lemon/graph_utils.h
author Alpar Juttner <alpar@cs.elte.hu>
Fri, 18 Apr 2008 06:20:32 +0100
changeset 137 483bc6ed7292
child 139 701c529ba737
permissions -rw-r--r--
Backout some rubbish from chageset 7cd965d2257f
alpar@100
     1
/* -*- C++ -*-
alpar@100
     2
 *
alpar@100
     3
 * This file is a part of LEMON, a generic C++ optimization library
alpar@100
     4
 *
alpar@100
     5
 * Copyright (C) 2003-2008
alpar@100
     6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
alpar@100
     7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
alpar@100
     8
 *
alpar@100
     9
 * Permission to use, modify and distribute this software is granted
alpar@100
    10
 * provided that this copyright notice appears in all copies. For
alpar@100
    11
 * precise terms see the accompanying LICENSE file.
alpar@100
    12
 *
alpar@100
    13
 * This software is provided "AS IS" with no warranty of any kind,
alpar@100
    14
 * express or implied, and with no claim as to its suitability for any
alpar@100
    15
 * purpose.
alpar@100
    16
 *
alpar@100
    17
 */
alpar@100
    18
alpar@100
    19
#ifndef LEMON_GRAPH_UTILS_H
alpar@100
    20
#define LEMON_GRAPH_UTILS_H
alpar@100
    21
alpar@100
    22
#include <iterator>
alpar@100
    23
#include <vector>
alpar@100
    24
#include <map>
alpar@100
    25
#include <cmath>
alpar@100
    26
#include <algorithm>
alpar@100
    27
alpar@100
    28
#include <lemon/bits/invalid.h>
alpar@100
    29
#include <lemon/bits/utility.h>
alpar@100
    30
#include <lemon/maps.h>
alpar@100
    31
#include <lemon/bits/traits.h>
alpar@100
    32
alpar@100
    33
#include <lemon/bits/alteration_notifier.h>
alpar@100
    34
#include <lemon/bits/default_map.h>
alpar@100
    35
alpar@100
    36
///\ingroup gutils
alpar@100
    37
///\file
alpar@100
    38
///\brief Digraph utilities.
alpar@100
    39
alpar@100
    40
namespace lemon {
alpar@100
    41
alpar@100
    42
  /// \addtogroup gutils
alpar@100
    43
  /// @{
alpar@100
    44
alpar@100
    45
  ///Creates convenience typedefs for the digraph types and iterators
alpar@100
    46
alpar@100
    47
  ///This \c \#define creates convenience typedefs for the following types
alpar@100
    48
  ///of \c Digraph: \c Node,  \c NodeIt, \c Arc, \c ArcIt, \c InArcIt,
alpar@100
    49
  ///\c OutArcIt
alpar@100
    50
  ///\note If \c G it a template parameter, it should be used in this way.
alpar@100
    51
  ///\code
alpar@100
    52
  ///  GRAPH_TYPEDEFS(typename G);
alpar@100
    53
  ///\endcode
alpar@100
    54
  ///
alpar@100
    55
  ///\warning There are no typedefs for the digraph maps because of the lack of
alpar@100
    56
  ///template typedefs in C++.
alpar@100
    57
#define GRAPH_TYPEDEFS(Digraph)				\
alpar@100
    58
  typedef Digraph::     Node      Node;			\
alpar@100
    59
    typedef Digraph::   NodeIt    NodeIt;			\
alpar@100
    60
    typedef Digraph::   Arc      Arc;			\
alpar@100
    61
    typedef Digraph::   ArcIt    ArcIt;			\
alpar@100
    62
    typedef Digraph:: InArcIt  InArcIt;			\
alpar@100
    63
    typedef Digraph::OutArcIt OutArcIt
alpar@100
    64
alpar@100
    65
  ///Creates convenience typedefs for the graph types and iterators
alpar@100
    66
alpar@100
    67
  ///This \c \#define creates the same convenience typedefs as defined by
alpar@100
    68
  ///\ref GRAPH_TYPEDEFS(Digraph) and three more, namely it creates
alpar@100
    69
  ///\c Edge, \c EdgeIt, \c IncArcIt,
alpar@100
    70
  ///
alpar@100
    71
  ///\note If \c G it a template parameter, it should be used in this way.
alpar@100
    72
  ///\code
alpar@100
    73
  ///  UGRAPH_TYPEDEFS(typename G);
alpar@100
    74
  ///\endcode
alpar@100
    75
  ///
alpar@100
    76
  ///\warning There are no typedefs for the digraph maps because of the lack of
alpar@100
    77
  ///template typedefs in C++.
alpar@100
    78
#define UGRAPH_TYPEDEFS(Digraph)				\
alpar@100
    79
  GRAPH_TYPEDEFS(Digraph);				\
alpar@100
    80
    typedef Digraph:: Edge   Edge;			\
alpar@100
    81
    typedef Digraph:: EdgeIt EdgeIt;			\
alpar@100
    82
    typedef Digraph:: IncArcIt   IncArcIt
alpar@100
    83
alpar@100
    84
  ///\brief Creates convenience typedefs for the bipartite digraph 
alpar@100
    85
  ///types and iterators
alpar@100
    86
alpar@100
    87
  ///This \c \#define creates the same convenience typedefs as defined by
alpar@100
    88
  ///\ref UGRAPH_TYPEDEFS(Digraph) and two more, namely it creates
alpar@100
    89
  ///\c RedIt, \c BlueIt, 
alpar@100
    90
  ///
alpar@100
    91
  ///\note If \c G it a template parameter, it should be used in this way.
alpar@100
    92
  ///\code
alpar@100
    93
  ///  BPUGRAPH_TYPEDEFS(typename G);
alpar@100
    94
  ///\endcode
alpar@100
    95
  ///
alpar@100
    96
  ///\warning There are no typedefs for the digraph maps because of the lack of
alpar@100
    97
  ///template typedefs in C++.
alpar@100
    98
#define BPUGRAPH_TYPEDEFS(Digraph)            \
alpar@100
    99
  UGRAPH_TYPEDEFS(Digraph);		    \
alpar@100
   100
    typedef Digraph::Red Red;             \
alpar@100
   101
    typedef Digraph::Blue Blue;             \
alpar@100
   102
    typedef Digraph::RedIt RedIt;	    \
alpar@100
   103
    typedef Digraph::BlueIt BlueIt
alpar@100
   104
alpar@100
   105
  /// \brief Function to count the items in the digraph.
alpar@100
   106
  ///
alpar@100
   107
  /// This function counts the items (nodes, arcs etc) in the digraph.
alpar@100
   108
  /// The complexity of the function is O(n) because
alpar@100
   109
  /// it iterates on all of the items.
alpar@100
   110
alpar@100
   111
  template <typename Digraph, typename Item>
alpar@100
   112
  inline int countItems(const Digraph& g) {
alpar@100
   113
    typedef typename ItemSetTraits<Digraph, Item>::ItemIt ItemIt;
alpar@100
   114
    int num = 0;
alpar@100
   115
    for (ItemIt it(g); it != INVALID; ++it) {
alpar@100
   116
      ++num;
alpar@100
   117
    }
alpar@100
   118
    return num;
alpar@100
   119
  }
alpar@100
   120
alpar@100
   121
  // Node counting:
alpar@100
   122
alpar@100
   123
  namespace _digraph_utils_bits {
alpar@100
   124
    
alpar@100
   125
    template <typename Digraph, typename Enable = void>
alpar@100
   126
    struct CountNodesSelector {
alpar@100
   127
      static int count(const Digraph &g) {
alpar@100
   128
        return countItems<Digraph, typename Digraph::Node>(g);
alpar@100
   129
      }
alpar@100
   130
    };
alpar@100
   131
alpar@100
   132
    template <typename Digraph>
alpar@100
   133
    struct CountNodesSelector<
alpar@100
   134
      Digraph, typename 
alpar@100
   135
      enable_if<typename Digraph::NodeNumTag, void>::type> 
alpar@100
   136
    {
alpar@100
   137
      static int count(const Digraph &g) {
alpar@100
   138
        return g.nodeNum();
alpar@100
   139
      }
alpar@100
   140
    };    
alpar@100
   141
  }
alpar@100
   142
alpar@100
   143
  /// \brief Function to count the nodes in the digraph.
alpar@100
   144
  ///
alpar@100
   145
  /// This function counts the nodes in the digraph.
alpar@100
   146
  /// The complexity of the function is O(n) but for some
alpar@100
   147
  /// digraph structures it is specialized to run in O(1).
alpar@100
   148
  ///
alpar@100
   149
  /// If the digraph contains a \e nodeNum() member function and a 
alpar@100
   150
  /// \e NodeNumTag tag then this function calls directly the member
alpar@100
   151
  /// function to query the cardinality of the node set.
alpar@100
   152
  template <typename Digraph>
alpar@100
   153
  inline int countNodes(const Digraph& g) {
alpar@100
   154
    return _digraph_utils_bits::CountNodesSelector<Digraph>::count(g);
alpar@100
   155
  }
alpar@100
   156
alpar@100
   157
  namespace _digraph_utils_bits {
alpar@100
   158
    
alpar@100
   159
    template <typename Digraph, typename Enable = void>
alpar@100
   160
    struct CountRedsSelector {
alpar@100
   161
      static int count(const Digraph &g) {
alpar@100
   162
        return countItems<Digraph, typename Digraph::Red>(g);
alpar@100
   163
      }
alpar@100
   164
    };
alpar@100
   165
alpar@100
   166
    template <typename Digraph>
alpar@100
   167
    struct CountRedsSelector<
alpar@100
   168
      Digraph, typename 
alpar@100
   169
      enable_if<typename Digraph::NodeNumTag, void>::type> 
alpar@100
   170
    {
alpar@100
   171
      static int count(const Digraph &g) {
alpar@100
   172
        return g.redNum();
alpar@100
   173
      }
alpar@100
   174
    };    
alpar@100
   175
  }
alpar@100
   176
alpar@100
   177
  /// \brief Function to count the reds in the digraph.
alpar@100
   178
  ///
alpar@100
   179
  /// This function counts the reds in the digraph.
alpar@100
   180
  /// The complexity of the function is O(an) but for some
alpar@100
   181
  /// digraph structures it is specialized to run in O(1).
alpar@100
   182
  ///
alpar@100
   183
  /// If the digraph contains an \e redNum() member function and a 
alpar@100
   184
  /// \e NodeNumTag tag then this function calls directly the member
alpar@100
   185
  /// function to query the cardinality of the A-node set.
alpar@100
   186
  template <typename Digraph>
alpar@100
   187
  inline int countReds(const Digraph& g) {
alpar@100
   188
    return _digraph_utils_bits::CountRedsSelector<Digraph>::count(g);
alpar@100
   189
  }
alpar@100
   190
alpar@100
   191
  namespace _digraph_utils_bits {
alpar@100
   192
    
alpar@100
   193
    template <typename Digraph, typename Enable = void>
alpar@100
   194
    struct CountBluesSelector {
alpar@100
   195
      static int count(const Digraph &g) {
alpar@100
   196
        return countItems<Digraph, typename Digraph::Blue>(g);
alpar@100
   197
      }
alpar@100
   198
    };
alpar@100
   199
alpar@100
   200
    template <typename Digraph>
alpar@100
   201
    struct CountBluesSelector<
alpar@100
   202
      Digraph, typename 
alpar@100
   203
      enable_if<typename Digraph::NodeNumTag, void>::type> 
alpar@100
   204
    {
alpar@100
   205
      static int count(const Digraph &g) {
alpar@100
   206
        return g.blueNum();
alpar@100
   207
      }
alpar@100
   208
    };    
alpar@100
   209
  }
alpar@100
   210
alpar@100
   211
  /// \brief Function to count the blues in the digraph.
alpar@100
   212
  ///
alpar@100
   213
  /// This function counts the blues in the digraph.
alpar@100
   214
  /// The complexity of the function is O(bn) but for some
alpar@100
   215
  /// digraph structures it is specialized to run in O(1).
alpar@100
   216
  ///
alpar@100
   217
  /// If the digraph contains a \e blueNum() member function and a 
alpar@100
   218
  /// \e NodeNumTag tag then this function calls directly the member
alpar@100
   219
  /// function to query the cardinality of the B-node set.
alpar@100
   220
  template <typename Digraph>
alpar@100
   221
  inline int countBlues(const Digraph& g) {
alpar@100
   222
    return _digraph_utils_bits::CountBluesSelector<Digraph>::count(g);
alpar@100
   223
  }
alpar@100
   224
alpar@100
   225
alpar@100
   226
  // Arc counting:
alpar@100
   227
alpar@100
   228
  namespace _digraph_utils_bits {
alpar@100
   229
    
alpar@100
   230
    template <typename Digraph, typename Enable = void>
alpar@100
   231
    struct CountArcsSelector {
alpar@100
   232
      static int count(const Digraph &g) {
alpar@100
   233
        return countItems<Digraph, typename Digraph::Arc>(g);
alpar@100
   234
      }
alpar@100
   235
    };
alpar@100
   236
alpar@100
   237
    template <typename Digraph>
alpar@100
   238
    struct CountArcsSelector<
alpar@100
   239
      Digraph, 
alpar@100
   240
      typename enable_if<typename Digraph::ArcNumTag, void>::type> 
alpar@100
   241
    {
alpar@100
   242
      static int count(const Digraph &g) {
alpar@100
   243
        return g.arcNum();
alpar@100
   244
      }
alpar@100
   245
    };    
alpar@100
   246
  }
alpar@100
   247
alpar@100
   248
  /// \brief Function to count the arcs in the digraph.
alpar@100
   249
  ///
alpar@100
   250
  /// This function counts the arcs in the digraph.
alpar@100
   251
  /// The complexity of the function is O(e) but for some
alpar@100
   252
  /// digraph structures it is specialized to run in O(1).
alpar@100
   253
  ///
alpar@100
   254
  /// If the digraph contains a \e arcNum() member function and a 
alpar@100
   255
  /// \e ArcNumTag tag then this function calls directly the member
alpar@100
   256
  /// function to query the cardinality of the arc set.
alpar@100
   257
  template <typename Digraph>
alpar@100
   258
  inline int countArcs(const Digraph& g) {
alpar@100
   259
    return _digraph_utils_bits::CountArcsSelector<Digraph>::count(g);
alpar@100
   260
  }
alpar@100
   261
alpar@100
   262
  // Undirected arc counting:
alpar@100
   263
  namespace _digraph_utils_bits {
alpar@100
   264
    
alpar@100
   265
    template <typename Digraph, typename Enable = void>
alpar@100
   266
    struct CountEdgesSelector {
alpar@100
   267
      static int count(const Digraph &g) {
alpar@100
   268
        return countItems<Digraph, typename Digraph::Edge>(g);
alpar@100
   269
      }
alpar@100
   270
    };
alpar@100
   271
alpar@100
   272
    template <typename Digraph>
alpar@100
   273
    struct CountEdgesSelector<
alpar@100
   274
      Digraph, 
alpar@100
   275
      typename enable_if<typename Digraph::ArcNumTag, void>::type> 
alpar@100
   276
    {
alpar@100
   277
      static int count(const Digraph &g) {
alpar@100
   278
        return g.edgeNum();
alpar@100
   279
      }
alpar@100
   280
    };    
alpar@100
   281
  }
alpar@100
   282
alpar@100
   283
  /// \brief Function to count the edges in the digraph.
alpar@100
   284
  ///
alpar@100
   285
  /// This function counts the edges in the digraph.
alpar@100
   286
  /// The complexity of the function is O(e) but for some
alpar@100
   287
  /// digraph structures it is specialized to run in O(1).
alpar@100
   288
  ///
alpar@100
   289
  /// If the digraph contains a \e edgeNum() member function and a 
alpar@100
   290
  /// \e ArcNumTag tag then this function calls directly the member
alpar@100
   291
  /// function to query the cardinality of the edge set.
alpar@100
   292
  template <typename Digraph>
alpar@100
   293
  inline int countEdges(const Digraph& g) {
alpar@100
   294
    return _digraph_utils_bits::CountEdgesSelector<Digraph>::count(g);
alpar@100
   295
alpar@100
   296
  }
alpar@100
   297
alpar@100
   298
alpar@100
   299
  template <typename Digraph, typename DegIt>
alpar@100
   300
  inline int countNodeDegree(const Digraph& _g, const typename Digraph::Node& _n) {
alpar@100
   301
    int num = 0;
alpar@100
   302
    for (DegIt it(_g, _n); it != INVALID; ++it) {
alpar@100
   303
      ++num;
alpar@100
   304
    }
alpar@100
   305
    return num;
alpar@100
   306
  }
alpar@100
   307
alpar@100
   308
  /// \brief Function to count the number of the out-arcs from node \c n.
alpar@100
   309
  ///
alpar@100
   310
  /// This function counts the number of the out-arcs from node \c n
alpar@100
   311
  /// in the digraph.  
alpar@100
   312
  template <typename Digraph>
alpar@100
   313
  inline int countOutArcs(const Digraph& _g,  const typename Digraph::Node& _n) {
alpar@100
   314
    return countNodeDegree<Digraph, typename Digraph::OutArcIt>(_g, _n);
alpar@100
   315
  }
alpar@100
   316
alpar@100
   317
  /// \brief Function to count the number of the in-arcs to node \c n.
alpar@100
   318
  ///
alpar@100
   319
  /// This function counts the number of the in-arcs to node \c n
alpar@100
   320
  /// in the digraph.  
alpar@100
   321
  template <typename Digraph>
alpar@100
   322
  inline int countInArcs(const Digraph& _g,  const typename Digraph::Node& _n) {
alpar@100
   323
    return countNodeDegree<Digraph, typename Digraph::InArcIt>(_g, _n);
alpar@100
   324
  }
alpar@100
   325
alpar@100
   326
  /// \brief Function to count the number of the inc-arcs to node \c n.
alpar@100
   327
  ///
alpar@100
   328
  /// This function counts the number of the inc-arcs to node \c n
alpar@100
   329
  /// in the digraph.  
alpar@100
   330
  template <typename Digraph>
alpar@100
   331
  inline int countIncArcs(const Digraph& _g,  const typename Digraph::Node& _n) {
alpar@100
   332
    return countNodeDegree<Digraph, typename Digraph::IncArcIt>(_g, _n);
alpar@100
   333
  }
alpar@100
   334
alpar@100
   335
  namespace _digraph_utils_bits {
alpar@100
   336
    
alpar@100
   337
    template <typename Digraph, typename Enable = void>
alpar@100
   338
    struct FindArcSelector {
alpar@100
   339
      typedef typename Digraph::Node Node;
alpar@100
   340
      typedef typename Digraph::Arc Arc;
alpar@100
   341
      static Arc find(const Digraph &g, Node u, Node v, Arc e) {
alpar@100
   342
        if (e == INVALID) {
alpar@100
   343
          g.firstOut(e, u);
alpar@100
   344
        } else {
alpar@100
   345
          g.nextOut(e);
alpar@100
   346
        }
alpar@100
   347
        while (e != INVALID && g.target(e) != v) {
alpar@100
   348
          g.nextOut(e);
alpar@100
   349
        }
alpar@100
   350
        return e;
alpar@100
   351
      }
alpar@100
   352
    };
alpar@100
   353
alpar@100
   354
    template <typename Digraph>
alpar@100
   355
    struct FindArcSelector<
alpar@100
   356
      Digraph, 
alpar@100
   357
      typename enable_if<typename Digraph::FindArcTag, void>::type> 
alpar@100
   358
    {
alpar@100
   359
      typedef typename Digraph::Node Node;
alpar@100
   360
      typedef typename Digraph::Arc Arc;
alpar@100
   361
      static Arc find(const Digraph &g, Node u, Node v, Arc prev) {
alpar@100
   362
        return g.findArc(u, v, prev);
alpar@100
   363
      }
alpar@100
   364
    };    
alpar@100
   365
  }
alpar@100
   366
alpar@100
   367
  /// \brief Finds an arc between two nodes of a digraph.
alpar@100
   368
  ///
alpar@100
   369
  /// Finds an arc from node \c u to node \c v in digraph \c g.
alpar@100
   370
  ///
alpar@100
   371
  /// If \c prev is \ref INVALID (this is the default value), then
alpar@100
   372
  /// it finds the first arc from \c u to \c v. Otherwise it looks for
alpar@100
   373
  /// the next arc from \c u to \c v after \c prev.
alpar@100
   374
  /// \return The found arc or \ref INVALID if there is no such an arc.
alpar@100
   375
  ///
alpar@100
   376
  /// Thus you can iterate through each arc from \c u to \c v as it follows.
alpar@100
   377
  ///\code
alpar@100
   378
  /// for(Arc e=findArc(g,u,v);e!=INVALID;e=findArc(g,u,v,e)) {
alpar@100
   379
  ///   ...
alpar@100
   380
  /// }
alpar@100
   381
  ///\endcode
alpar@100
   382
  ///
alpar@100
   383
  ///\sa ArcLookUp
alpar@100
   384
  ///\sa AllArcLookUp
alpar@100
   385
  ///\sa DynArcLookUp
alpar@100
   386
  ///\sa ConArcIt
alpar@100
   387
  template <typename Digraph>
alpar@100
   388
  inline typename Digraph::Arc 
alpar@100
   389
  findArc(const Digraph &g, typename Digraph::Node u, typename Digraph::Node v,
alpar@100
   390
           typename Digraph::Arc prev = INVALID) {
alpar@100
   391
    return _digraph_utils_bits::FindArcSelector<Digraph>::find(g, u, v, prev);
alpar@100
   392
  }
alpar@100
   393
alpar@100
   394
  /// \brief Iterator for iterating on arcs connected the same nodes.
alpar@100
   395
  ///
alpar@100
   396
  /// Iterator for iterating on arcs connected the same nodes. It is 
alpar@100
   397
  /// higher level interface for the findArc() function. You can
alpar@100
   398
  /// use it the following way:
alpar@100
   399
  ///\code
alpar@100
   400
  /// for (ConArcIt<Digraph> it(g, src, trg); it != INVALID; ++it) {
alpar@100
   401
  ///   ...
alpar@100
   402
  /// }
alpar@100
   403
  ///\endcode
alpar@100
   404
  /// 
alpar@100
   405
  ///\sa findArc()
alpar@100
   406
  ///\sa ArcLookUp
alpar@100
   407
  ///\sa AllArcLookUp
alpar@100
   408
  ///\sa DynArcLookUp
alpar@100
   409
  ///
alpar@100
   410
  /// \author Balazs Dezso 
alpar@100
   411
  template <typename _Digraph>
alpar@100
   412
  class ConArcIt : public _Digraph::Arc {
alpar@100
   413
  public:
alpar@100
   414
alpar@100
   415
    typedef _Digraph Digraph;
alpar@100
   416
    typedef typename Digraph::Arc Parent;
alpar@100
   417
alpar@100
   418
    typedef typename Digraph::Arc Arc;
alpar@100
   419
    typedef typename Digraph::Node Node;
alpar@100
   420
alpar@100
   421
    /// \brief Constructor.
alpar@100
   422
    ///
alpar@100
   423
    /// Construct a new ConArcIt iterating on the arcs which
alpar@100
   424
    /// connects the \c u and \c v node.
alpar@100
   425
    ConArcIt(const Digraph& g, Node u, Node v) : digraph(g) {
alpar@100
   426
      Parent::operator=(findArc(digraph, u, v));
alpar@100
   427
    }
alpar@100
   428
alpar@100
   429
    /// \brief Constructor.
alpar@100
   430
    ///
alpar@100
   431
    /// Construct a new ConArcIt which continues the iterating from 
alpar@100
   432
    /// the \c e arc.
alpar@100
   433
    ConArcIt(const Digraph& g, Arc e) : Parent(e), digraph(g) {}
alpar@100
   434
    
