lemon/min_cost_arborescence.h
author Balazs Dezso <deba@inf.elte.hu>
Sat, 18 Apr 2009 21:01:12 +0200
changeset 589 2ca0cdb5f366
parent 573 aa1804409f29
child 617 029a48052c67
permissions -rw-r--r--
Fix in HaoOrlin (#264)
deba@512
     1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
deba@512
     2
 *
deba@512
     3
 * This file is a part of LEMON, a generic C++ optimization library.
deba@512
     4
 *
deba@512
     5
 * Copyright (C) 2003-2008
deba@512
     6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
deba@512
     7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
deba@512
     8
 *
deba@512
     9
 * Permission to use, modify and distribute this software is granted
deba@512
    10
 * provided that this copyright notice appears in all copies. For
deba@512
    11
 * precise terms see the accompanying LICENSE file.
deba@512
    12
 *
deba@512
    13
 * This software is provided "AS IS" with no warranty of any kind,
deba@512
    14
 * express or implied, and with no claim as to its suitability for any
deba@512
    15
 * purpose.
deba@512
    16
 *
deba@512
    17
 */
deba@512
    18
deba@512
    19
#ifndef LEMON_MIN_COST_ARBORESCENCE_H
deba@512
    20
#define LEMON_MIN_COST_ARBORESCENCE_H
deba@512
    21
deba@512
    22
///\ingroup spantree
deba@512
    23
///\file
deba@512
    24
///\brief Minimum Cost Arborescence algorithm.
deba@512
    25
deba@512
    26
#include <vector>
deba@512
    27
deba@512
    28
#include <lemon/list_graph.h>
deba@512
    29
#include <lemon/bin_heap.h>
deba@512
    30
#include <lemon/assert.h>
deba@512
    31
deba@512
    32
namespace lemon {
deba@512
    33
deba@512
    34
deba@512
    35
  /// \brief Default traits class for MinCostArborescence class.
deba@512
    36
  ///
deba@512
    37
  /// Default traits class for MinCostArborescence class.
kpeter@550
    38
  /// \param GR Digraph type.
kpeter@550
    39
  /// \param CM Type of cost map.
kpeter@550
    40
  template <class GR, class CM>
deba@512
    41
  struct MinCostArborescenceDefaultTraits{
deba@512
    42
deba@512
    43
    /// \brief The digraph type the algorithm runs on.
kpeter@550
    44
    typedef GR Digraph;
deba@512
    45
deba@512
    46
    /// \brief The type of the map that stores the arc costs.
deba@512
    47
    ///
deba@512
    48
    /// The type of the map that stores the arc costs.
deba@512
    49
    /// It must meet the \ref concepts::ReadMap "ReadMap" concept.
kpeter@550
    50
    typedef CM CostMap;
deba@512
    51
deba@512
    52
    /// \brief The value type of the costs.
deba@512
    53
    ///
deba@512
    54
    /// The value type of the costs.
deba@512
    55
    typedef typename CostMap::Value Value;
deba@512
    56
deba@512
    57
    /// \brief The type of the map that stores which arcs are in the
deba@512
    58
    /// arborescence.
deba@512
    59
    ///
deba@512
    60
    /// The type of the map that stores which arcs are in the
deba@512
    61
    /// arborescence.  It must meet the \ref concepts::WriteMap
deba@512
    62
    /// "WriteMap" concept.  Initially it will be set to false on each
deba@512
    63
    /// arc. After it will set all arborescence arcs once.
deba@512
    64
    typedef typename Digraph::template ArcMap<bool> ArborescenceMap;
deba@512
    65
kpeter@550
    66
    /// \brief Instantiates a \c ArborescenceMap.
deba@512
    67
    ///
kpeter@550
    68
    /// This function instantiates a \c ArborescenceMap.
deba@512
    69
    /// \param digraph is the graph, to which we would like to
kpeter@550
    70
    /// calculate the \c ArborescenceMap.
deba@512
    71
    static ArborescenceMap *createArborescenceMap(const Digraph &digraph){
deba@512
    72
      return new ArborescenceMap(digraph);
deba@512
    73
    }
deba@512
    74
kpeter@550
    75
    /// \brief The type of the \c PredMap
deba@512
    76
    ///
kpeter@550
    77
    /// The type of the \c PredMap. It is a node map with an arc value type.
deba@512
    78
    typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap;
deba@512
    79
kpeter@550
    80
    /// \brief Instantiates a \c PredMap.
deba@512
    81
    ///
kpeter@550
    82
    /// This function instantiates a \c PredMap.
kpeter@550
    83
    /// \param digraph The digraph to which we would like to define the
kpeter@550
    84
    /// \c PredMap.
deba@512
    85
    static PredMap *createPredMap(const Digraph &digraph){
deba@512
    86
      return new PredMap(digraph);
deba@512
    87
    }
deba@512
    88
deba@512
    89
  };
deba@512
    90
deba@512
    91
  /// \ingroup spantree
deba@512
    92
  ///
kpeter@576
    93
  /// \brief Minimum Cost Arborescence algorithm class.
