alpar@100
|
1 |
/* -*- C++ -*-
|
alpar@100
|
2 |
*
|
alpar@100
|
3 |
* This file is a part of LEMON, a generic C++ optimization library
|
alpar@100
|
4 |
*
|
alpar@100
|
5 |
* Copyright (C) 2003-2008
|
alpar@100
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
|
alpar@100
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES).
|
alpar@100
|
8 |
*
|
alpar@100
|
9 |
* Permission to use, modify and distribute this software is granted
|
alpar@100
|
10 |
* provided that this copyright notice appears in all copies. For
|
alpar@100
|
11 |
* precise terms see the accompanying LICENSE file.
|
alpar@100
|
12 |
*
|
alpar@100
|
13 |
* This software is provided "AS IS" with no warranty of any kind,
|
alpar@100
|
14 |
* express or implied, and with no claim as to its suitability for any
|
alpar@100
|
15 |
* purpose.
|
alpar@100
|
16 |
*
|
alpar@100
|
17 |
*/
|
alpar@100
|
18 |
|
alpar@100
|
19 |
#ifndef LEMON_GRAPH_UTILS_H
|
alpar@100
|
20 |
#define LEMON_GRAPH_UTILS_H
|
alpar@100
|
21 |
|
alpar@100
|
22 |
#include <iterator>
|
alpar@100
|
23 |
#include <vector>
|
alpar@100
|
24 |
#include <map>
|
alpar@100
|
25 |
#include <cmath>
|
alpar@100
|
26 |
#include <algorithm>
|
alpar@100
|
27 |
|
alpar@100
|
28 |
#include <lemon/bits/invalid.h>
|
alpar@100
|
29 |
#include <lemon/bits/utility.h>
|
alpar@100
|
30 |
#include <lemon/maps.h>
|
alpar@100
|
31 |
#include <lemon/bits/traits.h>
|
alpar@100
|
32 |
|
alpar@100
|
33 |
#include <lemon/bits/alteration_notifier.h>
|
alpar@100
|
34 |
#include <lemon/bits/default_map.h>
|
alpar@100
|
35 |
|
alpar@100
|
36 |
///\ingroup gutils
|
alpar@100
|
37 |
///\file
|
alpar@100
|
38 |
///\brief Digraph utilities.
|
alpar@100
|
39 |
|
alpar@100
|
40 |
namespace lemon {
|
alpar@100
|
41 |
|
alpar@100
|
42 |
/// \addtogroup gutils
|
alpar@100
|
43 |
/// @{
|
alpar@100
|
44 |
|
alpar@100
|
45 |
///Creates convenience typedefs for the digraph types and iterators
|
alpar@100
|
46 |
|
alpar@100
|
47 |
///This \c \#define creates convenience typedefs for the following types
|
alpar@100
|
48 |
///of \c Digraph: \c Node, \c NodeIt, \c Arc, \c ArcIt, \c InArcIt,
|
alpar@100
|
49 |
///\c OutArcIt
|
alpar@100
|
50 |
///\note If \c G it a template parameter, it should be used in this way.
|
alpar@100
|
51 |
///\code
|
alpar@100
|
52 |
/// GRAPH_TYPEDEFS(typename G);
|
alpar@100
|
53 |
///\endcode
|
alpar@100
|
54 |
///
|
alpar@100
|
55 |
///\warning There are no typedefs for the digraph maps because of the lack of
|
alpar@100
|
56 |
///template typedefs in C++.
|
alpar@100
|
57 |
#define GRAPH_TYPEDEFS(Digraph) \
|
alpar@100
|
58 |
typedef Digraph:: Node Node; \
|
alpar@100
|
59 |
typedef Digraph:: NodeIt NodeIt; \
|
alpar@100
|
60 |
typedef Digraph:: Arc Arc; \
|
alpar@100
|
61 |
typedef Digraph:: ArcIt ArcIt; \
|
alpar@100
|
62 |
typedef Digraph:: InArcIt InArcIt; \
|
alpar@100
|
63 |
typedef Digraph::OutArcIt OutArcIt
|
alpar@100
|
64 |
|
alpar@100
|
65 |
///Creates convenience typedefs for the graph types and iterators
|
alpar@100
|
66 |
|
alpar@100
|
67 |
///This \c \#define creates the same convenience typedefs as defined by
|
alpar@100
|
68 |
///\ref GRAPH_TYPEDEFS(Digraph) and three more, namely it creates
|
alpar@100
|
69 |
///\c Edge, \c EdgeIt, \c IncArcIt,
|
alpar@100
|
70 |
///
|
alpar@100
|
71 |
///\note If \c G it a template parameter, it should be used in this way.
|
alpar@100
|
72 |
///\code
|
alpar@100
|
73 |
/// UGRAPH_TYPEDEFS(typename G);
|
alpar@100
|
74 |
///\endcode
|
alpar@100
|
75 |
///
|
alpar@100
|
76 |
///\warning There are no typedefs for the digraph maps because of the lack of
|
alpar@100
|
77 |
///template typedefs in C++.
|
alpar@100
|
78 |
#define UGRAPH_TYPEDEFS(Digraph) \
|
alpar@100
|
79 |
GRAPH_TYPEDEFS(Digraph); \
|
alpar@100
|
80 |
typedef Digraph:: Edge Edge; \
|
alpar@100
|
81 |
typedef Digraph:: EdgeIt EdgeIt; \
|
alpar@100
|
82 |
typedef Digraph:: IncArcIt IncArcIt
|
alpar@100
|
83 |
|
alpar@100
|
84 |
///\brief Creates convenience typedefs for the bipartite digraph
|
alpar@100
|
85 |
///types and iterators
|
alpar@100
|
86 |
|
alpar@100
|
87 |
///This \c \#define creates the same convenience typedefs as defined by
|
alpar@100
|
88 |
///\ref UGRAPH_TYPEDEFS(Digraph) and two more, namely it creates
|
alpar@100
|
89 |
///\c RedIt, \c BlueIt,
|
alpar@100
|
90 |
///
|
alpar@100
|
91 |
///\note If \c G it a template parameter, it should be used in this way.
|
alpar@100
|
92 |
///\code
|
alpar@100
|
93 |
/// BPUGRAPH_TYPEDEFS(typename G);
|
alpar@100
|
94 |
///\endcode
|
alpar@100
|
95 |
///
|
alpar@100
|
96 |
///\warning There are no typedefs for the digraph maps because of the lack of
|
alpar@100
|
97 |
///template typedefs in C++.
|
alpar@100
|
98 |
#define BPUGRAPH_TYPEDEFS(Digraph) \
|
alpar@100
|
99 |
UGRAPH_TYPEDEFS(Digraph); \
|
alpar@100
|
100 |
typedef Digraph::Red Red; \
|
alpar@100
|
101 |
typedef Digraph::Blue Blue; \
|
alpar@100
|
102 |
typedef Digraph::RedIt RedIt; \
|
alpar@100
|
103 |
typedef Digraph::BlueIt BlueIt
|
alpar@100
|
104 |
|
alpar@100
|
105 |
/// \brief Function to count the items in the digraph.
|
alpar@100
|
106 |
///
|
alpar@100
|
107 |
/// This function counts the items (nodes, arcs etc) in the digraph.
|
alpar@100
|
108 |
/// The complexity of the function is O(n) because
|
alpar@100
|
109 |
/// it iterates on all of the items.
|
alpar@100
|
110 |
|
alpar@100
|
111 |
template <typename Digraph, typename Item>
|
alpar@100
|
112 |
inline int countItems(const Digraph& g) {
|
alpar@100
|
113 |
typedef typename ItemSetTraits<Digraph, Item>::ItemIt ItemIt;
|
alpar@100
|
114 |
int num = 0;
|
alpar@100
|
115 |
for (ItemIt it(g); it != INVALID; ++it) {
|
alpar@100
|
116 |
++num;
|
alpar@100
|
117 |
}
|
alpar@100
|
118 |
return num;
|
alpar@100
|
119 |
}
|
alpar@100
|
120 |
|
alpar@100
|
121 |
// Node counting:
|
alpar@100
|
122 |
|
alpar@100
|
123 |
namespace _digraph_utils_bits {
|
alpar@100
|
124 |
|
alpar@100
|
125 |
template <typename Digraph, typename Enable = void>
|
alpar@100
|
126 |
struct CountNodesSelector {
|
alpar@100
|
127 |
static int count(const Digraph &g) {
|
alpar@100
|
128 |
return countItems<Digraph, typename Digraph::Node>(g);
|
alpar@100
|
129 |
}
|
alpar@100
|
130 |
};
|
alpar@100
|
131 |
|
alpar@100
|
132 |
template <typename Digraph>
|
alpar@100
|
133 |
struct CountNodesSelector<
|
alpar@100
|
134 |
Digraph, typename
|
alpar@100
|
135 |
enable_if<typename Digraph::NodeNumTag, void>::type>
|
alpar@100
|
136 |
{
|
alpar@100
|
137 |
static int count(const Digraph &g) {
|
alpar@100
|
138 |
return g.nodeNum();
|
alpar@100
|
139 |
}
|
alpar@100
|
140 |
};
|
alpar@100
|
141 |
}
|
alpar@100
|
142 |
|
alpar@100
|
143 |
/// \brief Function to count the nodes in the digraph.
|
alpar@100
|
144 |
///
|
alpar@100
|
145 |
/// This function counts the nodes in the digraph.
|
alpar@100
|
146 |
/// The complexity of the function is O(n) but for some
|
alpar@100
|
147 |
/// digraph structures it is specialized to run in O(1).
|
alpar@100
|
148 |
///
|
alpar@100
|
149 |
/// If the digraph contains a \e nodeNum() member function and a
|
alpar@100
|
150 |
/// \e NodeNumTag tag then this function calls directly the member
|
alpar@100
|
151 |
/// function to query the cardinality of the node set.
|
alpar@100
|
152 |
template <typename Digraph>
|
alpar@100
|
153 |
inline int countNodes(const Digraph& g) {
|
alpar@100
|
154 |
return _digraph_utils_bits::CountNodesSelector<Digraph>::count(g);
|
alpar@100
|
155 |
}
|
alpar@100
|
156 |
|
alpar@100
|
157 |
namespace _digraph_utils_bits {
|
alpar@100
|
158 |
|
alpar@100
|
159 |
template <typename Digraph, typename Enable = void>
|
alpar@100
|
160 |
struct CountRedsSelector {
|
alpar@100
|
161 |
static int count(const Digraph &g) {
|
alpar@100
|
162 |
return countItems<Digraph, typename Digraph::Red>(g);
|
alpar@100
|
163 |
}
|
alpar@100
|
164 |
};
|
alpar@100
|
165 |
|
alpar@100
|
166 |
template <typename Digraph>
|
alpar@100
|
167 |
struct CountRedsSelector<
|
alpar@100
|
168 |
Digraph, typename
|
alpar@100
|
169 |
enable_if<typename Digraph::NodeNumTag, void>::type>
|
alpar@100
|
170 |
{
|
alpar@100
|
171 |
static int count(const Digraph &g) {
|
alpar@100
|
172 |
return g.redNum();
|
alpar@100
|
173 |
}
|
alpar@100
|
174 |
};
|
alpar@100
|
175 |
}
|
alpar@100
|
176 |
|
alpar@100
|
177 |
/// \brief Function to count the reds in the digraph.
|
alpar@100
|
178 |
///
|
alpar@100
|
179 |
/// This function counts the reds in the digraph.
|
alpar@100
|
180 |
/// The complexity of the function is O(an) but for some
|
alpar@100
|
181 |
/// digraph structures it is specialized to run in O(1).
|
alpar@100
|
182 |
///
|
alpar@100
|
183 |
/// If the digraph contains an \e redNum() member function and a
|
alpar@100
|
184 |
/// \e NodeNumTag tag then this function calls directly the member
|
alpar@100
|
185 |
/// function to query the cardinality of the A-node set.
|
alpar@100
|
186 |
template <typename Digraph>
|
alpar@100
|
187 |
inline int countReds(const Digraph& g) {
|
alpar@100
|
188 |
return _digraph_utils_bits::CountRedsSelector<Digraph>::count(g);
|
alpar@100
|
189 |
}
|
alpar@100
|
190 |
|
alpar@100
|
191 |
namespace _digraph_utils_bits {
|
alpar@100
|
192 |
|
alpar@100
|
193 |
template <typename Digraph, typename Enable = void>
|
alpar@100
|
194 |
struct CountBluesSelector {
|
alpar@100
|
195 |
static int count(const Digraph &g) {
|
alpar@100
|
196 |
return countItems<Digraph, typename Digraph::Blue>(g);
|
alpar@100
|
197 |
}
|
alpar@100
|
198 |
};
|
alpar@100
|
199 |
|
alpar@100
|
200 |
template <typename Digraph>
|
alpar@100
|
201 |
struct CountBluesSelector<
|
alpar@100
|
202 |
Digraph, typename
|
alpar@100
|
203 |
enable_if<typename Digraph::NodeNumTag, void>::type>
|
alpar@100
|
204 |
{
|
alpar@100
|
205 |
static int count(const Digraph &g) {
|
alpar@100
|
206 |
return g.blueNum();
|
alpar@100
|
207 |
}
|
alpar@100
|
208 |
};
|
alpar@100
|
209 |
}
|
alpar@100
|
210 |
|
alpar@100
|
211 |
/// \brief Function to count the blues in the digraph.
|
alpar@100
|
212 |
///
|
alpar@100
|
213 |
/// This function counts the blues in the digraph.
|
alpar@100
|
214 |
/// The complexity of the function is O(bn) but for some
|
alpar@100
|
215 |
/// digraph structures it is specialized to run in O(1).
|
alpar@100
|
216 |
///
|
alpar@100
|
217 |
/// If the digraph contains a \e blueNum() member function and a
|
alpar@100
|
218 |
/// \e NodeNumTag tag then this function calls directly the member
|
alpar@100
|
219 |
/// function to query the cardinality of the B-node set.
|
alpar@100
|
220 |
template <typename Digraph>
|
alpar@100
|
221 |
inline int countBlues(const Digraph& g) {
|
alpar@100
|
222 |
return _digraph_utils_bits::CountBluesSelector<Digraph>::count(g);
|
alpar@100
|
223 |
}
|
alpar@100
|
224 |
|
alpar@100
|
225 |
|
alpar@100
|
226 |
// Arc counting:
|
alpar@100
|
227 |
|
alpar@100
|
228 |
namespace _digraph_utils_bits {
|
alpar@100
|
229 |
|
alpar@100
|
230 |
template <typename Digraph, typename Enable = void>
|
alpar@100
|
231 |
struct CountArcsSelector {
|
alpar@100
|
232 |
static int count(const Digraph &g) {
|
alpar@100
|
233 |
return countItems<Digraph, typename Digraph::Arc>(g);
|
alpar@100
|
234 |
}
|
alpar@100
|
235 |
};
|
alpar@100
|
236 |
|
alpar@100
|
237 |
template <typename Digraph>
|
alpar@100
|
238 |
struct CountArcsSelector<
|
alpar@100
|
239 |
Digraph,
|
alpar@100
|
240 |
typename enable_if<typename Digraph::ArcNumTag, void>::type>
|
alpar@100
|
241 |
{
|
alpar@100
|
242 |
static int count(const Digraph &g) {
|
alpar@100
|
243 |
return g.arcNum();
|
alpar@100
|
244 |
}
|
alpar@100
|
245 |
};
|
alpar@100
|
246 |
}
|
alpar@100
|
247 |
|
alpar@100
|
248 |
/// \brief Function to count the arcs in the digraph.
|
alpar@100
|
249 |
///
|
alpar@100
|
250 |
/// This function counts the arcs in the digraph.
|
alpar@100
|
251 |
/// The complexity of the function is O(e) but for some
|
alpar@100
|
252 |
/// digraph structures it is specialized to run in O(1).
|
alpar@100
|
253 |
///
|
alpar@100
|
254 |
/// If the digraph contains a \e arcNum() member function and a
|
alpar@100
|
255 |
/// \e ArcNumTag tag then this function calls directly the member
|
alpar@100
|
256 |
/// function to query the cardinality of the arc set.
|
alpar@100
|
257 |
template <typename Digraph>
|
alpar@100
|
258 |
inline int countArcs(const Digraph& g) {
|
alpar@100
|
259 |
return _digraph_utils_bits::CountArcsSelector<Digraph>::count(g);
|
alpar@100
|
260 |
}
|
alpar@100
|
261 |
|
alpar@100
|
262 |
// Undirected arc counting:
|
alpar@100
|
263 |
namespace _digraph_utils_bits {
|
alpar@100
|
264 |
|
alpar@100
|
265 |
template <typename Digraph, typename Enable = void>
|
alpar@100
|
266 |
struct CountEdgesSelector {
|
alpar@100
|
267 |
static int count(const Digraph &g) {
|
alpar@100
|
268 |
return countItems<Digraph, typename Digraph::Edge>(g);
|
alpar@100
|
269 |
}
|
alpar@100
|
270 |
};
|
alpar@100
|
271 |
|
alpar@100
|
272 |
template <typename Digraph>
|
alpar@100
|
273 |
struct CountEdgesSelector<
|
alpar@100
|
274 |
Digraph,
|
alpar@100
|
275 |
typename enable_if<typename Digraph::ArcNumTag, void>::type>
|
alpar@100
|
276 |
{
|
alpar@100
|
277 |
static int count(const Digraph &g) {
|
alpar@100
|
278 |
return g.edgeNum();
|
alpar@100
|
279 |
}
|
alpar@100
|
280 |
};
|
alpar@100
|
281 |
}
|
alpar@100
|
282 |
|
alpar@100
|
283 |
/// \brief Function to count the edges in the digraph.
|
alpar@100
|
284 |
///
|
alpar@100
|
285 |
/// This function counts the edges in the digraph.
|
alpar@100
|
286 |
/// The complexity of the function is O(e) but for some
|
alpar@100
|
287 |
/// digraph structures it is specialized to run in O(1).
|
alpar@100
|
288 |
///
|
alpar@100
|
289 |
/// If the digraph contains a \e edgeNum() member function and a
|
alpar@100
|
290 |
/// \e ArcNumTag tag then this function calls directly the member
|
alpar@100
|
291 |
/// function to query the cardinality of the edge set.
|
alpar@100
|
292 |
template <typename Digraph>
|
alpar@100
|
293 |
inline int countEdges(const Digraph& g) {
|
alpar@100
|
294 |
return _digraph_utils_bits::CountEdgesSelector<Digraph>::count(g);
|
alpar@100
|
295 |
|
alpar@100
|
296 |
}
|
alpar@100
|
297 |
|
alpar@100
|
298 |
|
alpar@100
|
299 |
template <typename Digraph, typename DegIt>
|
alpar@100
|
300 |
inline int countNodeDegree(const Digraph& _g, const typename Digraph::Node& _n) {
|
alpar@100
|
301 |
int num = 0;
|
alpar@100
|
302 |
for (DegIt it(_g, _n); it != INVALID; ++it) {
|
alpar@100
|
303 |
++num;
|
alpar@100
|
304 |
}
|
alpar@100
|
305 |
return num;
|
alpar@100
|
306 |
}
|
alpar@100
|
307 |
|
alpar@100
|
308 |
/// \brief Function to count the number of the out-arcs from node \c n.
|
alpar@100
|
309 |
///
|
alpar@100
|
310 |
/// This function counts the number of the out-arcs from node \c n
|
alpar@100
|
311 |
/// in the digraph.
|
alpar@100
|
312 |
template <typename Digraph>
|
alpar@100
|
313 |
inline int countOutArcs(const Digraph& _g, const typename Digraph::Node& _n) {
|
alpar@100
|
314 |
return countNodeDegree<Digraph, typename Digraph::OutArcIt>(_g, _n);
|
alpar@100
|
315 |
}
|
alpar@100
|
316 |
|
alpar@100
|
317 |
/// \brief Function to count the number of the in-arcs to node \c n.
|
alpar@100
|
318 |
///
|
alpar@100
|
319 |
/// This function counts the number of the in-arcs to node \c n
|
alpar@100
|
320 |
/// in the digraph.
|
alpar@100
|
321 |
template <typename Digraph>
|
alpar@100
|
322 |
inline int countInArcs(const Digraph& _g, const typename Digraph::Node& _n) {
|
alpar@100
|
323 |
return countNodeDegree<Digraph, typename Digraph::InArcIt>(_g, _n);
|
alpar@100
|
324 |
}
|
alpar@100
|
325 |
|
alpar@100
|
326 |
/// \brief Function to count the number of the inc-arcs to node \c n.
|
alpar@100
|
327 |
///
|
alpar@100
|
328 |
/// This function counts the number of the inc-arcs to node \c n
|
alpar@100
|
329 |
/// in the digraph.
|
alpar@100
|
330 |
template <typename Digraph>
|
alpar@100
|
331 |
inline int countIncArcs(const Digraph& _g, const typename Digraph::Node& _n) {
|
alpar@100
|
332 |
return countNodeDegree<Digraph, typename Digraph::IncArcIt>(_g, _n);
|
alpar@100
|
333 |
}
|
alpar@100
|
334 |
|
alpar@100
|
335 |
namespace _digraph_utils_bits {
|
alpar@100
|
336 |
|
alpar@100
|
337 |
template <typename Digraph, typename Enable = void>
|
alpar@100
|
338 |
struct FindArcSelector {
|
alpar@100
|
339 |
typedef typename Digraph::Node Node;
|
alpar@100
|
340 |
typedef typename Digraph::Arc Arc;
|
alpar@100
|
341 |
static Arc find(const Digraph &g, Node u, Node v, Arc e) {
|
alpar@100
|
342 |
if (e == INVALID) {
|
alpar@100
|
343 |
g.firstOut(e, u);
|
alpar@100
|
344 |
} else {
|
alpar@100
|
345 |
g.nextOut(e);
|
alpar@100
|
346 |
}
|
alpar@100
|
347 |
while (e != INVALID && g.target(e) != v) {
|
alpar@100
|
348 |
g.nextOut(e);
|
alpar@100
|
349 |
}
|
alpar@100
|
350 |
return e;
|
alpar@100
|
351 |
}
|
alpar@100
|
352 |
};
|
alpar@100
|
353 |
|
alpar@100
|
354 |
template <typename Digraph>
|
alpar@100
|
355 |
struct FindArcSelector<
|
alpar@100
|
356 |
Digraph,
|
alpar@100
|
357 |
typename enable_if<typename Digraph::FindArcTag, void>::type>
|
alpar@100
|
358 |
{
|
alpar@100
|
359 |
typedef typename Digraph::Node Node;
|
alpar@100
|
360 |
typedef typename Digraph::Arc Arc;
|
alpar@100
|
361 |
static Arc find(const Digraph &g, Node u, Node v, Arc prev) {
|
alpar@100
|
362 |
return g.findArc(u, v, prev);
|
alpar@100
|
363 |
}
|
alpar@100
|
364 |
};
|
alpar@100
|
365 |
}
|
alpar@100
|
366 |
|
alpar@100
|
367 |
/// \brief Finds an arc between two nodes of a digraph.
|
alpar@100
|
368 |
///
|
alpar@100
|
369 |
/// Finds an arc from node \c u to node \c v in digraph \c g.
|
alpar@100
|
370 |
///
|
alpar@100
|
371 |
/// If \c prev is \ref INVALID (this is the default value), then
|
alpar@100
|
372 |
/// it finds the first arc from \c u to \c v. Otherwise it looks for
|
alpar@100
|
373 |
/// the next arc from \c u to \c v after \c prev.
|
alpar@100
|
374 |
/// \return The found arc or \ref INVALID if there is no such an arc.
|
alpar@100
|
375 |
///
|
alpar@100
|
376 |
/// Thus you can iterate through each arc from \c u to \c v as it follows.
|
alpar@100
|
377 |
///\code
|
alpar@100
|
378 |
/// for(Arc e=findArc(g,u,v);e!=INVALID;e=findArc(g,u,v,e)) {
|
alpar@100
|
379 |
/// ...
|
alpar@100
|
380 |
/// }
|
alpar@100
|
381 |
///\endcode
|
alpar@100
|
382 |
///
|
alpar@100
|
383 |
///\sa ArcLookUp
|
alpar@100
|
384 |
///\sa AllArcLookUp
|
alpar@100
|
385 |
///\sa DynArcLookUp
|
alpar@100
|
386 |
///\sa ConArcIt
|
alpar@100
|
387 |
template <typename Digraph>
|
alpar@100
|
388 |
inline typename Digraph::Arc
|
alpar@100
|
389 |
findArc(const Digraph &g, typename Digraph::Node u, typename Digraph::Node v,
|
alpar@100
|
390 |
typename Digraph::Arc prev = INVALID) {
|
alpar@100
|
391 |
return _digraph_utils_bits::FindArcSelector<Digraph>::find(g, u, v, prev);
|
alpar@100
|
392 |
}
|
alpar@100
|
393 |
|
alpar@100
|
394 |
/// \brief Iterator for iterating on arcs connected the same nodes.
|
alpar@100
|
395 |
///
|
alpar@100
|
396 |
/// Iterator for iterating on arcs connected the same nodes. It is
|
alpar@100
|
397 |
/// higher level interface for the findArc() function. You can
|
alpar@100
|
398 |
/// use it the following way:
|
alpar@100
|
399 |
///\code
|
alpar@100
|
400 |
/// for (ConArcIt<Digraph> it(g, src, trg); it != INVALID; ++it) {
|
alpar@100
|
401 |
/// ...