alpar@100
   435
    /// \brief Increment operator.
alpar@100
   436
    ///
alpar@100
   437
    /// It increments the iterator and gives back the next arc.
alpar@100
   438
    ConArcIt& operator++() {
alpar@100
   439
      Parent::operator=(findArc(digraph, digraph.source(*this), 
alpar@100
   440
				 digraph.target(*this), *this));
alpar@100
   441
      return *this;
alpar@100
   442
    }
alpar@100
   443
  private:
alpar@100
   444
    const Digraph& digraph;
alpar@100
   445
  };
alpar@100
   446
alpar@100
   447
  namespace _digraph_utils_bits {
alpar@100
   448
    
alpar@100
   449
    template <typename Digraph, typename Enable = void>
alpar@100
   450
    struct FindEdgeSelector {
alpar@100
   451
      typedef typename Digraph::Node Node;
alpar@100
   452
      typedef typename Digraph::Edge Edge;
alpar@100
   453
      static Edge find(const Digraph &g, Node u, Node v, Edge e) {
alpar@100
   454
        bool b;
alpar@100
   455
        if (u != v) {
alpar@100
   456
          if (e == INVALID) {
alpar@100
   457
            g.firstInc(e, b, u);
alpar@100
   458
          } else {
alpar@100
   459
            b = g.source(e) == u;
alpar@100
   460
            g.nextInc(e, b);
alpar@100
   461
          }
alpar@100
   462
          while (e != INVALID && (b ? g.target(e) : g.source(e)) != v) {
alpar@100
   463
            g.nextInc(e, b);
alpar@100
   464
          }
alpar@100
   465
        } else {
alpar@100
   466
          if (e == INVALID) {
alpar@100
   467
            g.firstInc(e, b, u);
alpar@100
   468
          } else {
alpar@100
   469
            b = true;
alpar@100
   470
            g.nextInc(e, b);
alpar@100
   471
          }
alpar@100
   472
          while (e != INVALID && (!b || g.target(e) != v)) {
alpar@100
   473
            g.nextInc(e, b);
alpar@100
   474
          }
alpar@100
   475
        }
alpar@100
   476
        return e;
alpar@100
   477
      }
alpar@100
   478
    };
alpar@100
   479
alpar@100
   480
    template <typename Digraph>
alpar@100
   481
    struct FindEdgeSelector<
alpar@100
   482
      Digraph, 
alpar@100
   483
      typename enable_if<typename Digraph::FindArcTag, void>::type> 
alpar@100
   484
    {
alpar@100
   485
      typedef typename Digraph::Node Node;
alpar@100
   486
      typedef typename Digraph::Edge Edge;
alpar@100
   487
      static Edge find(const Digraph &g, Node u, Node v, Edge prev) {
alpar@100
   488
        return g.findEdge(u, v, prev);
alpar@100
   489
      }
alpar@100
   490
    };    
alpar@100
   491
  }
alpar@100
   492
alpar@100
   493
  /// \brief Finds an edge between two nodes of a digraph.
alpar@100
   494
  ///
alpar@100
   495
  /// Finds an edge from node \c u to node \c v in digraph \c g.
alpar@100
   496
  /// If the node \c u and node \c v is equal then each loop arc
alpar@100
   497
  /// will be enumerated.
alpar@100
   498
  ///
alpar@100
   499
  /// If \c prev is \ref INVALID (this is the default value), then
alpar@100
   500
  /// it finds the first arc from \c u to \c v. Otherwise it looks for
alpar@100
   501
  /// the next arc from \c u to \c v after \c prev.
alpar@100
   502
  /// \return The found arc or \ref INVALID if there is no such an arc.
alpar@100
   503
  ///
alpar@100
   504
  /// Thus you can iterate through each arc from \c u to \c v as it follows.
alpar@100
   505
  ///\code
alpar@100
   506
  /// for(Edge e = findEdge(g,u,v); e != INVALID; 
alpar@100
   507
  ///     e = findEdge(g,u,v,e)) {
alpar@100
   508
  ///   ...
alpar@100
   509
  /// }
alpar@100
   510
  ///\endcode
alpar@100
   511
  ///
alpar@100
   512
  ///\sa ConArcIt
alpar@100
   513
alpar@100
   514
  template <typename Digraph>
alpar@100
   515
  inline typename Digraph::Edge 
alpar@100
   516
  findEdge(const Digraph &g, typename Digraph::Node u, typename Digraph::Node v,
alpar@100
   517
            typename Digraph::Edge p = INVALID) {
alpar@100
   518
    return _digraph_utils_bits::FindEdgeSelector<Digraph>::find(g, u, v, p);
alpar@100
   519
  }
alpar@100
   520
alpar@100
   521
  /// \brief Iterator for iterating on edges connected the same nodes.
alpar@100
   522
  ///
alpar@100
   523
  /// Iterator for iterating on edges connected the same nodes. It is 
alpar@100
   524
  /// higher level interface for the findEdge() function. You can
alpar@100
   525
  /// use it the following way:
alpar@100
   526
  ///\code
alpar@100
   527
  /// for (ConEdgeIt<Digraph> it(g, src, trg); it != INVALID; ++it) {
alpar@100
   528
  ///   ...
alpar@100
   529
  /// }
alpar@100
   530
  ///\endcode
alpar@100
   531
  ///
alpar@100
   532
  ///\sa findEdge()
alpar@100
   533
  ///
alpar@100
   534
  /// \author Balazs Dezso 
alpar@100
   535
  template <typename _Digraph>
alpar@100
   536
  class ConEdgeIt : public _Digraph::Edge {
alpar@100
   537
  public:
alpar@100
   538
alpar@100
   539
    typedef _Digraph Digraph;
alpar@100
   540
    typedef typename Digraph::Edge Parent;
alpar@100
   541
alpar@100
   542
    typedef typename Digraph::Edge Edge;
alpar@100
   543
    typedef typename Digraph::Node Node;
alpar@100
   544
alpar@100
   545
    /// \brief Constructor.
alpar@100
   546
    ///
alpar@100
   547
    /// Construct a new ConEdgeIt iterating on the arcs which
alpar@100
   548
    /// connects the \c u and \c v node.
alpar@100
   549
    ConEdgeIt(const Digraph& g, Node u, Node v) : digraph(g) {
alpar@100
   550
      Parent::operator=(findEdge(digraph, u, v));
alpar@100
   551
    }
alpar@100
   552
alpar@100
   553
    /// \brief Constructor.
alpar@100
   554
    ///
alpar@100
   555
    /// Construct a new ConEdgeIt which continues the iterating from 
alpar@100
   556
    /// the \c e arc.
alpar@100
   557
    ConEdgeIt(const Digraph& g, Edge e) : Parent(e), digraph(g) {}
alpar@100
   558
    
alpar@100
   559
    /// \brief Increment operator.
alpar@100
   560
    ///
alpar@100
   561
    /// It increments the iterator and gives back the next arc.
alpar@100
   562
    ConEdgeIt& operator++() {
alpar@100
   563
      Parent::operator=(findEdge(digraph, digraph.source(*this), 
alpar@100
   564
				      digraph.target(*this), *this));
alpar@100
   565
      return *this;
alpar@100
   566
    }
alpar@100
   567
  private:
alpar@100
   568
    const Digraph& digraph;
alpar@100
   569
  };
alpar@100
   570
alpar@100
   571
  /// \brief Copy a map.
alpar@100
   572
  ///
alpar@100
   573
  /// This function copies the \c from map to the \c to map. It uses the
alpar@100
   574
  /// given iterator to iterate on the data structure and it uses the \c ref
alpar@100
   575
  /// mapping to convert the from's keys to the to's keys.
alpar@100
   576
  template <typename To, typename From, 
alpar@100
   577
	    typename ItemIt, typename Ref>	    
alpar@100
   578
  void copyMap(To& to, const From& from, 
alpar@100
   579
	       ItemIt it, const Ref& ref) {
alpar@100
   580
    for (; it != INVALID; ++it) {
alpar@100
   581
      to[ref[it]] = from[it];
alpar@100
   582
    }
alpar@100
   583
  }
alpar@100
   584
alpar@100
   585
  /// \brief Copy the from map to the to map.
alpar@100
   586
  ///
alpar@100
   587
  /// Copy the \c from map to the \c to map. It uses the given iterator
alpar@100
   588
  /// to iterate on the data structure.
alpar@100
   589
  template <typename To, typename From, typename ItemIt>	    
alpar@100
   590
  void copyMap(To& to, const From& from, ItemIt it) {
alpar@100
   591
    for (; it != INVALID; ++it) {
alpar@100
   592
      to[it] = from[it];
alpar@100
   593
    }
alpar@100
   594
  }
alpar@100
   595
alpar@100
   596
  namespace _digraph_utils_bits {
alpar@100
   597
alpar@100
   598
    template <typename Digraph, typename Item, typename RefMap>
alpar@100
   599
    class MapCopyBase {
alpar@100
   600
    public:
alpar@100
   601
      virtual void copy(const Digraph& from, const RefMap& refMap) = 0;
alpar@100
   602
      
alpar@100
   603
      virtual ~MapCopyBase() {}
alpar@100
   604
    };
alpar@100
   605
alpar@100
   606
    template <typename Digraph, typename Item, typename RefMap, 
alpar@100
   607
              typename ToMap, typename FromMap>
alpar@100
   608
    class MapCopy : public MapCopyBase<Digraph, Item, RefMap> {
alpar@100
   609
    public:
alpar@100
   610
alpar@100
   611
      MapCopy(ToMap& tmap, const FromMap& map) 
alpar@100
   612
        : _tmap(tmap), _map(map) {}
alpar@100
   613
      
alpar@100
   614
      virtual void copy(const Digraph& digraph, const RefMap& refMap) {
alpar@100
   615
        typedef typename ItemSetTraits<Digraph, Item>::ItemIt ItemIt;
alpar@100
   616
        for (ItemIt it(digraph); it != INVALID; ++it) {
alpar@100
   617
          _tmap.set(refMap[it], _map[it]);
alpar@100
   618
        }
alpar@100
   619
      }
alpar@100
   620
alpar@100
   621
    private:
alpar@100
   622
      ToMap& _tmap;
alpar@100
   623
      const FromMap& _map;
alpar@100
   624
    };
alpar@100
   625
alpar@100
   626
    template <typename Digraph, typename Item, typename RefMap, typename It>
alpar@100
   627
    class ItemCopy : public MapCopyBase<Digraph, Item, RefMap> {
alpar@100
   628
    public:
alpar@100
   629
alpar@100
   630
      ItemCopy(It& it, const Item& item) : _it(it), _item(item) {}
alpar@100
   631
      
alpar@100
   632
      virtual void copy(const Digraph&, const RefMap& refMap) {
alpar@100
   633
        _it = refMap[_item];
alpar@100
   634
      }
alpar@100
   635
alpar@100
   636
    private:
alpar@100
   637
      It& _it;
alpar@100
   638
      Item _item;
alpar@100
   639
    };
alpar@100
   640
alpar@100
   641
    template <typename Digraph, typename Item, typename RefMap, typename Ref>
alpar@100
   642
    class RefCopy : public MapCopyBase<Digraph, Item, RefMap> {
alpar@100
   643
    public:
alpar@100
   644
alpar@100
   645
      RefCopy(Ref& map) : _map(map) {}
alpar@100
   646
      
alpar@100
   647
      virtual void copy(const Digraph& digraph, const RefMap& refMap) {
alpar@100
   648
        typedef typename ItemSetTraits<Digraph, Item>::ItemIt ItemIt;
alpar@100
   649
        for (ItemIt it(digraph); it != INVALID; ++it) {
alpar@100
   650
          _map.set(it, refMap[it]);
alpar@100
   651
        }
alpar@100
   652
      }
alpar@100
   653
alpar@100
   654
    private:
alpar@100
   655
      Ref& _map;
alpar@100
   656
    };
alpar@100
   657
alpar@100
   658
    template <typename Digraph, typename Item, typename RefMap, 
alpar@100
   659
              typename CrossRef>
alpar@100
   660
    class CrossRefCopy : public MapCopyBase<Digraph, Item, RefMap> {
alpar@100
   661
    public:
alpar@100
   662
alpar@100
   663
      CrossRefCopy(CrossRef& cmap) : _cmap(cmap) {}
alpar@100
   664
      
alpar@100
   665
      virtual void copy(const Digraph& digraph, const RefMap& refMap) {
alpar@100
   666
        typedef typename ItemSetTraits<Digraph, Item>::ItemIt ItemIt;
alpar@100
   667
        for (ItemIt it(digraph); it != INVALID; ++it) {
alpar@100
   668
          _cmap.set(refMap[it], it);
alpar@100
   669
        }
alpar@100
   670
      }
alpar@100
   671
alpar@100
   672
    private:
alpar@100
   673
      CrossRef& _cmap;
alpar@100
   674
    };
alpar@100
   675
alpar@100
   676
    template <typename Digraph, typename Enable = void>
alpar@100
   677
    struct DigraphCopySelector {
alpar@100
   678
      template <typename From, typename NodeRefMap, typename ArcRefMap>
alpar@100
   679
      static void copy(Digraph &to, const From& from,
alpar@100
   680
                       NodeRefMap& nodeRefMap, ArcRefMap& arcRefMap) {
alpar@100
   681
        for (typename From::NodeIt it(from); it != INVALID; ++it) {
alpar@100
   682
          nodeRefMap[it] = to.addNode();
alpar@100
   683
        }
alpar@100
   684
        for (typename From::ArcIt it(from); it != INVALID; ++it) {
alpar@100
   685
          arcRefMap[it] = to.addArc(nodeRefMap[from.source(it)], 
alpar@100
   686
                                          nodeRefMap[from.target(it)]);
alpar@100
   687
        }
alpar@100
   688
      }
alpar@100
   689
    };
alpar@100
   690
alpar@100
   691
    template <typename Digraph>
alpar@100
   692
    struct DigraphCopySelector<
alpar@100
   693
      Digraph, 
alpar@100
   694
      typename enable_if<typename Digraph::BuildTag, void>::type> 
alpar@100
   695
    {
alpar@100
   696
      template <typename From, typename NodeRefMap, typename ArcRefMap>
alpar@100
   697
      static void copy(Digraph &to, const From& from,
alpar@100
   698
                       NodeRefMap& nodeRefMap, ArcRefMap& arcRefMap) {
alpar@100
   699
        to.build(from, nodeRefMap, arcRefMap);
alpar@100
   700
      }
alpar@100
   701
    };
alpar@100
   702
alpar@100
   703
    template <typename Graph, typename Enable = void>
alpar@100
   704
    struct GraphCopySelector {
alpar@100
   705
      template <typename From, typename NodeRefMap, typename EdgeRefMap>
alpar@100
   706
      static void copy(Graph &to, const From& from,
alpar@100
   707
                       NodeRefMap& nodeRefMap, EdgeRefMap& edgeRefMap) {
alpar@100
   708
        for (typename From::NodeIt it(from); it != INVALID; ++it) {
alpar@100
   709
          nodeRefMap[it] = to.addNode();
alpar@100
   710
        }
alpar@100
   711
        for (typename From::EdgeIt it(from); it != INVALID; ++it) {
alpar@100
   712
          edgeRefMap[it] = to.addArc(nodeRefMap[from.source(it)], 
alpar@100
   713
				       nodeRefMap[from.target(it)]);
alpar@100
   714
        }
alpar@100
   715
      }
alpar@100
   716
    };
alpar@100
   717
alpar@100
   718
    template <typename Graph>
alpar@100
   719
    struct GraphCopySelector<
alpar@100
   720
      Graph, 
alpar@100
   721
      typename enable_if<typename Graph::BuildTag, void>::type> 
alpar@100
   722
    {
alpar@100
   723
      template <typename From, typename NodeRefMap, typename EdgeRefMap>
alpar@100
   724
      static void copy(Graph &to, const From& from,
alpar@100
   725
                       NodeRefMap& nodeRefMap, EdgeRefMap& edgeRefMap) {
alpar@100
   726
        to.build(from, nodeRefMap, edgeRefMap);
alpar@100
   727
      }
alpar@100
   728
    };
alpar@100
   729
alpar@100
   730
    template <typename BpGraph, typename Enable = void>
alpar@100
   731
    struct BpGraphCopySelector {
alpar@100
   732
      template <typename From, typename RedRefMap, 
alpar@100
   733
                typename BlueRefMap, typename EdgeRefMap>
alpar@100
   734
      static void copy(BpGraph &to, const From& from,
alpar@100
   735
                       RedRefMap& redRefMap, BlueRefMap& blueRefMap,
alpar@100
   736
                       EdgeRefMap& edgeRefMap) {
alpar@100
   737
        for (typename From::RedIt it(from); it != INVALID; ++it) {
alpar@100
   738
          redRefMap[it] = to.addRed();
alpar@100
   739
        }
alpar@100
   740
        for (typename From::BlueIt it(from); it != INVALID; ++it) {
alpar@100
   741
          blueRefMap[it] = to.addBlue();
alpar@100
   742
        }
alpar@100
   743
        for (typename From::EdgeIt it(from); it != INVALID; ++it) {
alpar@100
   744
          edgeRefMap[it] = to.addArc(redRefMap[from.red(it)], 
alpar@100
   745
                                           blueRefMap[from.blue(it)]);
alpar@100
   746
        }
alpar@100
   747
      }
alpar@100
   748
    };
alpar@100
   749
alpar@100
   750
    template <typename BpGraph>
alpar@100
   751
    struct BpGraphCopySelector<
alpar@100
   752
      BpGraph, 
alpar@100
   753
      typename enable_if<typename BpGraph::BuildTag, void>::type> 
alpar@100
   754
    {
alpar@100
   755
      template <typename From, typename RedRefMap, 
alpar@100
   756
                typename BlueRefMap, typename EdgeRefMap>
alpar@100
   757
      static void copy(BpGraph &to, const From& from,
alpar@100
   758
                       RedRefMap& redRefMap, BlueRefMap& blueRefMap,
alpar@100
   759
                       EdgeRefMap& edgeRefMap) {
alpar@100
   760
        to.build(from, redRefMap, blueRefMap, edgeRefMap);
alpar@100
   761
      }
alpar@100
   762
    };
alpar@100
   763
    
alpar@100
   764
alpar@100
   765
  }
alpar@100
   766
alpar@100
   767
  /// \brief Class to copy a digraph.
alpar@100
   768
  ///
alpar@100
   769
  /// Class to copy a digraph to another digraph (duplicate a digraph). The
alpar@100
   770
  /// simplest way of using it is through the \c copyDigraph() function.
alpar@100
   771
  template <typename To, typename From>
alpar@100
   772
  class DigraphCopy {
alpar@100
   773
  private:
alpar@100
   774
alpar@100
   775
    typedef typename From::Node Node;
alpar@100
   776
    typedef typename From::NodeIt NodeIt;
alpar@100
   777
    typedef typename From::Arc Arc;
alpar@100
   778
    typedef typename From::ArcIt ArcIt;
alpar@100
   779
alpar@100
   780
    typedef typename To::Node TNode;
alpar@100
   781
    typedef typename To::Arc TArc;
alpar@100
   782
alpar@100
   783
    typedef typename From::template NodeMap<TNode> NodeRefMap;
alpar@100
   784
    typedef typename From::template ArcMap<TArc> ArcRefMap;
alpar@100
   785
    