deba@512
    94
  ///
deba@512
    95
  /// This class provides an efficient implementation of
kpeter@576
    96
  /// Minimum Cost Arborescence algorithm. The arborescence is a tree
deba@512
    97
  /// which is directed from a given source node of the digraph. One or
deba@512
    98
  /// more sources should be given for the algorithm and it will calculate
deba@512
    99
  /// the minimum cost subgraph which are union of arborescences with the
deba@512
   100
  /// given sources and spans all the nodes which are reachable from the
kpeter@550
   101
  /// sources. The time complexity of the algorithm is O(n<sup>2</sup>+e).
deba@512
   102
  ///
deba@512
   103
  /// The algorithm provides also an optimal dual solution, therefore
deba@512
   104
  /// the optimality of the solution can be checked.
deba@512
   105
  ///
kpeter@550
   106
  /// \param GR The digraph type the algorithm runs on. The default value
deba@512
   107
  /// is \ref ListDigraph.
kpeter@550
   108
  /// \param CM This read-only ArcMap determines the costs of the
deba@512
   109
  /// arcs. It is read once for each arc, so the map may involve in
deba@512
   110
  /// relatively time consuming process to compute the arc cost if
deba@512
   111
  /// it is necessary. The default map type is \ref
deba@512
   112
  /// concepts::Digraph::ArcMap "Digraph::ArcMap<int>".
kpeter@550
   113
  /// \param TR Traits class to set various data types used
deba@512
   114
  /// by the algorithm. The default traits class is
deba@512
   115
  /// \ref MinCostArborescenceDefaultTraits
kpeter@550
   116
  /// "MinCostArborescenceDefaultTraits<GR, CM>".  See \ref
deba@512
   117
  /// MinCostArborescenceDefaultTraits for the documentation of a
deba@512
   118
  /// MinCostArborescence traits class.
deba@512
   119
#ifndef DOXYGEN
kpeter@550
   120
  template <typename GR = ListDigraph,
kpeter@550
   121
            typename CM = typename GR::template ArcMap<int>,
kpeter@550
   122
            typename TR =
kpeter@550
   123
              MinCostArborescenceDefaultTraits<GR, CM> >
deba@512
   124
#else
kpeter@550
   125
  template <typename GR, typename CM, typedef TR>
deba@512
   126
#endif
deba@512
   127
  class MinCostArborescence {
deba@512
   128
  public:
deba@512
   129
deba@512
   130
    /// The traits.
kpeter@550
   131
    typedef TR Traits;
deba@512
   132
    /// The type of the underlying digraph.
deba@512
   133
    typedef typename Traits::Digraph Digraph;
deba@512
   134
    /// The type of the map that stores the arc costs.
deba@512
   135
    typedef typename Traits::CostMap CostMap;
deba@512
   136
    ///The type of the costs of the arcs.
deba@512
   137
    typedef typename Traits::Value Value;
deba@512
   138
    ///The type of the predecessor map.
deba@512
   139
    typedef typename Traits::PredMap PredMap;
deba@512
   140
    ///The type of the map that stores which arcs are in the arborescence.
deba@512
   141
    typedef typename Traits::ArborescenceMap ArborescenceMap;
deba@512
   142
deba@512
   143
    typedef MinCostArborescence Create;
deba@512
   144
deba@512
   145
  private:
deba@512
   146
deba@512
   147
    TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
deba@512
   148
deba@512
   149
    struct CostArc {
deba@512
   150
deba@512
   151
      Arc arc;
deba@512
   152
      Value value;
deba@512
   153
deba@512
   154
      CostArc() {}
deba@512
   155
      CostArc(Arc _arc, Value _value) : arc(_arc), value(_value) {}
deba@512
   156
deba@512
   157
    };
deba@512
   158
deba@512
   159
    const Digraph *_digraph;
deba@512
   160
    const CostMap *_cost;
deba@512
   161
deba@512
   162
    PredMap *_pred;
deba@512
   163
    bool local_pred;
deba@512
   164
deba@512
   165
    ArborescenceMap *_arborescence;
deba@512
   166
    bool local_arborescence;
deba@512
   167
deba@512
   168
    typedef typename Digraph::template ArcMap<int> ArcOrder;
deba@512
   169
    ArcOrder *_arc_order;
deba@512
   170
deba@512
   171
    typedef typename Digraph::template NodeMap<int> NodeOrder;
deba@512
   172
    NodeOrder *_node_order;
deba@512
   173
deba@512
   174
    typedef typename Digraph::template NodeMap<CostArc> CostArcMap;
deba@512
   175
    CostArcMap *_cost_arcs;
deba@512
   176
deba@512
   177
    struct StackLevel {
deba@512
   178
deba@512
   179
      std::vector<CostArc> arcs;
deba@512
