doc/groups.dox
author Balazs Dezso <deba@inf.elte.hu>
Mon, 13 Oct 2008 13:56:00 +0200
changeset 326 64ad48007fb2
parent 314 2cc60866a0c9
child 351 91e68d590e61
permissions -rw-r--r--
Port maximum matching algorithms from svn 3498 (ticket #48)
alpar@209
     1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
alpar@40
     2
 *
alpar@209
     3
 * This file is a part of LEMON, a generic C++ optimization library.
alpar@40
     4
 *
alpar@40
     5
 * Copyright (C) 2003-2008
alpar@40
     6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
alpar@40
     7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
alpar@40
     8
 *
alpar@40
     9
 * Permission to use, modify and distribute this software is granted
alpar@40
    10
 * provided that this copyright notice appears in all copies. For
alpar@40
    11
 * precise terms see the accompanying LICENSE file.
alpar@40
    12
 *
alpar@40
    13
 * This software is provided "AS IS" with no warranty of any kind,
alpar@40
    14
 * express or implied, and with no claim as to its suitability for any
alpar@40
    15
 * purpose.
alpar@40
    16
 *
alpar@40
    17
 */
alpar@40
    18
alpar@40
    19
/**
alpar@40
    20
@defgroup datas Data Structures
kpeter@50
    21
This group describes the several data structures implemented in LEMON.
alpar@40
    22
*/
alpar@40
    23
alpar@40
    24
/**
alpar@40
    25
@defgroup graphs Graph Structures
alpar@40
    26
@ingroup datas
alpar@40
    27
\brief Graph structures implemented in LEMON.
alpar@40
    28
alpar@209
    29
The implementation of combinatorial algorithms heavily relies on
alpar@209
    30
efficient graph implementations. LEMON offers data structures which are
alpar@209
    31
planned to be easily used in an experimental phase of implementation studies,
alpar@209
    32
and thereafter the program code can be made efficient by small modifications.
alpar@40
    33
alpar@40
    34
The most efficient implementation of diverse applications require the
alpar@40
    35
usage of different physical graph implementations. These differences
alpar@40
    36
appear in the size of graph we require to handle, memory or time usage
alpar@40
    37
limitations or in the set of operations through which the graph can be
alpar@40
    38
accessed.  LEMON provides several physical graph structures to meet
alpar@40
    39
the diverging requirements of the possible users.  In order to save on
alpar@40
    40
running time or on memory usage, some structures may fail to provide
kpeter@83
    41
some graph features like arc/edge or node deletion.
alpar@40
    42
alpar@209
    43
Alteration of standard containers need a very limited number of
alpar@209
    44
operations, these together satisfy the everyday requirements.
alpar@209
    45
In the case of graph structures, different operations are needed which do
alpar@209
    46
not alter the physical graph, but gives another view. If some nodes or
kpeter@83
    47
arcs have to be hidden or the reverse oriented graph have to be used, then
alpar@209
    48
this is the case. It also may happen that in a flow implementation
alpar@209
    49
the residual graph can be accessed by another algorithm, or a node-set
alpar@209
    50
is to be shrunk for another algorithm.
alpar@209
    51
LEMON also provides a variety of graphs for these requirements called
alpar@209
    52
\ref graph_adaptors "graph adaptors". Adaptors cannot be used alone but only
alpar@209
    53
in conjunction with other graph representations.
alpar@40
    54
alpar@40
    55
You are free to use the graph structure that fit your requirements
alpar@40
    56
the best, most graph algorithms and auxiliary data structures can be used
kpeter@314
    57
with any graph structure.
kpeter@314
    58
kpeter@314
    59
<b>See also:</b> \ref graph_concepts "Graph Structure Concepts".
alpar@40
    60
*/
alpar@40
    61
alpar@40
    62
/**
kpeter@50
    63
@defgroup semi_adaptors Semi-Adaptor Classes for Graphs
alpar@40
    64
@ingroup graphs
alpar@40
    65
\brief Graph types between real graphs and graph adaptors.