alpar@100
   786
    
alpar@100
   787
  public: 
alpar@100
   788
alpar@100
   789
alpar@100
   790
    /// \brief Constructor for the DigraphCopy.
alpar@100
   791
    ///
alpar@100
   792
    /// It copies the content of the \c _from digraph into the
alpar@100
   793
    /// \c _to digraph.
alpar@100
   794
    DigraphCopy(To& _to, const From& _from) 
alpar@100
   795
      : from(_from), to(_to) {}
alpar@100
   796
alpar@100
   797
    /// \brief Destructor of the DigraphCopy
alpar@100
   798
    ///
alpar@100
   799
    /// Destructor of the DigraphCopy
alpar@100
   800
    ~DigraphCopy() {
alpar@100
   801
      for (int i = 0; i < int(nodeMapCopies.size()); ++i) {
alpar@100
   802
        delete nodeMapCopies[i];
alpar@100
   803
      }
alpar@100
   804
      for (int i = 0; i < int(arcMapCopies.size()); ++i) {
alpar@100
   805
        delete arcMapCopies[i];
alpar@100
   806
      }
alpar@100
   807
alpar@100
   808
    }
alpar@100
   809
alpar@100
   810
    /// \brief Copies the node references into the given map.
alpar@100
   811
    ///
alpar@100
   812
    /// Copies the node references into the given map.
alpar@100
   813
    template <typename NodeRef>
alpar@100
   814
    DigraphCopy& nodeRef(NodeRef& map) {
alpar@100
   815
      nodeMapCopies.push_back(new _digraph_utils_bits::RefCopy<From, Node, 
alpar@100
   816
                              NodeRefMap, NodeRef>(map));
alpar@100
   817
      return *this;
alpar@100
   818
    }
alpar@100
   819
alpar@100
   820
    /// \brief Copies the node cross references into the given map.
alpar@100
   821
    ///
alpar@100
   822
    ///  Copies the node cross references (reverse references) into
alpar@100
   823
    ///  the given map.
alpar@100
   824
    template <typename NodeCrossRef>
alpar@100
   825
    DigraphCopy& nodeCrossRef(NodeCrossRef& map) {
alpar@100
   826
      nodeMapCopies.push_back(new _digraph_utils_bits::CrossRefCopy<From, Node,
alpar@100
   827
                              NodeRefMap, NodeCrossRef>(map));
alpar@100
   828
      return *this;
alpar@100
   829
    }
alpar@100
   830
alpar@100
   831
    /// \brief Make copy of the given map.
alpar@100
   832
    ///
alpar@100
   833
    /// Makes copy of the given map for the newly created digraph. 
alpar@100
   834
    /// The new map's key type is the to digraph's node type,
alpar@100
   835
    /// and the copied map's key type is the from digraph's node
alpar@100
   836
    /// type.  
alpar@100
   837
    template <typename ToMap, typename FromMap>
alpar@100
   838
    DigraphCopy& nodeMap(ToMap& tmap, const FromMap& map) {
alpar@100
   839
      nodeMapCopies.push_back(new _digraph_utils_bits::MapCopy<From, Node, 
alpar@100
   840
                              NodeRefMap, ToMap, FromMap>(tmap, map));
alpar@100
   841
      return *this;
alpar@100
   842
    }
alpar@100
   843
alpar@100
   844
    /// \brief Make a copy of the given node.
alpar@100
   845
    ///
alpar@100
   846
    /// Make a copy of the given node.
alpar@100
   847
    DigraphCopy& node(TNode& tnode, const Node& snode) {
alpar@100
   848
      nodeMapCopies.push_back(new _digraph_utils_bits::ItemCopy<From, Node, 
alpar@100
   849
                              NodeRefMap, TNode>(tnode, snode));
alpar@100
   850
      return *this;
alpar@100
   851
    }
alpar@100
   852
alpar@100
   853
    /// \brief Copies the arc references into the given map.
alpar@100
   854
    ///
alpar@100
   855
    /// Copies the arc references into the given map.
alpar@100
   856
    template <typename ArcRef>
alpar@100
   857
    DigraphCopy& arcRef(ArcRef& map) {
alpar@100
   858
      arcMapCopies.push_back(new _digraph_utils_bits::RefCopy<From, Arc, 
alpar@100
   859
                              ArcRefMap, ArcRef>(map));
alpar@100
   860
      return *this;
alpar@100
   861
    }
alpar@100
   862
alpar@100
   863
    /// \brief Copies the arc cross references into the given map.
alpar@100
   864
    ///
alpar@100
   865
    ///  Copies the arc cross references (reverse references) into
alpar@100
   866
    ///  the given map.
alpar@100
   867
    template <typename ArcCrossRef>
alpar@100
   868
    DigraphCopy& arcCrossRef(ArcCrossRef& map) {
alpar@100
   869
      arcMapCopies.push_back(new _digraph_utils_bits::CrossRefCopy<From, Arc,
alpar@100
   870
                              ArcRefMap, ArcCrossRef>(map));
alpar@100
   871
      return *this;
alpar@100
   872
    }
alpar@100
   873
alpar@100
   874
    /// \brief Make copy of the given map.
alpar@100
   875
    ///
alpar@100
   876
    /// Makes copy of the given map for the newly created digraph. 
alpar@100
   877
    /// The new map's key type is the to digraph's arc type,
alpar@100
   878
    /// and the copied map's key type is the from digraph's arc
alpar@100
   879
    /// type.  
alpar@100
   880
    template <typename ToMap, typename FromMap>
alpar@100
   881
    DigraphCopy& arcMap(ToMap& tmap, const FromMap& map) {
alpar@100
   882
      arcMapCopies.push_back(new _digraph_utils_bits::MapCopy<From, Arc, 
alpar@100
   883
                              ArcRefMap, ToMap, FromMap>(tmap, map));
alpar@100
   884
      return *this;
alpar@100
   885
    }
alpar@100
   886
alpar@100
   887
    /// \brief Make a copy of the given arc.
alpar@100
   888
    ///
alpar@100
   889
    /// Make a copy of the given arc.
alpar@100
   890
    DigraphCopy& arc(TArc& tarc, const Arc& sarc) {
alpar@100
   891
      arcMapCopies.push_back(new _digraph_utils_bits::ItemCopy<From, Arc, 
alpar@100
   892
                              ArcRefMap, TArc>(tarc, sarc));
alpar@100
   893
      return *this;
alpar@100
   894
    }
alpar@100
   895
alpar@100
   896
    /// \brief Executes the copies.
alpar@100
   897
    ///
alpar@100
   898
    /// Executes the copies.
alpar@100
   899
    void run() {
alpar@100
   900
      NodeRefMap nodeRefMap(from);
alpar@100
   901
      ArcRefMap arcRefMap(from);
alpar@100
   902
      _digraph_utils_bits::DigraphCopySelector<To>::
alpar@100
   903
        copy(to, from, nodeRefMap, arcRefMap);
alpar@100
   904
      for (int i = 0; i < int(nodeMapCopies.size()); ++i) {
alpar@100
   905
        nodeMapCopies[i]->copy(from, nodeRefMap);
alpar@100
   906
      }
alpar@100
   907
      for (int i = 0; i < int(arcMapCopies.size()); ++i) {
alpar@100
   908
        arcMapCopies[i]->copy(from, arcRefMap);
alpar@100
   909
      }      
alpar@100
   910
    }
alpar@100
   911
alpar@100
   912
  protected:
alpar@100
   913
alpar@100
   914
alpar@100
   915
    const From& from;
alpar@100
   916
    To& to;
alpar@100
   917
alpar@100
   918
    std::vector<_digraph_utils_bits::MapCopyBase<From, Node, NodeRefMap>* > 
alpar@100
   919
    nodeMapCopies;
alpar@100
   920
alpar@100
   921
    std::vector<_digraph_utils_bits::MapCopyBase<From, Arc, ArcRefMap>* > 
alpar@100
   922
    arcMapCopies;
alpar@100
   923
alpar@100
   924
  };
alpar@100
   925
alpar@100
   926
  /// \brief Copy a digraph to another digraph.
alpar@100
   927
  ///
alpar@100
   928
  /// Copy a digraph to another digraph.
alpar@100
   929
  /// The usage of the function:
alpar@100
   930
  /// 
alpar@100
   931
  ///\code
alpar@100
   932
  /// copyDigraph(trg, src).nodeRef(nr).arcCrossRef(ecr).run();
alpar@100
   933
  ///\endcode
alpar@100
   934
  /// 
alpar@100
   935
  /// After the copy the \c nr map will contain the mapping from the
alpar@100
   936
  /// nodes of the \c from digraph to the nodes of the \c to digraph and
alpar@100
   937
  /// \c ecr will contain the mapping from the arcs of the \c to digraph
alpar@100
   938
  /// to the arcs of the \c from digraph.
alpar@100
   939
  ///
alpar@100
   940
  /// \see DigraphCopy 
alpar@100
   941
  template <typename To, typename From>
alpar@100
   942
  DigraphCopy<To, From> copyDigraph(To& to, const From& from) {
alpar@100
   943
    return DigraphCopy<To, From>(to, from);
alpar@100
   944
  }
alpar@100
   945
alpar@100
   946
  /// \brief Class to copy an graph.
alpar@100
   947
  ///
alpar@100
   948
  /// Class to copy an graph to another digraph (duplicate a digraph).
alpar@100
   949
  /// The simplest way of using it is through the \c copyGraph() function.
alpar@100
   950
  template <typename To, typename From>
alpar@100
   951
  class GraphCopy {
alpar@100
   952
  private:
alpar@100
   953
alpar@100
   954
    typedef typename From::Node Node;
alpar@100
   955
    typedef typename From::NodeIt NodeIt;
alpar@100
   956
    typedef typename From::Arc Arc;
alpar@100
   957
    typedef typename From::ArcIt ArcIt;
alpar@100
   958
    typedef typename From::Edge Edge;
alpar@100
   959
    typedef typename From::EdgeIt EdgeIt;
alpar@100
   960
alpar@100
   961
    typedef typename To::Node TNode;
alpar@100
   962
    typedef typename To::Arc TArc;
alpar@100
   963
    typedef typename To::Edge TEdge;
alpar@100
   964
alpar@100
   965
    typedef typename From::template NodeMap<TNode> NodeRefMap;
alpar@100
   966
    typedef typename From::template EdgeMap<TEdge> EdgeRefMap;
alpar@100
   967
alpar@100
   968
    struct ArcRefMap {
alpar@100
   969
      ArcRefMap(const To& _to, const From& _from,
alpar@100
   970
                 const EdgeRefMap& _edge_ref, const NodeRefMap& _node_ref) 
alpar@100
   971
        : to(_to), from(_from), 
alpar@100
   972
          edge_ref(_edge_ref), node_ref(_node_ref) {}
alpar@100
   973
alpar@100
   974
      typedef typename From::Arc Key;
alpar@100
   975
      typedef typename To::Arc Value;
alpar@100
   976
alpar@100
   977
      Value operator[](const Key& key) const {
alpar@100
   978
        bool forward = 
alpar@100
   979
          (from.direction(key) == 
alpar@100
   980
           (node_ref[from.source(static_cast<const Edge&>(key))] == 
alpar@100
   981
            to.source(edge_ref[static_cast<const Edge&>(key)])));
alpar@100
   982
	return to.direct(edge_ref[key], forward); 
alpar@100
   983
      }
alpar@100
   984
      
alpar@100
   985
      const To& to;
alpar@100
   986
      const From& from;
alpar@100
   987
      const EdgeRefMap& edge_ref;
alpar@100
   988
      const NodeRefMap& node_ref;
alpar@100
   989
    };
alpar@100
   990
alpar@100
   991
    
alpar@100
   992
  public: 
alpar@100
   993
alpar@100
   994
alpar@100
   995
    /// \brief Constructor for the DigraphCopy.
alpar@100
   996
    ///
alpar@100
   997
    /// It copies the content of the \c _from digraph into the
alpar@100
   998
    /// \c _to digraph.
alpar@100
   999
    GraphCopy(To& _to, const From& _from) 
alpar@100
  1000
      : from(_from), to(_to) {}
alpar@100
  1001
alpar@100
  1002
    /// \brief Destructor of the DigraphCopy
alpar@100
  1003
    ///
alpar@100
  1004
    /// Destructor of the DigraphCopy
alpar@100
  1005
    ~GraphCopy() {
alpar@100
  1006
      for (int i = 0; i < int(nodeMapCopies.size()); ++i) {
alpar@100
  1007
        delete nodeMapCopies[i];
alpar@100
  1008
      }
alpar@100
  1009
      for (int i = 0; i < int(arcMapCopies.size()); ++i) {
alpar@100
  1010
        delete arcMapCopies[i];
alpar@100
  1011
      }
alpar@100
  1012
      for (int i = 0; i < int(edgeMapCopies.size()); ++i) {
alpar@100
  1013
        delete edgeMapCopies[i];
alpar@100
  1014
      }
alpar@100
  1015
alpar@100
  1016
    }
alpar@100
  1017
alpar@100
  1018
    /// \brief Copies the node references into the given map.
alpar@100
  1019
    ///
alpar@100
  1020
    /// Copies the node references into the given map.
alpar@100
  1021
    template <typename NodeRef>
alpar@100
  1022
    GraphCopy& nodeRef(NodeRef& map) {
alpar@100
  1023
      nodeMapCopies.push_back(new _digraph_utils_bits::RefCopy<From, Node, 
alpar@100
  1024
                              NodeRefMap, NodeRef>(map));
alpar@100
  1025
      return *this;
alpar@100
  1026
    }
alpar@100
  1027
alpar@100
  1028
    /// \brief Copies the node cross references into the given map.
alpar@100
  1029
    ///
alpar@100
  1030
    ///  Copies the node cross references (reverse references) into
alpar@100
  1031
    ///  the given map.
alpar@100
  1032
    template <typename NodeCrossRef>
alpar@100
  1033
    GraphCopy& nodeCrossRef(NodeCrossRef& map) {
alpar@100
  1034
      nodeMapCopies.push_back(new _digraph_utils_bits::CrossRefCopy<From, Node,
alpar@100
  1035
                              NodeRefMap, NodeCrossRef>(map));
alpar@100
  1036
      return *this;
alpar@100
  1037
    }
alpar@100
  1038
alpar@100
  1039
    /// \brief Make copy of the given map.
alpar@100
  1040
    ///
alpar@100
  1041
    /// Makes copy of the given map for the newly created digraph. 
alpar@100
  1042
    /// The new map's key type is the to digraph's node type,
alpar@100
  1043
    /// and the copied map's key type is the from digraph's node
alpar@100
  1044
    /// type.  
alpar@100
  1045
    template <typename ToMap, typename FromMap>
alpar@100
  1046
    GraphCopy& nodeMap(ToMap& tmap, const FromMap& map) {
alpar@100
  1047
      nodeMapCopies.push_back(new _digraph_utils_bits::MapCopy<From, Node, 
alpar@100
  1048
                              NodeRefMap, ToMap, FromMap>(tmap, map));
alpar@100
  1049
      return *this;
alpar@100
  1050
    }
alpar@100
  1051
alpar@100
  1052
    /// \brief Make a copy of the given node.
alpar@100
  1053
    ///
alpar@100
  1054
    /// Make a copy of the given node.
alpar@100
  1055
    GraphCopy& node(TNode& tnode, const Node& snode) {
alpar@100
  1056
      nodeMapCopies.push_back(new _digraph_utils_bits::ItemCopy<From, Node, 
alpar@100
  1057
                              NodeRefMap, TNode>(tnode, snode));
alpar@100
  1058
      return *this;
alpar@100
  1059
    }
alpar@100
  1060
alpar@100
  1061
    /// \brief Copies the arc references into the given map.
alpar@100
  1062
    ///
alpar@100
  1063
    /// Copies the arc references into the given map.
alpar@100
  1064
    template <typename ArcRef>
alpar@100
  1065
    GraphCopy& arcRef(ArcRef& map) {
alpar@100
  1066
      arcMapCopies.push_back(new _digraph_utils_bits::RefCopy<From, Arc, 
alpar@100
  1067
                              ArcRefMap, ArcRef>(map));
alpar@100
  1068
      return *this;
alpar@100
  1069
    }
alpar@100
  1070
alpar@100
  1071
    /// \brief Copies the arc cross references into the given map.
alpar@100
  1072
    ///
alpar@100
  1073
    ///  Copies the arc cross references (reverse references) into
alpar@100
  1074
    ///  the given map.
alpar@100
  1075
    template <typename ArcCrossRef>
alpar@100
  1076
    GraphCopy& arcCrossRef(ArcCrossRef& map) {
alpar@100
  1077
      arcMapCopies.push_back(new _digraph_utils_bits::CrossRefCopy<From, Arc,
alpar@100
  1078
                              ArcRefMap, ArcCrossRef>(map));
alpar@100
  1079
      return *this;
alpar@100
  1080
    }
alpar@100
  1081
alpar@100
  1082
    /// \brief Make copy of the given map.
alpar@100
  1083
    ///
alpar@100
  1084
    /// Makes copy of the given map for the newly created digraph. 
alpar@100
  1085
    /// The new map's key type is the to digraph's arc type,
alpar@100
  1086
    /// and the copied map's key type is the from digraph's arc
alpar@100
  1087
    /// type.  
alpar@100
  1088
    template <typename ToMap, typename FromMap>
alpar@100
  1089
    GraphCopy& arcMap(ToMap& tmap, const FromMap& map) {
alpar@100
  1090
      arcMapCopies.push_back(new _digraph_utils_bits::MapCopy<From, Arc, 
alpar@100
  1091
                              ArcRefMap, ToMap, FromMap>(tmap, map));
alpar@100
  1092
      return *this;
alpar@100
  1093
    }
alpar@100
  1094
alpar@100
  1095
    /// \brief Make a copy of the given arc.
alpar@100
  1096
    ///
alpar@100
  1097
    /// Make a copy of the given arc.
alpar@100
  1098
    GraphCopy& arc(TArc& tarc, const Arc& sarc) {
alpar@100
  1099
      arcMapCopies.push_back(new _digraph_utils_bits::ItemCopy<From, Arc, 
alpar@100
  1100
                              ArcRefMap, TArc>(tarc, sarc));
alpar@100
  1101
      return *this;
alpar@100
  1102
    }
alpar@100
  1103
alpar@100
  1104
    /// \brief Copies the edge references into the given map.
alpar@100
  1105
    ///
alpar@100
  1106
    /// Copies the edge references into the given map.
alpar@100
  1107
    template <typename EdgeRef>
alpar@100
  1108
    GraphCopy& edgeRef(EdgeRef& map) {
alpar@100
  1109
      edgeMapCopies.push_back(new _digraph_utils_bits::RefCopy<From, Edge, 
alpar@100
  1110
                               EdgeRefMap, EdgeRef>(map));
alpar@100
  1111
      return *this;
alpar@100
  1112
    }
alpar@100
  1113
alpar@100
  1114
    /// \brief Copies the edge cross references into the given map.
alpar@100
  1115
    ///
alpar@100
  1116
    /// Copies the edge cross references (reverse
alpar@100
  1117
    /// references) into the given map.
alpar@100
  1118
    template <typename EdgeCrossRef>
alpar@100
  1119
    GraphCopy& edgeCrossRef(EdgeCrossRef& map) {
alpar@100
  1120
      edgeMapCopies.push_back(new _digraph_utils_bits::CrossRefCopy<From, 
alpar@100
  1121
                               Edge, EdgeRefMap, EdgeCrossRef>(map));
alpar@100
  1122
      return *this;
alpar@100
  1123
    }
alpar@100
  1124
alpar@100
  1125
    /// \brief Make copy of the given map.
alpar@100
  1126
    ///
alpar@100
  1127
    /// Makes copy of the given map for the newly created digraph. 
alpar@100
  1128
    /// The new map's key type is the to digraph's edge type,
alpar@100
  1129
    /// and the copied map's key type is the from digraph's edge
alpar@100
  1130
    /// type.  
alpar@100
  1131
    template <typename ToMap, typename FromMap>
alpar@100
  1132
    GraphCopy& edgeMap(ToMap& tmap, const FromMap& map) {
alpar@100
  1133
      edgeMapCopies.push_back(new _digraph_utils_bits::MapCopy<From, Edge, 
alpar@100
  1134
                               EdgeRefMap, ToMap, FromMap>(tmap, map));
alpar@100
  1135
      return *this;
alpar@100
  1136
    }
alpar@100
  1137
alpar@100
  1138
    /// \brief Make a copy of the given edge.
alpar@100
  1139
    ///
alpar@100
  1140
    /// Make a copy of the given edge.
alpar@100
  1141
    GraphCopy& edge(TEdge& tedge, const Edge& sedge) {
alpar@100
  1142
      edgeMapCopies.push_back(new _digraph_utils_bits::ItemCopy<From, Edge, 
alpar@100
  1143
                               EdgeRefMap, TEdge>(tedge, sedge));
alpar@100
  1144
      return *this;
alpar@100
  1145
    }
alpar@100
  1146
alpar@100
  1147
    /// \brief Executes the copies.
alpar@100
  1148
    ///
alpar@100
  1149
    /// Executes the copies.
alpar@100
  1150
    void run() {
alpar@100
  1151
      NodeRefMap nodeRefMap(from);
alpar@100
  1152
      EdgeRefMap edgeRefMap(from);
alpar@100
  1153
      ArcRefMap arcRefMap(to, from, edgeRefMap, nodeRefMap);
alpar@100
  1154
      _digraph_utils_bits::GraphCopySelector<To>::
alpar@100
  1155
        copy(to, from, nodeRefMap, edgeRefMap);
alpar@100
  1156
      for (int i = 0; i < int(nodeMapCopies.size()); ++i) {
alpar@100
  1157
        nodeMapCopies[i]->copy(from, nodeRefMap);
alpar@100
  1158
      }
alpar@100
  1159
      for (int i = 0; i < int(edgeMapCopies.size()); ++i) {
alpar@100
  1160
        edgeMapCopies[i]->copy(from, edgeRefMap);
alpar@100
  1161
      }
alpar@100
  1162
      for (int i = 0; i < int(arcMapCopies.size()); ++i) {
alpar@100
  1163
        arcMapCopies[i]->copy(from, arcRefMap);
alpar@100
  1164
      }
alpar@100
  1165
    }
alpar@100
  1166
alpar@100
  1167
  private:
alpar@100
  1168
    