   180
      int node_level;
deba@512
   181
deba@512
   182
    };
deba@512
   183
deba@512
   184
    std::vector<StackLevel> level_stack;
deba@512
   185
    std::vector<Node> queue;
deba@512
   186
deba@512
   187
    typedef std::vector<typename Digraph::Node> DualNodeList;
deba@512
   188
deba@512
   189
    DualNodeList _dual_node_list;
deba@512
   190
deba@512
   191
    struct DualVariable {
deba@512
   192
      int begin, end;
deba@512
   193
      Value value;
deba@512
   194
deba@512
   195
      DualVariable(int _begin, int _end, Value _value)
deba@512
   196
        : begin(_begin), end(_end), value(_value) {}
deba@512
   197
deba@512
   198
    };
deba@512
   199
deba@512
   200
    typedef std::vector<DualVariable> DualVariables;
deba@512
   201
deba@512
   202
    DualVariables _dual_variables;
deba@512
   203
deba@512
   204
    typedef typename Digraph::template NodeMap<int> HeapCrossRef;
deba@512
   205
deba@512
   206
    HeapCrossRef *_heap_cross_ref;
deba@512
   207
deba@512
   208
    typedef BinHeap<int, HeapCrossRef> Heap;
deba@512
   209
deba@512
   210
    Heap *_heap;
deba@512
   211
deba@512
   212
  protected:
deba@512
   213
deba@512
   214
    MinCostArborescence() {}
deba@512
   215
deba@512
   216
  private:
deba@512
   217
deba@512
   218
    void createStructures() {
deba@512
   219
      if (!_pred) {
deba@512
   220
        local_pred = true;
deba@512
   221
        _pred = Traits::createPredMap(*_digraph);
deba@512
   222
      }
deba@512
   223
      if (!_arborescence) {
deba@512
   224
        local_arborescence = true;
deba@512
   225
        _arborescence = Traits::createArborescenceMap(*_digraph);
deba@512
   226
      }
deba@512
   227
      if (!_arc_order) {
deba@512
   228
        _arc_order = new ArcOrder(*_digraph);
deba@512
   229
      }
deba@512
   230
      if (!_node_order) {
deba@512
   231
        _node_order = new NodeOrder(*_digraph);
deba@512
   232
      }
deba@512
   233
      if (!_cost_arcs) {
deba@512
   234
        _cost_arcs = new CostArcMap(*_digraph);
deba@512
   235
      }
deba@512
   236
      if (!_heap_cross_ref) {
deba@512
   237
        _heap_cross_ref = new HeapCrossRef(*_digraph, -1);
deba@512
   238
      }
deba@512
   239
      if (!_heap) {
deba@512
   240
        _heap = new Heap(*_heap_cross_ref);
deba@512
   241
      }
deba@512
   242
    }
deba@512
   243
deba@512
   244
    void destroyStructures() {
deba@512
   245
      if (local_arborescence) {
deba@512
   246
        delete _arborescence;
deba@512
   247
      }
deba@512
   248
      if (local_pred) {
deba@512
   249
        delete _pred;
deba@512
   250
      }
deba@512
   251
      if (_arc_order) {
deba@512
   252
        delete _arc_order;
deba@512
   253
      }
deba@512
   254
      if (_node_order) {
deba@512
   255
        delete _node_order;
deba@512
   256
      }
deba@512
   257
      if (_cost_arcs) {
deba@512
   258
        delete _cost_arcs;
deba@512
   259
      }
deba@512
   260
      if (_heap) {
deba@512
   261
        delete _heap;
deba@512
   262
      }
deba@512
   263
      if (_heap_cross_ref) {
deba@512
   264
        delete _heap_cross_ref;
deba@512
   265
      }
deba@512
   266
    }
deba@512
   267
deba@512
   268
    Arc prepare(Node node) {
deba@512
   269
      std::vector<Node> nodes;
deba@512
   270
      (*_node_order)[node] = _dual_node_list.size();
deba@512
   271
      StackLevel level;
deba@512
   272
      level.node_level = _dual_node_list.size();
deba@512
   273
      _dual_node_list.push_back(node);
deba@512
   274
      for (InArcIt it(*_digraph, node); it != INVALID; ++it) {
deba@512
   275
        Arc arc = it;
deba@512
   276
        Node source = _digraph->source(arc);
deba@512
   277
        Value value = (*_cost)[it];
deba@512
   278
        if (source == node || (*_node_order)[source] == -3) continue;
deba@512
   279
        if ((*_cost_arcs)[source].arc == INVALID) {
deba@512
   280
          (*_cost_arcs)[source].arc = arc;
deba@512
   281
          (*_cost_arcs)[source].value = value;
deba@512
   282
          nodes.push_back(source);
deba@512
   283
        } else {
deba@512
   284
          if ((*_cost_arcs)[source].value > value) {
deba@512
   285
            (*_cost_arcs)[source].arc = arc;
deba@512
   286
            (*_cost_arcs)[source].value = value;
deba@512
   287
          }