|
alpar@100
|
402 |
/// }
|
alpar@100
|
403 |
///\endcode
|
alpar@100
|
404 |
///
|
alpar@100
|
405 |
///\sa findArc()
|
alpar@100
|
406 |
///\sa ArcLookUp
|
alpar@100
|
407 |
///\sa AllArcLookUp
|
alpar@100
|
408 |
///\sa DynArcLookUp
|
alpar@100
|
409 |
///
|
alpar@100
|
410 |
/// \author Balazs Dezso
|
alpar@100
|
411 |
template <typename _Digraph>
|
alpar@100
|
412 |
class ConArcIt : public _Digraph::Arc {
|
alpar@100
|
413 |
public:
|
alpar@100
|
414 |
|
alpar@100
|
415 |
typedef _Digraph Digraph;
|
alpar@100
|
416 |
typedef typename Digraph::Arc Parent;
|
alpar@100
|
417 |
|
alpar@100
|
418 |
typedef typename Digraph::Arc Arc;
|
alpar@100
|
419 |
typedef typename Digraph::Node Node;
|
alpar@100
|
420 |
|
alpar@100
|
421 |
/// \brief Constructor.
|
alpar@100
|
422 |
///
|
alpar@100
|
423 |
/// Construct a new ConArcIt iterating on the arcs which
|
alpar@100
|
424 |
/// connects the \c u and \c v node.
|
alpar@100
|
425 |
ConArcIt(const Digraph& g, Node u, Node v) : digraph(g) {
|
alpar@100
|
426 |
Parent::operator=(findArc(digraph, u, v));
|
alpar@100
|
427 |
}
|
alpar@100
|
428 |
|
alpar@100
|
429 |
/// \brief Constructor.
|
alpar@100
|
430 |
///
|
alpar@100
|
431 |
/// Construct a new ConArcIt which continues the iterating from
|
alpar@100
|
432 |
/// the \c e arc.
|
alpar@100
|
433 |
ConArcIt(const Digraph& g, Arc e) : Parent(e), digraph(g) {}
|
alpar@100
|
434 |
|
alpar@100
|
435 |
/// \brief Increment operator.
|
alpar@100
|
436 |
///
|
alpar@100
|
437 |
/// It increments the iterator and gives back the next arc.
|
alpar@100
|
438 |
ConArcIt& operator++() {
|
alpar@100
|
439 |
Parent::operator=(findArc(digraph, digraph.source(*this),
|
alpar@100
|
440 |
digraph.target(*this), *this));
|
alpar@100
|
441 |
return *this;
|
alpar@100
|
442 |
}
|
alpar@100
|
443 |
private:
|
alpar@100
|
444 |
const Digraph& digraph;
|
alpar@100
|
445 |
};
|
alpar@100
|
446 |
|
alpar@100
|
447 |
namespace _digraph_utils_bits {
|
alpar@100
|
448 |
|
alpar@100
|
449 |
template <typename Digraph, typename Enable = void>
|
alpar@100
|
450 |
struct FindEdgeSelector {
|
alpar@100
|
451 |
typedef typename Digraph::Node Node;
|
alpar@100
|
452 |
typedef typename Digraph::Edge Edge;
|
alpar@100
|
453 |
static Edge find(const Digraph &g, Node u, Node v, Edge e) {
|
alpar@100
|
454 |
bool b;
|
alpar@100
|
455 |
if (u != v) {
|
alpar@100
|
456 |
if (e == INVALID) {
|
alpar@100
|
457 |
g.firstInc(e, b, u);
|
alpar@100
|
458 |
} else {
|
alpar@100
|
459 |
b = g.source(e) == u;
|
alpar@100
|
460 |
g.nextInc(e, b);
|
alpar@100
|
461 |
}
|
alpar@100
|
462 |
while (e != INVALID && (b ? g.target(e) : g.source(e)) != v) {
|
alpar@100
|
463 |
g.nextInc(e, b);
|
alpar@100
|
464 |
}
|
alpar@100
|
465 |
} else {
|
alpar@100
|
466 |
if (e == INVALID) {
|
alpar@100
|
467 |
g.firstInc(e, b, u);
|
alpar@100
|
468 |
} else {
|
alpar@100
|
469 |
b = true;
|
alpar@100
|
470 |
g.nextInc(e, b);
|
alpar@100
|
471 |
}
|
alpar@100
|
472 |
while (e != INVALID && (!b || g.target(e) != v)) {
|
alpar@100
|
473 |
g.nextInc(e, b);
|
alpar@100
|
474 |
}
|
alpar@100
|
475 |
}
|
alpar@100
|
476 |
return e;
|
alpar@100
|
477 |
}
|
alpar@100
|
478 |
};
|
alpar@100
|
479 |
|
alpar@100
|
480 |
template <typename Digraph>
|
alpar@100
|
481 |
struct FindEdgeSelector<
|
alpar@100
|
482 |
Digraph,
|
alpar@100
|
483 |
typename enable_if<typename Digraph::FindArcTag, void>::type>
|
alpar@100
|
484 |
{
|
alpar@100
|
485 |
typedef typename Digraph::Node Node;
|
alpar@100
|
486 |
typedef typename Digraph::Edge Edge;
|
alpar@100
|
487 |
static Edge find(const Digraph &g, Node u, Node v, Edge prev) {
|
alpar@100
|
488 |
return g.findEdge(u, v, prev);
|
alpar@100
|
489 |
}
|
alpar@100
|
490 |
};
|
alpar@100
|
491 |
}
|
alpar@100
|
492 |
|
alpar@100
|
493 |
/// \brief Finds an edge between two nodes of a digraph.
|
alpar@100
|
494 |
///
|
alpar@100
|
495 |
/// Finds an edge from node \c u to node \c v in digraph \c g.
|
alpar@100
|
496 |
/// If the node \c u and node \c v is equal then each loop arc
|
alpar@100
|
497 |
/// will be enumerated.
|
alpar@100
|
498 |
///
|
alpar@100
|
499 |
/// If \c prev is \ref INVALID (this is the default value), then
|
alpar@100
|
500 |
/// it finds the first arc from \c u to \c v. Otherwise it looks for
|
alpar@100
|
501 |
/// the next arc from \c u to \c v after \c prev.
|
alpar@100
|
502 |
/// \return The found arc or \ref INVALID if there is no such an arc.
|
alpar@100
|
503 |
///
|
alpar@100
|
504 |
/// Thus you can iterate through each arc from \c u to \c v as it follows.
|
alpar@100
|
505 |
///\code
|
alpar@100
|
506 |
/// for(Edge e = findEdge(g,u,v); e != INVALID;
|
alpar@100
|
507 |
/// e = findEdge(g,u,v,e)) {
|
alpar@100
|
508 |
/// ...
|
alpar@100
|
509 |
/// }
|
alpar@100
|
510 |
///\endcode
|
alpar@100
|
511 |
///
|
alpar@100
|
512 |
///\sa ConArcIt
|
alpar@100
|
513 |
|
alpar@100
|
514 |
template <typename Digraph>
|
alpar@100
|
515 |
inline typename Digraph::Edge
|
alpar@100
|
516 |
findEdge(const Digraph &g, typename Digraph::Node u, typename Digraph::Node v,
|
alpar@100
|
517 |
typename Digraph::Edge p = INVALID) {
|
alpar@100
|
518 |
return _digraph_utils_bits::FindEdgeSelector<Digraph>::find(g, u, v, p);
|
alpar@100
|
519 |
}
|
alpar@100
|
520 |
|
alpar@100
|
521 |
/// \brief Iterator for iterating on edges connected the same nodes.
|
alpar@100
|
522 |
///
|
alpar@100
|
523 |
/// Iterator for iterating on edges connected the same nodes. It is
|
alpar@100
|
524 |
/// higher level interface for the findEdge() function. You can
|
alpar@100
|
525 |
/// use it the following way:
|
alpar@100
|
526 |
///\code
|
alpar@100
|
527 |
/// for (ConEdgeIt<Digraph> it(g, src, trg); it != INVALID; ++it) {
|
alpar@100
|
528 |
/// ...
|
alpar@100
|
529 |
/// }
|
alpar@100
|
530 |
///\endcode
|
alpar@100
|
531 |
///
|
alpar@100
|
532 |
///\sa findEdge()
|
alpar@100
|
533 |
///
|
alpar@100
|
534 |
/// \author Balazs Dezso
|
alpar@100
|
535 |
template <typename _Digraph>
|
alpar@100
|
536 |
class ConEdgeIt : public _Digraph::Edge {
|
alpar@100
|
537 |
public:
|
alpar@100
|
538 |
|
alpar@100
|
539 |
typedef _Digraph Digraph;
|
alpar@100
|
540 |
typedef typename Digraph::Edge Parent;
|
alpar@100
|
541 |
|
alpar@100
|
542 |
typedef typename Digraph::Edge Edge;
|
alpar@100
|
543 |
typedef typename Digraph::Node Node;
|
alpar@100
|
544 |
|
alpar@100
|
545 |
/// \brief Constructor.
|
alpar@100
|
546 |
///
|
alpar@100
|
547 |
/// Construct a new ConEdgeIt iterating on the arcs which
|
alpar@100
|
548 |
/// connects the \c u and \c v node.
|
alpar@100
|
549 |
ConEdgeIt(const Digraph& g, Node u, Node v) : digraph(g) {
|
alpar@100
|
550 |
Parent::operator=(findEdge(digraph, u, v));
|
alpar@100
|
551 |
}
|
alpar@100
|
552 |
|
alpar@100
|
553 |
/// \brief Constructor.
|
alpar@100
|
554 |
///
|
alpar@100
|
555 |
/// Construct a new ConEdgeIt which continues the iterating from
|
alpar@100
|
556 |
/// the \c e arc.
|
alpar@100
|
557 |
ConEdgeIt(const Digraph& g, Edge e) : Parent(e), digraph(g) {}
|
alpar@100
|
558 |
|
alpar@100
|
559 |
/// \brief Increment operator.
|
alpar@100
|
560 |
///
|
alpar@100
|
561 |
/// It increments the iterator and gives back the next arc.
|
alpar@100
|
562 |
ConEdgeIt& operator++() {
|
alpar@100
|
563 |
Parent::operator=(findEdge(digraph, digraph.source(*this),
|
alpar@100
|
564 |
digraph.target(*this), *this));
|
alpar@100
|
565 |
return *this;
|
alpar@100
|
566 |
}
|
alpar@100
|
567 |
private:
|
alpar@100
|
568 |
const Digraph& digraph;
|
alpar@100
|
569 |
};
|
alpar@100
|
570 |
|
alpar@100
|
571 |
/// \brief Copy a map.
|
alpar@100
|
572 |
///
|
alpar@100
|
573 |
/// This function copies the \c from map to the \c to map. It uses the
|
alpar@100
|
574 |
/// given iterator to iterate on the data structure and it uses the \c ref
|
alpar@100
|
575 |
/// mapping to convert the from's keys to the to's keys.
|
alpar@100
|
576 |
template <typename To, typename From,
|
alpar@100
|
577 |
typename ItemIt, typename Ref>
|
alpar@100
|
578 |
void copyMap(To& to, const From& from,
|
alpar@100
|
579 |
ItemIt it, const Ref& ref) {
|
alpar@100
|
580 |
for (; it != INVALID; ++it) {
|
alpar@100
|
581 |
to[ref[it]] = from[it];
|
alpar@100
|
582 |
}
|
alpar@100
|
583 |
}
|
alpar@100
|
584 |
|
alpar@100
|
585 |
/// \brief Copy the from map to the to map.
|
alpar@100
|
586 |
///
|
alpar@100
|
587 |
/// Copy the \c from map to the \c to map. It uses the given iterator
|
alpar@100
|
588 |
/// to iterate on the data structure.
|
alpar@100
|
589 |
template <typename To, typename From, typename ItemIt>
|
alpar@100
|
590 |
void copyMap(To& to, const From& from, ItemIt it) {
|
alpar@100
|
591 |
for (; it != INVALID; ++it) {
|
alpar@100
|
592 |
to[it] = from[it];
|
alpar@100
|
593 |
}
|
alpar@100
|
594 |
}
|
alpar@100
|
595 |
|
alpar@100
|
596 |
namespace _digraph_utils_bits {
|
alpar@100
|
597 |
|
alpar@100
|
598 |
template <typename Digraph, typename Item, typename RefMap>
|
alpar@100
|
599 |
class MapCopyBase {
|
alpar@100
|
600 |
public:
|
alpar@100
|
601 |
virtual void copy(const Digraph& from, const RefMap& refMap) = 0;
|
alpar@100
|
602 |
|
alpar@100
|
603 |
virtual ~MapCopyBase() {}
|
alpar@100
|
604 |
};
|
alpar@100
|
605 |
|
alpar@100
|
606 |
template <typename Digraph, typename Item, typename RefMap,
|
alpar@100
|
607 |
typename ToMap, typename FromMap>
|
alpar@100
|
608 |
class MapCopy : public MapCopyBase<Digraph, Item, RefMap> {
|
alpar@100
|
609 |
public:
|
alpar@100
|
610 |
|
alpar@100
|
611 |
MapCopy(ToMap& tmap, const FromMap& map)
|
alpar@100
|
612 |
: _tmap(tmap), _map(map) {}
|
alpar@100
|
613 |
|
alpar@100
|
614 |
virtual void copy(const Digraph& digraph, const RefMap& refMap) {
|
alpar@100
|
615 |
typedef typename ItemSetTraits<Digraph, Item>::ItemIt ItemIt;
|
alpar@100
|
616 |
for (ItemIt it(digraph); it != INVALID; ++it) {
|
alpar@100
|
617 |
_tmap.set(refMap[it], _map[it]);
|
alpar@100
|
618 |
}
|
alpar@100
|
619 |
}
|
alpar@100
|
620 |
|
alpar@100
|
621 |
private:
|
alpar@100
|
622 |
ToMap& _tmap;
|
alpar@100
|
623 |
const FromMap& _map;
|
alpar@100
|
624 |
};
|
alpar@100
|
625 |
|
alpar@100
|
626 |
template <typename Digraph, typename Item, typename RefMap, typename It>
|
alpar@100
|
627 |
class ItemCopy : public MapCopyBase<Digraph, Item, RefMap> {
|
alpar@100
|
628 |
public:
|
alpar@100
|
629 |
|
alpar@100
|
630 |
ItemCopy(It& it, const Item& item) : _it(it), _item(item) {}
|
alpar@100
|
631 |
|
alpar@100
|
632 |
virtual void copy(const Digraph&, const RefMap& refMap) {
|
alpar@100
|
633 |
_it = refMap[_item];
|
alpar@100
|
634 |
}
|
alpar@100
|
635 |
|
alpar@100
|
636 |
private:
|
alpar@100
|
637 |
It& _it;
|
alpar@100
|
638 |
Item _item;
|
alpar@100
|
639 |
};
|
alpar@100
|
640 |
|
alpar@100
|
641 |
template <typename Digraph, typename Item, typename RefMap, typename Ref>
|
alpar@100
|
642 |
class RefCopy : public MapCopyBase<Digraph, Item, RefMap> {
|
alpar@100
|
643 |
public:
|
alpar@100
|
644 |
|
alpar@100
|
645 |
RefCopy(Ref& map) : _map(map) {}
|
alpar@100
|
646 |
|
alpar@100
|
647 |
virtual void copy(const Digraph& digraph, const RefMap& refMap) {
|
alpar@100
|
648 |
typedef typename ItemSetTraits<Digraph, Item>::ItemIt ItemIt;
|
alpar@100
|
649 |
for (ItemIt it(digraph); it != INVALID; ++it) {
|
alpar@100
|
650 |
_map.set(it, refMap[it]);
|
alpar@100
|
651 |
}
|
alpar@100
|
652 |
}
|
alpar@100
|
653 |
|
alpar@100
|
654 |
private:
|
alpar@100
|
655 |
Ref& _map;
|
alpar@100
|
656 |
};
|
alpar@100
|
657 |
|
alpar@100
|
658 |
template <typename Digraph, typename Item, typename RefMap,
|
alpar@100
|
659 |
typename CrossRef>
|
alpar@100
|
660 |
class CrossRefCopy : public MapCopyBase<Digraph, Item, RefMap> {
|
alpar@100
|
661 |
public:
|
alpar@100
|
662 |
|
alpar@100
|
663 |
CrossRefCopy(CrossRef& cmap) : _cmap(cmap) {}
|
alpar@100
|
664 |
|
alpar@100
|
665 |
virtual void copy(const Digraph& digraph, const RefMap& refMap) {
|
alpar@100
|
666 |
typedef typename ItemSetTraits<Digraph, Item>::ItemIt ItemIt;
|
alpar@100
|
667 |
for (ItemIt it(digraph); it != INVALID; ++it) {
|
alpar@100
|
668 |
_cmap.set(refMap[it], it);
|
alpar@100
|
669 |
}
|
alpar@100
|
670 |
}
|
alpar@100
|
671 |
|
alpar@100
|
672 |
private:
|
alpar@100
|
673 |
CrossRef& _cmap;
|
alpar@100
|
674 |
};
|
alpar@100
|
675 |
|
alpar@100
|
676 |
template <typename Digraph, typename Enable = void>
|
alpar@100
|
677 |
struct DigraphCopySelector {
|
alpar@100
|
678 |
template <typename From, typename NodeRefMap, typename ArcRefMap>
|
alpar@100
|
679 |
static void copy(Digraph &to, const From& from,
|
alpar@100
|
680 |
NodeRefMap& nodeRefMap, ArcRefMap& arcRefMap) {
|
alpar@100
|
681 |
for (typename From::NodeIt it(from); it != INVALID; ++it) {
|
alpar@100
|
682 |
nodeRefMap[it] = to.addNode();
|
alpar@100
|
683 |
}
|
alpar@100
|
684 |
for (typename From::ArcIt it(from); it != INVALID; ++it) {
|
alpar@100
|
685 |
arcRefMap[it] = to.addArc(nodeRefMap[from.source(it)],
|
alpar@100
|
686 |
nodeRefMap[from.target(it)]);
|
alpar@100
|
687 |
}
|
alpar@100
|
688 |
}
|
alpar@100
|
689 |
};
|
alpar@100
|
690 |
|
alpar@100
|
691 |
template <typename Digraph>
|
alpar@100
|
692 |
struct DigraphCopySelector<
|
alpar@100
|
693 |
Digraph,
|
alpar@100
|
694 |
typename enable_if<typename Digraph::BuildTag, void>::type>
|
alpar@100
|
695 |
{
|
alpar@100
|
696 |
template <typename From, typename NodeRefMap, typename ArcRefMap>
|
alpar@100
|
697 |
static void copy(Digraph &to, const From& from,
|
alpar@100
|
698 |
NodeRefMap& nodeRefMap, ArcRefMap& arcRefMap) {
|
alpar@100
|
699 |
to.build(from, nodeRefMap, arcRefMap);
|
alpar@100
|
700 |
}
|
alpar@100
|
701 |
};
|
alpar@100
|
702 |
|
alpar@100
|
703 |
template <typename Graph, typename Enable = void>
|
alpar@100
|
704 |
struct GraphCopySelector {
|
alpar@100
|
705 |
template <typename From, typename NodeRefMap, typename EdgeRefMap>
|
alpar@100
|
706 |
static void copy(Graph &to, const From& from,
|
alpar@100
|
707 |
NodeRefMap& nodeRefMap, EdgeRefMap& edgeRefMap) {
|
alpar@100
|
708 |
for (typename From::NodeIt it(from); it != INVALID; ++it) {
|
alpar@100
|
709 |
nodeRefMap[it] = to.addNode();
|
alpar@100
|
710 |
}
|
alpar@100
|
711 |
for (typename From::EdgeIt it(from); it != INVALID; ++it) {
|
alpar@100
|
712 |
edgeRefMap[it] = to.addArc(nodeRefMap[from.source(it)],
|
alpar@100
|
713 |
nodeRefMap[from.target(it)]);
|
alpar@100
|
714 |
}
|
alpar@100
|
715 |
}
|
alpar@100
|
716 |
};
|
alpar@100
|
717 |
|
alpar@100
|
718 |
template <typename Graph>
|
alpar@100
|
719 |
struct GraphCopySelector<
|
alpar@100
|
720 |
Graph,
|
alpar@100
|
721 |
typename enable_if<typename Graph::BuildTag, void>::type>
|
alpar@100
|
722 |
{
|
alpar@100
|
723 |
template <typename From, typename NodeRefMap, typename EdgeRefMap>
|
alpar@100
|
724 |
static void copy(Graph &to, const From& from,
|
alpar@100
|
725 |
NodeRefMap& nodeRefMap, EdgeRefMap& edgeRefMap) {
|
alpar@100
|
726 |
to.build(from, nodeRefMap, edgeRefMap);
|
alpar@100
|
727 |
}
|
alpar@100
|
728 |
};
|
alpar@100
|
729 |
|
alpar@100
|
730 |
template <typename BpGraph, typename Enable = void>
|
alpar@100
|
731 |
struct BpGraphCopySelector {
|
alpar@100
|
732 |
template <typename From, typename RedRefMap,
|
alpar@100
|
733 |
typename BlueRefMap, typename EdgeRefMap>
|
alpar@100
|
734 |
static void copy(BpGraph &to, const From& from,
|
alpar@100
|
735 |
RedRefMap& redRefMap, BlueRefMap& blueRefMap,
|
alpar@100
|
736 |
EdgeRefMap& edgeRefMap) {
|
alpar@100
|
737 |
for (typename From::RedIt it(from); it != INVALID; ++it) {
|
alpar@100
|
738 |
redRefMap[it] = to.addRed();
|
alpar@100
|
739 |
}
|
alpar@100
|
740 |
for (typename From::BlueIt it(from); it != INVALID; ++it) {
|
alpar@100
|
741 |
blueRefMap[it] = to.addBlue();
|
alpar@100
|
742 |
}
|
alpar@100
|
743 |
for (typename From::EdgeIt it(from); it != INVALID; ++it) {
|
alpar@100
|
744 |
edgeRefMap[it] = to.addArc(redRefMap[from.red(it)],
|
alpar@100
|
745 |
blueRefMap[from.blue(it)]);
|
alpar@100
|
746 |
}
|
alpar@100
|
747 |
}
|
alpar@100
|
748 |
};
|
alpar@100
|
749 |
|
alpar@100
|
750 |
template <typename BpGraph>
|
alpar@100
|
751 |
struct BpGraphCopySelector<
|
alpar@100
|
752 |
BpGraph,
|
alpar@100
|
753 |
typename enable_if<typename BpGraph::BuildTag, void>::type>
|
alpar@100
|
754 |
{
|
alpar@100
|
755 |
template <typename From, typename RedRefMap,
|
alpar@100
|
756 |
typename BlueRefMap, typename EdgeRefMap>
|
alpar@100
|
757 |
static void copy(BpGraph &to, const From& from,
|
alpar@100
|
758 |
RedRefMap& redRefMap, BlueRefMap& blueRefMap,
|
alpar@100
|
759 |
EdgeRefMap& edgeRefMap) {
|
alpar@100
|
760 |
to.build(from, redRefMap, blueRefMap, edgeRefMap);
|
alpar@100
|
761 |
}
|
alpar@100
|
762 |
};
|
alpar@100
|
763 |
|
alpar@100
|
764 |
|
alpar@100
|
765 |
}
|
alpar@100
|
766 |
|
alpar@100
|
767 |
/// \brief Class to copy a digraph.
|
alpar@100
|
768 |
///
|
alpar@100
|
769 |
/// Class to copy a digraph to another digraph (duplicate a digraph). The
|
alpar@100
|
770 |
/// simplest way of using it is through the \c copyDigraph() function.
|
alpar@100
|
771 |
template <typename To, typename From>
|
alpar@100
|
772 |
class DigraphCopy {
|
alpar@100
|
773 |
private:
|
alpar@100
|
774 |
|
alpar@100
|
775 |
typedef typename From::Node Node;
|
alpar@100
|
776 |
typedef typename From::NodeIt NodeIt;
|
alpar@100
|
777 |
typedef typename From::Arc Arc;
|
alpar@100
|
778 |
typedef typename From::ArcIt ArcIt;
|
alpar@100
|
779 |
|
alpar@100
|
780 |
typedef typename To::Node TNode;
|
alpar@100
|
781 |
typedef typename To::Arc TArc;
|
alpar@100
|
782 |
|
alpar@100
|
783 |
typedef typename From::template NodeMap<TNode> NodeRefMap;
|
alpar@100
|
784 |
typedef typename From::template ArcMap<TArc> ArcRefMap;
|
alpar@100
|
785 |
|
alpar@100
|
786 |
|
alpar@100
|
787 |
public:
|
alpar@100
|
788 |
|
alpar@100
|
789 |
|
alpar@100
|
790 |
/// \brief Constructor for the DigraphCopy.
|
alpar@100
|
791 |
///
|
alpar@100
|
792 |
/// It copies the content of the \c _from digraph into the
|
alpar@100
|
793 |
/// \c _to digraph.
|
alpar@100
|
794 |
DigraphCopy(To& _to, const From& _from)
|
alpar@100
|
795 |
: from(_from), to(_to) {}
|
alpar@100
|
796 |
|
alpar@100
|
797 |
/// \brief Destructor of the DigraphCopy
|
alpar@100
|
798 |
///
|
alpar@100
|
799 |
/// Destructor of the DigraphCopy
|
alpar@100
|
800 |
~DigraphCopy() {
|
alpar@100
|
801 |
for (int i = 0; i < int(nodeMapCopies.size()); ++i) {
|
alpar@100
|
802 |
delete nodeMapCopies[i];
|
alpar@100
|
803 |
}
|
alpar@100
|
804 |
for (int i = 0; i < int(arcMapCopies.size()); ++i) {
|
alpar@100
|
805 |
delete arcMapCopies[i];
|
alpar@100
|
806 |
}
|
alpar@100
|
807 |
|
alpar@100
|
808 |
}
|
alpar@100
|
809 |
|
alpar@100
|
810 |
/// \brief Copies the node references into the given map.