alpar@100
  1169
    const From& from;
alpar@100
  1170
    To& to;
alpar@100
  1171
alpar@100
  1172
    std::vector<_digraph_utils_bits::MapCopyBase<From, Node, NodeRefMap>* > 
alpar@100
  1173
    nodeMapCopies;
alpar@100
  1174
alpar@100
  1175
    std::vector<_digraph_utils_bits::MapCopyBase<From, Arc, ArcRefMap>* > 
alpar@100
  1176
    arcMapCopies;
alpar@100
  1177
alpar@100
  1178
    std::vector<_digraph_utils_bits::MapCopyBase<From, Edge, EdgeRefMap>* > 
alpar@100
  1179
    edgeMapCopies;
alpar@100
  1180
alpar@100
  1181
  };
alpar@100
  1182
alpar@100
  1183
  /// \brief Copy an graph to another digraph.
alpar@100
  1184
  ///
alpar@100
  1185
  /// Copy an graph to another digraph.
alpar@100
  1186
  /// The usage of the function:
alpar@100
  1187
  /// 
alpar@100
  1188
  ///\code
alpar@100
  1189
  /// copyGraph(trg, src).nodeRef(nr).arcCrossRef(ecr).run();
alpar@100
  1190
  ///\endcode
alpar@100
  1191
  /// 
alpar@100
  1192
  /// After the copy the \c nr map will contain the mapping from the
alpar@100
  1193
  /// nodes of the \c from digraph to the nodes of the \c to digraph and
alpar@100
  1194
  /// \c ecr will contain the mapping from the arcs of the \c to digraph
alpar@100
  1195
  /// to the arcs of the \c from digraph.
alpar@100
  1196
  ///
alpar@100
  1197
  /// \see GraphCopy 
alpar@100
  1198
  template <typename To, typename From>
alpar@100
  1199
  GraphCopy<To, From> 
alpar@100
  1200
  copyGraph(To& to, const From& from) {
alpar@100
  1201
    return GraphCopy<To, From>(to, from);
alpar@100
  1202
  }
alpar@100
  1203
alpar@100
  1204
  /// \brief Class to copy a bipartite digraph.
alpar@100
  1205
  ///
alpar@100
  1206
  /// Class to copy a bipartite digraph to another digraph
alpar@100
  1207
  /// (duplicate a digraph).  The simplest way of using it is through
alpar@100
  1208
  /// the \c copyBpGraph() function.
alpar@100
  1209
  template <typename To, typename From>
alpar@100
  1210
  class BpGraphCopy {
alpar@100
  1211
  private:
alpar@100
  1212
alpar@100
  1213
    typedef typename From::Node Node;
alpar@100
  1214
    typedef typename From::Red Red;
alpar@100
  1215
    typedef typename From::Blue Blue;
alpar@100
  1216
    typedef typename From::NodeIt NodeIt;
alpar@100
  1217
    typedef typename From::Arc Arc;
alpar@100
  1218
    typedef typename From::ArcIt ArcIt;
alpar@100
  1219
    typedef typename From::Edge Edge;
alpar@100
  1220
    typedef typename From::EdgeIt EdgeIt;
alpar@100
  1221
alpar@100
  1222
    typedef typename To::Node TNode;
alpar@100
  1223
    typedef typename To::Arc TArc;
alpar@100
  1224
    typedef typename To::Edge TEdge;
alpar@100
  1225
alpar@100
  1226
    typedef typename From::template RedMap<TNode> RedRefMap;
alpar@100
  1227
    typedef typename From::template BlueMap<TNode> BlueRefMap;
alpar@100
  1228
    typedef typename From::template EdgeMap<TEdge> EdgeRefMap;
alpar@100
  1229
alpar@100
  1230
    struct NodeRefMap {
alpar@100
  1231
      NodeRefMap(const From& _from, const RedRefMap& _red_ref,
alpar@100
  1232
                 const BlueRefMap& _blue_ref)
alpar@100
  1233
        : from(_from), red_ref(_red_ref), blue_ref(_blue_ref) {}
alpar@100
  1234
alpar@100
  1235
      typedef typename From::Node Key;
alpar@100
  1236
      typedef typename To::Node Value;
alpar@100
  1237
alpar@100
  1238
      Value operator[](const Key& key) const {
alpar@100
  1239
	return from.red(key) ? red_ref[key] : blue_ref[key]; 
alpar@100
  1240
      }
alpar@100
  1241
      
alpar@100
  1242
      const From& from;
alpar@100
  1243
      const RedRefMap& red_ref;
alpar@100
  1244
      const BlueRefMap& blue_ref;
alpar@100
  1245
    };
alpar@100
  1246
alpar@100
  1247
    struct ArcRefMap {
alpar@100
  1248
      ArcRefMap(const To& _to, const From& _from,
alpar@100
  1249
                 const EdgeRefMap& _edge_ref, const NodeRefMap& _node_ref) 
alpar@100
  1250
        : to(_to), from(_from), 
alpar@100
  1251
          edge_ref(_edge_ref), node_ref(_node_ref) {}
alpar@100
  1252
alpar@100
  1253
      typedef typename From::Arc Key;
alpar@100
  1254
      typedef typename To::Arc Value;
alpar@100
  1255
alpar@100
  1256
      Value operator[](const Key& key) const {
alpar@100
  1257
        bool forward = 
alpar@100
  1258
          (from.direction(key) == 
alpar@100
  1259
           (node_ref[from.source(static_cast<const Edge&>(key))] == 
alpar@100
  1260
            to.source(edge_ref[static_cast<const Edge&>(key)])));
alpar@100
  1261
	return to.direct(edge_ref[key], forward); 
alpar@100
  1262
      }
alpar@100
  1263
      
alpar@100
  1264
      const To& to;
alpar@100
  1265
      const From& from;
alpar@100
  1266
      const EdgeRefMap& edge_ref;
alpar@100
  1267
      const NodeRefMap& node_ref;
alpar@100
  1268
    };
alpar@100
  1269
    
alpar@100
  1270
  public: 
alpar@100
  1271
alpar@100
  1272
alpar@100
  1273
    /// \brief Constructor for the DigraphCopy.
alpar@100
  1274
    ///
alpar@100
  1275
    /// It copies the content of the \c _from digraph into the
alpar@100
  1276
    /// \c _to digraph.
alpar@100
  1277
    BpGraphCopy(To& _to, const From& _from) 
alpar@100
  1278
      : from(_from), to(_to) {}
alpar@100
  1279
alpar@100
  1280
    /// \brief Destructor of the DigraphCopy
alpar@100
  1281
    ///
alpar@100
  1282
    /// Destructor of the DigraphCopy
alpar@100
  1283
    ~BpGraphCopy() {
alpar@100
  1284
      for (int i = 0; i < int(redMapCopies.size()); ++i) {
alpar@100
  1285
        delete redMapCopies[i];
alpar@100
  1286
      }
alpar@100
  1287
      for (int i = 0; i < int(blueMapCopies.size()); ++i) {
alpar@100
  1288
        delete blueMapCopies[i];
alpar@100
  1289
      }
alpar@100
  1290
      for (int i = 0; i < int(nodeMapCopies.size()); ++i) {
alpar@100
  1291
        delete nodeMapCopies[i];
alpar@100
  1292
      }
alpar@100
  1293
      for (int i = 0; i < int(arcMapCopies.size()); ++i) {
alpar@100
  1294
        delete arcMapCopies[i];
alpar@100
  1295
      }
alpar@100
  1296
      for (int i = 0; i < int(edgeMapCopies.size()); ++i) {
alpar@100
  1297
        delete edgeMapCopies[i];
alpar@100
  1298
      }
alpar@100
  1299
alpar@100
  1300
    }
alpar@100
  1301
alpar@100
  1302
    /// \brief Copies the A-node references into the given map.
alpar@100
  1303
    ///
alpar@100
  1304
    /// Copies the A-node references into the given map.
alpar@100
  1305
    template <typename RedRef>
alpar@100
  1306
    BpGraphCopy& redRef(RedRef& map) {
alpar@100
  1307
      redMapCopies.push_back(new _digraph_utils_bits::RefCopy<From, Red, 
alpar@100
  1308
                               RedRefMap, RedRef>(map));
alpar@100
  1309
      return *this;
alpar@100
  1310
    }
alpar@100
  1311
alpar@100
  1312
    /// \brief Copies the A-node cross references into the given map.
alpar@100
  1313
    ///
alpar@100
  1314
    /// Copies the A-node cross references (reverse references) into
alpar@100
  1315
    /// the given map.
alpar@100
  1316
    template <typename RedCrossRef>
alpar@100
  1317
    BpGraphCopy& redCrossRef(RedCrossRef& map) {
alpar@100
  1318
      redMapCopies.push_back(new _digraph_utils_bits::CrossRefCopy<From, 
alpar@100
  1319
                               Red, RedRefMap, RedCrossRef>(map));
alpar@100
  1320
      return *this;
alpar@100
  1321
    }
alpar@100
  1322
alpar@100
  1323
    /// \brief Make copy of the given A-node map.
alpar@100
  1324
    ///
alpar@100
  1325
    /// Makes copy of the given map for the newly created digraph. 
alpar@100
  1326
    /// The new map's key type is the to digraph's node type,
alpar@100
  1327
    /// and the copied map's key type is the from digraph's node
alpar@100
  1328
    /// type.  
alpar@100
  1329
    template <typename ToMap, typename FromMap>
alpar@100
  1330
    BpGraphCopy& redMap(ToMap& tmap, const FromMap& map) {
alpar@100
  1331
      redMapCopies.push_back(new _digraph_utils_bits::MapCopy<From, Red, 
alpar@100
  1332
                               RedRefMap, ToMap, FromMap>(tmap, map));
alpar@100
  1333
      return *this;
alpar@100
  1334
    }
alpar@100
  1335
alpar@100
  1336
    /// \brief Copies the B-node references into the given map.
alpar@100
  1337
    ///
alpar@100
  1338
    /// Copies the B-node references into the given map.
alpar@100
  1339
    template <typename BlueRef>
alpar@100
  1340
    BpGraphCopy& blueRef(BlueRef& map) {
alpar@100
  1341
      blueMapCopies.push_back(new _digraph_utils_bits::RefCopy<From, Blue, 
alpar@100
  1342
                               BlueRefMap, BlueRef>(map));
alpar@100
  1343
      return *this;
alpar@100
  1344
    }
alpar@100
  1345
alpar@100
  1346
    /// \brief Copies the B-node cross references into the given map.
alpar@100
  1347
    ///
alpar@100
  1348
    ///  Copies the B-node cross references (reverse references) into
alpar@100
  1349
    ///  the given map.
alpar@100
  1350
    template <typename BlueCrossRef>
alpar@100
  1351
    BpGraphCopy& blueCrossRef(BlueCrossRef& map) {
alpar@100
  1352
      blueMapCopies.push_back(new _digraph_utils_bits::CrossRefCopy<From, 
alpar@100
  1353
                              Blue, BlueRefMap, BlueCrossRef>(map));
alpar@100
  1354
      return *this;
alpar@100
  1355
    }
alpar@100
  1356
alpar@100
  1357
    /// \brief Make copy of the given B-node map.
alpar@100
  1358
    ///
alpar@100
  1359
    /// Makes copy of the given map for the newly created digraph. 
alpar@100
  1360
    /// The new map's key type is the to digraph's node type,
alpar@100
  1361
    /// and the copied map's key type is the from digraph's node
alpar@100
  1362
    /// type.  
alpar@100
  1363
    template <typename ToMap, typename FromMap>
alpar@100
  1364
    BpGraphCopy& blueMap(ToMap& tmap, const FromMap& map) {
alpar@100
  1365
      blueMapCopies.push_back(new _digraph_utils_bits::MapCopy<From, Blue, 
alpar@100
  1366
                               BlueRefMap, ToMap, FromMap>(tmap, map));
alpar@100
  1367
      return *this;
alpar@100
  1368
    }
alpar@100
  1369
    /// \brief Copies the node references into the given map.
alpar@100
  1370
    ///
alpar@100
  1371
    /// Copies the node references into the given map.
alpar@100
  1372
    template <typename NodeRef>
alpar@100
  1373
    BpGraphCopy& nodeRef(NodeRef& map) {
alpar@100
  1374
      nodeMapCopies.push_back(new _digraph_utils_bits::RefCopy<From, Node, 
alpar@100
  1375
                              NodeRefMap, NodeRef>(map));
alpar@100
  1376
      return *this;
alpar@100
  1377
    }
alpar@100
  1378
alpar@100
  1379
    /// \brief Copies the node cross references into the given map.
alpar@100
  1380
    ///
alpar@100
  1381
    ///  Copies the node cross references (reverse references) into
alpar@100
  1382
    ///  the given map.
alpar@100
  1383
    template <typename NodeCrossRef>
alpar@100
  1384
    BpGraphCopy& nodeCrossRef(NodeCrossRef& map) {
alpar@100
  1385
      nodeMapCopies.push_back(new _digraph_utils_bits::CrossRefCopy<From, Node,
alpar@100
  1386
                              NodeRefMap, NodeCrossRef>(map));
alpar@100
  1387
      return *this;
alpar@100
  1388
    }
alpar@100
  1389
alpar@100
  1390
    /// \brief Make copy of the given map.
alpar@100
  1391
    ///
alpar@100
  1392
    /// Makes copy of the given map for the newly created digraph. 
alpar@100
  1393
    /// The new map's key type is the to digraph's node type,
alpar@100
  1394
    /// and the copied map's key type is the from digraph's node
alpar@100
  1395
    /// type.  
alpar@100
  1396
    template <typename ToMap, typename FromMap>
alpar@100
  1397
    BpGraphCopy& nodeMap(ToMap& tmap, const FromMap& map) {
alpar@100
  1398
      nodeMapCopies.push_back(new _digraph_utils_bits::MapCopy<From, Node, 
alpar@100
  1399
                              NodeRefMap, ToMap, FromMap>(tmap, map));
alpar@100
  1400
      return *this;
alpar@100
  1401
    }
alpar@100
  1402
alpar@100
  1403
    /// \brief Make a copy of the given node.
alpar@100
  1404
    ///
alpar@100
  1405
    /// Make a copy of the given node.
alpar@100
  1406
    BpGraphCopy& node(TNode& tnode, const Node& snode) {
alpar@100
  1407
      nodeMapCopies.push_back(new _digraph_utils_bits::ItemCopy<From, Node, 
alpar@100
  1408
                              NodeRefMap, TNode>(tnode, snode));
alpar@100
  1409
      return *this;
alpar@100
  1410
    }
alpar@100
  1411
alpar@100
  1412
    /// \brief Copies the arc references into the given map.
alpar@100
  1413
    ///
alpar@100
  1414
    /// Copies the arc references into the given map.
alpar@100
  1415
    template <typename ArcRef>
alpar@100
  1416
    BpGraphCopy& arcRef(ArcRef& map) {
alpar@100
  1417
      arcMapCopies.push_back(new _digraph_utils_bits::RefCopy<From, Arc, 
alpar@100
  1418
                              ArcRefMap, ArcRef>(map));
alpar@100
  1419
      return *this;
alpar@100
  1420
    }
alpar@100
  1421
alpar@100
  1422
    /// \brief Copies the arc cross references into the given map.
alpar@100
  1423
    ///
alpar@100
  1424
    ///  Copies the arc cross references (reverse references) into
alpar@100
  1425
    ///  the given map.
alpar@100
  1426
    template <typename ArcCrossRef>
alpar@100
  1427
    BpGraphCopy& arcCrossRef(ArcCrossRef& map) {
alpar@100
  1428
      arcMapCopies.push_back(new _digraph_utils_bits::CrossRefCopy<From, Arc,
alpar@100
  1429
                              ArcRefMap, ArcCrossRef>(map));
alpar@100
  1430
      return *this;
alpar@100
  1431
    }
alpar@100
  1432
alpar@100
  1433
    /// \brief Make copy of the given map.
alpar@100
  1434
    ///
alpar@100
  1435
    /// Makes copy of the given map for the newly created digraph. 
alpar@100
  1436
    /// The new map's key type is the to digraph's arc type,
alpar@100
  1437
    /// and the copied map's key type is the from digraph's arc
alpar@100
  1438
    /// type.  
alpar@100
  1439
    template <typename ToMap, typename FromMap>
alpar@100
  1440
    BpGraphCopy& arcMap(ToMap& tmap, const FromMap& map) {
alpar@100
  1441
      arcMapCopies.push_back(new _digraph_utils_bits::MapCopy<From, Arc, 
alpar@100
  1442
                              ArcRefMap, ToMap, FromMap>(tmap, map));
alpar@100
  1443
      return *this;
alpar@100
  1444
    }
alpar@100
  1445
alpar@100
  1446
    /// \brief Make a copy of the given arc.
alpar@100
  1447
    ///
alpar@100
  1448
    /// Make a copy of the given arc.
alpar@100
  1449
    BpGraphCopy& arc(TArc& tarc, const Arc& sarc) {
alpar@100
  1450
      arcMapCopies.push_back(new _digraph_utils_bits::ItemCopy<From, Arc, 
alpar@100
  1451
                              ArcRefMap, TArc>(tarc, sarc));
alpar@100
  1452
      return *this;
alpar@100
  1453
    }
alpar@100
  1454
alpar@100
  1455
    /// \brief Copies the edge references into the given map.
alpar@100
  1456
    ///
alpar@100
  1457
    /// Copies the edge references into the given map.
alpar@100
  1458
    template <typename EdgeRef>
alpar@100
  1459
    BpGraphCopy& edgeRef(EdgeRef& map) {
alpar@100
  1460
      edgeMapCopies.push_back(new _digraph_utils_bits::RefCopy<From, Edge, 
alpar@100
  1461
                               EdgeRefMap, EdgeRef>(map));
alpar@100
  1462
      return *this;
alpar@100
  1463
    }
alpar@100
  1464
alpar@100
  1465
    /// \brief Copies the edge cross references into the given map.
alpar@100
  1466
    ///
alpar@100
  1467
    /// Copies the edge cross references (reverse
alpar@100
  1468
    /// references) into the given map.
alpar@100
  1469
    template <typename EdgeCrossRef>
alpar@100
  1470
    BpGraphCopy& edgeCrossRef(EdgeCrossRef& map) {
alpar@100
  1471
      edgeMapCopies.push_back(new _digraph_utils_bits::CrossRefCopy<From, 
alpar@100
  1472
                               Edge, EdgeRefMap, EdgeCrossRef>(map));
alpar@100
  1473
      return *this;
alpar@100
  1474
    }
alpar@100
  1475
alpar@100
  1476
    /// \brief Make copy of the given map.
alpar@100
  1477
    ///
alpar@100
  1478
    /// Makes copy of the given map for the newly created digraph. 
alpar@100
  1479
    /// The new map's key type is the to digraph's edge type,
alpar@100
  1480
    /// and the copied map's key type is the from digraph's edge
alpar@100
  1481
    /// type.  
alpar@100
  1482
    template <typename ToMap, typename FromMap>
alpar@100
  1483
    BpGraphCopy& edgeMap(ToMap& tmap, const FromMap& map) {
alpar@100
  1484
      edgeMapCopies.push_back(new _digraph_utils_bits::MapCopy<From, Edge, 
alpar@100
  1485
                               EdgeRefMap, ToMap, FromMap>(tmap, map));
alpar@100
  1486
      return *this;
alpar@100
  1487
    }
alpar@100
  1488
alpar@100
  1489
    /// \brief Make a copy of the given edge.
alpar@100
  1490
    ///
alpar@100
  1491
    /// Make a copy of the given edge.
alpar@100
  1492
    BpGraphCopy& edge(TEdge& tedge, const Edge& sedge) {
alpar@100
  1493
      edgeMapCopies.push_back(new _digraph_utils_bits::ItemCopy<From, Edge, 
alpar@100
  1494
                               EdgeRefMap, TEdge>(tedge, sedge));
alpar@100
  1495
      return *this;
alpar@100
  1496
    }
alpar@100
  1497
alpar@100
  1498
    /// \brief Executes the copies.
alpar@100
  1499
    ///
alpar@100
  1500
    /// Executes the copies.
alpar@100
  1501
    void run() {
alpar@100
  1502
      RedRefMap redRefMap(from);
alpar@100
  1503
      BlueRefMap blueRefMap(from);
alpar@100
  1504
      NodeRefMap nodeRefMap(from, redRefMap, blueRefMap);
alpar@100
  1505
      EdgeRefMap edgeRefMap(from);
alpar@100
  1506
      ArcRefMap arcRefMap(to, from, edgeRefMap, nodeRefMap);
alpar@100
  1507
      _digraph_utils_bits::BpGraphCopySelector<To>::
alpar@100
  1508
        copy(to, from, redRefMap, blueRefMap, edgeRefMap);
alpar@100
  1509
      for (int i = 0; i < int(redMapCopies.size()); ++i) {
alpar@100
  1510
        redMapCopies[i]->copy(from, redRefMap);
alpar@100
  1511
      }
alpar@100
  1512
      for (int i = 0; i < int(blueMapCopies.size()); ++i) {
alpar@100
  1513
        blueMapCopies[i]->copy(from, blueRefMap);
alpar@100
  1514
      }
alpar@100
  1515
      for (int i = 0; i < int(nodeMapCopies.size()); ++i) {
alpar@100
  1516
        nodeMapCopies[i]->copy(from, nodeRefMap);
alpar@100
  1517
      }
alpar@100
  1518
      for (int i = 0; i < int(edgeMapCopies.size()); ++i) {
alpar@100
  1519
        edgeMapCopies[i]->copy(from, edgeRefMap);
alpar@100
  1520
      }
alpar@100
  1521
      for (int i = 0; i < int(arcMapCopies.size()); ++i) {
alpar@100
  1522
        arcMapCopies[i]->copy(from, arcRefMap);
alpar@100
  1523
      }
alpar@100
  1524
    }
alpar@100
  1525
alpar@100
  1526
  private:
alpar@100
  1527
    