deba@512
   288
        }
deba@512
   289
      }
deba@512
   290
      CostArc minimum = (*_cost_arcs)[nodes[0]];
deba@512
   291
      for (int i = 1; i < int(nodes.size()); ++i) {
deba@512
   292
        if ((*_cost_arcs)[nodes[i]].value < minimum.value) {
deba@512
   293
          minimum = (*_cost_arcs)[nodes[i]];
deba@512
   294
        }
deba@512
   295
      }
kpeter@573
   296
      (*_arc_order)[minimum.arc] = _dual_variables.size();
deba@512
   297
      DualVariable var(_dual_node_list.size() - 1,
deba@512
   298
                       _dual_node_list.size(), minimum.value);
deba@512
   299
      _dual_variables.push_back(var);
deba@512
   300
      for (int i = 0; i < int(nodes.size()); ++i) {
deba@512
   301
        (*_cost_arcs)[nodes[i]].value -= minimum.value;
deba@512
   302
        level.arcs.push_back((*_cost_arcs)[nodes[i]]);
deba@512
   303
        (*_cost_arcs)[nodes[i]].arc = INVALID;
deba@512
   304
      }
deba@512
   305
      level_stack.push_back(level);
deba@512
   306
      return minimum.arc;
deba@512
   307
    }
deba@512
   308
deba@512
   309
    Arc contract(Node node) {
deba@512
   310
      int node_bottom = bottom(node);
deba@512
   311
      std::vector<Node> nodes;
deba@512
   312
      while (!level_stack.empty() &&
deba@512
   313
             level_stack.back().node_level >= node_bottom) {
deba@512
   314
        for (int i = 0; i < int(level_stack.back().arcs.size()); ++i) {
deba@512
   315
          Arc arc = level_stack.back().arcs[i].arc;
deba@512
   316
          Node source = _digraph->source(arc);
deba@512
   317
          Value value = level_stack.back().arcs[i].value;
deba@512
   318
          if ((*_node_order)[source] >= node_bottom) continue;
deba@512
   319
          if ((*_cost_arcs)[source].arc == INVALID) {
deba@512
   320
            (*_cost_arcs)[source].arc = arc;
deba@512
   321
            (*_cost_arcs)[source].value = value;
deba@512
   322
            nodes.push_back(source);
deba@512
   323
          } else {
deba@512
   324
            if ((*_cost_arcs)[source].value > value) {
deba@512
   325
              (*_cost_arcs)[source].arc = arc;
deba@512
   326
              (*_cost_arcs)[source].value = value;
deba@512
   327
            }
deba@512
   328
          }
deba@512
   329
        }
deba@512
   330
        level_stack.pop_back();
deba@512
   331
      }
deba@512
   332
      CostArc minimum = (*_cost_arcs)[nodes[0]];
deba@512
   333
      for (int i = 1; i < int(nodes.size()); ++i) {
deba@512
   334
        if ((*_cost_arcs)[nodes[i]].value < minimum.value) {
deba@512
   335
          minimum = (*_cost_arcs)[nodes[i]];
deba@512
   336
        }
deba@512
   337
      }
kpeter@573
   338
      (*_arc_order)[minimum.arc] = _dual_variables.size();
deba@512
   339
      DualVariable var(node_bottom, _dual_node_list.size(), minimum.value);
deba@512
   340
      _dual_variables.push_back(var);
deba@512
   341
      StackLevel level;
deba@512
   342
      level.node_level = node_bottom;
deba@512
   343
      for (int i = 0; i < int(nodes.size()); ++i) {
deba@512
   344
        (*_cost_arcs)[nodes[i]].value -= minimum.value;
deba@512
   345
        level.arcs.push_back((*_cost_arcs)[nodes[i]]);
deba@512
   346
        (*_cost_arcs)[nodes[i]].arc = INVALID;
deba@512
   347
      }
deba@512
   348
      level_stack.push_back(level);
deba@512
   349
      return minimum.arc;
deba@512
   350
    }
deba@512
   351
deba@512
   352
    int bottom(Node node) {
deba@512
   353
      int k = level_stack.size() - 1;
deba@512
   354
      while (level_stack[k].node_level > (*_node_order)[node]) {
deba@512
   355
        --k;
deba@512
   356
      }
deba@512
   357
      return level_stack[k].node_level;
deba@512
   358
    }
deba@512
   359
deba@512
   360
    void finalize(Arc arc) {
deba@512
   361
      Node node = _digraph->target(arc);
deba@512
   362
      _heap->push(node, (*_arc_order)[arc]);
deba@512
   363
      _pred->set(node, arc);
deba@512
   364
      while (!_heap->empty()) {
deba@512
   365
        Node source = _heap->top();
deba@512
   366
        _heap->pop();
kpeter@573
   367
        (*_node_order)[source] = -1;
deba@512
   368
        for (OutArcIt it(*_digraph, source); it != INVALID; ++it) {
deba@512
   369
          if ((*_arc_order)[it] < 0) continue;
deba@512
   370
          Node target = _digraph->target(it);