|
alpar@100
|
811 |
///
|
alpar@100
|
812 |
/// Copies the node references into the given map.
|
alpar@100
|
813 |
template <typename NodeRef>
|
alpar@100
|
814 |
DigraphCopy& nodeRef(NodeRef& map) {
|
alpar@100
|
815 |
nodeMapCopies.push_back(new _digraph_utils_bits::RefCopy<From, Node,
|
alpar@100
|
816 |
NodeRefMap, NodeRef>(map));
|
alpar@100
|
817 |
return *this;
|
alpar@100
|
818 |
}
|
alpar@100
|
819 |
|
alpar@100
|
820 |
/// \brief Copies the node cross references into the given map.
|
alpar@100
|
821 |
///
|
alpar@100
|
822 |
/// Copies the node cross references (reverse references) into
|
alpar@100
|
823 |
/// the given map.
|
alpar@100
|
824 |
template <typename NodeCrossRef>
|
alpar@100
|
825 |
DigraphCopy& nodeCrossRef(NodeCrossRef& map) {
|
alpar@100
|
826 |
nodeMapCopies.push_back(new _digraph_utils_bits::CrossRefCopy<From, Node,
|
alpar@100
|
827 |
NodeRefMap, NodeCrossRef>(map));
|
alpar@100
|
828 |
return *this;
|
alpar@100
|
829 |
}
|
alpar@100
|
830 |
|
alpar@100
|
831 |
/// \brief Make copy of the given map.
|
alpar@100
|
832 |
///
|
alpar@100
|
833 |
/// Makes copy of the given map for the newly created digraph.
|
alpar@100
|
834 |
/// The new map's key type is the to digraph's node type,
|
alpar@100
|
835 |
/// and the copied map's key type is the from digraph's node
|
alpar@100
|
836 |
/// type.
|
alpar@100
|
837 |
template <typename ToMap, typename FromMap>
|
alpar@100
|
838 |
DigraphCopy& nodeMap(ToMap& tmap, const FromMap& map) {
|
alpar@100
|
839 |
nodeMapCopies.push_back(new _digraph_utils_bits::MapCopy<From, Node,
|
alpar@100
|
840 |
NodeRefMap, ToMap, FromMap>(tmap, map));
|
alpar@100
|
841 |
return *this;
|
alpar@100
|
842 |
}
|
alpar@100
|
843 |
|
alpar@100
|
844 |
/// \brief Make a copy of the given node.
|
alpar@100
|
845 |
///
|
alpar@100
|
846 |
/// Make a copy of the given node.
|
alpar@100
|
847 |
DigraphCopy& node(TNode& tnode, const Node& snode) {
|
alpar@100
|
848 |
nodeMapCopies.push_back(new _digraph_utils_bits::ItemCopy<From, Node,
|
alpar@100
|
849 |
NodeRefMap, TNode>(tnode, snode));
|
alpar@100
|
850 |
return *this;
|
alpar@100
|
851 |
}
|
alpar@100
|
852 |
|
alpar@100
|
853 |
/// \brief Copies the arc references into the given map.
|
alpar@100
|
854 |
///
|
alpar@100
|
855 |
/// Copies the arc references into the given map.
|
alpar@100
|
856 |
template <typename ArcRef>
|
alpar@100
|
857 |
DigraphCopy& arcRef(ArcRef& map) {
|
alpar@100
|
858 |
arcMapCopies.push_back(new _digraph_utils_bits::RefCopy<From, Arc,
|
alpar@100
|
859 |
ArcRefMap, ArcRef>(map));
|
alpar@100
|
860 |
return *this;
|
alpar@100
|
861 |
}
|
alpar@100
|
862 |
|
alpar@100
|
863 |
/// \brief Copies the arc cross references into the given map.
|
alpar@100
|
864 |
///
|
alpar@100
|
865 |
/// Copies the arc cross references (reverse references) into
|
alpar@100
|
866 |
/// the given map.
|
alpar@100
|
867 |
template <typename ArcCrossRef>
|
alpar@100
|
868 |
DigraphCopy& arcCrossRef(ArcCrossRef& map) {
|
alpar@100
|
869 |
arcMapCopies.push_back(new _digraph_utils_bits::CrossRefCopy<From, Arc,
|
alpar@100
|
870 |
ArcRefMap, ArcCrossRef>(map));
|
alpar@100
|
871 |
return *this;
|
alpar@100
|
872 |
}
|
alpar@100
|
873 |
|
alpar@100
|
874 |
/// \brief Make copy of the given map.
|
alpar@100
|
875 |
///
|
alpar@100
|
876 |
/// Makes copy of the given map for the newly created digraph.
|
alpar@100
|
877 |
/// The new map's key type is the to digraph's arc type,
|
alpar@100
|
878 |
/// and the copied map's key type is the from digraph's arc
|
alpar@100
|
879 |
/// type.
|
alpar@100
|
880 |
template <typename ToMap, typename FromMap>
|
alpar@100
|
881 |
DigraphCopy& arcMap(ToMap& tmap, const FromMap& map) {
|
alpar@100
|
882 |
arcMapCopies.push_back(new _digraph_utils_bits::MapCopy<From, Arc,
|
alpar@100
|
883 |
ArcRefMap, ToMap, FromMap>(tmap, map));
|
alpar@100
|
884 |
return *this;
|
alpar@100
|
885 |
}
|
alpar@100
|
886 |
|
alpar@100
|
887 |
/// \brief Make a copy of the given arc.
|
alpar@100
|
888 |
///
|
alpar@100
|
889 |
/// Make a copy of the given arc.
|
alpar@100
|
890 |
DigraphCopy& arc(TArc& tarc, const Arc& sarc) {
|
alpar@100
|
891 |
arcMapCopies.push_back(new _digraph_utils_bits::ItemCopy<From, Arc,
|
alpar@100
|
892 |
ArcRefMap, TArc>(tarc, sarc));
|
alpar@100
|
893 |
return *this;
|
alpar@100
|
894 |
}
|
alpar@100
|
895 |
|
alpar@100
|
896 |
/// \brief Executes the copies.
|
alpar@100
|
897 |
///
|
alpar@100
|
898 |
/// Executes the copies.
|
alpar@100
|
899 |
void run() {
|
alpar@100
|
900 |
NodeRefMap nodeRefMap(from);
|
alpar@100
|
901 |
ArcRefMap arcRefMap(from);
|
alpar@100
|
902 |
_digraph_utils_bits::DigraphCopySelector<To>::
|
alpar@100
|
903 |
copy(to, from, nodeRefMap, arcRefMap);
|
alpar@100
|
904 |
for (int i = 0; i < int(nodeMapCopies.size()); ++i) {
|
alpar@100
|
905 |
nodeMapCopies[i]->copy(from, nodeRefMap);
|
alpar@100
|
906 |
}
|
alpar@100
|
907 |
for (int i = 0; i < int(arcMapCopies.size()); ++i) {
|
alpar@100
|
908 |
arcMapCopies[i]->copy(from, arcRefMap);
|
alpar@100
|
909 |
}
|
alpar@100
|
910 |
}
|
alpar@100
|
911 |
|
alpar@100
|
912 |
protected:
|
alpar@100
|
913 |
|
alpar@100
|
914 |
|
alpar@100
|
915 |
const From& from;
|
alpar@100
|
916 |
To& to;
|
alpar@100
|
917 |
|
alpar@100
|
918 |
std::vector<_digraph_utils_bits::MapCopyBase<From, Node, NodeRefMap>* >
|
alpar@100
|
919 |
nodeMapCopies;
|
alpar@100
|
920 |
|
alpar@100
|
921 |
std::vector<_digraph_utils_bits::MapCopyBase<From, Arc, ArcRefMap>* >
|
alpar@100
|
922 |
arcMapCopies;
|
alpar@100
|
923 |
|
alpar@100
|
924 |
};
|
alpar@100
|
925 |
|
alpar@100
|
926 |
/// \brief Copy a digraph to another digraph.
|
alpar@100
|
927 |
///
|
alpar@100
|
928 |
/// Copy a digraph to another digraph.
|
alpar@100
|
929 |
/// The usage of the function:
|
alpar@100
|
930 |
///
|
alpar@100
|
931 |
///\code
|
alpar@100
|
932 |
/// copyDigraph(trg, src).nodeRef(nr).arcCrossRef(ecr).run();
|
alpar@100
|
933 |
///\endcode
|
alpar@100
|
934 |
///
|
alpar@100
|
935 |
/// After the copy the \c nr map will contain the mapping from the
|
alpar@100
|
936 |
/// nodes of the \c from digraph to the nodes of the \c to digraph and
|
alpar@100
|
937 |
/// \c ecr will contain the mapping from the arcs of the \c to digraph
|
alpar@100
|
938 |
/// to the arcs of the \c from digraph.
|
alpar@100
|
939 |
///
|
alpar@100
|
940 |
/// \see DigraphCopy
|
alpar@100
|
941 |
template <typename To, typename From>
|
alpar@100
|
942 |
DigraphCopy<To, From> copyDigraph(To& to, const From& from) {
|
alpar@100
|
943 |
return DigraphCopy<To, From>(to, from);
|
alpar@100
|
944 |
}
|
alpar@100
|
945 |
|
alpar@100
|
946 |
/// \brief Class to copy an graph.
|
alpar@100
|
947 |
///
|
alpar@100
|
948 |
/// Class to copy an graph to another digraph (duplicate a digraph).
|
alpar@100
|
949 |
/// The simplest way of using it is through the \c copyGraph() function.
|
alpar@100
|
950 |
template <typename To, typename From>
|
alpar@100
|
951 |
class GraphCopy {
|
alpar@100
|
952 |
private:
|
alpar@100
|
953 |
|
alpar@100
|
954 |
typedef typename From::Node Node;
|
alpar@100
|
955 |
typedef typename From::NodeIt NodeIt;
|
alpar@100
|
956 |
typedef typename From::Arc Arc;
|
alpar@100
|
957 |
typedef typename From::ArcIt ArcIt;
|
alpar@100
|
958 |
typedef typename From::Edge Edge;
|
alpar@100
|
959 |
typedef typename From::EdgeIt EdgeIt;
|
alpar@100
|
960 |
|
alpar@100
|
961 |
typedef typename To::Node TNode;
|
alpar@100
|
962 |
typedef typename To::Arc TArc;
|
alpar@100
|
963 |
typedef typename To::Edge TEdge;
|
alpar@100
|
964 |
|
alpar@100
|
965 |
typedef typename From::template NodeMap<TNode> NodeRefMap;
|
alpar@100
|
966 |
typedef typename From::template EdgeMap<TEdge> EdgeRefMap;
|
alpar@100
|
967 |
|
alpar@100
|
968 |
struct ArcRefMap {
|
alpar@100
|
969 |
ArcRefMap(const To& _to, const From& _from,
|
alpar@100
|
970 |
const EdgeRefMap& _edge_ref, const NodeRefMap& _node_ref)
|
alpar@100
|
971 |
: to(_to), from(_from),
|
alpar@100
|
972 |
edge_ref(_edge_ref), node_ref(_node_ref) {}
|
alpar@100
|
973 |
|
alpar@100
|
974 |
typedef typename From::Arc Key;
|
alpar@100
|
975 |
typedef typename To::Arc Value;
|
alpar@100
|
976 |
|
alpar@100
|
977 |
Value operator[](const Key& key) const {
|
alpar@100
|
978 |
bool forward =
|
alpar@100
|
979 |
(from.direction(key) ==
|
alpar@100
|
980 |
(node_ref[from.source(static_cast<const Edge&>(key))] ==
|
alpar@100
|
981 |
to.source(edge_ref[static_cast<const Edge&>(key)])));
|
alpar@100
|
982 |
return to.direct(edge_ref[key], forward);
|
alpar@100
|
983 |
}
|
alpar@100
|
984 |
|
alpar@100
|
985 |
const To& to;
|
alpar@100
|
986 |
const From& from;
|
alpar@100
|
987 |
const EdgeRefMap& edge_ref;
|
alpar@100
|
988 |
const NodeRefMap& node_ref;
|
alpar@100
|
989 |
};
|
alpar@100
|
990 |
|
alpar@100
|
991 |
|
alpar@100
|
992 |
public:
|
alpar@100
|
993 |
|
alpar@100
|
994 |
|
alpar@100
|
995 |
/// \brief Constructor for the DigraphCopy.
|
alpar@100
|
996 |
///
|
alpar@100
|
997 |
/// It copies the content of the \c _from digraph into the
|
alpar@100
|
998 |
/// \c _to digraph.
|
alpar@100
|
999 |
GraphCopy(To& _to, const From& _from)
|
alpar@100
|
1000 |
: from(_from), to(_to) {}
|
alpar@100
|
1001 |
|
alpar@100
|
1002 |
/// \brief Destructor of the DigraphCopy
|
alpar@100
|
1003 |
///
|
alpar@100
|
1004 |
/// Destructor of the DigraphCopy
|
alpar@100
|
1005 |
~GraphCopy() {
|
alpar@100
|
1006 |
for (int i = 0; i < int(nodeMapCopies.size()); ++i) {
|
alpar@100
|
1007 |
delete nodeMapCopies[i];
|
alpar@100
|
1008 |
}
|
alpar@100
|
1009 |
for (int i = 0; i < int(arcMapCopies.size()); ++i) {
|
alpar@100
|
1010 |
delete arcMapCopies[i];
|
alpar@100
|
1011 |
}
|
alpar@100
|
1012 |
for (int i = 0; i < int(edgeMapCopies.size()); ++i) {
|
alpar@100
|
1013 |
delete edgeMapCopies[i];
|
alpar@100
|
1014 |
}
|
alpar@100
|
1015 |
|
alpar@100
|
1016 |
}
|
alpar@100
|
1017 |
|
alpar@100
|
1018 |
/// \brief Copies the node references into the given map.
|
alpar@100
|
1019 |
///
|
alpar@100
|
1020 |
/// Copies the node references into the given map.
|
alpar@100
|
1021 |
template <typename NodeRef>
|
alpar@100
|
1022 |
GraphCopy& nodeRef(NodeRef& map) {
|
alpar@100
|
1023 |
nodeMapCopies.push_back(new _digraph_utils_bits::RefCopy<From, Node,
|
alpar@100
|
1024 |
NodeRefMap, NodeRef>(map));
|
alpar@100
|
1025 |
return *this;
|
alpar@100
|
1026 |
}
|
alpar@100
|
1027 |
|
alpar@100
|
1028 |
/// \brief Copies the node cross references into the given map.
|
alpar@100
|
1029 |
///
|
alpar@100
|
1030 |
/// Copies the node cross references (reverse references) into
|
alpar@100
|
1031 |
/// the given map.
|
alpar@100
|
1032 |
template <typename NodeCrossRef>
|
alpar@100
|
1033 |
GraphCopy& nodeCrossRef(NodeCrossRef& map) {
|
alpar@100
|
1034 |
nodeMapCopies.push_back(new _digraph_utils_bits::CrossRefCopy<From, Node,
|
alpar@100
|
1035 |
NodeRefMap, NodeCrossRef>(map));
|
alpar@100
|
1036 |
return *this;
|
alpar@100
|
1037 |
}
|
alpar@100
|
1038 |
|
alpar@100
|
1039 |
/// \brief Make copy of the given map.
|
alpar@100
|
1040 |
///
|
alpar@100
|
1041 |
/// Makes copy of the given map for the newly created digraph.
|
alpar@100
|
1042 |
/// The new map's key type is the to digraph's node type,
|
alpar@100
|
1043 |
/// and the copied map's key type is the from digraph's node
|
alpar@100
|
1044 |
/// type.
|
alpar@100
|
1045 |
template <typename ToMap, typename FromMap>
|
alpar@100
|
1046 |
GraphCopy& nodeMap(ToMap& tmap, const FromMap& map) {
|
alpar@100
|
1047 |
nodeMapCopies.push_back(new _digraph_utils_bits::MapCopy<From, Node,
|
alpar@100
|
1048 |
NodeRefMap, ToMap, FromMap>(tmap, map));
|
alpar@100
|
1049 |
return *this;
|
alpar@100
|
1050 |
}
|
alpar@100
|
1051 |
|
alpar@100
|
1052 |
/// \brief Make a copy of the given node.
|
alpar@100
|
1053 |
///
|
alpar@100
|
1054 |
/// Make a copy of the given node.
|
alpar@100
|
1055 |
GraphCopy& node(TNode& tnode, const Node& snode) {
|
alpar@100
|
1056 |
nodeMapCopies.push_back(new _digraph_utils_bits::ItemCopy<From, Node,
|
alpar@100
|
1057 |
NodeRefMap, TNode>(tnode, snode));
|
alpar@100
|
1058 |
return *this;
|
alpar@100
|
1059 |
}
|
alpar@100
|
1060 |
|
alpar@100
|
1061 |
/// \brief Copies the arc references into the given map.
|
alpar@100
|
1062 |
///
|
alpar@100
|
1063 |
/// Copies the arc references into the given map.
|
alpar@100
|
1064 |
template <typename ArcRef>
|
alpar@100
|
1065 |
GraphCopy& arcRef(ArcRef& map) {
|
alpar@100
|
1066 |
arcMapCopies.push_back(new _digraph_utils_bits::RefCopy<From, Arc,
|
alpar@100
|
1067 |
ArcRefMap, ArcRef>(map));
|
alpar@100
|
1068 |
return *this;
|
alpar@100
|
1069 |
}
|
alpar@100
|
1070 |
|
alpar@100
|
1071 |
/// \brief Copies the arc cross references into the given map.
|
alpar@100
|
1072 |
///
|
alpar@100
|
1073 |
/// Copies the arc cross references (reverse references) into
|
alpar@100
|
1074 |
/// the given map.
|
alpar@100
|
1075 |
template <typename ArcCrossRef>
|
alpar@100
|
1076 |
GraphCopy& arcCrossRef(ArcCrossRef& map) {
|
alpar@100
|
1077 |
arcMapCopies.push_back(new _digraph_utils_bits::CrossRefCopy<From, Arc,
|
alpar@100
|
1078 |
ArcRefMap, ArcCrossRef>(map));
|
alpar@100
|
1079 |
return *this;
|
alpar@100
|
1080 |
}
|
alpar@100
|
1081 |
|
alpar@100
|
1082 |
/// \brief Make copy of the given map.
|
alpar@100
|
1083 |
///
|
alpar@100
|
1084 |
/// Makes copy of the given map for the newly created digraph.
|
alpar@100
|
1085 |
/// The new map's key type is the to digraph's arc type,
|
alpar@100
|
1086 |
/// and the copied map's key type is the from digraph's arc
|
alpar@100
|
1087 |
/// type.
|
alpar@100
|
1088 |
template <typename ToMap, typename FromMap>
|
alpar@100
|
1089 |
GraphCopy& arcMap(ToMap& tmap, const FromMap& map) {
|
alpar@100
|
1090 |
arcMapCopies.push_back(new _digraph_utils_bits::MapCopy<From, Arc,
|
alpar@100
|
1091 |
ArcRefMap, ToMap, FromMap>(tmap, map));
|
alpar@100
|
1092 |
return *this;
|
alpar@100
|
1093 |
}
|
alpar@100
|
1094 |
|
alpar@100
|
1095 |
/// \brief Make a copy of the given arc.
|
alpar@100
|
1096 |
///
|
alpar@100
|
1097 |
/// Make a copy of the given arc.
|
alpar@100
|
1098 |
GraphCopy& arc(TArc& tarc, const Arc& sarc) {
|
alpar@100
|
1099 |
arcMapCopies.push_back(new _digraph_utils_bits::ItemCopy<From, Arc,
|
alpar@100
|
1100 |
ArcRefMap, TArc>(tarc, sarc));
|
alpar@100
|
1101 |
return *this;
|
alpar@100
|
1102 |
}
|
alpar@100
|
1103 |
|
alpar@100
|
1104 |
/// \brief Copies the edge references into the given map.
|
alpar@100
|
1105 |
///
|
alpar@100
|
1106 |
/// Copies the edge references into the given map.
|
alpar@100
|
1107 |
template <typename EdgeRef>
|
alpar@100
|
1108 |
GraphCopy& edgeRef(EdgeRef& map) {
|
alpar@100
|
1109 |
edgeMapCopies.push_back(new _digraph_utils_bits::RefCopy<From, Edge,
|
alpar@100
|
1110 |
EdgeRefMap, EdgeRef>(map));
|
alpar@100
|
1111 |
return *this;
|
alpar@100
|
1112 |
}
|
alpar@100
|
1113 |
|
alpar@100
|
1114 |
/// \brief Copies the edge cross references into the given map.
|
alpar@100
|
1115 |
///
|
alpar@100
|
1116 |
/// Copies the edge cross references (reverse
|
alpar@100
|
1117 |
/// references) into the given map.
|
alpar@100
|
1118 |
template <typename EdgeCrossRef>
|
alpar@100
|
1119 |
GraphCopy& edgeCrossRef(EdgeCrossRef& map) {
|
alpar@100
|
1120 |
edgeMapCopies.push_back(new _digraph_utils_bits::CrossRefCopy<From,
|
alpar@100
|
1121 |
Edge, EdgeRefMap, EdgeCrossRef>(map));
|
alpar@100
|
1122 |
return *this;
|
alpar@100
|
1123 |
}
|
alpar@100
|
1124 |
|
alpar@100
|
1125 |
/// \brief Make copy of the given map.
|
alpar@100
|
1126 |
///
|
alpar@100
|
1127 |
/// Makes copy of the given map for the newly created digraph.
|
alpar@100
|
1128 |
/// The new map's key type is the to digraph's edge type,
|
alpar@100
|
1129 |
/// and the copied map's key type is the from digraph's edge
|
alpar@100
|
1130 |
/// type.
|
alpar@100
|
1131 |
template <typename ToMap, typename FromMap>
|
alpar@100
|
1132 |
GraphCopy& edgeMap(ToMap& tmap, const FromMap& map) {
|
alpar@100
|
1133 |
edgeMapCopies.push_back(new _digraph_utils_bits::MapCopy<From, Edge,
|
alpar@100
|
1134 |
EdgeRefMap, ToMap, FromMap>(tmap, map));
|
alpar@100
|
1135 |
return *this;
|
alpar@100
|
1136 |
}
|
alpar@100
|
1137 |
|
alpar@100
|
1138 |
/// \brief Make a copy of the given edge.
|
alpar@100
|
1139 |
///
|
alpar@100
|
1140 |
/// Make a copy of the given edge.
|
alpar@100
|
1141 |
GraphCopy& edge(TEdge& tedge, const Edge& sedge) {
|
alpar@100
|
1142 |
edgeMapCopies.push_back(new _digraph_utils_bits::ItemCopy<From, Edge,
|
alpar@100
|
1143 |
EdgeRefMap, TEdge>(tedge, sedge));
|
alpar@100
|
1144 |
return *this;
|
alpar@100
|
1145 |
}
|
alpar@100
|
1146 |
|
alpar@100
|
1147 |
/// \brief Executes the copies.
|
alpar@100
|
1148 |
///
|
alpar@100
|
1149 |
/// Executes the copies.
|
alpar@100
|
1150 |
void run() {
|
alpar@100
|
1151 |
NodeRefMap nodeRefMap(from);
|
alpar@100
|
1152 |
EdgeRefMap edgeRefMap(from);
|
alpar@100
|
1153 |
ArcRefMap arcRefMap(to, from, edgeRefMap, nodeRefMap);
|
alpar@100
|
1154 |
_digraph_utils_bits::GraphCopySelector<To>::
|
alpar@100
|
1155 |
copy(to, from, nodeRefMap, edgeRefMap);
|
alpar@100
|
1156 |
for (int i = 0; i < int(nodeMapCopies.size()); ++i) {
|
alpar@100
|
1157 |
nodeMapCopies[i]->copy(from, nodeRefMap);
|
alpar@100
|
1158 |
}
|
alpar@100
|
1159 |
for (int i = 0; i < int(edgeMapCopies.size()); ++i) {
|
alpar@100
|
1160 |
edgeMapCopies[i]->copy(from, edgeRefMap);
|
alpar@100
|
1161 |
}
|
alpar@100
|
1162 |
for (int i = 0; i < int(arcMapCopies.size()); ++i) {
|
alpar@100
|
1163 |
arcMapCopies[i]->copy(from, arcRefMap);
|
alpar@100
|
1164 |
}
|
alpar@100
|
1165 |
}
|
alpar@100
|
1166 |
|
alpar@100
|
1167 |
private:
|
alpar@100
|
1168 |
|
alpar@100
|
1169 |
const From& from;
|
alpar@100
|
1170 |
To& to;
|
alpar@100
|
1171 |
|
alpar@100
|
1172 |
std::vector<_digraph_utils_bits::MapCopyBase<From, Node, NodeRefMap>* >
|
alpar@100
|
1173 |
nodeMapCopies;
|
alpar@100
|
1174 |
|
alpar@100
|
1175 |
std::vector<_digraph_utils_bits::MapCopyBase<From, Arc, ArcRefMap>* >
|
alpar@100
|
1176 |
arcMapCopies;
|
alpar@100
|
1177 |
|
alpar@100
|
1178 |
std::vector<_digraph_utils_bits::MapCopyBase<From, Edge, EdgeRefMap>* >
|
alpar@100
|
1179 |
edgeMapCopies;
|
alpar@100
|
1180 |
|
alpar@100
|
1181 |
};
|
alpar@100
|
1182 |
|
alpar@100
|
1183 |
/// \brief Copy an graph to another digraph.