alpar@40
    66
kpeter@50
    67
This group describes some graph types between real graphs and graph adaptors.
alpar@209
    68
These classes wrap graphs to give new functionality as the adaptors do it.
kpeter@50
    69
On the other hand they are not light-weight structures as the adaptors.
alpar@40
    70
*/
alpar@40
    71
alpar@40
    72
/**
alpar@209
    73
@defgroup maps Maps
alpar@40
    74
@ingroup datas
kpeter@50
    75
\brief Map structures implemented in LEMON.
alpar@40
    76
kpeter@50
    77
This group describes the map structures implemented in LEMON.
kpeter@50
    78
kpeter@314
    79
LEMON provides several special purpose maps and map adaptors that e.g. combine
alpar@40
    80
new maps from existing ones.
kpeter@314
    81
kpeter@314
    82
<b>See also:</b> \ref map_concepts "Map Concepts".
alpar@40
    83
*/
alpar@40
    84
alpar@40
    85
/**
alpar@209
    86
@defgroup graph_maps Graph Maps
alpar@40
    87
@ingroup maps
kpeter@83
    88
\brief Special graph-related maps.
alpar@40
    89
kpeter@50
    90
This group describes maps that are specifically designed to assign
kpeter@83
    91
values to the nodes and arcs of graphs.
alpar@40
    92
*/
alpar@40
    93
alpar@40
    94
/**
alpar@40
    95
\defgroup map_adaptors Map Adaptors
alpar@40
    96
\ingroup maps
alpar@40
    97
\brief Tools to create new maps from existing ones
alpar@40
    98
kpeter@50
    99
This group describes map adaptors that are used to create "implicit"
kpeter@50
   100
maps from other maps.
alpar@40
   101
kpeter@83
   102
Most of them are \ref lemon::concepts::ReadMap "read-only maps".
kpeter@83
   103
They can make arithmetic and logical operations between one or two maps
kpeter@83
   104
(negation, shifting, addition, multiplication, logical 'and', 'or',
kpeter@83
   105
'not' etc.) or e.g. convert a map to another one of different Value type.
alpar@40
   106
kpeter@50
   107
The typical usage of this classes is passing implicit maps to
alpar@40
   108
algorithms.  If a function type algorithm is called then the function
alpar@40
   109
type map adaptors can be used comfortable. For example let's see the
kpeter@314
   110
usage of map adaptors with the \c graphToEps() function.
alpar@40
   111
\code
alpar@40
   112
  Color nodeColor(int deg) {
alpar@40
   113
    if (deg >= 2) {
alpar@40
   114
      return Color(0.5, 0.0, 0.5);
alpar@40
   115
    } else if (deg == 1) {
alpar@40
   116
      return Color(1.0, 0.5, 1.0);
alpar@40
   117
    } else {
alpar@40
   118
      return Color(0.0, 0.0, 0.0);
alpar@40
   119
    }
alpar@40
   120
  }
alpar@209
   121
kpeter@83
   122
  Digraph::NodeMap<int> degree_map(graph);
alpar@209
   123
kpeter@314
   124
  graphToEps(graph, "graph.eps")
alpar@40
   125
    .coords(coords).scaleToA4().undirected()
kpeter@83
   126
    .nodeColors(composeMap(functorToMap(nodeColor), degree_map))
alpar@40
   127
    .run();
alpar@209
   128
\endcode
kpeter@83
   129
The \c functorToMap() function makes an \c int to \c Color map from the
kpeter@314
   130
\c nodeColor() function. The \c composeMap() compose the \c degree_map
kpeter@83
   131
and the previously created map. The composed map is a proper function to
kpeter@83
   132
get the color of each node.
alpar@40
   133
alpar@40
   134
The usage with class type algorithms is little bit harder. In this
alpar@40
   135
case the function type map adaptors can not be used, because the
kpeter@50
   136
function map adaptors give back temporary objects.