deba@512
   371
          switch(_heap->state(target)) {
deba@512
   372
          case Heap::PRE_HEAP:
deba@512
   373
            _heap->push(target, (*_arc_order)[it]);
deba@512
   374
            _pred->set(target, it);
deba@512
   375
            break;
deba@512
   376
          case Heap::IN_HEAP:
deba@512
   377
            if ((*_arc_order)[it] < (*_heap)[target]) {
deba@512
   378
              _heap->decrease(target, (*_arc_order)[it]);
deba@512
   379
              _pred->set(target, it);
deba@512
   380
            }
deba@512
   381
            break;
deba@512
   382
          case Heap::POST_HEAP:
deba@512
   383
            break;
deba@512
   384
          }
deba@512
   385
        }
deba@512
   386
        _arborescence->set((*_pred)[source], true);
deba@512
   387
      }
deba@512
   388
    }
deba@512
   389
deba@512
   390
deba@512
   391
  public:
deba@512
   392
kpeter@576
   393
    /// \name Named Template Parameters
deba@512
   394
deba@512
   395
    /// @{
deba@512
   396
deba@512
   397
    template <class T>
deba@512
   398
    struct DefArborescenceMapTraits : public Traits {
deba@512
   399
      typedef T ArborescenceMap;
deba@512
   400
      static ArborescenceMap *createArborescenceMap(const Digraph &)
deba@512
   401
      {
deba@512
   402
        LEMON_ASSERT(false, "ArborescenceMap is not initialized");
deba@512
   403
        return 0; // ignore warnings
deba@512
   404
      }
deba@512
   405
    };
deba@512
   406
deba@512
   407
    /// \brief \ref named-templ-param "Named parameter" for
deba@512
   408
    /// setting ArborescenceMap type
deba@512
   409
    ///
deba@512
   410
    /// \ref named-templ-param "Named parameter" for setting
deba@512
   411
    /// ArborescenceMap type
deba@512
   412
    template <class T>
deba@512
   413
    struct DefArborescenceMap
deba@512
   414
      : public MinCostArborescence<Digraph, CostMap,
deba@512
   415
                                   DefArborescenceMapTraits<T> > {
deba@512
   416
    };
deba@512
   417
deba@512
   418
    template <class T>
deba@512
   419
    struct DefPredMapTraits : public Traits {
deba@512
   420
      typedef T PredMap;
deba@512
   421
      static PredMap *createPredMap(const Digraph &)
deba@512
   422
      {
deba@512
   423
        LEMON_ASSERT(false, "PredMap is not initialized");
deba@512
   424
      }
deba@512
   425
    };
deba@512
   426
deba@512
   427
    /// \brief \ref named-templ-param "Named parameter" for
deba@512
   428
    /// setting PredMap type
deba@512
   429
    ///
deba@512
   430
    /// \ref named-templ-param "Named parameter" for setting
deba@512
   431
    /// PredMap type
deba@512
   432
    template <class T>
deba@512
   433
    struct DefPredMap
deba@512
   434
      : public MinCostArborescence<Digraph, CostMap, DefPredMapTraits<T> > {
deba@512
   435
    };
deba@512
   436
deba@512
   437
    /// @}
deba@512
   438
deba@512
   439
    /// \brief Constructor.
deba@512
   440
    ///
kpeter@550
   441
    /// \param digraph The digraph the algorithm will run on.
kpeter@550
   442
    /// \param cost The cost map used by the algorithm.
deba@512
   443
    MinCostArborescence(const Digraph& digraph, const CostMap& cost)
deba@512
   444
      : _digraph(&digraph), _cost(&cost), _pred(0), local_pred(false),
deba@512
   445
        _arborescence(0), local_arborescence(false),
deba@512
   446
        _arc_order(0), _node_order(0), _cost_arcs(0),
deba@512
   447
        _heap_cross_ref(0), _heap(0) {}
deba@512
   448
deba@512
   449
    /// \brief Destructor.
deba@512
   450
    ~MinCostArborescence() {
deba@512
   451
      destroyStructures();
deba@512
   452
    }
deba@512
   453
deba@512
   454
    /// \brief Sets the arborescence map.
deba@512
   455
    ///
deba@512
   456
    /// Sets the arborescence map.
kpeter@550
   457
    /// \return <tt>(*this)</tt>
deba@512
   458
    MinCostArborescence& arborescenceMap(ArborescenceMap& m) {
deba@512
   459
      if (local_arborescence) {
deba@512
   460
        delete _arborescence;
deba@512
   461
      }
deba@512
   462
      local_arborescence = false;
deba@512
   463
      _arborescence = &m;
deba@512
   464
      return *this;
deba@512
   465
    }
deba@512
   466
deba@512
   467
    /// \brief Sets the arborescence map.
deba@512
   468
    ///
deba@512
   469
    /// Sets the arborescence map.