|
alpar@100
|
1184 |
///
|
alpar@100
|
1185 |
/// Copy an graph to another digraph.
|
alpar@100
|
1186 |
/// The usage of the function:
|
alpar@100
|
1187 |
///
|
alpar@100
|
1188 |
///\code
|
alpar@100
|
1189 |
/// copyGraph(trg, src).nodeRef(nr).arcCrossRef(ecr).run();
|
alpar@100
|
1190 |
///\endcode
|
alpar@100
|
1191 |
///
|
alpar@100
|
1192 |
/// After the copy the \c nr map will contain the mapping from the
|
alpar@100
|
1193 |
/// nodes of the \c from digraph to the nodes of the \c to digraph and
|
alpar@100
|
1194 |
/// \c ecr will contain the mapping from the arcs of the \c to digraph
|
alpar@100
|
1195 |
/// to the arcs of the \c from digraph.
|
alpar@100
|
1196 |
///
|
alpar@100
|
1197 |
/// \see GraphCopy
|
alpar@100
|
1198 |
template <typename To, typename From>
|
alpar@100
|
1199 |
GraphCopy<To, From>
|
alpar@100
|
1200 |
copyGraph(To& to, const From& from) {
|
alpar@100
|
1201 |
return GraphCopy<To, From>(to, from);
|
alpar@100
|
1202 |
}
|
alpar@100
|
1203 |
|
alpar@100
|
1204 |
/// \brief Class to copy a bipartite digraph.
|
alpar@100
|
1205 |
///
|
alpar@100
|
1206 |
/// Class to copy a bipartite digraph to another digraph
|
alpar@100
|
1207 |
/// (duplicate a digraph). The simplest way of using it is through
|
alpar@100
|
1208 |
/// the \c copyBpGraph() function.
|
alpar@100
|
1209 |
template <typename To, typename From>
|
alpar@100
|
1210 |
class BpGraphCopy {
|
alpar@100
|
1211 |
private:
|
alpar@100
|
1212 |
|
alpar@100
|
1213 |
typedef typename From::Node Node;
|
alpar@100
|
1214 |
typedef typename From::Red Red;
|
alpar@100
|
1215 |
typedef typename From::Blue Blue;
|
alpar@100
|
1216 |
typedef typename From::NodeIt NodeIt;
|
alpar@100
|
1217 |
typedef typename From::Arc Arc;
|
alpar@100
|
1218 |
typedef typename From::ArcIt ArcIt;
|
alpar@100
|
1219 |
typedef typename From::Edge Edge;
|
alpar@100
|
1220 |
typedef typename From::EdgeIt EdgeIt;
|
alpar@100
|
1221 |
|
alpar@100
|
1222 |
typedef typename To::Node TNode;
|
alpar@100
|
1223 |
typedef typename To::Arc TArc;
|
alpar@100
|
1224 |
typedef typename To::Edge TEdge;
|
alpar@100
|
1225 |
|
alpar@100
|
1226 |
typedef typename From::template RedMap<TNode> RedRefMap;
|
alpar@100
|
1227 |
typedef typename From::template BlueMap<TNode> BlueRefMap;
|
alpar@100
|
1228 |
typedef typename From::template EdgeMap<TEdge> EdgeRefMap;
|
alpar@100
|
1229 |
|
alpar@100
|
1230 |
struct NodeRefMap {
|
alpar@100
|
1231 |
NodeRefMap(const From& _from, const RedRefMap& _red_ref,
|
alpar@100
|
1232 |
const BlueRefMap& _blue_ref)
|
alpar@100
|
1233 |
: from(_from), red_ref(_red_ref), blue_ref(_blue_ref) {}
|
alpar@100
|
1234 |
|
alpar@100
|
1235 |
typedef typename From::Node Key;
|
alpar@100
|
1236 |
typedef typename To::Node Value;
|
alpar@100
|
1237 |
|
alpar@100
|
1238 |
Value operator[](const Key& key) const {
|
alpar@100
|
1239 |
return from.red(key) ? red_ref[key] : blue_ref[key];
|
alpar@100
|
1240 |
}
|
alpar@100
|
1241 |
|
alpar@100
|
1242 |
const From& from;
|
alpar@100
|
1243 |
const RedRefMap& red_ref;
|
alpar@100
|
1244 |
const BlueRefMap& blue_ref;
|
alpar@100
|
1245 |
};
|
alpar@100
|
1246 |
|
alpar@100
|
1247 |
struct ArcRefMap {
|
alpar@100
|
1248 |
ArcRefMap(const To& _to, const From& _from,
|
alpar@100
|
1249 |
const EdgeRefMap& _edge_ref, const NodeRefMap& _node_ref)
|
alpar@100
|
1250 |
: to(_to), from(_from),
|
alpar@100
|
1251 |
edge_ref(_edge_ref), node_ref(_node_ref) {}
|
alpar@100
|
1252 |
|
alpar@100
|
1253 |
typedef typename From::Arc Key;
|
alpar@100
|
1254 |
typedef typename To::Arc Value;
|
alpar@100
|
1255 |
|
alpar@100
|
1256 |
Value operator[](const Key& key) const {
|
alpar@100
|
1257 |
bool forward =
|
alpar@100
|
1258 |
(from.direction(key) ==
|
alpar@100
|
1259 |
(node_ref[from.source(static_cast<const Edge&>(key))] ==
|
alpar@100
|
1260 |
to.source(edge_ref[static_cast<const Edge&>(key)])));
|
alpar@100
|
1261 |
return to.direct(edge_ref[key], forward);
|
alpar@100
|
1262 |
}
|
alpar@100
|
1263 |
|
alpar@100
|
1264 |
const To& to;
|
alpar@100
|
1265 |
const From& from;
|
alpar@100
|
1266 |
const EdgeRefMap& edge_ref;
|
alpar@100
|
1267 |
const NodeRefMap& node_ref;
|
alpar@100
|
1268 |
};
|
alpar@100
|
1269 |
|
alpar@100
|
1270 |
public:
|
alpar@100
|
1271 |
|
alpar@100
|
1272 |
|
alpar@100
|
1273 |
/// \brief Constructor for the DigraphCopy.
|
alpar@100
|
1274 |
///
|
alpar@100
|
1275 |
/// It copies the content of the \c _from digraph into the
|
alpar@100
|
1276 |
/// \c _to digraph.
|
alpar@100
|
1277 |
BpGraphCopy(To& _to, const From& _from)
|
alpar@100
|
1278 |
: from(_from), to(_to) {}
|
alpar@100
|
1279 |
|
alpar@100
|
1280 |
/// \brief Destructor of the DigraphCopy
|
alpar@100
|
1281 |
///
|
alpar@100
|
1282 |
/// Destructor of the DigraphCopy
|
alpar@100
|
1283 |
~BpGraphCopy() {
|
alpar@100
|
1284 |
for (int i = 0; i < int(redMapCopies.size()); ++i) {
|
alpar@100
|
1285 |
delete redMapCopies[i];
|
alpar@100
|
1286 |
}
|
alpar@100
|
1287 |
for (int i = 0; i < int(blueMapCopies.size()); ++i) {
|
alpar@100
|
1288 |
delete blueMapCopies[i];
|
alpar@100
|
1289 |
}
|
alpar@100
|
1290 |
for (int i = 0; i < int(nodeMapCopies.size()); ++i) {
|
alpar@100
|
1291 |
delete nodeMapCopies[i];
|
alpar@100
|
1292 |
}
|
alpar@100
|
1293 |
for (int i = 0; i < int(arcMapCopies.size()); ++i) {
|
alpar@100
|
1294 |
delete arcMapCopies[i];
|
alpar@100
|
1295 |
}
|
alpar@100
|
1296 |
for (int i = 0; i < int(edgeMapCopies.size()); ++i) {
|
alpar@100
|
1297 |
delete edgeMapCopies[i];
|
alpar@100
|
1298 |
}
|
alpar@100
|
1299 |
|
alpar@100
|
1300 |
}
|
alpar@100
|
1301 |
|
alpar@100
|
1302 |
/// \brief Copies the A-node references into the given map.
|
alpar@100
|
1303 |
///
|
alpar@100
|
1304 |
/// Copies the A-node references into the given map.
|
alpar@100
|
1305 |
template <typename RedRef>
|
alpar@100
|
1306 |
BpGraphCopy& redRef(RedRef& map) {
|
alpar@100
|
1307 |
redMapCopies.push_back(new _digraph_utils_bits::RefCopy<From, Red,
|
alpar@100
|
1308 |
RedRefMap, RedRef>(map));
|
alpar@100
|
1309 |
return *this;
|
alpar@100
|
1310 |
}
|
alpar@100
|
1311 |
|
alpar@100
|
1312 |
/// \brief Copies the A-node cross references into the given map.
|
alpar@100
|
1313 |
///
|
alpar@100
|
1314 |
/// Copies the A-node cross references (reverse references) into
|
alpar@100
|
1315 |
/// the given map.
|
alpar@100
|
1316 |
template <typename RedCrossRef>
|
alpar@100
|
1317 |
BpGraphCopy& redCrossRef(RedCrossRef& map) {
|
alpar@100
|
1318 |
redMapCopies.push_back(new _digraph_utils_bits::CrossRefCopy<From,
|
alpar@100
|
1319 |
Red, RedRefMap, RedCrossRef>(map));
|
alpar@100
|
1320 |
return *this;
|
alpar@100
|
1321 |
}
|
alpar@100
|
1322 |
|
alpar@100
|
1323 |
/// \brief Make copy of the given A-node map.
|
alpar@100
|
1324 |
///
|
alpar@100
|
1325 |
/// Makes copy of the given map for the newly created digraph.
|
alpar@100
|
1326 |
/// The new map's key type is the to digraph's node type,
|
alpar@100
|
1327 |
/// and the copied map's key type is the from digraph's node
|
alpar@100
|
1328 |
/// type.
|
alpar@100
|
1329 |
template <typename ToMap, typename FromMap>
|
alpar@100
|
1330 |
BpGraphCopy& redMap(ToMap& tmap, const FromMap& map) {
|
alpar@100
|
1331 |
redMapCopies.push_back(new _digraph_utils_bits::MapCopy<From, Red,
|
alpar@100
|
1332 |
RedRefMap, ToMap, FromMap>(tmap, map));
|
alpar@100
|
1333 |
return *this;
|
alpar@100
|
1334 |
}
|
alpar@100
|
1335 |
|
alpar@100
|
1336 |
/// \brief Copies the B-node references into the given map.
|
alpar@100
|
1337 |
///
|
alpar@100
|
1338 |
/// Copies the B-node references into the given map.
|
alpar@100
|
1339 |
template <typename BlueRef>
|
alpar@100
|
1340 |
BpGraphCopy& blueRef(BlueRef& map) {
|
alpar@100
|
1341 |
blueMapCopies.push_back(new _digraph_utils_bits::RefCopy<From, Blue,
|
alpar@100
|
1342 |
BlueRefMap, BlueRef>(map));
|
alpar@100
|
1343 |
return *this;
|
alpar@100
|
1344 |
}
|
alpar@100
|
1345 |
|
alpar@100
|
1346 |
/// \brief Copies the B-node cross references into the given map.
|
alpar@100
|
1347 |
///
|
alpar@100
|
1348 |
/// Copies the B-node cross references (reverse references) into
|
alpar@100
|
1349 |
/// the given map.
|
alpar@100
|
1350 |
template <typename BlueCrossRef>
|
alpar@100
|
1351 |
BpGraphCopy& blueCrossRef(BlueCrossRef& map) {
|
alpar@100
|
1352 |
blueMapCopies.push_back(new _digraph_utils_bits::CrossRefCopy<From,
|
alpar@100
|
1353 |
Blue, BlueRefMap, BlueCrossRef>(map));
|
alpar@100
|
1354 |
return *this;
|
alpar@100
|
1355 |
}
|
alpar@100
|
1356 |
|
alpar@100
|
1357 |
/// \brief Make copy of the given B-node map.
|
alpar@100
|
1358 |
///
|
alpar@100
|
1359 |
/// Makes copy of the given map for the newly created digraph.
|
alpar@100
|
1360 |
/// The new map's key type is the to digraph's node type,
|
alpar@100
|
1361 |
/// and the copied map's key type is the from digraph's node
|
alpar@100
|
1362 |
/// type.
|
alpar@100
|
1363 |
template <typename ToMap, typename FromMap>
|
alpar@100
|
1364 |
BpGraphCopy& blueMap(ToMap& tmap, const FromMap& map) {
|
alpar@100
|
1365 |
blueMapCopies.push_back(new _digraph_utils_bits::MapCopy<From, Blue,
|
alpar@100
|
1366 |
BlueRefMap, ToMap, FromMap>(tmap, map));
|
alpar@100
|
1367 |
return *this;
|
alpar@100
|
1368 |
}
|
alpar@100
|
1369 |
/// \brief Copies the node references into the given map.
|
alpar@100
|
1370 |
///
|
alpar@100
|
1371 |
/// Copies the node references into the given map.
|
alpar@100
|
1372 |
template <typename NodeRef>
|
alpar@100
|
1373 |
BpGraphCopy& nodeRef(NodeRef& map) {
|
alpar@100
|
1374 |
nodeMapCopies.push_back(new _digraph_utils_bits::RefCopy<From, Node,
|
alpar@100
|
1375 |
NodeRefMap, NodeRef>(map));
|
alpar@100
|
1376 |
return *this;
|
alpar@100
|
1377 |
}
|
alpar@100
|
1378 |
|
alpar@100
|
1379 |
/// \brief Copies the node cross references into the given map.
|
alpar@100
|
1380 |
///
|
alpar@100
|
1381 |
/// Copies the node cross references (reverse references) into
|
alpar@100
|
1382 |
/// the given map.
|
alpar@100
|
1383 |
template <typename NodeCrossRef>
|
alpar@100
|
1384 |
BpGraphCopy& nodeCrossRef(NodeCrossRef& map) {
|
alpar@100
|
1385 |
nodeMapCopies.push_back(new _digraph_utils_bits::CrossRefCopy<From, Node,
|
alpar@100
|
1386 |
NodeRefMap, NodeCrossRef>(map));
|
alpar@100
|
1387 |
return *this;
|
alpar@100
|
1388 |
}
|
alpar@100
|
1389 |
|
alpar@100
|
1390 |
/// \brief Make copy of the given map.
|
alpar@100
|
1391 |
///
|
alpar@100
|
1392 |
/// Makes copy of the given map for the newly created digraph.
|
alpar@100
|
1393 |
/// The new map's key type is the to digraph's node type,
|
alpar@100
|
1394 |
/// and the copied map's key type is the from digraph's node
|
alpar@100
|
1395 |
/// type.
|
alpar@100
|
1396 |
template <typename ToMap, typename FromMap>
|
alpar@100
|
1397 |
BpGraphCopy& nodeMap(ToMap& tmap, const FromMap& map) {
|
alpar@100
|
1398 |
nodeMapCopies.push_back(new _digraph_utils_bits::MapCopy<From, Node,
|
alpar@100
|
1399 |
NodeRefMap, ToMap, FromMap>(tmap, map));
|
alpar@100
|
1400 |
return *this;
|
alpar@100
|
1401 |
}
|
alpar@100
|
1402 |
|
alpar@100
|
1403 |
/// \brief Make a copy of the given node.
|
alpar@100
|
1404 |
///
|
alpar@100
|
1405 |
/// Make a copy of the given node.
|
alpar@100
|
1406 |
BpGraphCopy& node(TNode& tnode, const Node& snode) {
|
alpar@100
|
1407 |
nodeMapCopies.push_back(new _digraph_utils_bits::ItemCopy<From, Node,
|
alpar@100
|
1408 |
NodeRefMap, TNode>(tnode, snode));
|
alpar@100
|
1409 |
return *this;
|
alpar@100
|
1410 |
}
|
alpar@100
|
1411 |
|
alpar@100
|
1412 |
/// \brief Copies the arc references into the given map.
|
alpar@100
|
1413 |
///
|
alpar@100
|
1414 |
/// Copies the arc references into the given map.
|
alpar@100
|
1415 |
template <typename ArcRef>
|
alpar@100
|
1416 |
BpGraphCopy& arcRef(ArcRef& map) {
|
alpar@100
|
1417 |
arcMapCopies.push_back(new _digraph_utils_bits::RefCopy<From, Arc,
|
alpar@100
|
1418 |
ArcRefMap, ArcRef>(map));
|
alpar@100
|
1419 |
return *this;
|
alpar@100
|
1420 |
}
|
alpar@100
|
1421 |
|
alpar@100
|
1422 |
/// \brief Copies the arc cross references into the given map.
|
alpar@100
|
1423 |
///
|
alpar@100
|
1424 |
/// Copies the arc cross references (reverse references) into
|
alpar@100
|
1425 |
/// the given map.
|
alpar@100
|
1426 |
template <typename ArcCrossRef>
|
alpar@100
|
1427 |
BpGraphCopy& arcCrossRef(ArcCrossRef& map) {
|
alpar@100
|
1428 |
arcMapCopies.push_back(new _digraph_utils_bits::CrossRefCopy<From, Arc,
|
alpar@100
|
1429 |
ArcRefMap, ArcCrossRef>(map));
|
alpar@100
|
1430 |
return *this;
|
alpar@100
|
1431 |
}
|
alpar@100
|
1432 |
|
alpar@100
|
1433 |
/// \brief Make copy of the given map.
|
alpar@100
|
1434 |
///
|
alpar@100
|
1435 |
/// Makes copy of the given map for the newly created digraph.
|
alpar@100
|
1436 |
/// The new map's key type is the to digraph's arc type,
|
alpar@100
|
1437 |
/// and the copied map's key type is the from digraph's arc
|
alpar@100
|
1438 |
/// type.
|
alpar@100
|
1439 |
template <typename ToMap, typename FromMap>
|
alpar@100
|
1440 |
BpGraphCopy& arcMap(ToMap& tmap, const FromMap& map) {
|
alpar@100
|
1441 |
arcMapCopies.push_back(new _digraph_utils_bits::MapCopy<From, Arc,
|
alpar@100
|
1442 |
ArcRefMap, ToMap, FromMap>(tmap, map));
|
alpar@100
|
1443 |
return *this;
|
alpar@100
|
1444 |
}
|
alpar@100
|
1445 |
|
alpar@100
|
1446 |
/// \brief Make a copy of the given arc.
|
alpar@100
|
1447 |
///
|
alpar@100
|
1448 |
/// Make a copy of the given arc.
|
alpar@100
|
1449 |
BpGraphCopy& arc(TArc& tarc, const Arc& sarc) {
|
alpar@100
|
1450 |
arcMapCopies.push_back(new _digraph_utils_bits::ItemCopy<From, Arc,
|
alpar@100
|
1451 |
ArcRefMap, TArc>(tarc, sarc));
|
alpar@100
|
1452 |
return *this;
|
alpar@100
|
1453 |
}
|
alpar@100
|
1454 |
|
alpar@100
|
1455 |
/// \brief Copies the edge references into the given map.
|
alpar@100
|
1456 |
///
|
alpar@100
|
1457 |
/// Copies the edge references into the given map.
|
alpar@100
|
1458 |
template <typename EdgeRef>
|
alpar@100
|
1459 |
BpGraphCopy& edgeRef(EdgeRef& map) {
|
alpar@100
|
1460 |
edgeMapCopies.push_back(new _digraph_utils_bits::RefCopy<From, Edge,
|
alpar@100
|
1461 |
EdgeRefMap, EdgeRef>(map));
|
alpar@100
|
1462 |
return *this;
|
alpar@100
|
1463 |
}
|
alpar@100
|
1464 |
|
alpar@100
|
1465 |
/// \brief Copies the edge cross references into the given map.
|
alpar@100
|
1466 |
///
|
alpar@100
|
1467 |
/// Copies the edge cross references (reverse
|
alpar@100
|
1468 |
/// references) into the given map.
|
alpar@100
|
1469 |
template <typename EdgeCrossRef>
|
alpar@100
|
1470 |
BpGraphCopy& edgeCrossRef(EdgeCrossRef& map) {
|
alpar@100
|
1471 |
edgeMapCopies.push_back(new _digraph_utils_bits::CrossRefCopy<From,
|
alpar@100
|
1472 |
Edge, EdgeRefMap, EdgeCrossRef>(map));
|
alpar@100
|
1473 |
return *this;
|
alpar@100
|
1474 |
}
|
alpar@100
|
1475 |
|
alpar@100
|
1476 |
/// \brief Make copy of the given map.
|
alpar@100
|
1477 |
///
|
alpar@100
|
1478 |
/// Makes copy of the given map for the newly created digraph.
|
alpar@100
|
1479 |
/// The new map's key type is the to digraph's edge type,
|
alpar@100
|
1480 |
/// and the copied map's key type is the from digraph's edge
|
alpar@100
|
1481 |
/// type.
|
alpar@100
|
1482 |
template <typename ToMap, typename FromMap>
|
alpar@100
|
1483 |
BpGraphCopy& edgeMap(ToMap& tmap, const FromMap& map) {
|
alpar@100
|
1484 |
edgeMapCopies.push_back(new _digraph_utils_bits::MapCopy<From, Edge,
|
alpar@100
|
1485 |
EdgeRefMap, ToMap, FromMap>(tmap, map));
|
alpar@100
|
1486 |
return *this;
|
alpar@100
|
1487 |
}
|
alpar@100
|
1488 |
|
alpar@100
|
1489 |
/// \brief Make a copy of the given edge.
|
alpar@100
|
1490 |
///
|
alpar@100
|
1491 |
/// Make a copy of the given edge.
|
alpar@100
|
1492 |
BpGraphCopy& edge(TEdge& tedge, const Edge& sedge) {
|
alpar@100
|
1493 |
edgeMapCopies.push_back(new _digraph_utils_bits::ItemCopy<From, Edge,
|
alpar@100
|
1494 |
EdgeRefMap, TEdge>(tedge, sedge));
|
alpar@100
|
1495 |
return *this;
|
alpar@100
|
1496 |
}
|
alpar@100
|
1497 |
|
alpar@100
|
1498 |
/// \brief Executes the copies.
|
alpar@100
|
1499 |
///
|
alpar@100
|
1500 |
/// Executes the copies.
|
alpar@100
|
1501 |
void run() {
|
alpar@100
|
1502 |
RedRefMap redRefMap(from);
|
alpar@100
|
1503 |
BlueRefMap blueRefMap(from);
|
alpar@100
|
1504 |
NodeRefMap nodeRefMap(from, redRefMap, blueRefMap);
|
alpar@100
|
1505 |
EdgeRefMap edgeRefMap(from);
|
alpar@100
|
1506 |
ArcRefMap arcRefMap(to, from, edgeRefMap, nodeRefMap);
|
alpar@100
|
1507 |
_digraph_utils_bits::BpGraphCopySelector<To>::
|
alpar@100
|
1508 |
copy(to, from, redRefMap, blueRefMap, edgeRefMap);
|
alpar@100
|
1509 |
for (int i = 0; i < int(redMapCopies.size()); ++i) {
|
alpar@100
|
1510 |
redMapCopies[i]->copy(from, redRefMap);
|
alpar@100
|
1511 |
}
|
alpar@100
|
1512 |
for (int i = 0; i < int(blueMapCopies.size()); ++i) {
|
alpar@100
|
1513 |
blueMapCopies[i]->copy(from, blueRefMap);
|
alpar@100
|
1514 |
}
|
alpar@100
|
1515 |
for (int i = 0; i < int(nodeMapCopies.size()); ++i) {
|
alpar@100
|
1516 |
nodeMapCopies[i]->copy(from, nodeRefMap);
|
alpar@100
|
1517 |
}
|
alpar@100
|
1518 |
for (int i = 0; i < int(edgeMapCopies.size()); ++i) {
|
alpar@100
|
1519 |
edgeMapCopies[i]->copy(from, edgeRefMap);
|
alpar@100
|
1520 |
}
|
alpar@100
|
1521 |
for (int i = 0; i < int(arcMapCopies.size()); ++i) {
|
alpar@100
|
1522 |
arcMapCopies[i]->copy(from, arcRefMap);
|
alpar@100
|
1523 |
}
|
alpar@100
|
1524 |
}
|
alpar@100
|
1525 |
|
alpar@100
|
1526 |
private:
|
alpar@100
|
1527 |
|
alpar@100
|
1528 |
const From& from;
|
alpar@100
|
1529 |
To& to;
|
alpar@100
|
1530 |
|
alpar@100
|
1531 |
std::vector<_digraph_utils_bits::MapCopyBase<From, Red, RedRefMap>* >
|
alpar@100
|
1532 |
redMapCopies;
|
alpar@100
|
1533 |
|
alpar@100
|
1534 |
std::vector<_digraph_utils_bits::MapCopyBase<From, Blue, BlueRefMap>* >
|
alpar@100
|
1535 |
blueMapCopies;
|
alpar@100
|
1536 |
|
alpar@100
|
1537 |
std::vector<_digraph_utils_bits::MapCopyBase<From, Node, NodeRefMap>* >
|
alpar@100
|
1538 |
nodeMapCopies;
|
alpar@100
|
1539 |
|
alpar@100
|
1540 |
std::vector<_digraph_utils_bits::MapCopyBase<From, Arc, ArcRefMap>* >
|
alpar@100
|
1541 |
arcMapCopies;
|
alpar@100
|
1542 |
|
alpar@100
|
1543 |
std::vector<_digraph_utils_bits::MapCopyBase<From, Edge, EdgeRefMap>* >
|
alpar@100
|
1544 |
edgeMapCopies;
|
alpar@100
|
1545 |
|
alpar@100
|
1546 |
};
|
alpar@100
|
1547 |
|
alpar@100
|
1548 |
/// \brief Copy a bipartite digraph to another digraph.