alpar@100
  1528
    const From& from;
alpar@100
  1529
    To& to;
alpar@100
  1530
alpar@100
  1531
    std::vector<_digraph_utils_bits::MapCopyBase<From, Red, RedRefMap>* > 
alpar@100
  1532
    redMapCopies;
alpar@100
  1533
alpar@100
  1534
    std::vector<_digraph_utils_bits::MapCopyBase<From, Blue, BlueRefMap>* > 
alpar@100
  1535
    blueMapCopies;
alpar@100
  1536
alpar@100
  1537
    std::vector<_digraph_utils_bits::MapCopyBase<From, Node, NodeRefMap>* > 
alpar@100
  1538
    nodeMapCopies;
alpar@100
  1539
alpar@100
  1540
    std::vector<_digraph_utils_bits::MapCopyBase<From, Arc, ArcRefMap>* > 
alpar@100
  1541
    arcMapCopies;
alpar@100
  1542
alpar@100
  1543
    std::vector<_digraph_utils_bits::MapCopyBase<From, Edge, EdgeRefMap>* > 
alpar@100
  1544
    edgeMapCopies;
alpar@100
  1545
alpar@100
  1546
  };
alpar@100
  1547
alpar@100
  1548
  /// \brief Copy a bipartite digraph to another digraph.
alpar@100
  1549
  ///
alpar@100
  1550
  /// Copy a bipartite digraph to another digraph.
alpar@100
  1551
  /// The usage of the function:
alpar@100
  1552
  /// 
alpar@100
  1553
  ///\code
alpar@100
  1554
  /// copyBpGraph(trg, src).redRef(anr).arcCrossRef(ecr).run();
alpar@100
  1555
  ///\endcode
alpar@100
  1556
  /// 
alpar@100
  1557
  /// After the copy the \c nr map will contain the mapping from the
alpar@100
  1558
  /// nodes of the \c from digraph to the nodes of the \c to digraph and
alpar@100
  1559
  /// \c ecr will contain the mapping from the arcs of the \c to digraph
alpar@100
  1560
  /// to the arcs of the \c from digraph.
alpar@100
  1561
  ///
alpar@100
  1562
  /// \see BpGraphCopy
alpar@100
  1563
  template <typename To, typename From>
alpar@100
  1564
  BpGraphCopy<To, From> 
alpar@100
  1565
  copyBpGraph(To& to, const From& from) {
alpar@100
  1566
    return BpGraphCopy<To, From>(to, from);
alpar@100
  1567
  }
alpar@100
  1568
alpar@100
  1569
alpar@100
  1570
  /// @}
alpar@100
  1571
alpar@100
  1572
  /// \addtogroup digraph_maps
alpar@100
  1573
  /// @{
alpar@100
  1574
alpar@100
  1575
  /// Provides an immutable and unique id for each item in the digraph.
alpar@100
  1576
alpar@100
  1577
  /// The IdMap class provides a unique and immutable id for each item of the
alpar@100
  1578
  /// same type (e.g. node) in the digraph. This id is <ul><li>\b unique:
alpar@100
  1579
  /// different items (nodes) get different ids <li>\b immutable: the id of an
alpar@100
  1580
  /// item (node) does not change (even if you delete other nodes).  </ul>
alpar@100
  1581
  /// Through this map you get access (i.e. can read) the inner id values of
alpar@100
  1582
  /// the items stored in the digraph. This map can be inverted with its member
alpar@100
  1583
  /// class \c InverseMap.
alpar@100
  1584
  ///
alpar@100
  1585
  template <typename _Digraph, typename _Item>
alpar@100
  1586
  class IdMap {
alpar@100
  1587
  public:
alpar@100
  1588
    typedef _Digraph Digraph;
alpar@100
  1589
    typedef int Value;
alpar@100
  1590
    typedef _Item Item;
alpar@100
  1591
    typedef _Item Key;
alpar@100
  1592
alpar@100
  1593
    /// \brief Constructor.
alpar@100
  1594
    ///
alpar@100
  1595
    /// Constructor of the map.
alpar@100
  1596
    explicit IdMap(const Digraph& _digraph) : digraph(&_digraph) {}
alpar@100
  1597
alpar@100
  1598
    /// \brief Gives back the \e id of the item.
alpar@100
  1599
    ///
alpar@100
  1600
    /// Gives back the immutable and unique \e id of the item.
alpar@100
  1601
    int operator[](const Item& item) const { return digraph->id(item);}
alpar@100
  1602
alpar@100
  1603
    /// \brief Gives back the item by its id.
alpar@100
  1604
    ///
alpar@100
  1605
    /// Gives back the item by its id.
alpar@100
  1606
    Item operator()(int id) { return digraph->fromId(id, Item()); }
alpar@100
  1607
alpar@100
  1608
  private:
alpar@100
  1609
    const Digraph* digraph;
alpar@100
  1610
alpar@100
  1611
  public:
alpar@100
  1612
alpar@100
  1613
    /// \brief The class represents the inverse of its owner (IdMap).
alpar@100
  1614
    ///
alpar@100
  1615
    /// The class represents the inverse of its owner (IdMap).
alpar@100
  1616
    /// \see inverse()
alpar@100
  1617
    class InverseMap {
alpar@100
  1618
    public:
alpar@100
  1619
alpar@100
  1620
      /// \brief Constructor.
alpar@100
  1621
      ///
alpar@100
  1622
      /// Constructor for creating an id-to-item map.
alpar@100
  1623
      explicit InverseMap(const Digraph& _digraph) : digraph(&_digraph) {}
alpar@100
  1624
alpar@100
  1625
      /// \brief Constructor.
alpar@100
  1626
      ///
alpar@100
  1627
      /// Constructor for creating an id-to-item map.
alpar@100
  1628
      explicit InverseMap(const IdMap& idMap) : digraph(idMap.digraph) {}
alpar@100
  1629
alpar@100
  1630
      /// \brief Gives back the given item from its id.
alpar@100
  1631
      ///
alpar@100
  1632
      /// Gives back the given item from its id.
alpar@100
  1633
      /// 
alpar@100
  1634
      Item operator[](int id) const { return digraph->fromId(id, Item());}
alpar@100
  1635
alpar@100
  1636
    private:
alpar@100
  1637
      const Digraph* digraph;
alpar@100
  1638
    };
alpar@100
  1639
alpar@100
  1640
    /// \brief Gives back the inverse of the map.
alpar@100
  1641
    ///
alpar@100
  1642
    /// Gives back the inverse of the IdMap.
alpar@100
  1643
    InverseMap inverse() const { return InverseMap(*digraph);} 
alpar@100
  1644
alpar@100
  1645
  };
alpar@100
  1646
alpar@100
  1647
  
alpar@100
  1648
  /// \brief General invertable digraph-map type.
alpar@100
  1649
alpar@100
  1650
  /// This type provides simple invertable digraph-maps. 
alpar@100
  1651
  /// The InvertableMap wraps an arbitrary ReadWriteMap 
alpar@100
  1652
  /// and if a key is set to a new value then store it
alpar@100
  1653
  /// in the inverse map.
alpar@100
  1654
  ///
alpar@100
  1655
  /// The values of the map can be accessed
alpar@100
  1656
  /// with stl compatible forward iterator.
alpar@100
  1657
  ///
alpar@100
  1658
  /// \param _Digraph The digraph type.
alpar@100
  1659
  /// \param _Item The item type of the digraph.
alpar@100
  1660
  /// \param _Value The value type of the map.
alpar@100
  1661
  ///
alpar@100
  1662
  /// \see IterableValueMap
alpar@100
  1663
  template <typename _Digraph, typename _Item, typename _Value>
alpar@100
  1664
  class InvertableMap : protected DefaultMap<_Digraph, _Item, _Value> {
alpar@100
  1665
  private:
alpar@100
  1666
    
alpar@100
  1667
    typedef DefaultMap<_Digraph, _Item, _Value> Map;
alpar@100
  1668
    typedef _Digraph Digraph;
alpar@100
  1669
alpar@100
  1670
    typedef std::map<_Value, _Item> Container;
alpar@100
  1671
    Container invMap;    
alpar@100
  1672
alpar@100
  1673
  public:
alpar@100
  1674
 
alpar@100
  1675
    /// The key type of InvertableMap (Node, Arc, Edge).
alpar@100
  1676
    typedef typename Map::Key Key;
alpar@100
  1677
    /// The value type of the InvertableMap.
alpar@100
  1678
    typedef typename Map::Value Value;
alpar@100
  1679
alpar@100
  1680
alpar@100
  1681
alpar@100
  1682
    /// \brief Constructor.
alpar@100
  1683
    ///
alpar@100
  1684
    /// Construct a new InvertableMap for the digraph.
alpar@100
  1685
    ///
alpar@100
  1686
    explicit InvertableMap(const Digraph& digraph) : Map(digraph) {} 
alpar@100
  1687
alpar@100
  1688
    /// \brief Forward iterator for values.
alpar@100
  1689
    ///
alpar@100
  1690
    /// This iterator is an stl compatible forward
alpar@100
  1691
    /// iterator on the values of the map. The values can
alpar@100
  1692
    /// be accessed in the [beginValue, endValue) range.
alpar@100
  1693
    ///
alpar@100
  1694
    class ValueIterator 
alpar@100
  1695
      : public std::iterator<std::forward_iterator_tag, Value> {
alpar@100
  1696
      friend class InvertableMap;
alpar@100
  1697
    private:
alpar@100
  1698
      ValueIterator(typename Container::const_iterator _it) 
alpar@100
  1699
        : it(_it) {}
alpar@100
  1700
    public:
alpar@100
  1701
      
alpar@100
  1702
      ValueIterator() {}
alpar@100
  1703
alpar@100
  1704
      ValueIterator& operator++() { ++it; return *this; }
alpar@100
  1705
      ValueIterator operator++(int) { 
alpar@100
  1706
        ValueIterator tmp(*this); 
alpar@100
  1707
        operator++();
alpar@100
  1708
        return tmp; 
alpar@100
  1709
      }
alpar@100
  1710
alpar@100
  1711
      const Value& operator*() const { return it->first; }
alpar@100
  1712
      const Value* operator->() const { return &(it->first); }
alpar@100
  1713
alpar@100
  1714
      bool operator==(ValueIterator jt) const { return it == jt.it; }
alpar@100
  1715
      bool operator!=(ValueIterator jt) const { return it != jt.it; }
alpar@100
  1716
      
alpar@100
  1717
    private:
alpar@100
  1718
      typename Container::const_iterator it;
alpar@100
  1719
    };
alpar@100
  1720
alpar@100
  1721
    /// \brief Returns an iterator to the first value.
alpar@100
  1722
    ///
alpar@100
  1723
    /// Returns an stl compatible iterator to the 
alpar@100
  1724
    /// first value of the map. The values of the
alpar@100
  1725
    /// map can be accessed in the [beginValue, endValue)
alpar@100
  1726
    /// range.
alpar@100
  1727
    ValueIterator beginValue() const {
alpar@100
  1728
      return ValueIterator(invMap.begin());
alpar@100
  1729
    }
alpar@100
  1730
alpar@100
  1731
    /// \brief Returns an iterator after the last value.
alpar@100
  1732
    ///
alpar@100
  1733
    /// Returns an stl compatible iterator after the 
alpar@100
  1734
    /// last value of the map. The values of the
alpar@100
  1735
    /// map can be accessed in the [beginValue, endValue)
alpar@100
  1736
    /// range.
alpar@100
  1737
    ValueIterator endValue() const {
alpar@100
  1738
      return ValueIterator(invMap.end());
alpar@100
  1739
    }
alpar@100
  1740
    
alpar@100
  1741
    /// \brief The setter function of the map.
alpar@100
  1742
    ///
alpar@100
  1743
    /// Sets the mapped value.
alpar@100
  1744
    void set(const Key& key, const Value& val) {
alpar@100
  1745
      Value oldval = Map::operator[](key);
alpar@100
  1746
      typename Container::iterator it = invMap.find(oldval);
alpar@100
  1747
      if (it != invMap.end() && it->second == key) {
alpar@100
  1748
	invMap.erase(it);
alpar@100
  1749
      }      
alpar@100
  1750
      invMap.insert(make_pair(val, key));
alpar@100
  1751
      Map::set(key, val);
alpar@100
  1752
    }
alpar@100
  1753
alpar@100
  1754
    /// \brief The getter function of the map.
alpar@100
  1755
    ///
alpar@100
  1756
    /// It gives back the value associated with the key.
alpar@100
  1757
    typename MapTraits<Map>::ConstReturnValue 
alpar@100
  1758
    operator[](const Key& key) const {
alpar@100
  1759
      return Map::operator[](key);
alpar@100
  1760
    }
alpar@100
  1761
alpar@100
  1762
    /// \brief Gives back the item by its value.
alpar@100
  1763
    ///
alpar@100
  1764
    /// Gives back the item by its value.
alpar@100
  1765
    Key operator()(const Value& key) const {
alpar@100
  1766
      typename Container::const_iterator it = invMap.find(key);
alpar@100
  1767
      return it != invMap.end() ? it->second : INVALID;
alpar@100
  1768
    }
alpar@100
  1769
alpar@100
  1770
  protected:
alpar@100
  1771
alpar@100
  1772
    /// \brief Erase the key from the map.
alpar@100
  1773
    ///
alpar@100
  1774
    /// Erase the key to the map. It is called by the
alpar@100
  1775
    /// \c AlterationNotifier.
alpar@100
  1776
    virtual void erase(const Key& key) {
alpar@100
  1777
      Value val = Map::operator[](key);
alpar@100
  1778
      typename Container::iterator it = invMap.find(val);
alpar@100
  1779
      if (it != invMap.end() && it->second == key) {
alpar@100
  1780
	invMap.erase(it);
alpar@100
  1781
      }
alpar@100
  1782
      Map::erase(key);
alpar@100
  1783
    }
alpar@100
  1784
alpar@100
  1785
    /// \brief Erase more keys from the map.
alpar@100
  1786
    ///
alpar@100
  1787
    /// Erase more keys from the map. It is called by the
alpar@100
  1788
    /// \c AlterationNotifier.
alpar@100
  1789
    virtual void erase(const std::vector<Key>& keys) {
alpar@100
  1790
      for (int i = 0; i < int(keys.size()); ++i) {
alpar@100
  1791
	Value val = Map::operator[](keys[i]);
alpar@100
  1792
	typename Container::iterator it = invMap.find(val);
alpar@100
  1793
	if (it != invMap.end() && it->second == keys[i]) {
alpar@100
  1794
	  invMap.erase(it);
alpar@100
  1795
	}
alpar@100
  1796
      }
alpar@100
  1797
      Map::erase(keys);
alpar@100
  1798
    }
alpar@100
  1799
alpar@100
  1800
    /// \brief Clear the keys from the map and inverse map.
alpar@100
  1801
    ///
alpar@100
  1802
    /// Clear the keys from the map and inverse map. It is called by the
alpar@100
  1803
    /// \c AlterationNotifier.
alpar@100
  1804
    virtual void clear() {
alpar@100
  1805
      invMap.clear();
alpar@100
  1806
      Map::clear();
alpar@100
  1807
    }
alpar@100
  1808
alpar@100
  1809
  public:
alpar@100
  1810
alpar@100
  1811
    /// \brief The inverse map type.
alpar@100
  1812
    ///
alpar@100
  1813
    /// The inverse of this map. The subscript operator of the map
alpar@100
  1814
    /// gives back always the item what was last assigned to the value. 
alpar@100
  1815
    class InverseMap {
alpar@100
  1816
    public:
alpar@100
  1817
      /// \brief Constructor of the InverseMap.
alpar@100
  1818
      ///
alpar@100
  1819
      /// Constructor of the InverseMap.
alpar@100
  1820
      explicit InverseMap(const InvertableMap& _inverted) 
alpar@100
  1821
        : inverted(_inverted) {}
alpar@100
  1822
alpar@100
  1823
      /// The value type of the InverseMap.
alpar@100
  1824
      typedef typename InvertableMap::Key Value;
alpar@100
  1825
      /// The key type of the InverseMap.
alpar@100
  1826
      typedef typename InvertableMap::Value Key; 
alpar@100
  1827
alpar@100
  1828
      /// \brief Subscript operator. 
alpar@100
  1829
      ///
alpar@100
  1830
      /// Subscript operator. It gives back always the item 
alpar@100
  1831
      /// what was last assigned to the value.
alpar@100
  1832
      Value operator[](const Key& key) const {
alpar@100
  1833
	return inverted(key);
alpar@100
  1834
      }
alpar@100
  1835
      
alpar@100
  1836
    private:
alpar@100
  1837
      const InvertableMap& inverted;
alpar@100
  1838
    };
alpar@100
  1839
alpar@100
  1840
    /// \brief It gives back the just readable inverse map.
alpar@100
  1841
    ///
alpar@100
  1842
    /// It gives back the just readable inverse map.
alpar@100
  1843
    InverseMap inverse() const {
alpar@100
  1844
      return InverseMap(*this);
alpar@100
  1845
    } 
alpar@100
  1846
alpar@100
  1847
alpar@100
  1848
    
alpar@100
  1849
  };
alpar@100
  1850
alpar@100
  1851
  /// \brief Provides a mutable, continuous and unique descriptor for each 
alpar@100
  1852
  /// item in the digraph.
alpar@100
  1853
  ///
alpar@100
  1854
  /// The DescriptorMap class provides a unique and continuous (but mutable)
alpar@100
  1855
  /// descriptor (id) for each item of the same type (e.g. node) in the
alpar@100
  1856
  /// digraph. This id is <ul><li>\b unique: different items (nodes) get
alpar@100
  1857
  /// different ids <li>\b continuous: the range of the ids is the set of
alpar@100
  1858
  /// integers between 0 and \c n-1, where \c n is the number of the items of
alpar@100
  1859
  /// this type (e.g. nodes) (so the id of a node can change if you delete an
alpar@100
  1860
  /// other node, i.e. this id is mutable).  </ul> This map can be inverted
alpar@100
  1861
  /// with its member class \c InverseMap.
alpar@100
  1862
  ///
alpar@100
  1863
  /// \param _Digraph The digraph class the \c DescriptorMap belongs to.
alpar@100
  1864
  /// \param _Item The Item is the Key of the Map. It may be Node, Arc or 
alpar@100
  1865
  /// Edge.
alpar@100
  1866
  template <typename _Digraph, typename _Item>
alpar@100
  1867
  class DescriptorMap : protected DefaultMap<_Digraph, _Item, int> {
alpar@100
  1868
alpar@100
  1869
    typedef _Item Item;
alpar@100
  1870
    typedef DefaultMap<_Digraph, _Item, int> Map;
alpar@100
  1871
alpar@100
  1872
  public:
alpar@100
  1873
    /// The digraph class of DescriptorMap.
alpar@100
  1874
    typedef _Digraph Digraph;
alpar@100
  1875
alpar@100
  1876
    /// The key type of DescriptorMap (Node, Arc, Edge).
alpar@100
  1877
    typedef typename Map::Key Key;
alpar@100
  1878
    /// The value type of DescriptorMap.
alpar@100
  1879
    typedef typename Map::Value Value;
alpar@100
  1880
alpar@100
  1881
    /// \brief Constructor.
alpar@100
  1882
    ///
alpar@100
  1883
    /// Constructor for descriptor map.
alpar@100
  1884
    explicit DescriptorMap(const Digraph& _digraph) : Map(_digraph) {
alpar@100
  1885
      Item it;
alpar@100
  1886
      const typename Map::Notifier* nf = Map::notifier(); 
alpar@100
  1887
      for (nf->first(it); it != INVALID; nf->next(it)) {
alpar@100
  1888
	Map::set(it, invMap.size());
alpar@100
  1889
	invMap.push_back(it);	
alpar@100
  1890
      }      
alpar@100
  1891
    }
alpar@100
  1892
alpar@100
  1893
  protected:
alpar@100
  1894
alpar@100
  1895
    /// \brief Add a new key to the map.
alpar@100
  1896
    ///
alpar@100
  1897
    /// Add a new key to the map. It is called by the
alpar@100
  1898
    /// \c AlterationNotifier.
alpar@100
  1899
    virtual void add(const Item& item) {
alpar@100
  1900
      Map::add(item);
alpar@100
  1901
      Map::set(item, invMap.size());
alpar@100
  1902
      invMap.push_back(item);
alpar@100
  1903
    }
alpar@100
  1904
alpar@100
  1905
    /// \brief Add more new keys to the map.
alpar@100
  1906
    ///
alpar@100
  1907
    /// Add more new keys to the map. It is called by the
alpar@100
  1908
    /// \c AlterationNotifier.
alpar@100
  1909
    virtual void add(const std::vector<Item>& items) {
alpar@100
  1910
      Map::add(items);
alpar@100
  1911
      for (int i = 0; i < int(items.size()); ++i) {
alpar@100
  1912
	Map::set(items[i], invMap.size());
alpar@100
  1913
	invMap.push_back(items[i]);
alpar@100
  1914
      }
alpar@100
  1915
    }
alpar@100
  1916
alpar@100
  1917
    /// \brief Erase the key from the map.
alpar@100
  1918
    ///
alpar@100
  1919
    /// Erase the key from the map. It is called by the
alpar@100
  1920
    /// \c AlterationNotifier.
alpar@100
  1921
    virtual void erase(const Item& item) {
alpar@100
  1922
      Map::set(invMap.back(), Map::operator[](item));
alpar@100
  1923
      invMap[Map::operator[](item)] = invMap.back();
alpar@100
  1924
      invMap.pop_back();
alpar@100
  1925
      Map::erase(item);
alpar@100
  1926
    }
alpar@100
  1927
alpar@100
  1928
    /// \brief Erase more keys from the map.
alpar@100
  1929
    ///
alpar@100
  1930
    /// Erase more keys from the map. It is called by the
alpar@100
  1931
    /// \c AlterationNotifier.
alpar@100
  1932
    virtual void erase(const std::vector<Item>& items) {
alpar@100
  1933
      for (int i = 0; i < int(items.size()); ++i) {
alpar@100
  1934
	Map::set(invMap.back(), Map::operator[](items[i]));
alpar@100
  1935
	invMap[Map::operator[](items[i])] = invMap.back();
alpar@100
  1936
	invMap.pop_back();
alpar@100
  1937
      }
alpar@100
  1938
      Map::erase(items);
alpar@100
  1939
    }
alpar@100
  1940
alpar@100
  1941
    /// \brief Build the unique map.
alpar@100
  1942
    ///
alpar@100
  1943
    /// Build the unique map. It is called by the
alpar@100
  1944
    /// \c AlterationNotifier.
alpar@100
  1945
    virtual void build() {
alpar@100
  1946
      Map::build();
alpar@100
  1947
      Item it;
alpar@100
  1948
      const typename Map::Notifier* nf = Map::notifier(); 
alpar@100
  1949
      for (nf->first(it); it != INVALID; nf->next(it)) {
alpar@100
  1950
	Map::set(it, invMap.size());
alpar@100
  1951
	invMap.push_back(it);	
alpar@100
  1952
      }      
alpar@100
  1953
    }
alpar@100
  1954
    