alpar@40
   137
\code
kpeter@83
   138
  Digraph graph;
kpeter@83
   139
kpeter@83
   140
  typedef Digraph::ArcMap<double> DoubleArcMap;
kpeter@83
   141
  DoubleArcMap length(graph);
kpeter@83
   142
  DoubleArcMap speed(graph);
kpeter@83
   143
kpeter@83
   144
  typedef DivMap<DoubleArcMap, DoubleArcMap> TimeMap;
alpar@40
   145
  TimeMap time(length, speed);
alpar@209
   146
kpeter@83
   147
  Dijkstra<Digraph, TimeMap> dijkstra(graph, time);
alpar@40
   148
  dijkstra.run(source, target);
alpar@40
   149
\endcode
kpeter@83
   150
We have a length map and a maximum speed map on the arcs of a digraph.
kpeter@83
   151
The minimum time to pass the arc can be calculated as the division of
kpeter@83
   152
the two maps which can be done implicitly with the \c DivMap template
alpar@40
   153
class. We use the implicit minimum time map as the length map of the
alpar@40
   154
\c Dijkstra algorithm.
alpar@40
   155
*/
alpar@40
   156
alpar@40
   157
/**
alpar@209
   158
@defgroup matrices Matrices
alpar@40
   159
@ingroup datas
kpeter@50
   160
\brief Two dimensional data storages implemented in LEMON.
alpar@40
   161
kpeter@50
   162
This group describes two dimensional data storages implemented in LEMON.
alpar@40
   163
*/
alpar@40
   164
alpar@40
   165
/**
alpar@40
   166
@defgroup paths Path Structures
alpar@40
   167
@ingroup datas
kpeter@318
   168
\brief %Path structures implemented in LEMON.
alpar@40
   169
kpeter@50
   170
This group describes the path structures implemented in LEMON.
alpar@40
   171
kpeter@50
   172
LEMON provides flexible data structures to work with paths.
kpeter@50
   173
All of them have similar interfaces and they can be copied easily with
kpeter@50
   174
assignment operators and copy constructors. This makes it easy and
alpar@40
   175
efficient to have e.g. the Dijkstra algorithm to store its result in
alpar@40
   176
any kind of path structure.
alpar@40
   177
alpar@40
   178
\sa lemon::concepts::Path
alpar@40
   179
*/
alpar@40
   180
alpar@40
   181
/**
alpar@40
   182
@defgroup auxdat Auxiliary Data Structures
alpar@40
   183
@ingroup datas
kpeter@50
   184
\brief Auxiliary data structures implemented in LEMON.
alpar@40
   185
kpeter@50
   186
This group describes some data structures implemented in LEMON in
alpar@40
   187
order to make it easier to implement combinatorial algorithms.
alpar@40
   188
*/
alpar@40
   189
alpar@40
   190
/**
alpar@40
   191
@defgroup algs Algorithms
alpar@40
   192
\brief This group describes the several algorithms
alpar@40
   193
implemented in LEMON.
alpar@40
   194
alpar@40
   195
This group describes the several algorithms
alpar@40
   196
implemented in LEMON.
alpar@40
   197
*/
alpar@40
   198
alpar@40
   199
/**
alpar@40
   200
@defgroup search Graph Search
alpar@40
   201
@ingroup algs
kpeter@50
   202
\brief Common graph search algorithms.
alpar@40
   203
alpar@209
   204
This group describes the common graph search algorithms like
kpeter@314
   205
Breadth-First Search (BFS) and Depth-First Search (DFS).
alpar@40
   206
*/
alpar@40
   207
alpar@40
   208
/**
kpeter@314
   209
@defgroup shortest_path Shortest Path Algorithms
alpar@40
   210
@ingroup algs
kpeter@50
   211
\brief Algorithms for finding shortest paths.
alpar@40
   212
kpeter@50
   213
This group describes the algorithms for finding shortest paths in graphs.
alpar@40
   214
*/
alpar@40
   215
alpar@209
   216
/**
kpeter@314
   217
@defgroup max_flow Maximum Flow Algorithms
alpar@209
   218
@ingroup algs
kpeter@50
   219
\brief Algorithms for finding maximum flows.