|
alpar@100
|
1549 |
///
|
alpar@100
|
1550 |
/// Copy a bipartite digraph to another digraph.
|
alpar@100
|
1551 |
/// The usage of the function:
|
alpar@100
|
1552 |
///
|
alpar@100
|
1553 |
///\code
|
alpar@100
|
1554 |
/// copyBpGraph(trg, src).redRef(anr).arcCrossRef(ecr).run();
|
alpar@100
|
1555 |
///\endcode
|
alpar@100
|
1556 |
///
|
alpar@100
|
1557 |
/// After the copy the \c nr map will contain the mapping from the
|
alpar@100
|
1558 |
/// nodes of the \c from digraph to the nodes of the \c to digraph and
|
alpar@100
|
1559 |
/// \c ecr will contain the mapping from the arcs of the \c to digraph
|
alpar@100
|
1560 |
/// to the arcs of the \c from digraph.
|
alpar@100
|
1561 |
///
|
alpar@100
|
1562 |
/// \see BpGraphCopy
|
alpar@100
|
1563 |
template <typename To, typename From>
|
alpar@100
|
1564 |
BpGraphCopy<To, From>
|
alpar@100
|
1565 |
copyBpGraph(To& to, const From& from) {
|
alpar@100
|
1566 |
return BpGraphCopy<To, From>(to, from);
|
alpar@100
|
1567 |
}
|
alpar@100
|
1568 |
|
alpar@100
|
1569 |
|
alpar@100
|
1570 |
/// @}
|
alpar@100
|
1571 |
|
alpar@100
|
1572 |
/// \addtogroup digraph_maps
|
alpar@100
|
1573 |
/// @{
|
alpar@100
|
1574 |
|
alpar@100
|
1575 |
/// Provides an immutable and unique id for each item in the digraph.
|
alpar@100
|
1576 |
|
alpar@100
|
1577 |
/// The IdMap class provides a unique and immutable id for each item of the
|
alpar@100
|
1578 |
/// same type (e.g. node) in the digraph. This id is <ul><li>\b unique:
|
alpar@100
|
1579 |
/// different items (nodes) get different ids <li>\b immutable: the id of an
|
alpar@100
|
1580 |
/// item (node) does not change (even if you delete other nodes). </ul>
|
alpar@100
|
1581 |
/// Through this map you get access (i.e. can read) the inner id values of
|
alpar@100
|
1582 |
/// the items stored in the digraph. This map can be inverted with its member
|
alpar@100
|
1583 |
/// class \c InverseMap.
|
alpar@100
|
1584 |
///
|
alpar@100
|
1585 |
template <typename _Digraph, typename _Item>
|
alpar@100
|
1586 |
class IdMap {
|
alpar@100
|
1587 |
public:
|
alpar@100
|
1588 |
typedef _Digraph Digraph;
|
alpar@100
|
1589 |
typedef int Value;
|
alpar@100
|
1590 |
typedef _Item Item;
|
alpar@100
|
1591 |
typedef _Item Key;
|
alpar@100
|
1592 |
|
alpar@100
|
1593 |
/// \brief Constructor.
|
alpar@100
|
1594 |
///
|
alpar@100
|
1595 |
/// Constructor of the map.
|
alpar@100
|
1596 |
explicit IdMap(const Digraph& _digraph) : digraph(&_digraph) {}
|
alpar@100
|
1597 |
|
alpar@100
|
1598 |
/// \brief Gives back the \e id of the item.
|
alpar@100
|
1599 |
///
|
alpar@100
|
1600 |
/// Gives back the immutable and unique \e id of the item.
|
alpar@100
|
1601 |
int operator[](const Item& item) const { return digraph->id(item);}
|
alpar@100
|
1602 |
|
alpar@100
|
1603 |
/// \brief Gives back the item by its id.
|
alpar@100
|
1604 |
///
|
alpar@100
|
1605 |
/// Gives back the item by its id.
|
alpar@100
|
1606 |
Item operator()(int id) { return digraph->fromId(id, Item()); }
|
alpar@100
|
1607 |
|
alpar@100
|
1608 |
private:
|
alpar@100
|
1609 |
const Digraph* digraph;
|
alpar@100
|
1610 |
|
alpar@100
|
1611 |
public:
|
alpar@100
|
1612 |
|
alpar@100
|
1613 |
/// \brief The class represents the inverse of its owner (IdMap).
|
alpar@100
|
1614 |
///
|
alpar@100
|
1615 |
/// The class represents the inverse of its owner (IdMap).
|
alpar@100
|
1616 |
/// \see inverse()
|
alpar@100
|
1617 |
class InverseMap {
|
alpar@100
|
1618 |
public:
|
alpar@100
|
1619 |
|
alpar@100
|
1620 |
/// \brief Constructor.
|
alpar@100
|
1621 |
///
|
alpar@100
|
1622 |
/// Constructor for creating an id-to-item map.
|
alpar@100
|
1623 |
explicit InverseMap(const Digraph& _digraph) : digraph(&_digraph) {}
|
alpar@100
|
1624 |
|
alpar@100
|
1625 |
/// \brief Constructor.
|
alpar@100
|
1626 |
///
|
alpar@100
|
1627 |
/// Constructor for creating an id-to-item map.
|
alpar@100
|
1628 |
explicit InverseMap(const IdMap& idMap) : digraph(idMap.digraph) {}
|
alpar@100
|
1629 |
|
alpar@100
|
1630 |
/// \brief Gives back the given item from its id.
|
alpar@100
|
1631 |
///
|
alpar@100
|
1632 |
/// Gives back the given item from its id.
|
alpar@100
|
1633 |
///
|
alpar@100
|
1634 |
Item operator[](int id) const { return digraph->fromId(id, Item());}
|
alpar@100
|
1635 |
|
alpar@100
|
1636 |
private:
|
alpar@100
|
1637 |
const Digraph* digraph;
|
alpar@100
|
1638 |
};
|
alpar@100
|
1639 |
|
alpar@100
|
1640 |
/// \brief Gives back the inverse of the map.
|
alpar@100
|
1641 |
///
|
alpar@100
|
1642 |
/// Gives back the inverse of the IdMap.
|
alpar@100
|
1643 |
InverseMap inverse() const { return InverseMap(*digraph);}
|
alpar@100
|
1644 |
|
alpar@100
|
1645 |
};
|
alpar@100
|
1646 |
|
alpar@100
|
1647 |
|
alpar@100
|
1648 |
/// \brief General invertable digraph-map type.
|
alpar@100
|
1649 |
|
alpar@100
|
1650 |
/// This type provides simple invertable digraph-maps.
|
alpar@100
|
1651 |
/// The InvertableMap wraps an arbitrary ReadWriteMap
|
alpar@100
|
1652 |
/// and if a key is set to a new value then store it
|
alpar@100
|
1653 |
/// in the inverse map.
|
alpar@100
|
1654 |
///
|
alpar@100
|
1655 |
/// The values of the map can be accessed
|
alpar@100
|
1656 |
/// with stl compatible forward iterator.
|
alpar@100
|
1657 |
///
|
alpar@100
|
1658 |
/// \param _Digraph The digraph type.
|
alpar@100
|
1659 |
/// \param _Item The item type of the digraph.
|
alpar@100
|
1660 |
/// \param _Value The value type of the map.
|
alpar@100
|
1661 |
///
|
alpar@100
|
1662 |
/// \see IterableValueMap
|
alpar@100
|
1663 |
template <typename _Digraph, typename _Item, typename _Value>
|
alpar@100
|
1664 |
class InvertableMap : protected DefaultMap<_Digraph, _Item, _Value> {
|
alpar@100
|
1665 |
private:
|
alpar@100
|
1666 |
|
alpar@100
|
1667 |
typedef DefaultMap<_Digraph, _Item, _Value> Map;
|
alpar@100
|
1668 |
typedef _Digraph Digraph;
|
alpar@100
|
1669 |
|
alpar@100
|
1670 |
typedef std::map<_Value, _Item> Container;
|
alpar@100
|
1671 |
Container invMap;
|
alpar@100
|
1672 |
|
alpar@100
|
1673 |
public:
|
alpar@100
|
1674 |
|
alpar@100
|
1675 |
/// The key type of InvertableMap (Node, Arc, Edge).
|
alpar@100
|
1676 |
typedef typename Map::Key Key;
|
alpar@100
|
1677 |
/// The value type of the InvertableMap.
|
alpar@100
|
1678 |
typedef typename Map::Value Value;
|
alpar@100
|
1679 |
|
alpar@100
|
1680 |
|
alpar@100
|
1681 |
|
alpar@100
|
1682 |
/// \brief Constructor.
|
alpar@100
|
1683 |
///
|
alpar@100
|
1684 |
/// Construct a new InvertableMap for the digraph.
|
alpar@100
|
1685 |
///
|
alpar@100
|
1686 |
explicit InvertableMap(const Digraph& digraph) : Map(digraph) {}
|
alpar@100
|
1687 |
|
alpar@100
|
1688 |
/// \brief Forward iterator for values.
|
alpar@100
|
1689 |
///
|
alpar@100
|
1690 |
/// This iterator is an stl compatible forward
|
alpar@100
|
1691 |
/// iterator on the values of the map. The values can
|
alpar@100
|
1692 |
/// be accessed in the [beginValue, endValue) range.
|
alpar@100
|
1693 |
///
|
alpar@100
|
1694 |
class ValueIterator
|
alpar@100
|
1695 |
: public std::iterator<std::forward_iterator_tag, Value> {
|
alpar@100
|
1696 |
friend class InvertableMap;
|
alpar@100
|
1697 |
private:
|
alpar@100
|
1698 |
ValueIterator(typename Container::const_iterator _it)
|
alpar@100
|
1699 |
: it(_it) {}
|
alpar@100
|
1700 |
public:
|
alpar@100
|
1701 |
|
alpar@100
|
1702 |
ValueIterator() {}
|
alpar@100
|
1703 |
|
alpar@100
|
1704 |
ValueIterator& operator++() { ++it; return *this; }
|
alpar@100
|
1705 |
ValueIterator operator++(int) {
|
alpar@100
|
1706 |
ValueIterator tmp(*this);
|
alpar@100
|
1707 |
operator++();
|
alpar@100
|
1708 |
return tmp;
|
alpar@100
|
1709 |
}
|
alpar@100
|
1710 |
|
alpar@100
|
1711 |
const Value& operator*() const { return it->first; }
|
alpar@100
|
1712 |
const Value* operator->() const { return &(it->first); }
|
alpar@100
|
1713 |
|
alpar@100
|
1714 |
bool operator==(ValueIterator jt) const { return it == jt.it; }
|
alpar@100
|
1715 |
bool operator!=(ValueIterator jt) const { return it != jt.it; }
|
alpar@100
|
1716 |
|
alpar@100
|
1717 |
private:
|
alpar@100
|
1718 |
typename Container::const_iterator it;
|
alpar@100
|
1719 |
};
|
alpar@100
|
1720 |
|
alpar@100
|
1721 |
/// \brief Returns an iterator to the first value.
|
alpar@100
|
1722 |
///
|
alpar@100
|
1723 |
/// Returns an stl compatible iterator to the
|
alpar@100
|
1724 |
/// first value of the map. The values of the
|
alpar@100
|
1725 |
/// map can be accessed in the [beginValue, endValue)
|
alpar@100
|
1726 |
/// range.
|
alpar@100
|
1727 |
ValueIterator beginValue() const {
|
alpar@100
|
1728 |
return ValueIterator(invMap.begin());
|
alpar@100
|
1729 |
}
|
alpar@100
|
1730 |
|
alpar@100
|
1731 |
/// \brief Returns an iterator after the last value.
|
alpar@100
|
1732 |
///
|
alpar@100
|
1733 |
/// Returns an stl compatible iterator after the
|
alpar@100
|
1734 |
/// last value of the map. The values of the
|
alpar@100
|
1735 |
/// map can be accessed in the [beginValue, endValue)
|
alpar@100
|
1736 |
/// range.
|
alpar@100
|
1737 |
ValueIterator endValue() const {
|
alpar@100
|
1738 |
return ValueIterator(invMap.end());
|
alpar@100
|
1739 |
}
|
alpar@100
|
1740 |
|
alpar@100
|
1741 |
/// \brief The setter function of the map.
|
alpar@100
|
1742 |
///
|
alpar@100
|
1743 |
/// Sets the mapped value.
|
alpar@100
|
1744 |
void set(const Key& key, const Value& val) {
|
alpar@100
|
1745 |
Value oldval = Map::operator[](key);
|
alpar@100
|
1746 |
typename Container::iterator it = invMap.find(oldval);
|
alpar@100
|
1747 |
if (it != invMap.end() && it->second == key) {
|
alpar@100
|
1748 |
invMap.erase(it);
|
alpar@100
|
1749 |
}
|
alpar@100
|
1750 |
invMap.insert(make_pair(val, key));
|
alpar@100
|
1751 |
Map::set(key, val);
|
alpar@100
|
1752 |
}
|
alpar@100
|
1753 |
|
alpar@100
|
1754 |
/// \brief The getter function of the map.
|
alpar@100
|
1755 |
///
|
alpar@100
|
1756 |
/// It gives back the value associated with the key.
|
alpar@100
|
1757 |
typename MapTraits<Map>::ConstReturnValue
|
alpar@100
|
1758 |
operator[](const Key& key) const {
|
alpar@100
|
1759 |
return Map::operator[](key);
|
alpar@100
|
1760 |
}
|
alpar@100
|
1761 |
|
alpar@100
|
1762 |
/// \brief Gives back the item by its value.
|
alpar@100
|
1763 |
///
|
alpar@100
|
1764 |
/// Gives back the item by its value.
|
alpar@100
|
1765 |
Key operator()(const Value& key) const {
|
alpar@100
|
1766 |
typename Container::const_iterator it = invMap.find(key);
|
alpar@100
|
1767 |
return it != invMap.end() ? it->second : INVALID;
|
alpar@100
|
1768 |
}
|
alpar@100
|
1769 |
|
alpar@100
|
1770 |
protected:
|
alpar@100
|
1771 |
|
alpar@100
|
1772 |
/// \brief Erase the key from the map.
|
alpar@100
|
1773 |
///
|
alpar@100
|
1774 |
/// Erase the key to the map. It is called by the
|
alpar@100
|
1775 |
/// \c AlterationNotifier.
|
alpar@100
|
1776 |
virtual void erase(const Key& key) {
|
alpar@100
|
1777 |
Value val = Map::operator[](key);
|
alpar@100
|
1778 |
typename Container::iterator it = invMap.find(val);
|
alpar@100
|
1779 |
if (it != invMap.end() && it->second == key) {
|
alpar@100
|
1780 |
invMap.erase(it);
|
alpar@100
|
1781 |
}
|
alpar@100
|
1782 |
Map::erase(key);
|
alpar@100
|
1783 |
}
|
alpar@100
|
1784 |
|
alpar@100
|
1785 |
/// \brief Erase more keys from the map.
|
alpar@100
|
1786 |
///
|
alpar@100
|
1787 |
/// Erase more keys from the map. It is called by the
|
alpar@100
|
1788 |
/// \c AlterationNotifier.
|
alpar@100
|
1789 |
virtual void erase(const std::vector<Key>& keys) {
|
alpar@100
|
1790 |
for (int i = 0; i < int(keys.size()); ++i) {
|
alpar@100
|
1791 |
Value val = Map::operator[](keys[i]);
|
alpar@100
|
1792 |
typename Container::iterator it = invMap.find(val);
|
alpar@100
|
1793 |
if (it != invMap.end() && it->second == keys[i]) {
|
alpar@100
|
1794 |
invMap.erase(it);
|
alpar@100
|
1795 |
}
|
alpar@100
|
1796 |
}
|
alpar@100
|
1797 |
Map::erase(keys);
|
alpar@100
|
1798 |
}
|
alpar@100
|
1799 |
|
alpar@100
|
1800 |
/// \brief Clear the keys from the map and inverse map.
|
alpar@100
|
1801 |
///
|
alpar@100
|
1802 |
/// Clear the keys from the map and inverse map. It is called by the
|
alpar@100
|
1803 |
/// \c AlterationNotifier.
|
alpar@100
|
1804 |
virtual void clear() {
|
alpar@100
|
1805 |
invMap.clear();
|
alpar@100
|
1806 |
Map::clear();
|
alpar@100
|
1807 |
}
|
alpar@100
|
1808 |
|
alpar@100
|
1809 |
public:
|
alpar@100
|
1810 |
|
alpar@100
|
1811 |
/// \brief The inverse map type.
|
alpar@100
|
1812 |
///
|
alpar@100
|
1813 |
/// The inverse of this map. The subscript operator of the map
|
alpar@100
|
1814 |
/// gives back always the item what was last assigned to the value.
|
alpar@100
|
1815 |
class InverseMap {
|
alpar@100
|
1816 |
public:
|
alpar@100
|
1817 |
/// \brief Constructor of the InverseMap.
|
alpar@100
|
1818 |
///
|
alpar@100
|
1819 |
/// Constructor of the InverseMap.
|
alpar@100
|
1820 |
explicit InverseMap(const InvertableMap& _inverted)
|
alpar@100
|
1821 |
: inverted(_inverted) {}
|
alpar@100
|
1822 |
|
alpar@100
|
1823 |
/// The value type of the InverseMap.
|
alpar@100
|
1824 |
typedef typename InvertableMap::Key Value;
|
alpar@100
|
1825 |
/// The key type of the InverseMap.
|
alpar@100
|
1826 |
typedef typename InvertableMap::Value Key;
|
alpar@100
|
1827 |
|
alpar@100
|
1828 |
/// \brief Subscript operator.
|
alpar@100
|
1829 |
///
|
alpar@100
|
1830 |
/// Subscript operator. It gives back always the item
|
alpar@100
|
1831 |
/// what was last assigned to the value.
|
alpar@100
|
1832 |
Value operator[](const Key& key) const {
|
alpar@100
|
1833 |
return inverted(key);
|
alpar@100
|
1834 |
}
|
alpar@100
|
1835 |
|
alpar@100
|
1836 |
private:
|
alpar@100
|
1837 |
const InvertableMap& inverted;
|
alpar@100
|
1838 |
};
|
alpar@100
|
1839 |
|
alpar@100
|
1840 |
/// \brief It gives back the just readable inverse map.
|
alpar@100
|
1841 |
///
|
alpar@100
|
1842 |
/// It gives back the just readable inverse map.
|
alpar@100
|
1843 |
InverseMap inverse() const {
|
alpar@100
|
1844 |
return InverseMap(*this);
|
alpar@100
|
1845 |
}
|
alpar@100
|
1846 |
|
alpar@100
|
1847 |
|
alpar@100
|
1848 |
|
alpar@100
|
1849 |
};
|
alpar@100
|
1850 |
|
alpar@100
|
1851 |
/// \brief Provides a mutable, continuous and unique descriptor for each
|
alpar@100
|
1852 |
/// item in the digraph.
|
alpar@100
|
1853 |
///
|
alpar@100
|
1854 |
/// The DescriptorMap class provides a unique and continuous (but mutable)
|
alpar@100
|
1855 |
/// descriptor (id) for each item of the same type (e.g. node) in the
|
alpar@100
|
1856 |
/// digraph. This id is <ul><li>\b unique: different items (nodes) get
|
alpar@100
|
1857 |
/// different ids <li>\b continuous: the range of the ids is the set of
|
alpar@100
|
1858 |
/// integers between 0 and \c n-1, where \c n is the number of the items of
|
alpar@100
|
1859 |
/// this type (e.g. nodes) (so the id of a node can change if you delete an
|
alpar@100
|
1860 |
/// other node, i.e. this id is mutable). </ul> This map can be inverted
|
alpar@100
|
1861 |
/// with its member class \c InverseMap.
|
alpar@100
|
1862 |
///
|
alpar@100
|
1863 |
/// \param _Digraph The digraph class the \c DescriptorMap belongs to.
|
alpar@100
|
1864 |
/// \param _Item The Item is the Key of the Map. It may be Node, Arc or
|
alpar@100
|
1865 |
/// Edge.
|
alpar@100
|
1866 |
template <typename _Digraph, typename _Item>
|
alpar@100
|
1867 |
class DescriptorMap : protected DefaultMap<_Digraph, _Item, int> {
|
alpar@100
|
1868 |
|
alpar@100
|
1869 |
typedef _Item Item;
|
alpar@100
|
1870 |
typedef DefaultMap<_Digraph, _Item, int> Map;
|
alpar@100
|
1871 |
|
alpar@100
|
1872 |
public:
|
alpar@100
|
1873 |
/// The digraph class of DescriptorMap.
|
alpar@100
|
1874 |
typedef _Digraph Digraph;
|
alpar@100
|
1875 |
|
alpar@100
|
1876 |
/// The key type of DescriptorMap (Node, Arc, Edge).
|
alpar@100
|
1877 |
typedef typename Map::Key Key;
|
alpar@100
|
1878 |
/// The value type of DescriptorMap.
|
alpar@100
|
1879 |
typedef typename Map::Value Value;
|
alpar@100
|
1880 |
|
alpar@100
|
1881 |
/// \brief Constructor.
|
alpar@100
|
1882 |
///
|
alpar@100
|
1883 |
/// Constructor for descriptor map.
|
alpar@100
|
1884 |
explicit DescriptorMap(const Digraph& _digraph) : Map(_digraph) {
|
alpar@100
|
1885 |
Item it;
|
alpar@100
|
1886 |
const typename Map::Notifier* nf = Map::notifier();
|
alpar@100
|
1887 |
for (nf->first(it); it != INVALID; nf->next(it)) {
|
alpar@100
|
1888 |
Map::set(it, invMap.size());
|
alpar@100
|
1889 |
invMap.push_back(it);
|
alpar@100
|
1890 |
}
|
alpar@100
|
1891 |
}
|
alpar@100
|
1892 |
|
alpar@100
|
1893 |
protected:
|
alpar@100
|
1894 |
|
alpar@100
|
1895 |
/// \brief Add a new key to the map.
|
alpar@100
|
1896 |
///
|
alpar@100
|
1897 |
/// Add a new key to the map. It is called by the
|
alpar@100
|
1898 |
/// \c AlterationNotifier.
|
alpar@100
|
1899 |
virtual void add(const Item& item) {
|
alpar@100
|
1900 |
Map::add(item);
|
alpar@100
|
1901 |
Map::set(item, invMap.size());
|
alpar@100
|
1902 |
invMap.push_back(item);
|
alpar@100
|
1903 |
}
|
alpar@100
|
1904 |
|
alpar@100
|
1905 |
/// \brief Add more new keys to the map.
|
alpar@100
|
1906 |
///
|
alpar@100
|
1907 |
/// Add more new keys to the map. It is called by the
|
alpar@100
|
1908 |
/// \c AlterationNotifier.
|
alpar@100
|
1909 |
virtual void add(const std::vector<Item>& items) {
|
alpar@100
|
1910 |
Map::add(items);
|
alpar@100
|
1911 |
for (int i = 0; i < int(items.size()); ++i) {
|
alpar@100
|
1912 |
Map::set(items[i], invMap.size());
|
alpar@100
|
1913 |
invMap.push_back(items[i]);
|
alpar@100
|
1914 |
}
|
alpar@100
|
1915 |
}
|
alpar@100
|
1916 |
|
alpar@100
|
1917 |
/// \brief Erase the key from the map.
|
alpar@100
|
1918 |
///
|
alpar@100
|
1919 |
/// Erase the key from the map. It is called by the
|
alpar@100
|
1920 |
/// \c AlterationNotifier.
|
alpar@100
|
1921 |
virtual void erase(const Item& item) {
|
alpar@100
|
1922 |
Map::set(invMap.back(), Map::operator[](item));
|
alpar@100
|
1923 |
invMap[Map::operator[](item)] = invMap.back();
|
alpar@100
|
1924 |
invMap.pop_back();
|
alpar@100
|
1925 |
Map::erase(item);
|
alpar@100
|
1926 |
}
|
alpar@100
|
1927 |
|
alpar@100
|
1928 |
/// \brief Erase more keys from the map.
|
alpar@100
|
1929 |
///
|
alpar@100
|
1930 |
/// Erase more keys from the map. It is called by the
|
alpar@100
|
1931 |
/// \c AlterationNotifier.
|
alpar@100
|
1932 |
virtual void erase(const std::vector<Item>& items) {
|
alpar@100
|
1933 |
for (int i = 0; i < int(items.size()); ++i) {
|
alpar@100
|
1934 |
Map::set(invMap.back(), Map::operator[](items[i]));
|
alpar@100
|
1935 |
invMap[Map::operator[](items[i])] = invMap.back();
|
alpar@100
|
1936 |
invMap.pop_back();
|
alpar@100
|
1937 |
}
|
alpar@100
|
1938 |
Map::erase(items);
|
alpar@100
|
1939 |
}
|
alpar@100
|
1940 |
|
alpar@100
|
1941 |
/// \brief Build the unique map.
|
alpar@100
|
1942 |
///
|
alpar@100
|
1943 |
/// Build the unique map. It is called by the
|
alpar@100
|
1944 |
/// \c AlterationNotifier.