alpar@100
  1955
    /// \brief Clear the keys from the map.
alpar@100
  1956
    ///
alpar@100
  1957
    /// Clear the keys from the map. It is called by the
alpar@100
  1958
    /// \c AlterationNotifier.
alpar@100
  1959
    virtual void clear() {
alpar@100
  1960
      invMap.clear();
alpar@100
  1961
      Map::clear();
alpar@100
  1962
    }
alpar@100
  1963
alpar@100
  1964
  public:
alpar@100
  1965
alpar@100
  1966
    /// \brief Returns the maximal value plus one.
alpar@100
  1967
    ///
alpar@100
  1968
    /// Returns the maximal value plus one in the map.
alpar@100
  1969
    unsigned int size() const {
alpar@100
  1970
      return invMap.size();
alpar@100
  1971
    }
alpar@100
  1972
alpar@100
  1973
    /// \brief Swaps the position of the two items in the map.
alpar@100
  1974
    ///
alpar@100
  1975
    /// Swaps the position of the two items in the map.
alpar@100
  1976
    void swap(const Item& p, const Item& q) {
alpar@100
  1977
      int pi = Map::operator[](p);
alpar@100
  1978
      int qi = Map::operator[](q);
alpar@100
  1979
      Map::set(p, qi);
alpar@100
  1980
      invMap[qi] = p;
alpar@100
  1981
      Map::set(q, pi);
alpar@100
  1982
      invMap[pi] = q;
alpar@100
  1983
    }
alpar@100
  1984
alpar@100
  1985
    /// \brief Gives back the \e descriptor of the item.
alpar@100
  1986
    ///
alpar@100
  1987
    /// Gives back the mutable and unique \e descriptor of the map.
alpar@100
  1988
    int operator[](const Item& item) const {
alpar@100
  1989
      return Map::operator[](item);
alpar@100
  1990
    }
alpar@100
  1991
alpar@100
  1992
    /// \brief Gives back the item by its descriptor.
alpar@100
  1993
    ///
alpar@100
  1994
    /// Gives back th item by its descriptor.
alpar@100
  1995
    Item operator()(int id) const {
alpar@100
  1996
      return invMap[id];
alpar@100
  1997
    }
alpar@100
  1998
    
alpar@100
  1999
  private:
alpar@100
  2000
alpar@100
  2001
    typedef std::vector<Item> Container;
alpar@100
  2002
    Container invMap;
alpar@100
  2003
alpar@100
  2004
  public:
alpar@100
  2005
    /// \brief The inverse map type of DescriptorMap.
alpar@100
  2006
    ///
alpar@100
  2007
    /// The inverse map type of DescriptorMap.
alpar@100
  2008
    class InverseMap {
alpar@100
  2009
    public:
alpar@100
  2010
      /// \brief Constructor of the InverseMap.
alpar@100
  2011
      ///
alpar@100
  2012
      /// Constructor of the InverseMap.
alpar@100
  2013
      explicit InverseMap(const DescriptorMap& _inverted) 
alpar@100
  2014
	: inverted(_inverted) {}
alpar@100
  2015
alpar@100
  2016
alpar@100
  2017
      /// The value type of the InverseMap.
alpar@100
  2018
      typedef typename DescriptorMap::Key Value;
alpar@100
  2019
      /// The key type of the InverseMap.
alpar@100
  2020
      typedef typename DescriptorMap::Value Key; 
alpar@100
  2021
alpar@100
  2022
      /// \brief Subscript operator. 
alpar@100
  2023
      ///
alpar@100
  2024
      /// Subscript operator. It gives back the item 
alpar@100
  2025
      /// that the descriptor belongs to currently.
alpar@100
  2026
      Value operator[](const Key& key) const {
alpar@100
  2027
	return inverted(key);
alpar@100
  2028
      }
alpar@100
  2029
alpar@100
  2030
      /// \brief Size of the map.
alpar@100
  2031
      ///
alpar@100
  2032
      /// Returns the size of the map.
alpar@100
  2033
      unsigned int size() const {
alpar@100
  2034
	return inverted.size();
alpar@100
  2035
      }
alpar@100
  2036
      
alpar@100
  2037
    private:
alpar@100
  2038
      const DescriptorMap& inverted;
alpar@100
  2039
    };
alpar@100
  2040
alpar@100
  2041
    /// \brief Gives back the inverse of the map.
alpar@100
  2042
    ///
alpar@100
  2043
    /// Gives back the inverse of the map.
alpar@100
  2044
    const InverseMap inverse() const {
alpar@100
  2045
      return InverseMap(*this);
alpar@100
  2046
    }
alpar@100
  2047
  };
alpar@100
  2048
alpar@100
  2049
  /// \brief Returns the source of the given arc.
alpar@100
  2050
  ///
alpar@100
  2051
  /// The SourceMap gives back the source Node of the given arc. 
alpar@100
  2052
  /// \see TargetMap
alpar@100
  2053
  /// \author Balazs Dezso
alpar@100
  2054
  template <typename Digraph>
alpar@100
  2055
  class SourceMap {
alpar@100
  2056
  public:
alpar@100
  2057
alpar@100
  2058
    typedef typename Digraph::Node Value;
alpar@100
  2059
    typedef typename Digraph::Arc Key;
alpar@100
  2060
alpar@100
  2061
    /// \brief Constructor
alpar@100
  2062
    ///
alpar@100
  2063
    /// Constructor
alpar@100
  2064
    /// \param _digraph The digraph that the map belongs to.
alpar@100
  2065
    explicit SourceMap(const Digraph& _digraph) : digraph(_digraph) {}
alpar@100
  2066
alpar@100
  2067
    /// \brief The subscript operator.
alpar@100
  2068
    ///
alpar@100
  2069
    /// The subscript operator.
alpar@100
  2070
    /// \param arc The arc 
alpar@100
  2071
    /// \return The source of the arc 
alpar@100
  2072
    Value operator[](const Key& arc) const {
alpar@100
  2073
      return digraph.source(arc);
alpar@100
  2074
    }
alpar@100
  2075
alpar@100
  2076
  private:
alpar@100
  2077
    const Digraph& digraph;
alpar@100
  2078
  };
alpar@100
  2079
alpar@100
  2080
  /// \brief Returns a \ref SourceMap class.
alpar@100
  2081
  ///
alpar@100
  2082
  /// This function just returns an \ref SourceMap class.
alpar@100
  2083
  /// \relates SourceMap
alpar@100
  2084
  template <typename Digraph>
alpar@100
  2085
  inline SourceMap<Digraph> sourceMap(const Digraph& digraph) {
alpar@100
  2086
    return SourceMap<Digraph>(digraph);
alpar@100
  2087
  } 
alpar@100
  2088
alpar@100
  2089
  /// \brief Returns the target of the given arc.
alpar@100
  2090
  ///
alpar@100
  2091
  /// The TargetMap gives back the target Node of the given arc. 
alpar@100
  2092
  /// \see SourceMap
alpar@100
  2093
  /// \author Balazs Dezso
alpar@100
  2094
  template <typename Digraph>
alpar@100
  2095
  class TargetMap {
alpar@100
  2096
  public:
alpar@100
  2097
alpar@100
  2098
    typedef typename Digraph::Node Value;
alpar@100
  2099
    typedef typename Digraph::Arc Key;
alpar@100
  2100
alpar@100
  2101
    /// \brief Constructor
alpar@100
  2102
    ///
alpar@100
  2103
    /// Constructor
alpar@100
  2104
    /// \param _digraph The digraph that the map belongs to.
alpar@100
  2105
    explicit TargetMap(const Digraph& _digraph) : digraph(_digraph) {}
alpar@100
  2106
alpar@100
  2107
    /// \brief The subscript operator.
alpar@100
  2108
    ///
alpar@100
  2109
    /// The subscript operator.
alpar@100
  2110
    /// \param e The arc 
alpar@100
  2111
    /// \return The target of the arc 
alpar@100
  2112
    Value operator[](const Key& e) const {
alpar@100
  2113
      return digraph.target(e);
alpar@100
  2114
    }
alpar@100
  2115
alpar@100
  2116
  private:
alpar@100
  2117
    const Digraph& digraph;
alpar@100
  2118
  };
alpar@100
  2119
alpar@100
  2120
  /// \brief Returns a \ref TargetMap class.
alpar@100
  2121
  ///
alpar@100
  2122
  /// This function just returns a \ref TargetMap class.
alpar@100
  2123
  /// \relates TargetMap
alpar@100
  2124
  template <typename Digraph>
alpar@100
  2125
  inline TargetMap<Digraph> targetMap(const Digraph& digraph) {
alpar@100
  2126
    return TargetMap<Digraph>(digraph);
alpar@100
  2127
  }
alpar@100
  2128
alpar@100
  2129
  /// \brief Returns the "forward" directed arc view of an edge.
alpar@100
  2130
  ///
alpar@100
  2131
  /// Returns the "forward" directed arc view of an edge.
alpar@100
  2132
  /// \see BackwardMap
alpar@100
  2133
  /// \author Balazs Dezso
alpar@100
  2134
  template <typename Digraph>
alpar@100
  2135
  class ForwardMap {
alpar@100
  2136
  public:
alpar@100
  2137
alpar@100
  2138
    typedef typename Digraph::Arc Value;
alpar@100
  2139
    typedef typename Digraph::Edge Key;
alpar@100
  2140
alpar@100
  2141
    /// \brief Constructor
alpar@100
  2142
    ///
alpar@100
  2143
    /// Constructor
alpar@100
  2144
    /// \param _digraph The digraph that the map belongs to.
alpar@100
  2145
    explicit ForwardMap(const Digraph& _digraph) : digraph(_digraph) {}
alpar@100
  2146
alpar@100
  2147
    /// \brief The subscript operator.
alpar@100
  2148
    ///
alpar@100
  2149
    /// The subscript operator.
alpar@100
  2150
    /// \param key An edge 
alpar@100
  2151
    /// \return The "forward" directed arc view of edge 
alpar@100
  2152
    Value operator[](const Key& key) const {
alpar@100
  2153
      return digraph.direct(key, true);
alpar@100
  2154
    }
alpar@100
  2155
alpar@100
  2156
  private:
alpar@100
  2157
    const Digraph& digraph;
alpar@100
  2158
  };
alpar@100
  2159
alpar@100
  2160
  /// \brief Returns a \ref ForwardMap class.
alpar@100
  2161
  ///
alpar@100
  2162
  /// This function just returns an \ref ForwardMap class.
alpar@100
  2163
  /// \relates ForwardMap
alpar@100
  2164
  template <typename Digraph>
alpar@100
  2165
  inline ForwardMap<Digraph> forwardMap(const Digraph& digraph) {
alpar@100
  2166
    return ForwardMap<Digraph>(digraph);
alpar@100
  2167
  }
alpar@100
  2168
alpar@100
  2169
  /// \brief Returns the "backward" directed arc view of an edge.
alpar@100
  2170
  ///
alpar@100
  2171
  /// Returns the "backward" directed arc view of an edge.
alpar@100
  2172
  /// \see ForwardMap
alpar@100
  2173
  /// \author Balazs Dezso
alpar@100
  2174
  template <typename Digraph>
alpar@100
  2175
  class BackwardMap {
alpar@100
  2176
  public:
alpar@100
  2177
alpar@100
  2178
    typedef typename Digraph::Arc Value;
alpar@100
  2179
    typedef typename Digraph::Edge Key;
alpar@100
  2180
alpar@100
  2181
    /// \brief Constructor
alpar@100
  2182
    ///
alpar@100
  2183
    /// Constructor
alpar@100
  2184
    /// \param _digraph The digraph that the map belongs to.
alpar@100
  2185
    explicit BackwardMap(const Digraph& _digraph) : digraph(_digraph) {}
alpar@100
  2186
alpar@100
  2187
    /// \brief The subscript operator.
alpar@100
  2188
    ///
alpar@100
  2189
    /// The subscript operator.
alpar@100
  2190
    /// \param key An edge 
alpar@100
  2191
    /// \return The "backward" directed arc view of edge 
alpar@100
  2192
    Value operator[](const Key& key) const {
alpar@100
  2193
      return digraph.direct(key, false);
alpar@100
  2194
    }
alpar@100
  2195
alpar@100
  2196
  private:
alpar@100
  2197
    const Digraph& digraph;
alpar@100
  2198
  };
alpar@100
  2199
alpar@100
  2200
  /// \brief Returns a \ref BackwardMap class
alpar@100
  2201
alpar@100
  2202
  /// This function just returns a \ref BackwardMap class.
alpar@100
  2203
  /// \relates BackwardMap
alpar@100
  2204
  template <typename Digraph>
alpar@100
  2205
  inline BackwardMap<Digraph> backwardMap(const Digraph& digraph) {
alpar@100
  2206
    return BackwardMap<Digraph>(digraph);
alpar@100
  2207
  }
alpar@100
  2208
alpar@100
  2209
  /// \brief Potential difference map
alpar@100
  2210
  ///
alpar@100
  2211
  /// If there is an potential map on the nodes then we
alpar@100
  2212
  /// can get an arc map as we get the substraction of the
alpar@100
  2213
  /// values of the target and source.
alpar@100
  2214
  template <typename Digraph, typename NodeMap>
alpar@100
  2215
  class PotentialDifferenceMap {
alpar@100
  2216
  public:
alpar@100
  2217
    typedef typename Digraph::Arc Key;
alpar@100
  2218
    typedef typename NodeMap::Value Value;
alpar@100
  2219
alpar@100
  2220
    /// \brief Constructor
alpar@100
  2221
    ///
alpar@100
  2222
    /// Contructor of the map
alpar@100
  2223
    explicit PotentialDifferenceMap(const Digraph& _digraph, 
alpar@100
  2224
                                    const NodeMap& _potential) 
alpar@100
  2225
      : digraph(_digraph), potential(_potential) {}
alpar@100
  2226
alpar@100
  2227
    /// \brief Const subscription operator
alpar@100
  2228
    ///
alpar@100
  2229
    /// Const subscription operator
alpar@100
  2230
    Value operator[](const Key& arc) const {
alpar@100
  2231
      return potential[digraph.target(arc)] - potential[digraph.source(arc)];
alpar@100
  2232
    }
alpar@100
  2233
alpar@100
  2234
  private:
alpar@100
  2235
    const Digraph& digraph;
alpar@100
  2236
    const NodeMap& potential;
alpar@100
  2237
  };
alpar@100
  2238
alpar@100
  2239
  /// \brief Returns a PotentialDifferenceMap.
alpar@100
  2240
  ///
alpar@100
  2241
  /// This function just returns a PotentialDifferenceMap.
alpar@100
  2242
  /// \relates PotentialDifferenceMap
alpar@100
  2243
  template <typename Digraph, typename NodeMap>
alpar@100
  2244
  PotentialDifferenceMap<Digraph, NodeMap> 
alpar@100
  2245
  potentialDifferenceMap(const Digraph& digraph, const NodeMap& potential) {
alpar@100
  2246
    return PotentialDifferenceMap<Digraph, NodeMap>(digraph, potential);
alpar@100
  2247
  }
alpar@100
  2248
alpar@100
  2249
  /// \brief Map of the node in-degrees.
alpar@100
  2250
  ///
alpar@100
  2251
  /// This map returns the in-degree of a node. Once it is constructed,
alpar@100
  2252
  /// the degrees are stored in a standard NodeMap, so each query is done
alpar@100
  2253
  /// in constant time. On the other hand, the values are updated automatically
alpar@100
  2254
  /// whenever the digraph changes.
alpar@100
  2255
  ///
alpar@100
  2256
  /// \warning Besides addNode() and addArc(), a digraph structure may provide
alpar@100
  2257
  /// alternative ways to modify the digraph. The correct behavior of InDegMap
alpar@100
  2258
  /// is not guarantied if these additional features are used. For example
alpar@100
  2259
  /// the functions \ref ListDigraph::changeSource() "changeSource()",
alpar@100
  2260
  /// \ref ListDigraph::changeTarget() "changeTarget()" and
alpar@100
  2261
  /// \ref ListDigraph::reverseArc() "reverseArc()"
alpar@100
  2262
  /// of \ref ListDigraph will \e not update the degree values correctly.
alpar@100
  2263
  ///
alpar@100
  2264
  /// \sa OutDegMap
alpar@100
  2265
alpar@100
  2266
  template <typename _Digraph>
alpar@100
  2267
  class InDegMap  
alpar@100
  2268
    : protected ItemSetTraits<_Digraph, typename _Digraph::Arc>
alpar@100
  2269
      ::ItemNotifier::ObserverBase {
alpar@100
  2270
alpar@100
  2271
  public:
alpar@100
  2272
    
alpar@100
  2273
    typedef _Digraph Digraph;
alpar@100
  2274
    typedef int Value;
alpar@100
  2275
    typedef typename Digraph::Node Key;
alpar@100
  2276
alpar@100
  2277
    typedef typename ItemSetTraits<_Digraph, typename _Digraph::Arc>
alpar@100
  2278
    ::ItemNotifier::ObserverBase Parent;
alpar@100
  2279
alpar@100
  2280
  private:
alpar@100
  2281
alpar@100
  2282
    class AutoNodeMap : public DefaultMap<_Digraph, Key, int> {
alpar@100
  2283
    public:
alpar@100
  2284
alpar@100
  2285
      typedef DefaultMap<_Digraph, Key, int> Parent;
alpar@100
  2286
      typedef typename Parent::Digraph Digraph;
alpar@100
  2287
alpar@100
  2288
      AutoNodeMap(const Digraph& digraph) : Parent(digraph, 0) {}
alpar@100
  2289
      
alpar@100
  2290
      virtual void add(const Key& key) {
alpar@100
  2291
	Parent::add(key);
alpar@100
  2292
	Parent::set(key, 0);
alpar@100
  2293
      }
alpar@100
  2294
alpar@100
  2295
      virtual void add(const std::vector<Key>& keys) {
alpar@100
  2296
	Parent::add(keys);
alpar@100
  2297
	for (int i = 0; i < int(keys.size()); ++i) {
alpar@100
  2298
	  Parent::set(keys[i], 0);
alpar@100
  2299
	}
alpar@100
  2300
      }
alpar@100
  2301
alpar@100
  2302
      virtual void build() {
alpar@100
  2303
	Parent::build();
alpar@100
  2304
	Key it;
alpar@100
  2305
	typename Parent::Notifier* nf = Parent::notifier();
alpar@100
  2306
	for (nf->first(it); it != INVALID; nf->next(it)) {
alpar@100
  2307
	  Parent::set(it, 0);
alpar@100
  2308
	}
alpar@100
  2309
      }
alpar@100
  2310
    };
alpar@100
  2311
alpar@100
  2312
  public:
alpar@100
  2313
alpar@100
  2314
    /// \brief Constructor.
alpar@100
  2315
    ///
alpar@100
  2316
    /// Constructor for creating in-degree map.
alpar@100
  2317
    explicit InDegMap(const Digraph& _digraph) : digraph(_digraph), deg(_digraph) {
alpar@100
  2318
      Parent::attach(digraph.notifier(typename _Digraph::Arc()));
alpar@100
  2319
      
alpar@100
  2320
      for(typename _Digraph::NodeIt it(digraph); it != INVALID; ++it) {
alpar@100
  2321
	deg[it] = countInArcs(digraph, it);
alpar@100
  2322
      }
alpar@100
  2323
    }
alpar@100
  2324
    
alpar@100
  2325
    /// Gives back the in-degree of a Node.
alpar@100
  2326
    int operator[](const Key& key) const {
alpar@100
  2327
      return deg[key];
alpar@100
  2328
    }
alpar@100
  2329
alpar@100
  2330
  protected:
alpar@100
  2331
    
alpar@100
  2332
    typedef typename Digraph::Arc Arc;
alpar@100
  2333
alpar@100
  2334
    virtual void add(const Arc& arc) {
alpar@100
  2335
      ++deg[digraph.target(arc)];
alpar@100
  2336
    }
alpar@100
  2337
alpar@100
  2338
    virtual void add(const std::vector<Arc>& arcs) {
alpar@100
  2339
      for (int i = 0; i < int(arcs.size()); ++i) {
alpar@100
  2340
        ++deg[digraph.target(arcs[i])];
alpar@100
  2341
      }
alpar@100
  2342
    }
alpar@100
  2343
alpar@100
  2344
    virtual void erase(const Arc& arc) {
alpar@100
  2345
      --deg[digraph.target(arc)];
alpar@100
  2346
    }
alpar@100
  2347
alpar@100
  2348
    virtual void erase(const std::vector<Arc>& arcs) {
alpar@100
  2349
      for (int i = 0; i < int(arcs.size()); ++i) {
alpar@100
  2350
        --deg[digraph.target(arcs[i])];
alpar@100
  2351
      }
alpar@100
  2352
    }
alpar@100
  2353
alpar@100
  2354
    virtual void build() {
alpar@100
  2355
      for(typename _Digraph::NodeIt it(digraph); it != INVALID; ++it) {
alpar@100
  2356
	deg[it] = countInArcs(digraph, it);
alpar@100
  2357
      }      
alpar@100
  2358
    }
alpar@100
  2359
alpar@100
  2360
    virtual void clear() {
alpar@100
  2361
      for(typename _Digraph::NodeIt it(digraph); it != INVALID; ++it) {
alpar@100
  2362
	deg[it] = 0;
alpar@100
  2363
      }
alpar@100
  2364
    }
alpar@100
  2365
  private:
alpar@100
  2366
    