kpeter@550
   470
    /// \return <tt>(*this)</tt>
deba@512
   471
    MinCostArborescence& predMap(PredMap& m) {
deba@512
   472
      if (local_pred) {
deba@512
   473
        delete _pred;
deba@512
   474
      }
deba@512
   475
      local_pred = false;
deba@512
   476
      _pred = &m;
deba@512
   477
      return *this;
deba@512
   478
    }
deba@512
   479
deba@512
   480
    /// \name Query Functions
deba@512
   481
    /// The result of the %MinCostArborescence algorithm can be obtained
deba@512
   482
    /// using these functions.\n
deba@512
   483
    /// Before the use of these functions,
deba@512
   484
    /// either run() or start() must be called.
deba@512
   485
deba@512
   486
    /// @{
deba@512
   487
deba@512
   488
    /// \brief Returns a reference to the arborescence map.
deba@512
   489
    ///
deba@512
   490
    /// Returns a reference to the arborescence map.
deba@512
   491
    const ArborescenceMap& arborescenceMap() const {
deba@512
   492
      return *_arborescence;
deba@512
   493
    }
deba@512
   494
deba@512
   495
    /// \brief Returns true if the arc is in the arborescence.
deba@512
   496
    ///
deba@512
   497
    /// Returns true if the arc is in the arborescence.
deba@512
   498
    /// \param arc The arc of the digraph.
deba@512
   499
    /// \pre \ref run() must be called before using this function.
deba@512
   500
    bool arborescence(Arc arc) const {
deba@512
   501
      return (*_pred)[_digraph->target(arc)] == arc;
deba@512
   502
    }
deba@512
   503
deba@512
   504
    /// \brief Returns a reference to the pred map.
deba@512
   505
    ///
deba@512
   506
    /// Returns a reference to the pred map.
deba@512
   507
    const PredMap& predMap() const {
deba@512
   508
      return *_pred;
deba@512
   509
    }
deba@512
   510
deba@512
   511
    /// \brief Returns the predecessor arc of the given node.
deba@512
   512
    ///
deba@512
   513
    /// Returns the predecessor arc of the given node.
deba@512
   514
    Arc pred(Node node) const {
deba@512
   515
      return (*_pred)[node];
deba@512
   516
    }
deba@512
   517
deba@512
   518
    /// \brief Returns the cost of the arborescence.
deba@512
   519
    ///
deba@512
   520
    /// Returns the cost of the arborescence.
deba@512
   521
    Value arborescenceValue() const {
deba@512
   522
      Value sum = 0;
deba@512
   523
      for (ArcIt it(*_digraph); it != INVALID; ++it) {
deba@512
   524
        if (arborescence(it)) {
deba@512
   525
          sum += (*_cost)[it];
deba@512
   526
        }
deba@512
   527
      }
deba@512
   528
      return sum;
deba@512
   529
    }
deba@512
   530
deba@512
   531
    /// \brief Indicates that a node is reachable from the sources.
deba@512
   532
    ///
deba@512
   533
    /// Indicates that a node is reachable from the sources.
deba@512
   534
    bool reached(Node node) const {
deba@512
   535
      return (*_node_order)[node] != -3;
deba@512
   536
    }
deba@512
   537
deba@512
   538
    /// \brief Indicates that a node is processed.
deba@512
   539
    ///
deba@512
   540
    /// Indicates that a node is processed. The arborescence path exists
deba@512
   541
    /// from the source to the given node.
deba@512
   542
    bool processed(Node node) const {
deba@512
   543
      return (*_node_order)[node] == -1;
deba@512
   544
    }
deba@512
   545
deba@512
   546
    /// \brief Returns the number of the dual variables in basis.
deba@512
   547
    ///
deba@512
   548
    /// Returns the number of the dual variables in basis.
deba@512
   549
    int dualNum() const {
deba@512
   550
      return _dual_variables.size();
deba@512
   551
    }
deba@512
   552
deba@512
   553
    /// \brief Returns the value of the dual solution.
deba@512
   554
    ///
deba@512
   555
    /// Returns the value of the dual solution. It should be
deba@512
   556
    /// equal to the arborescence value.
deba@512
   557
    Value dualValue() const {
deba@512
   558
      Value sum = 0;
deba@512
   559
      for (int i = 0; i < int(_dual_variables.size()); ++i) {
deba@512
   560
        sum += _dual_variables[i].value;
deba@512
   561
      }
deba@512
   562
      return sum;
deba@512
   563
    }
deba@512
   564
deba@512
   565
    /// \brief Returns the number of the nodes in the dual variable.
deba@512
   566
    ///
deba@512
   567
    /// Returns the number of the nodes in the dual variable.
deba@512
   568
    int dualSize(int k) const {
deba@512
   569
      return _dual_variables[k].end - _dual_variables[k].begin;
deba@512
   570
    }
deba@512
   571
deba@512
   572
    /// \brief Returns the value of the dual variable.
deba@512
   573
    ///
deba@512
   574
    /// Returns the the value of the dual variable.
deba@512
   575
    const Value& dualValue(int k) const {
deba@512
   576
      return _dual_variables[k].value;
deba@512
   577
    }
deba@512
   578
deba@512
   579
    /// \brief Lemon iterator for get a dual variable.