|
alpar@100
|
1945 |
virtual void build() {
|
alpar@100
|
1946 |
Map::build();
|
alpar@100
|
1947 |
Item it;
|
alpar@100
|
1948 |
const typename Map::Notifier* nf = Map::notifier();
|
alpar@100
|
1949 |
for (nf->first(it); it != INVALID; nf->next(it)) {
|
alpar@100
|
1950 |
Map::set(it, invMap.size());
|
alpar@100
|
1951 |
invMap.push_back(it);
|
alpar@100
|
1952 |
}
|
alpar@100
|
1953 |
}
|
alpar@100
|
1954 |
|
alpar@100
|
1955 |
/// \brief Clear the keys from the map.
|
alpar@100
|
1956 |
///
|
alpar@100
|
1957 |
/// Clear the keys from the map. It is called by the
|
alpar@100
|
1958 |
/// \c AlterationNotifier.
|
alpar@100
|
1959 |
virtual void clear() {
|
alpar@100
|
1960 |
invMap.clear();
|
alpar@100
|
1961 |
Map::clear();
|
alpar@100
|
1962 |
}
|
alpar@100
|
1963 |
|
alpar@100
|
1964 |
public:
|
alpar@100
|
1965 |
|
alpar@100
|
1966 |
/// \brief Returns the maximal value plus one.
|
alpar@100
|
1967 |
///
|
alpar@100
|
1968 |
/// Returns the maximal value plus one in the map.
|
alpar@100
|
1969 |
unsigned int size() const {
|
alpar@100
|
1970 |
return invMap.size();
|
alpar@100
|
1971 |
}
|
alpar@100
|
1972 |
|
alpar@100
|
1973 |
/// \brief Swaps the position of the two items in the map.
|
alpar@100
|
1974 |
///
|
alpar@100
|
1975 |
/// Swaps the position of the two items in the map.
|
alpar@100
|
1976 |
void swap(const Item& p, const Item& q) {
|
alpar@100
|
1977 |
int pi = Map::operator[](p);
|
alpar@100
|
1978 |
int qi = Map::operator[](q);
|
alpar@100
|
1979 |
Map::set(p, qi);
|
alpar@100
|
1980 |
invMap[qi] = p;
|
alpar@100
|
1981 |
Map::set(q, pi);
|
alpar@100
|
1982 |
invMap[pi] = q;
|
alpar@100
|
1983 |
}
|
alpar@100
|
1984 |
|
alpar@100
|
1985 |
/// \brief Gives back the \e descriptor of the item.
|
alpar@100
|
1986 |
///
|
alpar@100
|
1987 |
/// Gives back the mutable and unique \e descriptor of the map.
|
alpar@100
|
1988 |
int operator[](const Item& item) const {
|
alpar@100
|
1989 |
return Map::operator[](item);
|
alpar@100
|
1990 |
}
|
alpar@100
|
1991 |
|
alpar@100
|
1992 |
/// \brief Gives back the item by its descriptor.
|
alpar@100
|
1993 |
///
|
alpar@100
|
1994 |
/// Gives back th item by its descriptor.
|
alpar@100
|
1995 |
Item operator()(int id) const {
|
alpar@100
|
1996 |
return invMap[id];
|
alpar@100
|
1997 |
}
|
alpar@100
|
1998 |
|
alpar@100
|
1999 |
private:
|
alpar@100
|
2000 |
|
alpar@100
|
2001 |
typedef std::vector<Item> Container;
|
alpar@100
|
2002 |
Container invMap;
|
alpar@100
|
2003 |
|
alpar@100
|
2004 |
public:
|
alpar@100
|
2005 |
/// \brief The inverse map type of DescriptorMap.
|
alpar@100
|
2006 |
///
|
alpar@100
|
2007 |
/// The inverse map type of DescriptorMap.
|
alpar@100
|
2008 |
class InverseMap {
|
alpar@100
|
2009 |
public:
|
alpar@100
|
2010 |
/// \brief Constructor of the InverseMap.
|
alpar@100
|
2011 |
///
|
alpar@100
|
2012 |
/// Constructor of the InverseMap.
|
alpar@100
|
2013 |
explicit InverseMap(const DescriptorMap& _inverted)
|
alpar@100
|
2014 |
: inverted(_inverted) {}
|
alpar@100
|
2015 |
|
alpar@100
|
2016 |
|
alpar@100
|
2017 |
/// The value type of the InverseMap.
|
alpar@100
|
2018 |
typedef typename DescriptorMap::Key Value;
|
alpar@100
|
2019 |
/// The key type of the InverseMap.
|
alpar@100
|
2020 |
typedef typename DescriptorMap::Value Key;
|
alpar@100
|
2021 |
|
alpar@100
|
2022 |
/// \brief Subscript operator.
|
alpar@100
|
2023 |
///
|
alpar@100
|
2024 |
/// Subscript operator. It gives back the item
|
alpar@100
|
2025 |
/// that the descriptor belongs to currently.
|
alpar@100
|
2026 |
Value operator[](const Key& key) const {
|
alpar@100
|
2027 |
return inverted(key);
|
alpar@100
|
2028 |
}
|
alpar@100
|
2029 |
|
alpar@100
|
2030 |
/// \brief Size of the map.
|
alpar@100
|
2031 |
///
|
alpar@100
|
2032 |
/// Returns the size of the map.
|
alpar@100
|
2033 |
unsigned int size() const {
|
alpar@100
|
2034 |
return inverted.size();
|
alpar@100
|
2035 |
}
|
alpar@100
|
2036 |
|
alpar@100
|
2037 |
private:
|
alpar@100
|
2038 |
const DescriptorMap& inverted;
|
alpar@100
|
2039 |
};
|
alpar@100
|
2040 |
|
alpar@100
|
2041 |
/// \brief Gives back the inverse of the map.
|
alpar@100
|
2042 |
///
|
alpar@100
|
2043 |
/// Gives back the inverse of the map.
|
alpar@100
|
2044 |
const InverseMap inverse() const {
|
alpar@100
|
2045 |
return InverseMap(*this);
|
alpar@100
|
2046 |
}
|
alpar@100
|
2047 |
};
|
alpar@100
|
2048 |
|
alpar@100
|
2049 |
/// \brief Returns the source of the given arc.
|
alpar@100
|
2050 |
///
|
alpar@100
|
2051 |
/// The SourceMap gives back the source Node of the given arc.
|
alpar@100
|
2052 |
/// \see TargetMap
|
alpar@100
|
2053 |
/// \author Balazs Dezso
|
alpar@100
|
2054 |
template <typename Digraph>
|
alpar@100
|
2055 |
class SourceMap {
|
alpar@100
|
2056 |
public:
|
alpar@100
|
2057 |
|
alpar@100
|
2058 |
typedef typename Digraph::Node Value;
|
alpar@100
|
2059 |
typedef typename Digraph::Arc Key;
|
alpar@100
|
2060 |
|
alpar@100
|
2061 |
/// \brief Constructor
|
alpar@100
|
2062 |
///
|
alpar@100
|
2063 |
/// Constructor
|
alpar@100
|
2064 |
/// \param _digraph The digraph that the map belongs to.
|
alpar@100
|
2065 |
explicit SourceMap(const Digraph& _digraph) : digraph(_digraph) {}
|
alpar@100
|
2066 |
|
alpar@100
|
2067 |
/// \brief The subscript operator.
|
alpar@100
|
2068 |
///
|
alpar@100
|
2069 |
/// The subscript operator.
|
alpar@100
|
2070 |
/// \param arc The arc
|
alpar@100
|
2071 |
/// \return The source of the arc
|
alpar@100
|
2072 |
Value operator[](const Key& arc) const {
|
alpar@100
|
2073 |
return digraph.source(arc);
|
alpar@100
|
2074 |
}
|
alpar@100
|
2075 |
|
alpar@100
|
2076 |
private:
|
alpar@100
|
2077 |
const Digraph& digraph;
|
alpar@100
|
2078 |
};
|
alpar@100
|
2079 |
|
alpar@100
|
2080 |
/// \brief Returns a \ref SourceMap class.
|
alpar@100
|
2081 |
///
|
alpar@100
|
2082 |
/// This function just returns an \ref SourceMap class.
|
alpar@100
|
2083 |
/// \relates SourceMap
|
alpar@100
|
2084 |
template <typename Digraph>
|
alpar@100
|
2085 |
inline SourceMap<Digraph> sourceMap(const Digraph& digraph) {
|
alpar@100
|
2086 |
return SourceMap<Digraph>(digraph);
|
alpar@100
|
2087 |
}
|
alpar@100
|
2088 |
|
alpar@100
|
2089 |
/// \brief Returns the target of the given arc.
|
alpar@100
|
2090 |
///
|
alpar@100
|
2091 |
/// The TargetMap gives back the target Node of the given arc.
|
alpar@100
|
2092 |
/// \see SourceMap
|
alpar@100
|
2093 |
/// \author Balazs Dezso
|
alpar@100
|
2094 |
template <typename Digraph>
|
alpar@100
|
2095 |
class TargetMap {
|
alpar@100
|
2096 |
public:
|
alpar@100
|
2097 |
|
alpar@100
|
2098 |
typedef typename Digraph::Node Value;
|
alpar@100
|
2099 |
typedef typename Digraph::Arc Key;
|
alpar@100
|
2100 |
|
alpar@100
|
2101 |
/// \brief Constructor
|
alpar@100
|
2102 |
///
|
alpar@100
|
2103 |
/// Constructor
|
alpar@100
|
2104 |
/// \param _digraph The digraph that the map belongs to.
|
alpar@100
|
2105 |
explicit TargetMap(const Digraph& _digraph) : digraph(_digraph) {}
|
alpar@100
|
2106 |
|
alpar@100
|
2107 |
/// \brief The subscript operator.
|
alpar@100
|
2108 |
///
|
alpar@100
|
2109 |
/// The subscript operator.
|
alpar@100
|
2110 |
/// \param e The arc
|
alpar@100
|
2111 |
/// \return The target of the arc
|
alpar@100
|
2112 |
Value operator[](const Key& e) const {
|
alpar@100
|
2113 |
return digraph.target(e);
|
alpar@100
|
2114 |
}
|
alpar@100
|
2115 |
|
alpar@100
|
2116 |
private:
|
alpar@100
|
2117 |
const Digraph& digraph;
|
alpar@100
|
2118 |
};
|
alpar@100
|
2119 |
|
alpar@100
|
2120 |
/// \brief Returns a \ref TargetMap class.
|
alpar@100
|
2121 |
///
|
alpar@100
|
2122 |
/// This function just returns a \ref TargetMap class.
|
alpar@100
|
2123 |
/// \relates TargetMap
|
alpar@100
|
2124 |
template <typename Digraph>
|
alpar@100
|
2125 |
inline TargetMap<Digraph> targetMap(const Digraph& digraph) {
|
alpar@100
|
2126 |
return TargetMap<Digraph>(digraph);
|
alpar@100
|
2127 |
}
|
alpar@100
|
2128 |
|
alpar@100
|
2129 |
/// \brief Returns the "forward" directed arc view of an edge.
|
alpar@100
|
2130 |
///
|
alpar@100
|
2131 |
/// Returns the "forward" directed arc view of an edge.
|
alpar@100
|
2132 |
/// \see BackwardMap
|
alpar@100
|
2133 |
/// \author Balazs Dezso
|
alpar@100
|
2134 |
template <typename Digraph>
|
alpar@100
|
2135 |
class ForwardMap {
|
alpar@100
|
2136 |
public:
|
alpar@100
|
2137 |
|
alpar@100
|
2138 |
typedef typename Digraph::Arc Value;
|
alpar@100
|
2139 |
typedef typename Digraph::Edge Key;
|
alpar@100
|
2140 |
|
alpar@100
|
2141 |
/// \brief Constructor
|
alpar@100
|
2142 |
///
|
alpar@100
|
2143 |
/// Constructor
|
alpar@100
|
2144 |
/// \param _digraph The digraph that the map belongs to.
|
alpar@100
|
2145 |
explicit ForwardMap(const Digraph& _digraph) : digraph(_digraph) {}
|
alpar@100
|
2146 |
|
alpar@100
|
2147 |
/// \brief The subscript operator.
|
alpar@100
|
2148 |
///
|
alpar@100
|
2149 |
/// The subscript operator.
|
alpar@100
|
2150 |
/// \param key An edge
|
alpar@100
|
2151 |
/// \return The "forward" directed arc view of edge
|
alpar@100
|
2152 |
Value operator[](const Key& key) const {
|
alpar@100
|
2153 |
return digraph.direct(key, true);
|
alpar@100
|
2154 |
}
|
alpar@100
|
2155 |
|
alpar@100
|
2156 |
private:
|
alpar@100
|
2157 |
const Digraph& digraph;
|
alpar@100
|
2158 |
};
|
alpar@100
|
2159 |
|
alpar@100
|
2160 |
/// \brief Returns a \ref ForwardMap class.
|
alpar@100
|
2161 |
///
|
alpar@100
|
2162 |
/// This function just returns an \ref ForwardMap class.
|
alpar@100
|
2163 |
/// \relates ForwardMap
|
alpar@100
|
2164 |
template <typename Digraph>
|
alpar@100
|
2165 |
inline ForwardMap<Digraph> forwardMap(const Digraph& digraph) {
|
alpar@100
|
2166 |
return ForwardMap<Digraph>(digraph);
|
alpar@100
|
2167 |
}
|
alpar@100
|
2168 |
|
alpar@100
|
2169 |
/// \brief Returns the "backward" directed arc view of an edge.
|
alpar@100
|
2170 |
///
|
alpar@100
|
2171 |
/// Returns the "backward" directed arc view of an edge.
|
alpar@100
|
2172 |
/// \see ForwardMap
|
alpar@100
|
2173 |
/// \author Balazs Dezso
|
alpar@100
|
2174 |
template <typename Digraph>
|
alpar@100
|
2175 |
class BackwardMap {
|
alpar@100
|
2176 |
public:
|
alpar@100
|
2177 |
|
alpar@100
|
2178 |
typedef typename Digraph::Arc Value;
|
alpar@100
|
2179 |
typedef typename Digraph::Edge Key;
|
alpar@100
|
2180 |
|
alpar@100
|
2181 |
/// \brief Constructor
|
alpar@100
|
2182 |
///
|
alpar@100
|
2183 |
/// Constructor
|
alpar@100
|
2184 |
/// \param _digraph The digraph that the map belongs to.
|
alpar@100
|
2185 |
explicit BackwardMap(const Digraph& _digraph) : digraph(_digraph) {}
|
alpar@100
|
2186 |
|
alpar@100
|
2187 |
/// \brief The subscript operator.
|
alpar@100
|
2188 |
///
|
alpar@100
|
2189 |
/// The subscript operator.
|
alpar@100
|
2190 |
/// \param key An edge
|
alpar@100
|
2191 |
/// \return The "backward" directed arc view of edge
|
alpar@100
|
2192 |
Value operator[](const Key& key) const {
|
alpar@100
|
2193 |
return digraph.direct(key, false);
|
alpar@100
|
2194 |
}
|
alpar@100
|
2195 |
|
alpar@100
|
2196 |
private:
|
alpar@100
|
2197 |
const Digraph& digraph;
|
alpar@100
|
2198 |
};
|
alpar@100
|
2199 |
|
alpar@100
|
2200 |
/// \brief Returns a \ref BackwardMap class
|
alpar@100
|
2201 |
|
alpar@100
|
2202 |
/// This function just returns a \ref BackwardMap class.
|
alpar@100
|
2203 |
/// \relates BackwardMap
|
alpar@100
|
2204 |
template <typename Digraph>
|
alpar@100
|
2205 |
inline BackwardMap<Digraph> backwardMap(const Digraph& digraph) {
|
alpar@100
|
2206 |
return BackwardMap<Digraph>(digraph);
|
alpar@100
|
2207 |
}
|
alpar@100
|
2208 |
|
alpar@100
|
2209 |
/// \brief Potential difference map
|
alpar@100
|
2210 |
///
|
alpar@100
|
2211 |
/// If there is an potential map on the nodes then we
|
alpar@100
|
2212 |
/// can get an arc map as we get the substraction of the
|
alpar@100
|
2213 |
/// values of the target and source.
|
alpar@100
|
2214 |
template <typename Digraph, typename NodeMap>
|
alpar@100
|
2215 |
class PotentialDifferenceMap {
|
alpar@100
|
2216 |
public:
|
alpar@100
|
2217 |
typedef typename Digraph::Arc Key;
|
alpar@100
|
2218 |
typedef typename NodeMap::Value Value;
|
alpar@100
|
2219 |
|
alpar@100
|
2220 |
/// \brief Constructor
|
alpar@100
|
2221 |
///
|
alpar@100
|
2222 |
/// Contructor of the map
|
alpar@100
|
2223 |
explicit PotentialDifferenceMap(const Digraph& _digraph,
|
alpar@100
|
2224 |
const NodeMap& _potential)
|
alpar@100
|
2225 |
: digraph(_digraph), potential(_potential) {}
|
alpar@100
|
2226 |
|
alpar@100
|
2227 |
/// \brief Const subscription operator
|
alpar@100
|
2228 |
///
|
alpar@100
|
2229 |
/// Const subscription operator
|
alpar@100
|
2230 |
Value operator[](const Key& arc) const {
|
alpar@100
|
2231 |
return potential[digraph.target(arc)] - potential[digraph.source(arc)];
|
alpar@100
|
2232 |
}
|
alpar@100
|
2233 |
|
alpar@100
|
2234 |
private:
|
alpar@100
|
2235 |
const Digraph& digraph;
|
alpar@100
|
2236 |
const NodeMap& potential;
|
alpar@100
|
2237 |
};
|
alpar@100
|
2238 |
|
alpar@100
|
2239 |
/// \brief Returns a PotentialDifferenceMap.
|
alpar@100
|
2240 |
///
|
alpar@100
|
2241 |
/// This function just returns a PotentialDifferenceMap.
|
alpar@100
|
2242 |
/// \relates PotentialDifferenceMap
|
alpar@100
|
2243 |
template <typename Digraph, typename NodeMap>
|
alpar@100
|
2244 |
PotentialDifferenceMap<Digraph, NodeMap>
|
alpar@100
|
2245 |
potentialDifferenceMap(const Digraph& digraph, const NodeMap& potential) {
|
alpar@100
|
2246 |
return PotentialDifferenceMap<Digraph, NodeMap>(digraph, potential);
|
alpar@100
|
2247 |
}
|
alpar@100
|
2248 |
|
alpar@100
|
2249 |
/// \brief Map of the node in-degrees.
|
alpar@100
|
2250 |
///
|
alpar@100
|
2251 |
/// This map returns the in-degree of a node. Once it is constructed,
|
alpar@100
|
2252 |
/// the degrees are stored in a standard NodeMap, so each query is done
|
alpar@100
|
2253 |
/// in constant time. On the other hand, the values are updated automatically
|
alpar@100
|
2254 |
/// whenever the digraph changes.
|
alpar@100
|
2255 |
///
|
alpar@100
|
2256 |
/// \warning Besides addNode() and addArc(), a digraph structure may provide
|
alpar@100
|
2257 |
/// alternative ways to modify the digraph. The correct behavior of InDegMap
|
alpar@100
|
2258 |
/// is not guarantied if these additional features are used. For example
|
alpar@100
|
2259 |
/// the functions \ref ListDigraph::changeSource() "changeSource()",
|
alpar@100
|
2260 |
/// \ref ListDigraph::changeTarget() "changeTarget()" and
|
alpar@100
|
2261 |
/// \ref ListDigraph::reverseArc() "reverseArc()"
|
alpar@100
|
2262 |
/// of \ref ListDigraph will \e not update the degree values correctly.
|
alpar@100
|
2263 |
///
|
alpar@100
|
2264 |
/// \sa OutDegMap
|
alpar@100
|
2265 |
|
alpar@100
|
2266 |
template <typename _Digraph>
|
alpar@100
|
2267 |
class InDegMap
|
alpar@100
|
2268 |
: protected ItemSetTraits<_Digraph, typename _Digraph::Arc>
|
alpar@100
|
2269 |
::ItemNotifier::ObserverBase {
|
alpar@100
|
2270 |
|
alpar@100
|
2271 |
public:
|
alpar@100
|
2272 |
|
alpar@100
|
2273 |
typedef _Digraph Digraph;
|
alpar@100
|
2274 |
typedef int Value;
|
alpar@100
|
2275 |
typedef typename Digraph::Node Key;
|
alpar@100
|
2276 |
|
alpar@100
|
2277 |
typedef typename ItemSetTraits<_Digraph, typename _Digraph::Arc>
|
alpar@100
|
2278 |
::ItemNotifier::ObserverBase Parent;
|
alpar@100
|
2279 |
|
alpar@100
|
2280 |
private:
|
alpar@100
|
2281 |
|
alpar@100
|
2282 |
class AutoNodeMap : public DefaultMap<_Digraph, Key, int> {
|
alpar@100
|
2283 |
public:
|
alpar@100
|
2284 |
|
alpar@100
|
2285 |
typedef DefaultMap<_Digraph, Key, int> Parent;
|
alpar@100
|
2286 |
typedef typename Parent::Digraph Digraph;
|
alpar@100
|
2287 |
|
alpar@100
|
2288 |
AutoNodeMap(const Digraph& digraph) : Parent(digraph, 0) {}
|
alpar@100
|
2289 |
|
alpar@100
|
2290 |
virtual void add(const Key& key) {
|
alpar@100
|
2291 |
Parent::add(key);
|
alpar@100
|
2292 |
Parent::set(key, 0);
|
alpar@100
|
2293 |
}
|
alpar@100
|
2294 |
|
alpar@100
|
2295 |
virtual void add(const std::vector<Key>& keys) {
|
alpar@100
|
2296 |
Parent::add(keys);
|
alpar@100
|
2297 |
for (int i = 0; i < int(keys.size()); ++i) {
|
alpar@100
|
2298 |
Parent::set(keys[i], 0);
|
alpar@100
|
2299 |
}
|
alpar@100
|
2300 |
}
|
alpar@100
|
2301 |
|
alpar@100
|
2302 |
virtual void build() {
|
alpar@100
|
2303 |
Parent::build();
|
alpar@100
|
2304 |
Key it;
|
alpar@100
|
2305 |
typename Parent::Notifier* nf = Parent::notifier();
|
alpar@100
|
2306 |
for (nf->first(it); it != INVALID; nf->next(it)) {
|
alpar@100
|
2307 |
Parent::set(it, 0);
|
alpar@100
|
2308 |
}
|
alpar@100
|
2309 |
}
|
alpar@100
|
2310 |
};
|
alpar@100
|
2311 |
|
alpar@100
|
2312 |
public:
|
alpar@100
|
2313 |
|
alpar@100
|
2314 |
/// \brief Constructor.
|
alpar@100
|
2315 |
///
|
alpar@100
|
2316 |
/// Constructor for creating in-degree map.
|
alpar@100
|
2317 |
explicit InDegMap(const Digraph& _digraph) : digraph(_digraph), deg(_digraph) {
|
alpar@100
|
2318 |
Parent::attach(digraph.notifier(typename _Digraph::Arc()));
|
alpar@100
|
2319 |
|
alpar@100
|
2320 |
for(typename _Digraph::NodeIt it(digraph); it != INVALID; ++it) {
|
alpar@100
|
2321 |
deg[it] = countInArcs(digraph, it);
|
alpar@100
|
2322 |
}
|
alpar@100
|
2323 |
}
|
alpar@100
|
2324 |
|
alpar@100
|
2325 |
/// Gives back the in-degree of a Node.
|
alpar@100
|
2326 |
int operator[](const Key& key) const {
|
alpar@100
|
2327 |
return deg[key];
|
alpar@100
|
2328 |
}
|
alpar@100
|
2329 |
|
alpar@100
|
2330 |
protected:
|
alpar@100
|
2331 |
|
alpar@100
|
2332 |
typedef typename Digraph::Arc Arc;
|
alpar@100
|
2333 |
|
alpar@100
|
2334 |
virtual void add(const Arc& arc) {
|
alpar@100
|
2335 |
++deg[digraph.target(arc)];
|
alpar@100
|
2336 |
}
|
alpar@100
|
2337 |
|
alpar@100
|
2338 |
virtual void add(const std::vector<Arc>& arcs) {
|
alpar@100
|
2339 |
for (int i = 0; i < int(arcs.size()); ++i) {
|
alpar@100
|
2340 |
++deg[digraph.target(arcs[i])];
|
alpar@100
|
2341 |
}
|
alpar@100
|
2342 |
}
|
alpar@100
|
2343 |
|
alpar@100
|
2344 |
virtual void erase(const Arc& arc) {
|
alpar@100
|
2345 |
--deg[digraph.target(arc)];
|
alpar@100
|
2346 |
}
|
alpar@100
|
2347 |
|
alpar@100
|
2348 |
virtual void erase(const std::vector<Arc>& arcs) {
|
alpar@100
|
2349 |
for (int i = 0; i < int(arcs.size()); ++i) {
|
alpar@100
|
2350 |
--deg[digraph.target(arcs[i])];
|
alpar@100
|
2351 |
}
|
alpar@100
|
2352 |
}
|
alpar@100
|
2353 |
|
alpar@100
|
2354 |
virtual void build() {
|
alpar@100
|
2355 |
for(typename _Digraph::NodeIt it(digraph); it != INVALID; ++it) {
|
alpar@100
|
2356 |
deg[it] = countInArcs(digraph, it);
|
alpar@100
|
2357 |
}
|
alpar@100
|
2358 |
}
|
alpar@100
|
2359 |
|
alpar@100
|
2360 |
virtual void clear() {
|
alpar@100
|
2361 |
for(typename _Digraph::NodeIt it(digraph); it != INVALID; ++it) {
|
alpar@100
|
2362 |
deg[it] = 0;
|
alpar@100
|
2363 |
}
|
alpar@100
|
2364 |
}
|
alpar@100
|
2365 |
private:
|
alpar@100
|
2366 |
|
alpar@100
|
2367 |
const _Digraph& digraph;
|
alpar@100
|
2368 |
AutoNodeMap deg;
|
alpar@100
|
2369 |
};
|
alpar@100
|
2370 |
|
alpar@100
|
2371 |
/// \brief Map of the node out-degrees.
