba@703
|
348 |
fuse(A[d],active);
|
deba@703
|
349 |
active=A[d];
|
deba@703
|
350 |
}
|
deba@703
|
351 |
A[d]=-1;
|
deba@703
|
352 |
++d;
|
deba@703
|
353 |
}
|
deba@703
|
354 |
A[d]=active;
|
deba@703
|
355 |
} while ( !end );
|
deba@703
|
356 |
|
deba@703
|
357 |
|
deba@705
|
358 |
while ( _data[_minimum].parent >=0 )
|
deba@705
|
359 |
_minimum=_data[_minimum].parent;
|
deba@705
|
360 |
int s=_minimum;
|
deba@705
|
361 |
int m=_minimum;
|
deba@703
|
362 |
do {
|
deba@705
|
363 |
if ( _comp(_data[s].prio, _data[_minimum].prio) ) _minimum=s;
|
deba@705
|
364 |
s=_data[s].right_neighbor;
|
deba@703
|
365 |
} while ( s != m );
|
deba@703
|
366 |
}
|
deba@703
|
367 |
|
deba@703
|
368 |
void makeroot(int c) {
|
deba@703
|
369 |
int s=c;
|
deba@703
|
370 |
do {
|
deba@705
|
371 |
_data[s].parent=-1;
|
deba@705
|
372 |
s=_data[s].right_neighbor;
|
deba@703
|
373 |
} while ( s != c );
|
deba@703
|
374 |
}
|
deba@703
|
375 |
|
deba@703
|
376 |
void cut(int a, int b) {
|
deba@703
|
377 |
/*
|
deba@703
|
378 |
*Replacing a from the children of b.
|
deba@703
|
379 |
*/
|
deba@705
|
380 |
--_data[b].degree;
|
deba@703
|
381 |
|
deba@705
|
382 |
if ( _data[b].degree !=0 ) {
|
deba@705
|
383 |
int child=_data[b].child;
|
deba@703
|
384 |
if ( child==a )
|
deba@705
|
385 |
_data[b].child=_data[child].right_neighbor;
|
deba@703
|
386 |
unlace(a);
|
deba@703
|
387 |
}
|
deba@703
|
388 |
|
deba@703
|
389 |
|
deba@703
|
390 |
/*Lacing a to the roots.*/
|
deba@705
|
391 |
int right=_data[_minimum].right_neighbor;
|
deba@705
|
392 |
_data[_minimum].right_neighbor=a;
|
deba@705
|
393 |
_data[a].left_neighbor=_minimum;
|
deba@705
|
394 |
_data[a].right_neighbor=right;
|
deba@705
|
395 |
_data[right].left_neighbor=a;
|
deba@703
|
396 |
|
deba@705
|
397 |
_data[a].parent=-1;
|
deba@705
|
398 |
_data[a].marked=false;
|
deba@703
|
399 |
}
|
deba@703
|
400 |
|
deba@703
|
401 |
void cascade(int a) {
|
deba@705
|
402 |
if ( _data[a].parent!=-1 ) {
|
deba@705
|
403 |
int p=_data[a].parent;
|
deba@703
|
404 |
|
deba@705
|
405 |
if ( _data[a].marked==false ) _data[a].marked=true;
|
deba@703
|
406 |
else {
|
deba@703
|
407 |
cut(a,p);
|
deba@703
|
408 |
cascade(p);
|
deba@703
|
409 |
}
|
deba@703
|
410 |
}
|
deba@703
|
411 |
}
|
deba@703
|
412 |
|
deba@703
|
413 |
void fuse(int a, int b) {
|
deba@703
|
414 |
unlace(b);
|
deba@703
|
415 |
|
deba@703
|
416 |
/*Lacing b under a.*/
|
deba@705
|
417 |
_data[b].parent=a;
|
deba@703
|
418 |
|
deba@705
|
419 |
if (_data[a].degree==0) {
|
deba@705
|
420 |
_data[b].left_neighbor=b;
|
deba@705
|
421 |
_data[b].right_neighbor=b;
|
deba@705
|
422 |
_data[a].child=b;
|
deba@703
|
423 |
} else {
|
deba@705
|
424 |
int child=_data[a].child;
|
deba@705
|
425 |
int last_child=_data[child].left_neighbor;
|
deba@705
|
426 |
_data[child].left_neighbor=b;
|
deba@705
|
427 |
_data[b].right_neighbor=child;
|
deba@705
|
428 |
_data[last_child].right_neighbor=b;
|
deba@705
|
429 |
_data[b].left_neighbor=last_child;
|
deba@703
|
430 |
}
|
deba@703
|
431 |
|
deba@705
|
432 |
++_data[a].degree;
|
deba@703
|
433 |
|
deba@705
|
434 |
_data[b].marked=false;
|
deba@703
|
435 |
}
|
deba@703
|
436 |
|
deba@703
|
437 |
/*
|
deba@703
|
438 |
*It is invoked only if a has siblings.
|
deba@703
|
439 |
*/
|
deba@703
|
440 |
void unlace(int a) {
|
deba@705
|
441 |
int leftn=_data[a].left_neighbor;
|
deba@705
|
442 |
int rightn=_data[a].right_neighbor;
|
deba@705
|
443 |
_data[leftn].right_neighbor=rightn;
|
deba@705
|
444 |
_data[rightn].left_neighbor=leftn;
|
deba@703
|
445 |
}
|
deba@703
|
446 |
|
deba@703
|
447 |
|
deba@705
|
448 |
class Store {
|
deba@703
|
449 |
friend class FibHeap;
|
deba@703
|
450 |
|
deba@703
|
451 |
Item name;
|
deba@703
|
452 |
int parent;
|
deba@703
|
453 |
int left_neighbor;
|
deba@703
|
454 |
int right_neighbor;
|
deba@703
|
455 |
int child;
|
deba@703
|
456 |
int degree;
|
deba@703
|
457 |
bool marked;
|
deba@703
|
458 |
bool in;
|
deba@703
|
459 |
Prio prio;
|
deba@703
|
460 |
|
deba@705
|
461 |
Store() : parent(-1), child(-1), degree(), marked(false), in(true) {}
|
deba@703
|
462 |
};
|
deba@703
|
463 |
};
|
deba@703
|
464 |
|
deba@703
|
465 |
} //namespace lemon
|
deba@703
|
466 |
|
deba@703
|
467 |
#endif //LEMON_FIB_HEAP_H
|
deba@703
|
468 |
|