deba@512
   580
    ///
deba@512
   581
    /// Lemon iterator for get a dual variable. This class provides
deba@512
   582
    /// a common style lemon iterator which gives back a subset of
deba@512
   583
    /// the nodes.
deba@512
   584
    class DualIt {
deba@512
   585
    public:
deba@512
   586
deba@512
   587
      /// \brief Constructor.
deba@512
   588
      ///
deba@512
   589
      /// Constructor for get the nodeset of the variable.
deba@512
   590
      DualIt(const MinCostArborescence& algorithm, int variable)
deba@512
   591
        : _algorithm(&algorithm)
deba@512
   592
      {
deba@512
   593
        _index = _algorithm->_dual_variables[variable].begin;
deba@512
   594
        _last = _algorithm->_dual_variables[variable].end;
deba@512
   595
      }
deba@512
   596
deba@512
   597
      /// \brief Conversion to node.
deba@512
   598
      ///
deba@512
   599
      /// Conversion to node.
deba@512
   600
      operator Node() const {
deba@512
   601
        return _algorithm->_dual_node_list[_index];
deba@512
   602
      }
deba@512
   603
deba@512
   604
      /// \brief Increment operator.
deba@512
   605
      ///
deba@512
   606
      /// Increment operator.
deba@512
   607
      DualIt& operator++() {
deba@512
   608
        ++_index;
deba@512
   609
        return *this;
deba@512
   610
      }
deba@512
   611
deba@512
   612
      /// \brief Validity checking
deba@512
   613
      ///
deba@512
   614
      /// Checks whether the iterator is invalid.
deba@512
   615
      bool operator==(Invalid) const {
deba@512
   616
        return _index == _last;
deba@512
   617
      }
deba@512
   618
deba@512
   619
      /// \brief Validity checking
deba@512
   620
      ///
deba@512
   621
      /// Checks whether the iterator is valid.
deba@512
   622
      bool operator!=(Invalid) const {
deba@512
   623
        return _index != _last;
deba@512
   624
      }
deba@512
   625
deba@512
   626
    private:
deba@512
   627
      const MinCostArborescence* _algorithm;
deba@512
   628
      int _index, _last;
deba@512
   629
    };
deba@512
   630
deba@512
   631
    /// @}
deba@512
   632
kpeter@576
   633
    /// \name Execution Control
deba@512
   634
    /// The simplest way to execute the algorithm is to use
deba@512
   635
    /// one of the member functions called \c run(...). \n
deba@512
   636
    /// If you need more control on the execution,
deba@512
   637
    /// first you must call \ref init(), then you can add several
deba@512
   638
    /// source nodes with \ref addSource().
deba@512
   639
    /// Finally \ref start() will perform the arborescence
deba@512
   640
    /// computation.
deba@512
   641
deba@512
   642
    ///@{
deba@512
   643
deba@512
   644
    /// \brief Initializes the internal data structures.
deba@512
   645
    ///
deba@512
   646
    /// Initializes the internal data structures.
deba@512
   647
    ///
deba@512
   648
    void init() {
deba@512
   649
      createStructures();
deba@512
   650
      _heap->clear();
deba@512
   651
      for (NodeIt it(*_digraph); it != INVALID; ++it) {
deba@512
   652
        (*_cost_arcs)[it].arc = INVALID;
kpeter@573
   653
        (*_node_order)[it] = -3;
kpeter@573
   654
        (*_heap_cross_ref)[it] = Heap::PRE_HEAP;
deba@512
   655
        _pred->set(it, INVALID);
deba@512
   656
      }
deba@512
   657
      for (ArcIt it(*_digraph); it != INVALID; ++it) {
deba@512
   658
        _arborescence->set(it, false);
kpeter@573
   659
        (*_arc_order)[it] = -1;
deba@512
   660
      }
deba@512
   661
      _dual_node_list.clear();
deba@512
   662
      _dual_variables.clear();
deba@512
   663
    }
deba@512
   664
deba@512
   665
    /// \brief Adds a new source node.
deba@512
   666
    ///
deba@512
   667
    /// Adds a new source node to the algorithm.
deba@512
   668
    void addSource(Node source) {
deba@512
   669
      std::vector<Node> nodes;
deba@512
   670
      nodes.push_back(source);
deba@512
   671
      while (!nodes.empty()) {
deba@512
   672
        Node node = nodes.back();
deba@512
   673
        nodes.pop_back();
deba@512
   674
        for (OutArcIt it(*_digraph, node); it != INVALID; ++it) {
deba@512
   675
          Node target = _digraph->target(it);
deba@512
   676
          if ((*_node_order)[target] == -3) {
deba@512
   677
            (*_node_order)[target] = -2;
deba@512
   678
            nodes.push_back(target);
deba@512
   679
            queue.push_back(target);
deba@512
   680
          }
deba@512
   681
        }
deba@512
   682
      }
deba@512
   683
      (*_node_order)[source] = -1;
deba@512
   684
    }
deba@512
   685
deba@512
   686
    /// \brief Processes the next node in the priority queue.
deba@512
   687
    ///
deba@512
   688
    /// Processes the next node in the priority queue.