|
alpar@100
|
2372 |
///
|
alpar@100
|
2373 |
/// This map returns the out-degree of a node. Once it is constructed,
|
alpar@100
|
2374 |
/// the degrees are stored in a standard NodeMap, so each query is done
|
alpar@100
|
2375 |
/// in constant time. On the other hand, the values are updated automatically
|
alpar@100
|
2376 |
/// whenever the digraph changes.
|
alpar@100
|
2377 |
///
|
alpar@100
|
2378 |
/// \warning Besides addNode() and addArc(), a digraph structure may provide
|
alpar@100
|
2379 |
/// alternative ways to modify the digraph. The correct behavior of OutDegMap
|
alpar@100
|
2380 |
/// is not guarantied if these additional features are used. For example
|
alpar@100
|
2381 |
/// the functions \ref ListDigraph::changeSource() "changeSource()",
|
alpar@100
|
2382 |
/// \ref ListDigraph::changeTarget() "changeTarget()" and
|
alpar@100
|
2383 |
/// \ref ListDigraph::reverseArc() "reverseArc()"
|
alpar@100
|
2384 |
/// of \ref ListDigraph will \e not update the degree values correctly.
|
alpar@100
|
2385 |
///
|
alpar@100
|
2386 |
/// \sa InDegMap
|
alpar@100
|
2387 |
|
alpar@100
|
2388 |
template <typename _Digraph>
|
alpar@100
|
2389 |
class OutDegMap
|
alpar@100
|
2390 |
: protected ItemSetTraits<_Digraph, typename _Digraph::Arc>
|
alpar@100
|
2391 |
::ItemNotifier::ObserverBase {
|
alpar@100
|
2392 |
|
alpar@100
|
2393 |
public:
|
alpar@100
|
2394 |
|
alpar@100
|
2395 |
typedef typename ItemSetTraits<_Digraph, typename _Digraph::Arc>
|
alpar@100
|
2396 |
::ItemNotifier::ObserverBase Parent;
|
alpar@100
|
2397 |
|
alpar@100
|
2398 |
typedef _Digraph Digraph;
|
alpar@100
|
2399 |
typedef int Value;
|
alpar@100
|
2400 |
typedef typename Digraph::Node Key;
|
alpar@100
|
2401 |
|
alpar@100
|
2402 |
private:
|
alpar@100
|
2403 |
|
alpar@100
|
2404 |
class AutoNodeMap : public DefaultMap<_Digraph, Key, int> {
|
alpar@100
|
2405 |
public:
|
alpar@100
|
2406 |
|
alpar@100
|
2407 |
typedef DefaultMap<_Digraph, Key, int> Parent;
|
alpar@100
|
2408 |
typedef typename Parent::Digraph Digraph;
|
alpar@100
|
2409 |
|
alpar@100
|
2410 |
AutoNodeMap(const Digraph& digraph) : Parent(digraph, 0) {}
|
alpar@100
|
2411 |
|
alpar@100
|
2412 |
virtual void add(const Key& key) {
|
alpar@100
|
2413 |
Parent::add(key);
|
alpar@100
|
2414 |
Parent::set(key, 0);
|
alpar@100
|
2415 |
}
|
alpar@100
|
2416 |
virtual void add(const std::vector<Key>& keys) {
|
alpar@100
|
2417 |
Parent::add(keys);
|
alpar@100
|
2418 |
for (int i = 0; i < int(keys.size()); ++i) {
|
alpar@100
|
2419 |
Parent::set(keys[i], 0);
|
alpar@100
|
2420 |
}
|
alpar@100
|
2421 |
}
|
alpar@100
|
2422 |
virtual void build() {
|
alpar@100
|
2423 |
Parent::build();
|
alpar@100
|
2424 |
Key it;
|
alpar@100
|
2425 |
typename Parent::Notifier* nf = Parent::notifier();
|
alpar@100
|
2426 |
for (nf->first(it); it != INVALID; nf->next(it)) {
|
alpar@100
|
2427 |
Parent::set(it, 0);
|
alpar@100
|
2428 |
}
|
alpar@100
|
2429 |
}
|
alpar@100
|
2430 |
};
|
alpar@100
|
2431 |
|
alpar@100
|
2432 |
public:
|
alpar@100
|
2433 |
|
alpar@100
|
2434 |
/// \brief Constructor.
|
alpar@100
|
2435 |
///
|
alpar@100
|
2436 |
/// Constructor for creating out-degree map.
|
alpar@100
|
2437 |
explicit OutDegMap(const Digraph& _digraph) : digraph(_digraph), deg(_digraph) {
|
alpar@100
|
2438 |
Parent::attach(digraph.notifier(typename _Digraph::Arc()));
|
alpar@100
|
2439 |
|
alpar@100
|
2440 |
for(typename _Digraph::NodeIt it(digraph); it != INVALID; ++it) {
|
alpar@100
|
2441 |
deg[it] = countOutArcs(digraph, it);
|
alpar@100
|
2442 |
}
|
alpar@100
|
2443 |
}
|
alpar@100
|
2444 |
|
alpar@100
|
2445 |
/// Gives back the out-degree of a Node.
|
alpar@100
|
2446 |
int operator[](const Key& key) const {
|
alpar@100
|
2447 |
return deg[key];
|
alpar@100
|
2448 |
}
|
alpar@100
|
2449 |
|
alpar@100
|
2450 |
protected:
|
alpar@100
|
2451 |
|
alpar@100
|
2452 |
typedef typename Digraph::Arc Arc;
|
alpar@100
|
2453 |
|
alpar@100
|
2454 |
virtual void add(const Arc& arc) {
|
alpar@100
|
2455 |
++deg[digraph.source(arc)];
|
alpar@100
|
2456 |
}
|
alpar@100
|
2457 |
|
alpar@100
|
2458 |
virtual void add(const std::vector<Arc>& arcs) {
|
alpar@100
|
2459 |
for (int i = 0; i < int(arcs.size()); ++i) {
|
alpar@100
|
2460 |
++deg[digraph.source(arcs[i])];
|
alpar@100
|
2461 |
}
|
alpar@100
|
2462 |
}
|
alpar@100
|
2463 |
|
alpar@100
|
2464 |
virtual void erase(const Arc& arc) {
|
alpar@100
|
2465 |
--deg[digraph.source(arc)];
|
alpar@100
|
2466 |
}
|
alpar@100
|
2467 |
|
alpar@100
|
2468 |
virtual void erase(const std::vector<Arc>& arcs) {
|
alpar@100
|
2469 |
for (int i = 0; i < int(arcs.size()); ++i) {
|
alpar@100
|
2470 |
--deg[digraph.source(arcs[i])];
|
alpar@100
|
2471 |
}
|
alpar@100
|
2472 |
}
|
alpar@100
|
2473 |
|
alpar@100
|
2474 |
virtual void build() {
|
alpar@100
|
2475 |
for(typename _Digraph::NodeIt it(digraph); it != INVALID; ++it) {
|
alpar@100
|
2476 |
deg[it] = countOutArcs(digraph, it);
|
alpar@100
|
2477 |
}
|
alpar@100
|
2478 |
}
|
alpar@100
|
2479 |
|
alpar@100
|
2480 |
virtual void clear() {
|
alpar@100
|
2481 |
for(typename _Digraph::NodeIt it(digraph); it != INVALID; ++it) {
|
alpar@100
|
2482 |
deg[it] = 0;
|
alpar@100
|
2483 |
}
|
alpar@100
|
2484 |
}
|
alpar@100
|
2485 |
private:
|
alpar@100
|
2486 |
|
alpar@100
|
2487 |
const _Digraph& digraph;
|
alpar@100
|
2488 |
AutoNodeMap deg;
|
alpar@100
|
2489 |
};
|
alpar@100
|
2490 |
|
alpar@100
|
2491 |
|
alpar@100
|
2492 |
///Dynamic arc look up between given endpoints.
|
alpar@100
|
2493 |
|
alpar@100
|
2494 |
///\ingroup gutils
|
alpar@100
|
2495 |
///Using this class, you can find an arc in a digraph from a given
|
alpar@100
|
2496 |
///source to a given target in amortized time <em>O(log d)</em>,
|
alpar@100
|
2497 |
///where <em>d</em> is the out-degree of the source node.
|
alpar@100
|
2498 |
///
|
alpar@100
|
2499 |
///It is possible to find \e all parallel arcs between two nodes with
|
alpar@100
|
2500 |
///the \c findFirst() and \c findNext() members.
|
alpar@100
|
2501 |
///
|
alpar@100
|
2502 |
///See the \ref ArcLookUp and \ref AllArcLookUp classes if your
|
alpar@100
|
2503 |
///digraph do not changed so frequently.
|
alpar@100
|
2504 |
///
|
alpar@100
|
2505 |
///This class uses a self-adjusting binary search tree, Sleator's
|
alpar@100
|
2506 |
///and Tarjan's Splay tree for guarantee the logarithmic amortized
|
alpar@100
|
2507 |
///time bound for arc lookups. This class also guarantees the
|
alpar@100
|
2508 |
///optimal time bound in a constant factor for any distribution of
|
alpar@100
|
2509 |
///queries.
|
alpar@100
|
2510 |
///
|
alpar@100
|
2511 |
///\param G The type of the underlying digraph.
|
alpar@100
|
2512 |
///
|
alpar@100
|
2513 |
///\sa ArcLookUp
|
alpar@100
|
2514 |
///\sa AllArcLookUp
|
alpar@100
|
2515 |
template<class G>
|
alpar@100
|
2516 |
class DynArcLookUp
|
alpar@100
|
2517 |
: protected ItemSetTraits<G, typename G::Arc>::ItemNotifier::ObserverBase
|
alpar@100
|
2518 |
{
|
alpar@100
|
2519 |
public:
|
alpar@100
|
2520 |
typedef typename ItemSetTraits<G, typename G::Arc>
|
alpar@100
|
2521 |
::ItemNotifier::ObserverBase Parent;
|
alpar@100
|
2522 |
|
alpar@100
|
2523 |
GRAPH_TYPEDEFS(typename G);
|
alpar@100
|
2524 |
typedef G Digraph;
|
alpar@100
|
2525 |
|
alpar@100
|
2526 |
protected:
|
alpar@100
|
2527 |
|
alpar@100
|
2528 |
class AutoNodeMap : public DefaultMap<G, Node, Arc> {
|
alpar@100
|
2529 |
public:
|
alpar@100
|
2530 |
|
alpar@100
|
2531 |
typedef DefaultMap<G, Node, Arc> Parent;
|
alpar@100
|
2532 |
|
alpar@100
|
2533 |
AutoNodeMap(const G& digraph) : Parent(digraph, INVALID) {}
|
alpar@100
|
2534 |
|
alpar@100
|
2535 |
virtual void add(const Node& node) {
|
alpar@100
|
2536 |
Parent::add(node);
|
alpar@100
|
2537 |
Parent::set(node, INVALID);
|
alpar@100
|
2538 |
}
|
alpar@100
|
2539 |
|
alpar@100
|
2540 |
virtual void add(const std::vector<Node>& nodes) {
|
alpar@100
|
2541 |
Parent::add(nodes);
|
alpar@100
|
2542 |
for (int i = 0; i < int(nodes.size()); ++i) {
|
alpar@100
|
2543 |
Parent::set(nodes[i], INVALID);
|
alpar@100
|
2544 |
}
|
alpar@100
|
2545 |
}
|
alpar@100
|
2546 |
|
alpar@100
|
2547 |
virtual void build() {
|
alpar@100
|
2548 |
Parent::build();
|
alpar@100
|
2549 |
Node it;
|
alpar@100
|
2550 |
typename Parent::Notifier* nf = Parent::notifier();
|
alpar@100
|
2551 |
for (nf->first(it); it != INVALID; nf->next(it)) {
|
alpar@100
|
2552 |
Parent::set(it, INVALID);
|
alpar@100
|
2553 |
}
|
alpar@100
|
2554 |
}
|
alpar@100
|
2555 |
};
|
alpar@100
|
2556 |
|
alpar@100
|
2557 |
const Digraph &_g;
|
alpar@100
|
2558 |
AutoNodeMap _head;
|
alpar@100
|
2559 |
typename Digraph::template ArcMap<Arc> _parent;
|
alpar@100
|
2560 |
typename Digraph::template ArcMap<Arc> _left;
|
alpar@100
|
2561 |
typename Digraph::template ArcMap<Arc> _right;
|
alpar@100
|
2562 |
|
alpar@100
|
2563 |
class ArcLess {
|
alpar@100
|
2564 |
const Digraph &g;
|
alpar@100
|
2565 |
public:
|
alpar@100
|
2566 |
ArcLess(const Digraph &_g) : g(_g) {}
|
alpar@100
|
2567 |
bool operator()(Arc a,Arc b) const
|
alpar@100
|
2568 |
{
|
alpar@100
|
2569 |
return g.target(a)<g.target(b);
|
alpar@100
|
2570 |
}
|
alpar@100
|
2571 |
};
|
alpar@100
|
2572 |
|
alpar@100
|
2573 |
public:
|
alpar@100
|
2574 |
|
alpar@100
|
2575 |
///Constructor
|
alpar@100
|
2576 |
|
alpar@100
|
2577 |
///Constructor.
|
alpar@100
|
2578 |
///
|
alpar@100
|
2579 |
///It builds up the search database.
|
alpar@100
|
2580 |
DynArcLookUp(const Digraph &g)
|
alpar@100
|
2581 |
: _g(g),_head(g),_parent(g),_left(g),_right(g)
|
alpar@100
|
2582 |
{
|
alpar@100
|
2583 |
Parent::attach(_g.notifier(typename Digraph::Arc()));
|
alpar@100
|
2584 |
refresh();
|
alpar@100
|
2585 |
}
|
alpar@100
|
2586 |
|
alpar@100
|
2587 |
protected:
|
alpar@100
|
2588 |
|
alpar@100
|
2589 |
virtual void add(const Arc& arc) {
|
alpar@100
|
2590 |
insert(arc);
|
alpar@100
|
2591 |
}
|
alpar@100
|
2592 |
|
alpar@100
|
2593 |
virtual void add(const std::vector<Arc>& arcs) {
|
alpar@100
|
2594 |
for (int i = 0; i < int(arcs.size()); ++i) {
|
alpar@100
|
2595 |
insert(arcs[i]);
|
alpar@100
|
2596 |
}
|
alpar@100
|
2597 |
}
|
alpar@100
|
2598 |
|
alpar@100
|
2599 |
virtual void erase(const Arc& arc) {
|
alpar@100
|
2600 |
remove(arc);
|
alpar@100
|
2601 |
}
|
alpar@100
|
2602 |
|
alpar@100
|
2603 |
virtual void erase(const std::vector<Arc>& arcs) {
|
alpar@100
|
2604 |
for (int i = 0; i < int(arcs.size()); ++i) {
|
alpar@100
|
2605 |
remove(arcs[i]);
|
alpar@100
|
2606 |
}
|
alpar@100
|
2607 |
}
|
alpar@100
|
2608 |
|
alpar@100
|
2609 |
virtual void build() {
|
alpar@100
|
2610 |
refresh();
|
alpar@100
|
2611 |
}
|
alpar@100
|
2612 |
|
alpar@100
|
2613 |
virtual void clear() {
|
alpar@100
|
2614 |
for(NodeIt n(_g);n!=INVALID;++n) {
|
alpar@100
|
2615 |
_head.set(n, INVALID);
|
alpar@100
|
2616 |
}
|
alpar@100
|
2617 |
}
|
alpar@100
|
2618 |
|
alpar@100
|
2619 |
void insert(Arc arc) {
|
alpar@100
|
2620 |
Node s = _g.source(arc);
|
alpar@100
|
2621 |
Node t = _g.target(arc);
|
alpar@100
|
2622 |
_left.set(arc, INVALID);
|
alpar@100
|
2623 |
_right.set(arc, INVALID);
|
alpar@100
|
2624 |
|
alpar@100
|
2625 |
Arc e = _head[s];
|
alpar@100
|
2626 |
if (e == INVALID) {
|
alpar@100
|
2627 |
_head.set(s, arc);
|
alpar@100
|
2628 |
_parent.set(arc, INVALID);
|
alpar@100
|
2629 |
return;
|
alpar@100
|
2630 |
}
|
alpar@100
|
2631 |
while (true) {
|
alpar@100
|
2632 |
if (t < _g.target(e)) {
|
alpar@100
|
2633 |
if (_left[e] == INVALID) {
|
alpar@100
|
2634 |
_left.set(e, arc);
|
alpar@100
|
2635 |
_parent.set(arc, e);
|
alpar@100
|
2636 |
splay(arc);
|
alpar@100
|
2637 |
return;
|
alpar@100
|
2638 |
} else {
|
alpar@100
|
2639 |
e = _left[e];
|
alpar@100
|
2640 |
}
|
alpar@100
|
2641 |
} else {
|
alpar@100
|
2642 |
if (_right[e] == INVALID) {
|
alpar@100
|
2643 |
_right.set(e, arc);
|
alpar@100
|
2644 |
_parent.set(arc, e);
|
alpar@100
|
2645 |
splay(arc);
|
alpar@100
|
2646 |
return;
|
alpar@100
|
2647 |
} else {
|
alpar@100
|
2648 |
e = _right[e];
|
alpar@100
|
2649 |
}
|
alpar@100
|
2650 |
}
|
alpar@100
|
2651 |
}
|
alpar@100
|
2652 |
}
|
alpar@100
|
2653 |
|
alpar@100
|
2654 |
void remove(Arc arc) {
|
alpar@100
|
2655 |
if (_left[arc] == INVALID) {
|
alpar@100
|
2656 |
if (_right[arc] != INVALID) {
|
alpar@100
|
2657 |
_parent.set(_right[arc], _parent[arc]);
|
alpar@100
|
2658 |
}
|
alpar@100
|
2659 |
if (_parent[arc] != INVALID) {
|
alpar@100
|
2660 |
if (_left[_parent[arc]] == arc) {
|
alpar@100
|
2661 |
_left.set(_parent[arc], _right[arc]);
|
alpar@100
|
2662 |
} else {
|
alpar@100
|
2663 |
_right.set(_parent[arc], _right[arc]);
|
alpar@100
|
2664 |
}
|
alpar@100
|
2665 |
} else {
|
alpar@100
|
2666 |
_head.set(_g.source(arc), _right[arc]);
|
alpar@100
|
2667 |
}
|
alpar@100
|
2668 |
} else if (_right[arc] == INVALID) {
|
alpar@100
|
2669 |
_parent.set(_left[arc], _parent[arc]);
|
alpar@100
|
2670 |
if (_parent[arc] != INVALID) {
|
alpar@100
|
2671 |
if (_left[_parent[arc]] == arc) {
|
alpar@100
|
2672 |
_left.set(_parent[arc], _left[arc]);
|
alpar@100
|
2673 |
} else {
|
alpar@100
|
2674 |
_right.set(_parent[arc], _left[arc]);
|
alpar@100
|
2675 |
}
|
alpar@100
|
2676 |
} else {
|
alpar@100
|
2677 |
_head.set(_g.source(arc), _left[arc]);
|
alpar@100
|
2678 |
}
|
alpar@100
|
2679 |
} else {
|
alpar@100
|
2680 |
Arc e = _left[arc];
|
alpar@100
|
2681 |
if (_right[e] != INVALID) {
|
alpar@100
|
2682 |
e = _right[e];
|
alpar@100
|
2683 |
while (_right[e] != INVALID) {
|
alpar@100
|
2684 |
e = _right[e];
|
alpar@100
|
2685 |
}
|
alpar@100
|
2686 |
Arc s = _parent[e];
|
alpar@100
|
2687 |
_right.set(_parent[e], _left[e]);
|
alpar@100
|
2688 |
if (_left[e] != INVALID) {
|
alpar@100
|
2689 |
_parent.set(_left[e], _parent[e]);
|
alpar@100
|
2690 |
}
|
alpar@100
|
2691 |
|
alpar@100
|
2692 |
_left.set(e, _left[arc]);
|
alpar@100
|
2693 |
_parent.set(_left[arc], e);
|
alpar@100
|
2694 |
_right.set(e, _right[arc]);
|
alpar@100
|
2695 |
_parent.set(_right[arc], e);
|
alpar@100
|
2696 |
|
alpar@100
|
2697 |
_parent.set(e, _parent[arc]);
|
alpar@100
|
2698 |
if (_parent[arc] != INVALID) {
|
alpar@100
|
2699 |
if (_left[_parent[arc]] == arc) {
|
alpar@100
|
2700 |
_left.set(_parent[arc], e);
|
alpar@100
|
2701 |
} else {
|
alpar@100
|
2702 |
_right.set(_parent[arc], e);
|
alpar@100
|
2703 |
}
|
alpar@100
|
2704 |
}
|
alpar@100
|
2705 |
splay(s);
|
alpar@100
|
2706 |
} else {
|
alpar@100
|
2707 |
_right.set(e, _right[arc]);
|
alpar@100
|
2708 |
_parent.set(_right[arc], e);
|
alpar@100
|
2709 |
|
alpar@100
|
2710 |
if (_parent[arc] != INVALID) {
|
alpar@100
|
2711 |
if (_left[_parent[arc]] == arc) {
|
alpar@100
|
2712 |
_left.set(_parent[arc], e);
|
alpar@100
|
2713 |
} else {
|
alpar@100
|
2714 |
_right.set(_parent[arc], e);
|
alpar@100
|
2715 |
}
|
alpar@100
|
2716 |
} else {
|
alpar@100
|
2717 |
_head.set(_g.source(arc), e);
|
alpar@100
|
2718 |
}
|
alpar@100
|
2719 |
}
|
alpar@100
|
2720 |
}
|
alpar@100
|
2721 |
}
|
alpar@100
|
2722 |
|
alpar@100
|
2723 |
Arc refreshRec(std::vector<Arc> &v,int a,int b)
|
alpar@100
|
2724 |
{
|
alpar@100
|
2725 |
int m=(a+b)/2;
|
alpar@100
|
2726 |
Arc me=v[m];
|
alpar@100
|
2727 |
if (a < m) {
|
alpar@100
|
2728 |
Arc left = refreshRec(v,a,m-1);
|
alpar@100
|
2729 |
_left.set(me, left);
|
alpar@100
|
2730 |
_parent.set(left, me);
|
alpar@100
|
2731 |
} else {
|
alpar@100
|
2732 |
_left.set(me, INVALID);
|
alpar@100
|
2733 |
}
|
alpar@100
|
2734 |
if (m < b) {
|
alpar@100
|
2735 |
Arc right = refreshRec(v,m+1,b);
|
alpar@100
|
2736 |
_right.set(me, right);
|
alpar@100
|
2737 |
_parent.set(right, me);
|
alpar@100
|
2738 |
} else {
|
alpar@100
|
2739 |
_right.set(me, INVALID);
|
alpar@100
|
2740 |
}
|
alpar@100
|
2741 |
return me;
|
alpar@100
|
2742 |
}
|
alpar@100
|
2743 |
|
alpar@100
|
2744 |
void refresh() {
|
alpar@100
|
2745 |
for(NodeIt n(_g);n!=INVALID;++n) {
|
alpar@100
|
2746 |
std::vector<Arc> v;
|
alpar@100
|
2747 |
for(OutArcIt e(_g,n);e!=INVALID;++e) v.push_back(e);
|
alpar@100
|
2748 |
if(v.size()) {
|
alpar@100
|
2749 |
std::sort(v.begin(),v.end(),ArcLess(_g));
|
alpar@100
|
2750 |
Arc head = refreshRec(v,0,v.size()-1);
|
alpar@100
|
2751 |
_head.set(n, head);
|
alpar@100
|
2752 |
_parent.set(head, INVALID);
|
alpar@100
|
2753 |
}
|
alpar@100
|
2754 |
else _head.set(n, INVALID);
|
alpar@100
|
2755 |
}
|
alpar@100
|
2756 |
}
|
alpar@100
|
2757 |
|
alpar@100
|
2758 |
void zig(Arc v) {
|
alpar@100
|
2759 |
Arc w = _parent[v];
|
alpar@100
|
2760 |
_parent.set(v, _parent[w]);
|
alpar@100
|
2761 |
_parent.set(w, v);
|
alpar@100
|
2762 |
_left.set(w, _right[v]);
|
alpar@100
|
2763 |
_right.set(v, w);
|
alpar@100
|
2764 |
if (_parent[v] != INVALID) {
|
alpar@100
|
2765 |
if (_right[_parent[v]] == w) {
|
alpar@100
|
2766 |
_right.set(_parent[v], v);
|
alpar@100
|
2767 |
} else {
|
alpar@100
|
2768 |
_left.set(_parent[v], v);
|
alpar@100
|
2769 |
}
|
alpar@100
|
2770 |
}
|
alpar@100
|
2771 |
if (_left[w] != INVALID){
|
alpar@100
|
2772 |
_parent.set(_left[w], w);
|
alpar@100
|
2773 |
}
|
alpar@100
|
2774 |
}
|
alpar@100
|
2775 |
|
alpar@100
|
2776 |
void zag(Arc v) {
|
alpar@100
|
2777 |
Arc w = _parent[v];
|
alpar@100
|
2778 |
_parent.set(v, _parent[w]);
|
alpar@100
|
2779 |
_parent.set(w, v);
|
alpar@100
|
2780 |
_right.set(w, _left[v]);
|
alpar@100
|
2781 |
_left.set(v, w);
|
alpar@100
|
2782 |
if (_parent[v] != INVALID){
|
alpar@100
|
2783 |
if (_left[_parent[v]] == w) {
|
alpar@100
|
2784 |
_left.set(_parent[v], v);
|
alpar@100
|
2785 |
} else {
|
alpar@100
|
2786 |
_right.set(_parent[v], v);
|
alpar@100
|
2787 |
}
|
alpar@100
|
2788 |
}
|
alpar@100
|
2789 |
if (_right[w] != INVALID){
|
alpar@100
|
2790 |
_parent.set(_right[w], w);
|
alpar@100
|
2791 |
}
|
alpar@100
|
2792 |
}
|
alpar@100
|
2793 |
|
alpar@100
|
2794 |
void splay(Arc v) {
|
alpar@100
|
2795 |
while (_parent[v] != INVALID) {
|
alpar@100
|
2796 |
if (v == _left[_parent[v]]) {
|
alpar@100
|
2797 |
if (_parent[_parent[v]] == INVALID) {
|
alpar@100
|
2798 |
zig(v);
|
alpar@100
|
2799 |
} else {
|
alpar@100
|
2800 |
if (_parent[v] == _left[_parent[_parent[v]]]) {
|
alpar@100
|
2801 |
zig(_parent[v]);
|
alpar@100
|
2802 |
zig(v);
|
alpar@100
|
2803 |
} else {
|
alpar@100
|
2804 |
zig(v);
|
alpar@100
|
2805 |
zag(v);
|
alpar@100
|
2806 |
}
|
alpar@100
|
2807 |
}
|
alpar@100
|
2808 |
} else {
|
alpar@100
|
2809 |
if (_parent[_parent[v]] == INVALID) {
|
alpar@100
|
2810 |
zag(v);
|
alpar@100
|
2811 |
} else {
|
alpar@100
|
2812 |
if (_parent[v] == _left[_parent[_parent[v]]]) {
|
alpar@100
|
2813 |
zag(v);
|
alpar@100
|
2814 |
zig(v);
|
alpar@100
|
2815 |
} else {
|
alpar@100
|
2816 |
zag(_parent[v]);
|
alpar@100
|
2817 |
zag(v);
|
alpar@100
|
2818 |
}
|
alpar@100
|
2819 |
}
|
alpar@100
|
2820 |
}
|
alpar@100
|
2821 |
}
|
alpar@100
|
2822 |
_head[_g.source(v)] = v;
|
alpar@100
|
2823 |
}
|
alpar@100
|
2824 |
|
alpar@100
|
2825 |
|
alpar@100
|
2826 |
public:
|
alpar@100
|
2827 |
|
alpar@100
|
2828 |
///Find an arc between two nodes.