alpar@100
  2367
    const _Digraph& digraph;
alpar@100
  2368
    AutoNodeMap deg;
alpar@100
  2369
  };
alpar@100
  2370
alpar@100
  2371
  /// \brief Map of the node out-degrees.
alpar@100
  2372
  ///
alpar@100
  2373
  /// This map returns the out-degree of a node. Once it is constructed,
alpar@100
  2374
  /// the degrees are stored in a standard NodeMap, so each query is done
alpar@100
  2375
  /// in constant time. On the other hand, the values are updated automatically
alpar@100
  2376
  /// whenever the digraph changes.
alpar@100
  2377
  ///
alpar@100
  2378
  /// \warning Besides addNode() and addArc(), a digraph structure may provide
alpar@100
  2379
  /// alternative ways to modify the digraph. The correct behavior of OutDegMap
alpar@100
  2380
  /// is not guarantied if these additional features are used. For example
alpar@100
  2381
  /// the functions \ref ListDigraph::changeSource() "changeSource()",
alpar@100
  2382
  /// \ref ListDigraph::changeTarget() "changeTarget()" and
alpar@100
  2383
  /// \ref ListDigraph::reverseArc() "reverseArc()"
alpar@100
  2384
  /// of \ref ListDigraph will \e not update the degree values correctly.
alpar@100
  2385
  ///
alpar@100
  2386
  /// \sa InDegMap
alpar@100
  2387
alpar@100
  2388
  template <typename _Digraph>
alpar@100
  2389
  class OutDegMap  
alpar@100
  2390
    : protected ItemSetTraits<_Digraph, typename _Digraph::Arc>
alpar@100
  2391
      ::ItemNotifier::ObserverBase {
alpar@100
  2392
alpar@100
  2393
  public:
alpar@100
  2394
alpar@100
  2395
    typedef typename ItemSetTraits<_Digraph, typename _Digraph::Arc>
alpar@100
  2396
    ::ItemNotifier::ObserverBase Parent;
alpar@100
  2397
    
alpar@100
  2398
    typedef _Digraph Digraph;
alpar@100
  2399
    typedef int Value;
alpar@100
  2400
    typedef typename Digraph::Node Key;
alpar@100
  2401
alpar@100
  2402
  private:
alpar@100
  2403
alpar@100
  2404
    class AutoNodeMap : public DefaultMap<_Digraph, Key, int> {
alpar@100
  2405
    public:
alpar@100
  2406
alpar@100
  2407
      typedef DefaultMap<_Digraph, Key, int> Parent;
alpar@100
  2408
      typedef typename Parent::Digraph Digraph;
alpar@100
  2409
alpar@100
  2410
      AutoNodeMap(const Digraph& digraph) : Parent(digraph, 0) {}
alpar@100
  2411
      
alpar@100
  2412
      virtual void add(const Key& key) {
alpar@100
  2413
	Parent::add(key);
alpar@100
  2414
	Parent::set(key, 0);
alpar@100
  2415
      }
alpar@100
  2416
      virtual void add(const std::vector<Key>& keys) {
alpar@100
  2417
	Parent::add(keys);
alpar@100
  2418
	for (int i = 0; i < int(keys.size()); ++i) {
alpar@100
  2419
	  Parent::set(keys[i], 0);
alpar@100
  2420
	}
alpar@100
  2421
      }
alpar@100
  2422
      virtual void build() {
alpar@100
  2423
	Parent::build();
alpar@100
  2424
	Key it;
alpar@100
  2425
	typename Parent::Notifier* nf = Parent::notifier();
alpar@100
  2426
	for (nf->first(it); it != INVALID; nf->next(it)) {
alpar@100
  2427
	  Parent::set(it, 0);
alpar@100
  2428
	}
alpar@100
  2429
      }
alpar@100
  2430
    };
alpar@100
  2431
alpar@100
  2432
  public:
alpar@100
  2433
alpar@100
  2434
    /// \brief Constructor.
alpar@100
  2435
    ///
alpar@100
  2436
    /// Constructor for creating out-degree map.
alpar@100
  2437
    explicit OutDegMap(const Digraph& _digraph) : digraph(_digraph), deg(_digraph) {
alpar@100
  2438
      Parent::attach(digraph.notifier(typename _Digraph::Arc()));
alpar@100
  2439
      
alpar@100
  2440
      for(typename _Digraph::NodeIt it(digraph); it != INVALID; ++it) {
alpar@100
  2441
	deg[it] = countOutArcs(digraph, it);
alpar@100
  2442
      }
alpar@100
  2443
    }
alpar@100
  2444
alpar@100
  2445
    /// Gives back the out-degree of a Node.
alpar@100
  2446
    int operator[](const Key& key) const {
alpar@100
  2447
      return deg[key];
alpar@100
  2448
    }
alpar@100
  2449
alpar@100
  2450
  protected:
alpar@100
  2451
    
alpar@100
  2452
    typedef typename Digraph::Arc Arc;
alpar@100
  2453
alpar@100
  2454
    virtual void add(const Arc& arc) {
alpar@100
  2455
      ++deg[digraph.source(arc)];
alpar@100
  2456
    }
alpar@100
  2457
alpar@100
  2458
    virtual void add(const std::vector<Arc>& arcs) {
alpar@100
  2459
      for (int i = 0; i < int(arcs.size()); ++i) {
alpar@100
  2460
        ++deg[digraph.source(arcs[i])];
alpar@100
  2461
      }
alpar@100
  2462
    }
alpar@100
  2463
alpar@100
  2464
    virtual void erase(const Arc& arc) {
alpar@100
  2465
      --deg[digraph.source(arc)];
alpar@100
  2466
    }
alpar@100
  2467
alpar@100
  2468
    virtual void erase(const std::vector<Arc>& arcs) {
alpar@100
  2469
      for (int i = 0; i < int(arcs.size()); ++i) {
alpar@100
  2470
        --deg[digraph.source(arcs[i])];
alpar@100
  2471
      }
alpar@100
  2472
    }
alpar@100
  2473
alpar@100
  2474
    virtual void build() {
alpar@100
  2475
      for(typename _Digraph::NodeIt it(digraph); it != INVALID; ++it) {
alpar@100
  2476
	deg[it] = countOutArcs(digraph, it);
alpar@100
  2477
      }      
alpar@100
  2478
    }
alpar@100
  2479
alpar@100
  2480
    virtual void clear() {
alpar@100
  2481
      for(typename _Digraph::NodeIt it(digraph); it != INVALID; ++it) {
alpar@100
  2482
	deg[it] = 0;
alpar@100
  2483
      }
alpar@100
  2484
    }
alpar@100
  2485
  private:
alpar@100
  2486
    
alpar@100
  2487
    const _Digraph& digraph;
alpar@100
  2488
    AutoNodeMap deg;
alpar@100
  2489
  };
alpar@100
  2490
alpar@100
  2491
alpar@100
  2492
  ///Dynamic arc look up between given endpoints.
alpar@100
  2493
  
alpar@100
  2494
  ///\ingroup gutils
alpar@100
  2495
  ///Using this class, you can find an arc in a digraph from a given
alpar@100
  2496
  ///source to a given target in amortized time <em>O(log d)</em>,
alpar@100
  2497
  ///where <em>d</em> is the out-degree of the source node.
alpar@100
  2498
  ///
alpar@100
  2499
  ///It is possible to find \e all parallel arcs between two nodes with
alpar@100
  2500
  ///the \c findFirst() and \c findNext() members.
alpar@100
  2501
  ///
alpar@100
  2502
  ///See the \ref ArcLookUp and \ref AllArcLookUp classes if your
alpar@100
  2503
  ///digraph do not changed so frequently.
alpar@100
  2504
  ///
alpar@100
  2505
  ///This class uses a self-adjusting binary search tree, Sleator's
alpar@100
  2506
  ///and Tarjan's Splay tree for guarantee the logarithmic amortized
alpar@100
  2507
  ///time bound for arc lookups. This class also guarantees the
alpar@100
  2508
  ///optimal time bound in a constant factor for any distribution of
alpar@100
  2509
  ///queries.
alpar@100
  2510
  ///
alpar@100
  2511
  ///\param G The type of the underlying digraph.  
alpar@100
  2512
  ///
alpar@100
  2513
  ///\sa ArcLookUp  
alpar@100
  2514
  ///\sa AllArcLookUp  
alpar@100
  2515
  template<class G>
alpar@100
  2516
  class DynArcLookUp 
alpar@100
  2517
    : protected ItemSetTraits<G, typename G::Arc>::ItemNotifier::ObserverBase
alpar@100
  2518
  {
alpar@100
  2519
  public:
alpar@100
  2520
    typedef typename ItemSetTraits<G, typename G::Arc>
alpar@100
  2521
    ::ItemNotifier::ObserverBase Parent;
alpar@100
  2522
alpar@100
  2523
    GRAPH_TYPEDEFS(typename G);
alpar@100
  2524
    typedef G Digraph;
alpar@100
  2525
alpar@100
  2526
  protected:
alpar@100
  2527
alpar@100
  2528
    class AutoNodeMap : public DefaultMap<G, Node, Arc> {
alpar@100
  2529
    public:
alpar@100
  2530
alpar@100
  2531
      typedef DefaultMap<G, Node, Arc> Parent;
alpar@100
  2532
alpar@100
  2533
      AutoNodeMap(const G& digraph) : Parent(digraph, INVALID) {}
alpar@100
  2534
      
alpar@100
  2535
      virtual void add(const Node& node) {
alpar@100
  2536
	Parent::add(node);
alpar@100
  2537
	Parent::set(node, INVALID);
alpar@100
  2538
      }
alpar@100
  2539
alpar@100
  2540
      virtual void add(const std::vector<Node>& nodes) {
alpar@100
  2541
	Parent::add(nodes);
alpar@100
  2542
	for (int i = 0; i < int(nodes.size()); ++i) {
alpar@100
  2543
	  Parent::set(nodes[i], INVALID);
alpar@100
  2544
	}
alpar@100
  2545
      }
alpar@100
  2546
alpar@100
  2547
      virtual void build() {
alpar@100
  2548
	Parent::build();
alpar@100
  2549
	Node it;
alpar@100
  2550
	typename Parent::Notifier* nf = Parent::notifier();
alpar@100
  2551
	for (nf->first(it); it != INVALID; nf->next(it)) {
alpar@100
  2552
	  Parent::set(it, INVALID);
alpar@100
  2553
	}
alpar@100
  2554
      }
alpar@100
  2555
    };
alpar@100
  2556
alpar@100
  2557
    const Digraph &_g;
alpar@100
  2558
    AutoNodeMap _head;
alpar@100
  2559
    typename Digraph::template ArcMap<Arc> _parent;
alpar@100
  2560
    typename Digraph::template ArcMap<Arc> _left;
alpar@100
  2561
    typename Digraph::template ArcMap<Arc> _right;
alpar@100
  2562
    
alpar@100
  2563
    class ArcLess {
alpar@100
  2564
      const Digraph &g;
alpar@100
  2565
    public:
alpar@100
  2566
      ArcLess(const Digraph &_g) : g(_g) {}
alpar@100
  2567
      bool operator()(Arc a,Arc b) const 
alpar@100
  2568
      {
alpar@100
  2569
	return g.target(a)<g.target(b);
alpar@100
  2570
      }
alpar@100
  2571
    };
alpar@100
  2572
    
alpar@100
  2573
  public:
alpar@100
  2574
    
alpar@100
  2575
    ///Constructor
alpar@100
  2576
alpar@100
  2577
    ///Constructor.
alpar@100
  2578
    ///
alpar@100
  2579
    ///It builds up the search database.
alpar@100
  2580
    DynArcLookUp(const Digraph &g) 
alpar@100
  2581
      : _g(g),_head(g),_parent(g),_left(g),_right(g) 
alpar@100
  2582
    { 
alpar@100
  2583
      Parent::attach(_g.notifier(typename Digraph::Arc()));
alpar@100
  2584
      refresh(); 
alpar@100
  2585
    }
alpar@100
  2586
    
alpar@100
  2587
  protected:
alpar@100
  2588
alpar@100
  2589
    virtual void add(const Arc& arc) {
alpar@100
  2590
      insert(arc);
alpar@100
  2591
    }
alpar@100
  2592
alpar@100
  2593
    virtual void add(const std::vector<Arc>& arcs) {
alpar@100
  2594
      for (int i = 0; i < int(arcs.size()); ++i) {
alpar@100
  2595
	insert(arcs[i]);
alpar@100
  2596
      }
alpar@100
  2597
    }
alpar@100
  2598
alpar@100
  2599
    virtual void erase(const Arc& arc) {
alpar@100
  2600
      remove(arc);
alpar@100
  2601
    }
alpar@100
  2602
alpar@100
  2603
    virtual void erase(const std::vector<Arc>& arcs) {
alpar@100
  2604
      for (int i = 0; i < int(arcs.size()); ++i) {
alpar@100
  2605
	remove(arcs[i]);
alpar@100
  2606
      }     
alpar@100
  2607
    }
alpar@100
  2608
alpar@100
  2609
    virtual void build() {
alpar@100
  2610
      refresh();
alpar@100
  2611
    }
alpar@100
  2612
alpar@100
  2613
    virtual void clear() {
alpar@100
  2614
      for(NodeIt n(_g);n!=INVALID;++n) {
alpar@100
  2615
	_head.set(n, INVALID);
alpar@100
  2616
      }
alpar@100
  2617
    }
alpar@100
  2618
alpar@100
  2619
    void insert(Arc arc) {
alpar@100
  2620
      Node s = _g.source(arc);
alpar@100
  2621
      Node t = _g.target(arc);
alpar@100
  2622
      _left.set(arc, INVALID);
alpar@100
  2623
      _right.set(arc, INVALID);
alpar@100
  2624
      
alpar@100
  2625
      Arc e = _head[s];
alpar@100
  2626
      if (e == INVALID) {
alpar@100
  2627
	_head.set(s, arc);
alpar@100
  2628
	_parent.set(arc, INVALID);
alpar@100
  2629
	return;
alpar@100
  2630
      }
alpar@100
  2631
      while (true) {
alpar@100
  2632
	if (t < _g.target(e)) {
alpar@100
  2633
	  if (_left[e] == INVALID) {
alpar@100
  2634
	    _left.set(e, arc);
alpar@100
  2635
	    _parent.set(arc, e);
alpar@100
  2636
	    splay(arc);
alpar@100
  2637
	    return;
alpar@100
  2638
	  } else {
alpar@100
  2639
	    e = _left[e];
alpar@100
  2640
	  }
alpar@100
  2641
	} else {
alpar@100
  2642
	  if (_right[e] == INVALID) {
alpar@100
  2643
	    _right.set(e, arc);
alpar@100
  2644
	    _parent.set(arc, e);
alpar@100
  2645
	    splay(arc);
alpar@100
  2646
	    return;
alpar@100
  2647
	  } else {
alpar@100
  2648
	    e = _right[e];
alpar@100
  2649
	  }
alpar@100
  2650
	}
alpar@100
  2651
      }
alpar@100
  2652
    }
alpar@100
  2653
alpar@100
  2654
    void remove(Arc arc) {
alpar@100
  2655
      if (_left[arc] == INVALID) {
alpar@100
  2656
	if (_right[arc] != INVALID) {
alpar@100
  2657
	  _parent.set(_right[arc], _parent[arc]);
alpar@100
  2658
	}
alpar@100
  2659
	if (_parent[arc] != INVALID) {
alpar@100
  2660
	  if (_left[_parent[arc]] == arc) {
alpar@100
  2661
	    _left.set(_parent[arc], _right[arc]);
alpar@100
  2662
	  } else {
alpar@100
  2663
	    _right.set(_parent[arc], _right[arc]);
alpar@100
  2664
	  }
alpar@100
  2665
	} else {
alpar@100
  2666
	  _head.set(_g.source(arc), _right[arc]);
alpar@100
  2667
	}
alpar@100
  2668
      } else if (_right[arc] == INVALID) {
alpar@100
  2669
	_parent.set(_left[arc], _parent[arc]);
alpar@100
  2670
	if (_parent[arc] != INVALID) {
alpar@100
  2671
	  if (_left[_parent[arc]] == arc) {
alpar@100
  2672
	    _left.set(_parent[arc], _left[arc]);
alpar@100
  2673
	  } else {
alpar@100
  2674
	    _right.set(_parent[arc], _left[arc]);
alpar@100
  2675
	  }
alpar@100
  2676
	} else {
alpar@100
  2677
	  _head.set(_g.source(arc), _left[arc]);
alpar@100
  2678
	}
alpar@100
  2679
      } else {
alpar@100
  2680
	Arc e = _left[arc];
alpar@100
  2681
	if (_right[e] != INVALID) {
alpar@100
  2682
	  e = _right[e];	  
alpar@100
  2683
	  while (_right[e] != INVALID) {
alpar@100
  2684
	    e = _right[e];
alpar@100
  2685
	  }
alpar@100
  2686
	  Arc s = _parent[e];
alpar@100
  2687
	  _right.set(_parent[e], _left[e]);
alpar@100
  2688
	  if (_left[e] != INVALID) {
alpar@100
  2689
	    _parent.set(_left[e], _parent[e]);
alpar@100
  2690
	  }
alpar@100
  2691
	  
alpar@100
  2692
	  _left.set(e, _left[arc]);
alpar@100
  2693
	  _parent.set(_left[arc], e);
alpar@100
  2694
	  _right.set(e, _right[arc]);
alpar@100
  2695
	  _parent.set(_right[arc], e);
alpar@100
  2696
alpar@100
  2697
	  _parent.set(e, _parent[arc]);
alpar@100
  2698
	  if (_parent[arc] != INVALID) {
alpar@100
  2699
	    if (_left[_parent[arc]] == arc) {
alpar@100
  2700
	      _left.set(_parent[arc], e);
alpar@100
  2701
	    } else {
alpar@100
  2702
	      _right.set(_parent[arc], e);
alpar@100
  2703
	    }
alpar@100
  2704
	  }
alpar@100
  2705
	  splay(s);
alpar@100
  2706
	} else {
alpar@100
  2707
	  _right.set(e, _right[arc]);
alpar@100
  2708
	  _parent.set(_right[arc], e);
alpar@100
  2709
alpar@100
  2710
	  if (_parent[arc] != INVALID) {
alpar@100
  2711
	    if (_left[_parent[arc]] == arc) {
alpar@100
  2712
	      _left.set(_parent[arc], e);
alpar@100
  2713
	    } else {
alpar@100
  2714
	      _right.set(_parent[arc], e);
alpar@100
  2715
	    }
alpar@100
  2716
	  } else {
alpar@100
  2717
	    _head.set(_g.source(arc), e);
alpar@100
  2718
	  }
alpar@100
  2719
	}
alpar@100
  2720
      }
alpar@100
  2721
    }
alpar@100
  2722
alpar@100
  2723
    Arc refreshRec(std::vector<Arc> &v,int a,int b) 
alpar@100
  2724
    {
alpar@100
  2725
      int m=(a+b)/2;
alpar@100
  2726
      Arc me=v[m];
alpar@100
  2727
      if (a < m) {
alpar@100
  2728
	Arc left = refreshRec(v,a,m-1);
alpar@100
  2729
	_left.set(me, left);
alpar@100
  2730
	_parent.set(left, me);
alpar@100
  2731
      } else {
alpar@100
  2732
	_left.set(me, INVALID);
alpar@100
  2733
      }
alpar@100
  2734
      if (m < b) {
alpar@100
  2735
	Arc right = refreshRec(v,m+1,b);
alpar@100
  2736
	_right.set(me, right);
alpar@100
  2737
	_parent.set(right, me);
alpar@100
  2738
      } else {
alpar@100
  2739
	_right.set(me, INVALID);
alpar@100
  2740
      }
alpar@100
  2741
      return me;
alpar@100
  2742
    }
alpar@100
  2743
alpar@100
  2744
    void refresh() {
alpar@100
  2745
      for(NodeIt n(_g);n!=INVALID;++n) {
alpar@100
  2746
	std::vector<Arc> v;
alpar@100
  2747
	for(OutArcIt e(_g,n);e!=INVALID;++e) v.push_back(e);
alpar@100
  2748
	if(v.size()) {
alpar@100
  2749
	  std::sort(v.begin(),v.end(),ArcLess(_g));
alpar@100
  2750
	  Arc head = refreshRec(v,0,v.size()-1);
alpar@100
  2751
	  _head.set(n, head);
alpar@100
  2752
	  _parent.set(head, INVALID);
alpar@100
  2753
	}
alpar@100
  2754
	else _head.set(n, INVALID);
alpar@100
  2755
      }
alpar@100
  2756
    }
alpar@100
  2757
alpar@100
  2758
    void zig(Arc v) {        
alpar@100
  2759
      Arc w = _parent[v];
alpar@100
  2760
      _parent.set(v, _parent[w]);
alpar@100
  2761
      _parent.set(w, v);
alpar@100
  2762
      _left.set(w, _right[v]);
alpar@100
  2763
      _right.set(v, w);
alpar@100
  2764
      if (_parent[v] != INVALID) {
alpar@100
  2765
	if (_right[_parent[v]] == w) {
alpar@100
  2766
	  _right.set(_parent[v], v);
alpar@100
  2767
	} else {
alpar@100
  2768
	  _left.set(_parent[v], v);
alpar@100
  2769
	}
alpar@100
  2770
      }
alpar@100
  2771
      if (_left[w] != INVALID){
alpar@100
  2772
	_parent.set(_left[w], w);
alpar@100
  2773
      }
alpar@100
  2774
    }
alpar@100
  2775
alpar@100
  2776
    void zag(Arc v) {        
alpar@100
  2777
      Arc w = _parent[v];
alpar@100
  2778
      _parent.set(v, _parent[w]);
alpar@100
  2779
      _parent.set(w, v);
alpar@100
  2780
      _right.set(w, _left[v]);
alpar@100
  2781
      _left.set(v, w);
alpar@100
  2782
      if (_parent[v] != INVALID){
alpar@100
  2783
	if (_left[_parent[v]] == w) {
alpar@100
  2784
	  _left.set(_parent[v], v);
alpar@100
  2785
	} else {
alpar@100
  2786
	  _right.set(_parent[v], v);
alpar@100
  2787
	}
alpar@100
  2788
      }
alpar@100
  2789
      if (_right[w] != INVALID){
alpar@100
  2790
	_parent.set(_right[w], w);
alpar@100
  2791
      }
alpar@100
  2792
    }
alpar@100
  2793
alpar@100
  2794
    void splay(Arc v) {
alpar@100
  2795
      while (_parent[v] != INVALID) {
alpar@100
  2796
	if (v == _left[_parent[v]]) {
alpar@100
  2797
	  if (_parent[_parent[v]] == INVALID) {
alpar@100
  2798
	    zig(v);
alpar@100
  2799
	  } else {
alpar@100
  2800
	    if (_parent[v] == _left[_parent[_parent[v]]]) {
alpar@100
  2801
	      zig(_parent[v]);
alpar@100
  2802
	      zig(v);
alpar@100
  2803
	    } else {
alpar@100
  2804
	      zig(v);
alpar@100
  2805
	      zag(v);
alpar@100
  2806
	    }
alpar@100
  2807
	  }
alpar@100
  2808
	} else {
alpar@100
  2809
	  if (_parent[_parent[v]] == INVALID) {
alpar@100
  2810
	    zag(v);
alpar@100
  2811
	  } else {
alpar@100
  2812
	    if (_parent[v] == _left[_parent[_parent[v]]]) {
alpar@100
  2813
	      zag(v);
alpar@100
  2814
	      zig(v);
alpar@100
  2815
	    } else {
alpar@100
  2816
	      zag(_parent[v]);
alpar@100
  2817
	      zag(v);
alpar@100
  2818
	    }
alpar@100
  2819
	  }
alpar@100
  2820
	}
alpar@100
  2821
      }
alpar@100
  2822
      _head[_g.source(v)] = v;
alpar@100
  2823
    }
alpar@100
  2824
alpar@100
  2825
alpar@100
  2826
  public:
alpar@100
  2827
    