alpar@40
   220
alpar@40
   221
This group describes the algorithms for finding maximum flows and
alpar@40
   222
feasible circulations.
alpar@40
   223
kpeter@50
   224
The maximum flow problem is to find a flow between a single source and
kpeter@50
   225
a single target that is maximum. Formally, there is a \f$G=(V,A)\f$
alpar@40
   226
directed graph, an \f$c_a:A\rightarrow\mathbf{R}^+_0\f$ capacity
alpar@40
   227
function and given \f$s, t \in V\f$ source and target node. The
kpeter@50
   228
maximum flow is the \f$f_a\f$ solution of the next optimization problem:
alpar@40
   229
alpar@40
   230
\f[ 0 \le f_a \le c_a \f]
alpar@210
   231
\f[ \sum_{v\in\delta^{-}(u)}f_{vu}=\sum_{v\in\delta^{+}(u)}f_{uv}
alpar@210
   232
\qquad \forall u \in V \setminus \{s,t\}\f]
alpar@40
   233
\f[ \max \sum_{v\in\delta^{+}(s)}f_{uv} - \sum_{v\in\delta^{-}(s)}f_{vu}\f]
alpar@40
   234
kpeter@50
   235
LEMON contains several algorithms for solving maximum flow problems:
alpar@209
   236
- \ref lemon::EdmondsKarp "Edmonds-Karp"
alpar@40
   237
- \ref lemon::Preflow "Goldberg's Preflow algorithm"
kpeter@50
   238
- \ref lemon::DinitzSleatorTarjan "Dinitz's blocking flow algorithm with dynamic trees"
alpar@40
   239
- \ref lemon::GoldbergTarjan "Preflow algorithm with dynamic trees"
alpar@40
   240
kpeter@50
   241
In most cases the \ref lemon::Preflow "Preflow" algorithm provides the
alpar@40
   242
fastest method to compute the maximum flow. All impelementations
kpeter@50
   243
provides functions to query the minimum cut, which is the dual linear
kpeter@50
   244
programming problem of the maximum flow.
alpar@40
   245
*/
alpar@40
   246
alpar@40
   247
/**
kpeter@314
   248
@defgroup min_cost_flow Minimum Cost Flow Algorithms
alpar@40
   249
@ingroup algs
alpar@40
   250
kpeter@50
   251
\brief Algorithms for finding minimum cost flows and circulations.
alpar@40
   252
alpar@40
   253
This group describes the algorithms for finding minimum cost flows and
alpar@209
   254
circulations.
alpar@40
   255
*/
alpar@40
   256
alpar@40
   257
/**
kpeter@314
   258
@defgroup min_cut Minimum Cut Algorithms
alpar@209
   259
@ingroup algs
alpar@40
   260
kpeter@50
   261
\brief Algorithms for finding minimum cut in graphs.
alpar@40
   262
alpar@40
   263
This group describes the algorithms for finding minimum cut in graphs.
alpar@40
   264
alpar@40
   265
The minimum cut problem is to find a non-empty and non-complete
alpar@40
   266
\f$X\f$ subset of the vertices with minimum overall capacity on
alpar@40
   267
outgoing arcs. Formally, there is \f$G=(V,A)\f$ directed graph, an
alpar@40
   268
\f$c_a:A\rightarrow\mathbf{R}^+_0\f$ capacity function. The minimum
kpeter@50
   269
cut is the \f$X\f$ solution of the next optimization problem:
alpar@40
   270
alpar@210
   271
\f[ \min_{X \subset V, X\not\in \{\emptyset, V\}}
alpar@210
   272
\sum_{uv\in A, u\in X, v\not\in X}c_{uv}\f]
alpar@40
   273
kpeter@50
   274
LEMON contains several algorithms related to minimum cut problems:
alpar@40
   275
kpeter@50
   276
- \ref lemon::HaoOrlin "Hao-Orlin algorithm" to calculate minimum cut
alpar@209
   277
  in directed graphs
kpeter@50
   278
- \ref lemon::NagamochiIbaraki "Nagamochi-Ibaraki algorithm" to
alpar@40
   279
  calculate minimum cut in undirected graphs
kpeter@50
   280
- \ref lemon::GomoryHuTree "Gomory-Hu tree computation" to calculate all
alpar@40
   281
  pairs minimum cut in undirected graphs
alpar@40
   282
alpar@40
   283
If you want to find minimum cut just between two distinict nodes,
alpar@40
   284
please see the \ref max_flow "Maximum Flow page".