|
alpar@100
|
2829 |
|
alpar@100
|
2830 |
///Find an arc between two nodes in time <em>O(</em>log<em>d)</em>, where
|
alpar@100
|
2831 |
/// <em>d</em> is the number of outgoing arcs of \c s.
|
alpar@100
|
2832 |
///\param s The source node
|
alpar@100
|
2833 |
///\param t The target node
|
alpar@100
|
2834 |
///\return An arc from \c s to \c t if there exists,
|
alpar@100
|
2835 |
///\ref INVALID otherwise.
|
alpar@100
|
2836 |
Arc operator()(Node s, Node t) const
|
alpar@100
|
2837 |
{
|
alpar@100
|
2838 |
Arc e = _head[s];
|
alpar@100
|
2839 |
while (true) {
|
alpar@100
|
2840 |
if (_g.target(e) == t) {
|
alpar@100
|
2841 |
const_cast<DynArcLookUp&>(*this).splay(e);
|
alpar@100
|
2842 |
return e;
|
alpar@100
|
2843 |
} else if (t < _g.target(e)) {
|
alpar@100
|
2844 |
if (_left[e] == INVALID) {
|
alpar@100
|
2845 |
const_cast<DynArcLookUp&>(*this).splay(e);
|
alpar@100
|
2846 |
return INVALID;
|
alpar@100
|
2847 |
} else {
|
alpar@100
|
2848 |
e = _left[e];
|
alpar@100
|
2849 |
}
|
alpar@100
|
2850 |
} else {
|
alpar@100
|
2851 |
if (_right[e] == INVALID) {
|
alpar@100
|
2852 |
const_cast<DynArcLookUp&>(*this).splay(e);
|
alpar@100
|
2853 |
return INVALID;
|
alpar@100
|
2854 |
} else {
|
alpar@100
|
2855 |
e = _right[e];
|
alpar@100
|
2856 |
}
|
alpar@100
|
2857 |
}
|
alpar@100
|
2858 |
}
|
alpar@100
|
2859 |
}
|
alpar@100
|
2860 |
|
alpar@100
|
2861 |
///Find the first arc between two nodes.
|
alpar@100
|
2862 |
|
alpar@100
|
2863 |
///Find the first arc between two nodes in time
|
alpar@100
|
2864 |
/// <em>O(</em>log<em>d)</em>, where <em>d</em> is the number of
|
alpar@100
|
2865 |
/// outgoing arcs of \c s.
|
alpar@100
|
2866 |
///\param s The source node
|
alpar@100
|
2867 |
///\param t The target node
|
alpar@100
|
2868 |
///\return An arc from \c s to \c t if there exists, \ref INVALID
|
alpar@100
|
2869 |
/// otherwise.
|
alpar@100
|
2870 |
Arc findFirst(Node s, Node t) const
|
alpar@100
|
2871 |
{
|
alpar@100
|
2872 |
Arc e = _head[s];
|
alpar@100
|
2873 |
Arc r = INVALID;
|
alpar@100
|
2874 |
while (true) {
|
alpar@100
|
2875 |
if (_g.target(e) < t) {
|
alpar@100
|
2876 |
if (_right[e] == INVALID) {
|
alpar@100
|
2877 |
const_cast<DynArcLookUp&>(*this).splay(e);
|
alpar@100
|
2878 |
return r;
|
alpar@100
|
2879 |
} else {
|
alpar@100
|
2880 |
e = _right[e];
|
alpar@100
|
2881 |
}
|
alpar@100
|
2882 |
} else {
|
alpar@100
|
2883 |
if (_g.target(e) == t) {
|
alpar@100
|
2884 |
r = e;
|
alpar@100
|
2885 |
}
|
alpar@100
|
2886 |
if (_left[e] == INVALID) {
|
alpar@100
|
2887 |
const_cast<DynArcLookUp&>(*this).splay(e);
|
alpar@100
|
2888 |
return r;
|
alpar@100
|
2889 |
} else {
|
alpar@100
|
2890 |
e = _left[e];
|
alpar@100
|
2891 |
}
|
alpar@100
|
2892 |
}
|
alpar@100
|
2893 |
}
|
alpar@100
|
2894 |
}
|
alpar@100
|
2895 |
|
alpar@100
|
2896 |
///Find the next arc between two nodes.
|
alpar@100
|
2897 |
|
alpar@100
|
2898 |
///Find the next arc between two nodes in time
|
alpar@100
|
2899 |
/// <em>O(</em>log<em>d)</em>, where <em>d</em> is the number of
|
alpar@100
|
2900 |
/// outgoing arcs of \c s.
|
alpar@100
|
2901 |
///\param s The source node
|
alpar@100
|
2902 |
///\param t The target node
|
alpar@100
|
2903 |
///\return An arc from \c s to \c t if there exists, \ref INVALID
|
alpar@100
|
2904 |
/// otherwise.
|
alpar@100
|
2905 |
|
alpar@100
|
2906 |
///\note If \c e is not the result of the previous \c findFirst()
|
alpar@100
|
2907 |
///operation then the amorized time bound can not be guaranteed.
|
alpar@100
|
2908 |
#ifdef DOXYGEN
|
alpar@100
|
2909 |
Arc findNext(Node s, Node t, Arc e) const
|
alpar@100
|
2910 |
#else
|
alpar@100
|
2911 |
Arc findNext(Node, Node t, Arc e) const
|
alpar@100
|
2912 |
#endif
|
alpar@100
|
2913 |
{
|
alpar@100
|
2914 |
if (_right[e] != INVALID) {
|
alpar@100
|
2915 |
e = _right[e];
|
alpar@100
|
2916 |
while (_left[e] != INVALID) {
|
alpar@100
|
2917 |
e = _left[e];
|
alpar@100
|
2918 |
}
|
alpar@100
|
2919 |
const_cast<DynArcLookUp&>(*this).splay(e);
|
alpar@100
|
2920 |
} else {
|
alpar@100
|
2921 |
while (_parent[e] != INVALID && _right[_parent[e]] == e) {
|
alpar@100
|
2922 |
e = _parent[e];
|
alpar@100
|
2923 |
}
|
alpar@100
|
2924 |
if (_parent[e] == INVALID) {
|
alpar@100
|
2925 |
return INVALID;
|
alpar@100
|
2926 |
} else {
|
alpar@100
|
2927 |
e = _parent[e];
|
alpar@100
|
2928 |
const_cast<DynArcLookUp&>(*this).splay(e);
|
alpar@100
|
2929 |
}
|
alpar@100
|
2930 |
}
|
alpar@100
|
2931 |
if (_g.target(e) == t) return e;
|
alpar@100
|
2932 |
else return INVALID;
|
alpar@100
|
2933 |
}
|
alpar@100
|
2934 |
|
alpar@100
|
2935 |
};
|
alpar@100
|
2936 |
|
alpar@100
|
2937 |
///Fast arc look up between given endpoints.
|
alpar@100
|
2938 |
|
alpar@100
|
2939 |
///\ingroup gutils
|
alpar@100
|
2940 |
///Using this class, you can find an arc in a digraph from a given
|
alpar@100
|
2941 |
///source to a given target in time <em>O(log d)</em>,
|
alpar@100
|
2942 |
///where <em>d</em> is the out-degree of the source node.
|
alpar@100
|
2943 |
///
|
alpar@100
|
2944 |
///It is not possible to find \e all parallel arcs between two nodes.
|
alpar@100
|
2945 |
///Use \ref AllArcLookUp for this purpose.
|
alpar@100
|
2946 |
///
|
alpar@100
|
2947 |
///\warning This class is static, so you should refresh() (or at least
|
alpar@100
|
2948 |
///refresh(Node)) this data structure
|
alpar@100
|
2949 |
///whenever the digraph changes. This is a time consuming (superlinearly
|
alpar@100
|
2950 |
///proportional (<em>O(m</em>log<em>m)</em>) to the number of arcs).
|
alpar@100
|
2951 |
///
|
alpar@100
|
2952 |
///\param G The type of the underlying digraph.
|
alpar@100
|
2953 |
///
|
alpar@100
|
2954 |
///\sa DynArcLookUp
|
alpar@100
|
2955 |
///\sa AllArcLookUp
|
alpar@100
|
2956 |
template<class G>
|
alpar@100
|
2957 |
class ArcLookUp
|
alpar@100
|
2958 |
{
|
alpar@100
|
2959 |
public:
|
alpar@100
|
2960 |
GRAPH_TYPEDEFS(typename G);
|
alpar@100
|
2961 |
typedef G Digraph;
|
alpar@100
|
2962 |
|
alpar@100
|
2963 |
protected:
|
alpar@100
|
2964 |
const Digraph &_g;
|
alpar@100
|
2965 |
typename Digraph::template NodeMap<Arc> _head;
|
alpar@100
|
2966 |
typename Digraph::template ArcMap<Arc> _left;
|
alpar@100
|
2967 |
typename Digraph::template ArcMap<Arc> _right;
|
alpar@100
|
2968 |
|
alpar@100
|
2969 |
class ArcLess {
|
alpar@100
|
2970 |
const Digraph &g;
|
alpar@100
|
2971 |
public:
|
alpar@100
|
2972 |
ArcLess(const Digraph &_g) : g(_g) {}
|
alpar@100
|
2973 |
bool operator()(Arc a,Arc b) const
|
alpar@100
|
2974 |
{
|
alpar@100
|
2975 |
return g.target(a)<g.target(b);
|
alpar@100
|
2976 |
}
|
alpar@100
|
2977 |
};
|
alpar@100
|
2978 |
|
alpar@100
|
2979 |
public:
|
alpar@100
|
2980 |
|
alpar@100
|
2981 |
///Constructor
|
alpar@100
|
2982 |
|
alpar@100
|
2983 |
///Constructor.
|
alpar@100
|
2984 |
///
|
alpar@100
|
2985 |
///It builds up the search database, which remains valid until the digraph
|
alpar@100
|
2986 |
///changes.
|
alpar@100
|
2987 |
ArcLookUp(const Digraph &g) :_g(g),_head(g),_left(g),_right(g) {refresh();}
|
alpar@100
|
2988 |
|
alpar@100
|
2989 |
private:
|
alpar@100
|
2990 |
Arc refreshRec(std::vector<Arc> &v,int a,int b)
|
alpar@100
|
2991 |
{
|
alpar@100
|
2992 |
int m=(a+b)/2;
|
alpar@100
|
2993 |
Arc me=v[m];
|
alpar@100
|
2994 |
_left[me] = a<m?refreshRec(v,a,m-1):INVALID;
|
alpar@100
|
2995 |
_right[me] = m<b?refreshRec(v,m+1,b):INVALID;
|
alpar@100
|
2996 |
return me;
|
alpar@100
|
2997 |
}
|
alpar@100
|
2998 |
public:
|
alpar@100
|
2999 |
///Refresh the data structure at a node.
|
alpar@100
|
3000 |
|
alpar@100
|
3001 |
///Build up the search database of node \c n.
|
alpar@100
|
3002 |
///
|
alpar@100
|
3003 |
///It runs in time <em>O(d</em>log<em>d)</em>, where <em>d</em> is
|
alpar@100
|
3004 |
///the number of the outgoing arcs of \c n.
|
alpar@100
|
3005 |
void refresh(Node n)
|
alpar@100
|
3006 |
{
|
alpar@100
|
3007 |
std::vector<Arc> v;
|
alpar@100
|
3008 |
for(OutArcIt e(_g,n);e!=INVALID;++e) v.push_back(e);
|
alpar@100
|
3009 |
if(v.size()) {
|
alpar@100
|
3010 |
std::sort(v.begin(),v.end(),ArcLess(_g));
|
alpar@100
|
3011 |
_head[n]=refreshRec(v,0,v.size()-1);
|
alpar@100
|
3012 |
}
|
alpar@100
|
3013 |
else _head[n]=INVALID;
|
alpar@100
|
3014 |
}
|
alpar@100
|
3015 |
///Refresh the full data structure.
|
alpar@100
|
3016 |
|
alpar@100
|
3017 |
///Build up the full search database. In fact, it simply calls
|
alpar@100
|
3018 |
///\ref refresh(Node) "refresh(n)" for each node \c n.
|
alpar@100
|
3019 |
///
|
alpar@100
|
3020 |
///It runs in time <em>O(m</em>log<em>D)</em>, where <em>m</em> is
|
alpar@100
|
3021 |
///the number of the arcs of \c n and <em>D</em> is the maximum
|
alpar@100
|
3022 |
///out-degree of the digraph.
|
alpar@100
|
3023 |
|
alpar@100
|
3024 |
void refresh()
|
alpar@100
|
3025 |
{
|
alpar@100
|
3026 |
for(NodeIt n(_g);n!=INVALID;++n) refresh(n);
|
alpar@100
|
3027 |
}
|
alpar@100
|
3028 |
|
alpar@100
|
3029 |
///Find an arc between two nodes.
|
alpar@100
|
3030 |
|
alpar@100
|
3031 |
///Find an arc between two nodes in time <em>O(</em>log<em>d)</em>, where
|
alpar@100
|
3032 |
/// <em>d</em> is the number of outgoing arcs of \c s.
|
alpar@100
|
3033 |
///\param s The source node
|
alpar@100
|
3034 |
///\param t The target node
|
alpar@100
|
3035 |
///\return An arc from \c s to \c t if there exists,
|
alpar@100
|
3036 |
///\ref INVALID otherwise.
|
alpar@100
|
3037 |
///
|
alpar@100
|
3038 |
///\warning If you change the digraph, refresh() must be called before using
|
alpar@100
|
3039 |
///this operator. If you change the outgoing arcs of
|
alpar@100
|
3040 |
///a single node \c n, then
|
alpar@100
|
3041 |
///\ref refresh(Node) "refresh(n)" is enough.
|
alpar@100
|
3042 |
///
|
alpar@100
|
3043 |
Arc operator()(Node s, Node t) const
|
alpar@100
|
3044 |
{
|
alpar@100
|
3045 |
Arc e;
|
alpar@100
|
3046 |
for(e=_head[s];
|
alpar@100
|
3047 |
e!=INVALID&&_g.target(e)!=t;
|
alpar@100
|
3048 |
e = t < _g.target(e)?_left[e]:_right[e]) ;
|
alpar@100
|
3049 |
return e;
|
alpar@100
|
3050 |
}
|
alpar@100
|
3051 |
|
alpar@100
|
3052 |
};
|
alpar@100
|
3053 |
|
alpar@100
|
3054 |
///Fast look up of all arcs between given endpoints.
|
alpar@100
|
3055 |
|
alpar@100
|
3056 |
///\ingroup gutils
|
alpar@100
|
3057 |
///This class is the same as \ref ArcLookUp, with the addition
|
alpar@100
|
3058 |
///that it makes it possible to find all arcs between given endpoints.
|
alpar@100
|
3059 |
///
|
alpar@100
|
3060 |
///\warning This class is static, so you should refresh() (or at least
|
alpar@100
|
3061 |
///refresh(Node)) this data structure
|
alpar@100
|
3062 |
///whenever the digraph changes. This is a time consuming (superlinearly
|
alpar@100
|
3063 |
///proportional (<em>O(m</em>log<em>m)</em>) to the number of arcs).
|
alpar@100
|
3064 |
///
|
alpar@100
|
3065 |
///\param G The type of the underlying digraph.
|
alpar@100
|
3066 |
///
|
alpar@100
|
3067 |
///\sa DynArcLookUp
|
alpar@100
|
3068 |
///\sa ArcLookUp
|
alpar@100
|
3069 |
template<class G>
|
alpar@100
|
3070 |
class AllArcLookUp : public ArcLookUp<G>
|
alpar@100
|
3071 |
{
|
alpar@100
|
3072 |
using ArcLookUp<G>::_g;
|
alpar@100
|
3073 |
using ArcLookUp<G>::_right;
|
alpar@100
|
3074 |
using ArcLookUp<G>::_left;
|
alpar@100
|
3075 |
using ArcLookUp<G>::_head;
|
alpar@100
|
3076 |
|
alpar@100
|
3077 |
GRAPH_TYPEDEFS(typename G);
|
alpar@100
|
3078 |
typedef G Digraph;
|
alpar@100
|
3079 |
|
alpar@100
|
3080 |
typename Digraph::template ArcMap<Arc> _next;
|
alpar@100
|
3081 |
|
alpar@100
|
3082 |
Arc refreshNext(Arc head,Arc next=INVALID)
|
alpar@100
|
3083 |
{
|
alpar@100
|
3084 |
if(head==INVALID) return next;
|
alpar@100
|
3085 |
else {
|
alpar@100
|
3086 |
next=refreshNext(_right[head],next);
|
alpar@100
|
3087 |
// _next[head]=next;
|
alpar@100
|
3088 |
_next[head]=( next!=INVALID && _g.target(next)==_g.target(head))
|
alpar@100
|
3089 |
? next : INVALID;
|
alpar@100
|
3090 |
return refreshNext(_left[head],head);
|
alpar@100
|
3091 |
}
|
alpar@100
|
3092 |
}
|
alpar@100
|
3093 |
|
alpar@100
|
3094 |
void refreshNext()
|
alpar@100
|
3095 |
{
|
alpar@100
|
3096 |
for(NodeIt n(_g);n!=INVALID;++n) refreshNext(_head[n]);
|
alpar@100
|
3097 |
}
|
alpar@100
|
3098 |
|
alpar@100
|
3099 |
public:
|
alpar@100
|
3100 |
///Constructor
|
alpar@100
|
3101 |
|
alpar@100
|
3102 |
///Constructor.
|
alpar@100
|
3103 |
///
|
alpar@100
|
3104 |
///It builds up the search database, which remains valid until the digraph
|
alpar@100
|
3105 |
///changes.
|
alpar@100
|
3106 |
AllArcLookUp(const Digraph &g) : ArcLookUp<G>(g), _next(g) {refreshNext();}
|
alpar@100
|
3107 |
|
alpar@100
|
3108 |
///Refresh the data structure at a node.
|
alpar@100
|
3109 |
|
alpar@100
|
3110 |
///Build up the search database of node \c n.
|
alpar@100
|
3111 |
///
|
alpar@100
|
3112 |
///It runs in time <em>O(d</em>log<em>d)</em>, where <em>d</em> is
|
alpar@100
|
3113 |
///the number of the outgoing arcs of \c n.
|
alpar@100
|
3114 |
|
alpar@100
|
3115 |
void refresh(Node n)
|
alpar@100
|
3116 |
{
|
alpar@100
|
3117 |
ArcLookUp<G>::refresh(n);
|
alpar@100
|
3118 |
refreshNext(_head[n]);
|
alpar@100
|
3119 |
}
|
alpar@100
|
3120 |
|
alpar@100
|
3121 |
///Refresh the full data structure.
|
alpar@100
|
3122 |
|
alpar@100
|
3123 |
///Build up the full search database. In fact, it simply calls
|
alpar@100
|
3124 |
///\ref refresh(Node) "refresh(n)" for each node \c n.
|
alpar@100
|
3125 |
///
|
alpar@100
|
3126 |
///It runs in time <em>O(m</em>log<em>D)</em>, where <em>m</em> is
|
alpar@100
|
3127 |
///the number of the arcs of \c n and <em>D</em> is the maximum
|
alpar@100
|
3128 |
///out-degree of the digraph.
|
alpar@100
|
3129 |
|
alpar@100
|
3130 |
void refresh()
|
alpar@100
|
3131 |
{
|
alpar@100
|
3132 |
for(NodeIt n(_g);n!=INVALID;++n) refresh(_head[n]);
|
alpar@100
|
3133 |
}
|
alpar@100
|
3134 |
|
alpar@100
|
3135 |
///Find an arc between two nodes.
|
alpar@100
|
3136 |
|
alpar@100
|
3137 |
///Find an arc between two nodes.
|
alpar@100
|
3138 |
///\param s The source node
|
alpar@100
|
3139 |
///\param t The target node
|
alpar@100
|
3140 |
///\param prev The previous arc between \c s and \c t. It it is INVALID or
|
alpar@100
|
3141 |
///not given, the operator finds the first appropriate arc.
|
alpar@100
|
3142 |
///\return An arc from \c s to \c t after \c prev or
|
alpar@100
|
3143 |
///\ref INVALID if there is no more.
|
alpar@100
|
3144 |
///
|
alpar@100
|
3145 |
///For example, you can count the number of arcs from \c u to \c v in the
|
alpar@100
|
3146 |
///following way.
|
alpar@100
|
3147 |
///\code
|
alpar@100
|
3148 |
///AllArcLookUp<ListDigraph> ae(g);
|
alpar@100
|
3149 |
///...
|
alpar@100
|
3150 |
///int n=0;
|
alpar@100
|
3151 |
///for(Arc e=ae(u,v);e!=INVALID;e=ae(u,v,e)) n++;
|
alpar@100
|
3152 |
///\endcode
|
alpar@100
|
3153 |
///
|
alpar@100
|
3154 |
///Finding the first arc take <em>O(</em>log<em>d)</em> time, where
|
alpar@100
|
3155 |
/// <em>d</em> is the number of outgoing arcs of \c s. Then, the
|
alpar@100
|
3156 |
///consecutive arcs are found in constant time.
|
alpar@100
|
3157 |
///
|
alpar@100
|
3158 |
///\warning If you change the digraph, refresh() must be called before using
|
alpar@100
|
3159 |
///this operator. If you change the outgoing arcs of
|
alpar@100
|
3160 |
///a single node \c n, then
|
alpar@100
|
3161 |
///\ref refresh(Node) "refresh(n)" is enough.
|
alpar@100
|
3162 |
///
|
alpar@100
|
3163 |
#ifdef DOXYGEN
|
alpar@100
|
3164 |
Arc operator()(Node s, Node t, Arc prev=INVALID) const {}
|
alpar@100
|
3165 |
#else
|
alpar@100
|
3166 |
using ArcLookUp<G>::operator() ;
|
alpar@100
|
3167 |
Arc operator()(Node s, Node t, Arc prev) const
|
alpar@100
|
3168 |
{
|
alpar@100
|
3169 |
return prev==INVALID?(*this)(s,t):_next[prev];
|
alpar@100
|
3170 |
}
|
alpar@100
|
3171 |
#endif
|
alpar@100
|
3172 |
|
alpar@100
|
3173 |
};
|
alpar@100
|
3174 |
|
alpar@100
|
3175 |
/// @}
|
alpar@100
|
3176 |
|
alpar@100
|
3177 |
} //END OF NAMESPACE LEMON
|
alpar@100
|
3178 |
|
alpar@100
|
3179 |
#endif
|