alpar@100
  2828
    ///Find an arc between two nodes.
alpar@100
  2829
    
alpar@100
  2830
    ///Find an arc between two nodes in time <em>O(</em>log<em>d)</em>, where
alpar@100
  2831
    /// <em>d</em> is the number of outgoing arcs of \c s.
alpar@100
  2832
    ///\param s The source node
alpar@100
  2833
    ///\param t The target node
alpar@100
  2834
    ///\return An arc from \c s to \c t if there exists,
alpar@100
  2835
    ///\ref INVALID otherwise.
alpar@100
  2836
    Arc operator()(Node s, Node t) const
alpar@100
  2837
    {
alpar@100
  2838
      Arc e = _head[s];
alpar@100
  2839
      while (true) {
alpar@100
  2840
	if (_g.target(e) == t) {
alpar@100
  2841
	  const_cast<DynArcLookUp&>(*this).splay(e);
alpar@100
  2842
	  return e;
alpar@100
  2843
	} else if (t < _g.target(e)) {
alpar@100
  2844
	  if (_left[e] == INVALID) {
alpar@100
  2845
	    const_cast<DynArcLookUp&>(*this).splay(e);
alpar@100
  2846
	    return INVALID;
alpar@100
  2847
	  } else {
alpar@100
  2848
	    e = _left[e];
alpar@100
  2849
	  }
alpar@100
  2850
	} else  {
alpar@100
  2851
	  if (_right[e] == INVALID) {
alpar@100
  2852
	    const_cast<DynArcLookUp&>(*this).splay(e);
alpar@100
  2853
	    return INVALID;
alpar@100
  2854
	  } else {
alpar@100
  2855
	    e = _right[e];
alpar@100
  2856
	  }
alpar@100
  2857
	}
alpar@100
  2858
      }
alpar@100
  2859
    }
alpar@100
  2860
alpar@100
  2861
    ///Find the first arc between two nodes.
alpar@100
  2862
    
alpar@100
  2863
    ///Find the first arc between two nodes in time
alpar@100
  2864
    /// <em>O(</em>log<em>d)</em>, where <em>d</em> is the number of
alpar@100
  2865
    /// outgoing arcs of \c s.  
alpar@100
  2866
    ///\param s The source node 
alpar@100
  2867
    ///\param t The target node
alpar@100
  2868
    ///\return An arc from \c s to \c t if there exists, \ref INVALID
alpar@100
  2869
    /// otherwise.
alpar@100
  2870
    Arc findFirst(Node s, Node t) const
alpar@100
  2871
    {
alpar@100
  2872
      Arc e = _head[s];
alpar@100
  2873
      Arc r = INVALID;
alpar@100
  2874
      while (true) {
alpar@100
  2875
	if (_g.target(e) < t) {
alpar@100
  2876
	  if (_right[e] == INVALID) {
alpar@100
  2877
	    const_cast<DynArcLookUp&>(*this).splay(e);
alpar@100
  2878
	    return r;
alpar@100
  2879
	  } else {
alpar@100
  2880
	    e = _right[e];
alpar@100
  2881
	  }
alpar@100
  2882
	} else {
alpar@100
  2883
	  if (_g.target(e) == t) {
alpar@100
  2884
	    r = e;
alpar@100
  2885
	  }
alpar@100
  2886
	  if (_left[e] == INVALID) {
alpar@100
  2887
	    const_cast<DynArcLookUp&>(*this).splay(e);
alpar@100
  2888
	    return r;
alpar@100
  2889
	  } else {
alpar@100
  2890
	    e = _left[e];
alpar@100
  2891
	  }
alpar@100
  2892
	}
alpar@100
  2893
      }
alpar@100
  2894
    }
alpar@100
  2895
alpar@100
  2896
    ///Find the next arc between two nodes.
alpar@100
  2897
    
alpar@100
  2898
    ///Find the next arc between two nodes in time
alpar@100
  2899
    /// <em>O(</em>log<em>d)</em>, where <em>d</em> is the number of
alpar@100
  2900
    /// outgoing arcs of \c s.  
alpar@100
  2901
    ///\param s The source node 
alpar@100
  2902
    ///\param t The target node
alpar@100
  2903
    ///\return An arc from \c s to \c t if there exists, \ref INVALID
alpar@100
  2904
    /// otherwise.
alpar@100
  2905
alpar@100
  2906
    ///\note If \c e is not the result of the previous \c findFirst()
alpar@100
  2907
    ///operation then the amorized time bound can not be guaranteed.
alpar@100
  2908
#ifdef DOXYGEN
alpar@100
  2909
    Arc findNext(Node s, Node t, Arc e) const
alpar@100
  2910
#else
alpar@100
  2911
    Arc findNext(Node, Node t, Arc e) const
alpar@100
  2912
#endif
alpar@100
  2913
    {
alpar@100
  2914
      if (_right[e] != INVALID) {
alpar@100
  2915
	e = _right[e];
alpar@100
  2916
	while (_left[e] != INVALID) {
alpar@100
  2917
	  e = _left[e];
alpar@100
  2918
	}
alpar@100
  2919
	const_cast<DynArcLookUp&>(*this).splay(e);
alpar@100
  2920
      } else {
alpar@100
  2921
	while (_parent[e] != INVALID && _right[_parent[e]] ==  e) {
alpar@100
  2922
	  e = _parent[e];
alpar@100
  2923
	}
alpar@100
  2924
	if (_parent[e] == INVALID) {
alpar@100
  2925
	  return INVALID;
alpar@100
  2926
	} else {
alpar@100
  2927
	  e = _parent[e];
alpar@100
  2928
	  const_cast<DynArcLookUp&>(*this).splay(e);
alpar@100
  2929
	}
alpar@100
  2930
      }
alpar@100
  2931
      if (_g.target(e) == t) return e;
alpar@100
  2932
      else return INVALID;    
alpar@100
  2933
    }
alpar@100
  2934
alpar@100
  2935
  };
alpar@100
  2936
alpar@100
  2937
  ///Fast arc look up between given endpoints.
alpar@100
  2938
  
alpar@100
  2939
  ///\ingroup gutils
alpar@100
  2940
  ///Using this class, you can find an arc in a digraph from a given
alpar@100
  2941
  ///source to a given target in time <em>O(log d)</em>,
alpar@100
  2942
  ///where <em>d</em> is the out-degree of the source node.
alpar@100
  2943
  ///
alpar@100
  2944
  ///It is not possible to find \e all parallel arcs between two nodes.
alpar@100
  2945
  ///Use \ref AllArcLookUp for this purpose.
alpar@100
  2946
  ///
alpar@100
  2947
  ///\warning This class is static, so you should refresh() (or at least
alpar@100
  2948
  ///refresh(Node)) this data structure
alpar@100
  2949
  ///whenever the digraph changes. This is a time consuming (superlinearly
alpar@100
  2950
  ///proportional (<em>O(m</em>log<em>m)</em>) to the number of arcs).
alpar@100
  2951
  ///
alpar@100
  2952
  ///\param G The type of the underlying digraph.
alpar@100
  2953
  ///
alpar@100
  2954
  ///\sa DynArcLookUp
alpar@100
  2955
  ///\sa AllArcLookUp  
alpar@100
  2956
  template<class G>
alpar@100
  2957
  class ArcLookUp 
alpar@100
  2958
  {
alpar@100
  2959
  public:
alpar@100
  2960
    GRAPH_TYPEDEFS(typename G);
alpar@100
  2961
    typedef G Digraph;
alpar@100
  2962
alpar@100
  2963
  protected:
alpar@100
  2964
    const Digraph &_g;
alpar@100
  2965
    typename Digraph::template NodeMap<Arc> _head;
alpar@100
  2966
    typename Digraph::template ArcMap<Arc> _left;
alpar@100
  2967
    typename Digraph::template ArcMap<Arc> _right;
alpar@100
  2968
    
alpar@100
  2969
    class ArcLess {
alpar@100
  2970
      const Digraph &g;
alpar@100
  2971
    public:
alpar@100
  2972
      ArcLess(const Digraph &_g) : g(_g) {}
alpar@100
  2973
      bool operator()(Arc a,Arc b) const 
alpar@100
  2974
      {
alpar@100
  2975
	return g.target(a)<g.target(b);
alpar@100
  2976
      }
alpar@100
  2977
    };
alpar@100
  2978
    
alpar@100
  2979
  public:
alpar@100
  2980
    
alpar@100
  2981
    ///Constructor
alpar@100
  2982
alpar@100
  2983
    ///Constructor.
alpar@100
  2984
    ///
alpar@100
  2985
    ///It builds up the search database, which remains valid until the digraph
alpar@100
  2986
    ///changes.
alpar@100
  2987
    ArcLookUp(const Digraph &g) :_g(g),_head(g),_left(g),_right(g) {refresh();}
alpar@100
  2988
    
alpar@100
  2989
  private:
alpar@100
  2990
    Arc refreshRec(std::vector<Arc> &v,int a,int b) 
alpar@100
  2991
    {
alpar@100
  2992
      int m=(a+b)/2;
alpar@100
  2993
      Arc me=v[m];
alpar@100
  2994
      _left[me] = a<m?refreshRec(v,a,m-1):INVALID;
alpar@100
  2995
      _right[me] = m<b?refreshRec(v,m+1,b):INVALID;
alpar@100
  2996
      return me;
alpar@100
  2997
    }
alpar@100
  2998
  public:
alpar@100
  2999
    ///Refresh the data structure at a node.
alpar@100
  3000
alpar@100
  3001
    ///Build up the search database of node \c n.
alpar@100
  3002
    ///
alpar@100
  3003
    ///It runs in time <em>O(d</em>log<em>d)</em>, where <em>d</em> is
alpar@100
  3004
    ///the number of the outgoing arcs of \c n.
alpar@100
  3005
    void refresh(Node n) 
alpar@100
  3006
    {
alpar@100
  3007
      std::vector<Arc> v;
alpar@100
  3008
      for(OutArcIt e(_g,n);e!=INVALID;++e) v.push_back(e);
alpar@100
  3009
      if(v.size()) {
alpar@100
  3010
	std::sort(v.begin(),v.end(),ArcLess(_g));
alpar@100
  3011
	_head[n]=refreshRec(v,0,v.size()-1);
alpar@100
  3012
      }
alpar@100
  3013
      else _head[n]=INVALID;
alpar@100
  3014
    }
alpar@100
  3015
    ///Refresh the full data structure.
alpar@100
  3016
alpar@100
  3017
    ///Build up the full search database. In fact, it simply calls
alpar@100
  3018
    ///\ref refresh(Node) "refresh(n)" for each node \c n.
alpar@100
  3019
    ///
alpar@100
  3020
    ///It runs in time <em>O(m</em>log<em>D)</em>, where <em>m</em> is
alpar@100
  3021
    ///the number of the arcs of \c n and <em>D</em> is the maximum
alpar@100
  3022
    ///out-degree of the digraph.
alpar@100
  3023
alpar@100
  3024
    void refresh() 
alpar@100
  3025
    {
alpar@100
  3026
      for(NodeIt n(_g);n!=INVALID;++n) refresh(n);
alpar@100
  3027
    }
alpar@100
  3028
    
alpar@100
  3029
    ///Find an arc between two nodes.
alpar@100
  3030
    
alpar@100
  3031
    ///Find an arc between two nodes in time <em>O(</em>log<em>d)</em>, where
alpar@100
  3032
    /// <em>d</em> is the number of outgoing arcs of \c s.
alpar@100
  3033
    ///\param s The source node
alpar@100
  3034
    ///\param t The target node
alpar@100
  3035
    ///\return An arc from \c s to \c t if there exists,
alpar@100
  3036
    ///\ref INVALID otherwise.
alpar@100
  3037
    ///
alpar@100
  3038
    ///\warning If you change the digraph, refresh() must be called before using
alpar@100
  3039
    ///this operator. If you change the outgoing arcs of
alpar@100
  3040
    ///a single node \c n, then
alpar@100
  3041
    ///\ref refresh(Node) "refresh(n)" is enough.
alpar@100
  3042
    ///
alpar@100
  3043
    Arc operator()(Node s, Node t) const
alpar@100
  3044
    {
alpar@100
  3045
      Arc e;
alpar@100
  3046
      for(e=_head[s];
alpar@100
  3047
	  e!=INVALID&&_g.target(e)!=t;
alpar@100
  3048
	  e = t < _g.target(e)?_left[e]:_right[e]) ;
alpar@100
  3049
      return e;
alpar@100
  3050
    }
alpar@100
  3051
alpar@100
  3052
  };
alpar@100
  3053
alpar@100
  3054
  ///Fast look up of all arcs between given endpoints.
alpar@100
  3055
  
alpar@100
  3056
  ///\ingroup gutils
alpar@100
  3057
  ///This class is the same as \ref ArcLookUp, with the addition
alpar@100
  3058
  ///that it makes it possible to find all arcs between given endpoints.
alpar@100
  3059
  ///
alpar@100
  3060
  ///\warning This class is static, so you should refresh() (or at least
alpar@100
  3061
  ///refresh(Node)) this data structure
alpar@100
  3062
  ///whenever the digraph changes. This is a time consuming (superlinearly
alpar@100
  3063
  ///proportional (<em>O(m</em>log<em>m)</em>) to the number of arcs).
alpar@100
  3064
  ///
alpar@100
  3065
  ///\param G The type of the underlying digraph.
alpar@100
  3066
  ///
alpar@100
  3067
  ///\sa DynArcLookUp
alpar@100
  3068
  ///\sa ArcLookUp  
alpar@100
  3069
  template<class G>
alpar@100
  3070
  class AllArcLookUp : public ArcLookUp<G>
alpar@100
  3071
  {
alpar@100
  3072
    using ArcLookUp<G>::_g;
alpar@100
  3073
    using ArcLookUp<G>::_right;
alpar@100
  3074
    using ArcLookUp<G>::_left;
alpar@100
  3075
    using ArcLookUp<G>::_head;
alpar@100
  3076
alpar@100
  3077
    GRAPH_TYPEDEFS(typename G);
alpar@100
  3078
    typedef G Digraph;
alpar@100
  3079
    
alpar@100
  3080
    typename Digraph::template ArcMap<Arc> _next;
alpar@100
  3081
    
alpar@100
  3082
    Arc refreshNext(Arc head,Arc next=INVALID)
alpar@100
  3083
    {
alpar@100
  3084
      if(head==INVALID) return next;
alpar@100
  3085
      else {
alpar@100
  3086
	next=refreshNext(_right[head],next);
alpar@100
  3087
// 	_next[head]=next;
alpar@100
  3088
	_next[head]=( next!=INVALID && _g.target(next)==_g.target(head))
alpar@100
  3089
	  ? next : INVALID;
alpar@100
  3090
	return refreshNext(_left[head],head);
alpar@100
  3091
      }
alpar@100
  3092
    }
alpar@100
  3093
    
alpar@100
  3094
    void refreshNext()
alpar@100
  3095
    {
alpar@100
  3096
      for(NodeIt n(_g);n!=INVALID;++n) refreshNext(_head[n]);
alpar@100
  3097
    }
alpar@100
  3098
    
alpar@100
  3099
  public:
alpar@100
  3100
    ///Constructor
alpar@100
  3101
alpar@100
  3102
    ///Constructor.
alpar@100
  3103
    ///
alpar@100
  3104
    ///It builds up the search database, which remains valid until the digraph
alpar@100
  3105
    ///changes.
alpar@100
  3106
    AllArcLookUp(const Digraph &g) : ArcLookUp<G>(g), _next(g) {refreshNext();}
alpar@100
  3107
alpar@100
  3108
    ///Refresh the data structure at a node.
alpar@100
  3109
alpar@100
  3110
    ///Build up the search database of node \c n.
alpar@100
  3111
    ///
alpar@100
  3112
    ///It runs in time <em>O(d</em>log<em>d)</em>, where <em>d</em> is
alpar@100
  3113
    ///the number of the outgoing arcs of \c n.
alpar@100
  3114
    
alpar@100
  3115
    void refresh(Node n) 
alpar@100
  3116
    {
alpar@100
  3117
      ArcLookUp<G>::refresh(n);
alpar@100
  3118
      refreshNext(_head[n]);
alpar@100
  3119
    }
alpar@100
  3120
    
alpar@100
  3121
    ///Refresh the full data structure.
alpar@100
  3122
alpar@100
  3123
    ///Build up the full search database. In fact, it simply calls
alpar@100
  3124
    ///\ref refresh(Node) "refresh(n)" for each node \c n.
alpar@100
  3125
    ///
alpar@100
  3126
    ///It runs in time <em>O(m</em>log<em>D)</em>, where <em>m</em> is
alpar@100
  3127
    ///the number of the arcs of \c n and <em>D</em> is the maximum
alpar@100
  3128
    ///out-degree of the digraph.
alpar@100
  3129
alpar@100
  3130
    void refresh() 
alpar@100
  3131
    {
alpar@100
  3132
      for(NodeIt n(_g);n!=INVALID;++n) refresh(_head[n]);
alpar@100
  3133
    }
alpar@100
  3134
    
alpar@100
  3135
    ///Find an arc between two nodes.
alpar@100
  3136
    
alpar@100
  3137
    ///Find an arc between two nodes.
alpar@100
  3138
    ///\param s The source node
alpar@100
  3139
    ///\param t The target node
alpar@100
  3140
    ///\param prev The previous arc between \c s and \c t. It it is INVALID or
alpar@100
  3141
    ///not given, the operator finds the first appropriate arc.
alpar@100
  3142
    ///\return An arc from \c s to \c t after \c prev or
alpar@100
  3143
    ///\ref INVALID if there is no more.
alpar@100
  3144
    ///
alpar@100
  3145
    ///For example, you can count the number of arcs from \c u to \c v in the
alpar@100
  3146
    ///following way.
alpar@100
  3147
    ///\code
alpar@100
  3148
    ///AllArcLookUp<ListDigraph> ae(g);
alpar@100
  3149
    ///...
alpar@100
  3150
    ///int n=0;
alpar@100
  3151
    ///for(Arc e=ae(u,v);e!=INVALID;e=ae(u,v,e)) n++;
alpar@100
  3152
    ///\endcode
alpar@100
  3153
    ///
alpar@100
  3154
    ///Finding the first arc take <em>O(</em>log<em>d)</em> time, where
alpar@100
  3155
    /// <em>d</em> is the number of outgoing arcs of \c s. Then, the
alpar@100
  3156
    ///consecutive arcs are found in constant time.
alpar@100
  3157
    ///
alpar@100
  3158
    ///\warning If you change the digraph, refresh() must be called before using
alpar@100
  3159
    ///this operator. If you change the outgoing arcs of
alpar@100
  3160
    ///a single node \c n, then
alpar@100
  3161
    ///\ref refresh(Node) "refresh(n)" is enough.
alpar@100
  3162
    ///
alpar@100
  3163
#ifdef DOXYGEN
alpar@100
  3164
    Arc operator()(Node s, Node t, Arc prev=INVALID) const {}
alpar@100
  3165
#else
alpar@100
  3166
    using ArcLookUp<G>::operator() ;
alpar@100
  3167
    Arc operator()(Node s, Node t, Arc prev) const
alpar@100
  3168
    {
alpar@100
  3169
      return prev==INVALID?(*this)(s,t):_next[prev];
alpar@100
  3170
    }
alpar@100
  3171
#endif
alpar@100
  3172
      
alpar@100
  3173
  };
alpar@100
  3174
alpar@100
  3175
  /// @}
alpar@100
  3176
alpar@100
  3177
} //END OF NAMESPACE LEMON
alpar@100
  3178
alpar@100
  3179
#endif