deba@512
   689
    ///
deba@512
   690
    /// \return The processed node.
deba@512
   691
    ///
deba@512
   692
    /// \warning The queue must not be empty!
deba@512
   693
    Node processNextNode() {
deba@512
   694
      Node node = queue.back();
deba@512
   695
      queue.pop_back();
deba@512
   696
      if ((*_node_order)[node] == -2) {
deba@512
   697
        Arc arc = prepare(node);
deba@512
   698
        Node source = _digraph->source(arc);
deba@512
   699
        while ((*_node_order)[source] != -1) {
deba@512
   700
          if ((*_node_order)[source] >= 0) {
deba@512
   701
            arc = contract(source);
deba@512
   702
          } else {
deba@512
   703
            arc = prepare(source);
deba@512
   704
          }
deba@512
   705
          source = _digraph->source(arc);
deba@512
   706
        }
deba@512
   707
        finalize(arc);
deba@512
   708
        level_stack.clear();
deba@512
   709
      }
deba@512
   710
      return node;
deba@512
   711
    }
deba@512
   712
deba@512
   713
    /// \brief Returns the number of the nodes to be processed.
deba@512
   714
    ///
deba@512
   715
    /// Returns the number of the nodes to be processed.
deba@512
   716
    int queueSize() const {
deba@512
   717
      return queue.size();
deba@512
   718
    }
deba@512
   719
deba@512
   720
    /// \brief Returns \c false if there are nodes to be processed.
deba@512
   721
    ///
deba@512
   722
    /// Returns \c false if there are nodes to be processed.
deba@512
   723
    bool emptyQueue() const {
deba@512
   724
      return queue.empty();
deba@512
   725
    }
deba@512
   726
deba@512
   727
    /// \brief Executes the algorithm.
deba@512
   728
    ///
deba@512
   729
    /// Executes the algorithm.
deba@512
   730
    ///
deba@512
   731
    /// \pre init() must be called and at least one node should be added
deba@512
   732
    /// with addSource() before using this function.
deba@512
   733
    ///
deba@512
   734
    ///\note mca.start() is just a shortcut of the following code.
deba@512
   735
    ///\code
deba@512
   736
    ///while (!mca.emptyQueue()) {
deba@512
   737
    ///  mca.processNextNode();
deba@512
   738
    ///}
deba@512
   739
    ///\endcode
deba@512
   740
    void start() {
deba@512
   741
      while (!emptyQueue()) {
deba@512
   742
        processNextNode();
deba@512
   743
      }
deba@512
   744
    }
deba@512
   745
deba@512
   746
    /// \brief Runs %MinCostArborescence algorithm from node \c s.
deba@512
   747
    ///
deba@512
   748
    /// This method runs the %MinCostArborescence algorithm from
deba@512
   749
    /// a root node \c s.
deba@512
   750
    ///
deba@512
   751
    /// \note mca.run(s) is just a shortcut of the following code.
deba@512
   752
    /// \code
deba@512
   753
    /// mca.init();
deba@512
   754
    /// mca.addSource(s);
deba@512
   755
    /// mca.start();
deba@512
   756
    /// \endcode
deba@512
   757
    void run(Node node) {
deba@512
   758
      init();
deba@512
   759
      addSource(node);
deba@512
   760
      start();
deba@512
   761
    }
deba@512
   762
deba@512
   763
    ///@}
deba@512
   764
deba@512
   765
  };
deba@512
   766
deba@512
   767
  /// \ingroup spantree
deba@512
   768
  ///
deba@512
   769
  /// \brief Function type interface for MinCostArborescence algorithm.
deba@512
   770
  ///
deba@512
   771
  /// Function type interface for MinCostArborescence algorithm.
deba@512
   772
  /// \param digraph The Digraph that the algorithm runs on.
deba@512
   773
  /// \param cost The CostMap of the arcs.
deba@512
   774
  /// \param source The source of the arborescence.
deba@512
   775
  /// \retval arborescence The bool ArcMap which stores the arborescence.
deba@512
   776
  /// \return The cost of the arborescence.
deba@512
   777
  ///
deba@512
   778
  /// \sa MinCostArborescence
deba@512
   779
  template <typename Digraph, typename CostMap, typename ArborescenceMap>
deba@512
   780
  typename CostMap::Value minCostArborescence(const Digraph& digraph,
deba@512
   781
                                              const CostMap& cost,
deba@512
   782
                                              typename Digraph::Node source,
deba@512
   783
                                              ArborescenceMap& arborescence) {
deba@512
   784
    typename MinCostArborescence<Digraph, CostMap>
deba@512
   785
      ::template DefArborescenceMap<ArborescenceMap>
deba@512
   786
      ::Create mca(digraph, cost);
deba@512
   787
    mca.arborescenceMap(arborescence);
deba@512
   788
    mca.run(source);
deba@512
   789
    return mca.arborescenceValue();
deba@512
   790
  }
deba@512
   791
deba@512
   792
}
deba@512
   793
deba@512
   794
#endif