alpar@40
   285
*/
alpar@40
   286
alpar@40
   287
/**
kpeter@314
   288
@defgroup graph_prop Connectivity and Other Graph Properties
alpar@40
   289
@ingroup algs
kpeter@50
   290
\brief Algorithms for discovering the graph properties
alpar@40
   291
kpeter@50
   292
This group describes the algorithms for discovering the graph properties
kpeter@50
   293
like connectivity, bipartiteness, euler property, simplicity etc.
alpar@40
   294
alpar@40
   295
\image html edge_biconnected_components.png
alpar@40
   296
\image latex edge_biconnected_components.eps "bi-edge-connected components" width=\textwidth
alpar@40
   297
*/
alpar@40
   298
alpar@40
   299
/**
kpeter@314
   300
@defgroup planar Planarity Embedding and Drawing
alpar@40
   301
@ingroup algs
kpeter@50
   302
\brief Algorithms for planarity checking, embedding and drawing
alpar@40
   303
alpar@210
   304
This group describes the algorithms for planarity checking,
alpar@210
   305
embedding and drawing.
alpar@40
   306
alpar@40
   307
\image html planar.png
alpar@40
   308
\image latex planar.eps "Plane graph" width=\textwidth
alpar@40
   309
*/
alpar@40
   310
alpar@40
   311
/**
kpeter@314
   312
@defgroup matching Matching Algorithms
alpar@40
   313
@ingroup algs
kpeter@50
   314
\brief Algorithms for finding matchings in graphs and bipartite graphs.
alpar@40
   315
kpeter@50
   316
This group contains algorithm objects and functions to calculate
alpar@40
   317
matchings in graphs and bipartite graphs. The general matching problem is
kpeter@83
   318
finding a subset of the arcs which does not shares common endpoints.
alpar@209
   319
alpar@40
   320
There are several different algorithms for calculate matchings in
alpar@40
   321
graphs.  The matching problems in bipartite graphs are generally
alpar@40
   322
easier than in general graphs. The goal of the matching optimization
alpar@40
   323
can be the finding maximum cardinality, maximum weight or minimum cost
alpar@40
   324
matching. The search can be constrained to find perfect or
alpar@40
   325
maximum cardinality matching.
alpar@40
   326
ladanyi@236
   327
LEMON contains the next algorithms:
alpar@209
   328
- \ref lemon::MaxBipartiteMatching "MaxBipartiteMatching" Hopcroft-Karp
alpar@209
   329
  augmenting path algorithm for calculate maximum cardinality matching in
alpar@40
   330
  bipartite graphs
alpar@209
   331
- \ref lemon::PrBipartiteMatching "PrBipartiteMatching" Push-Relabel
alpar@209
   332
  algorithm for calculate maximum cardinality matching in bipartite graphs
alpar@209
   333
- \ref lemon::MaxWeightedBipartiteMatching "MaxWeightedBipartiteMatching"
alpar@209
   334
  Successive shortest path algorithm for calculate maximum weighted matching
alpar@40
   335
  and maximum weighted bipartite matching in bipartite graph
alpar@209
   336
- \ref lemon::MinCostMaxBipartiteMatching "MinCostMaxBipartiteMatching"
alpar@209
   337
  Successive shortest path algorithm for calculate minimum cost maximum
alpar@40
   338
  matching in bipartite graph
alpar@40
   339
- \ref lemon::MaxMatching "MaxMatching" Edmond's blossom shrinking algorithm
alpar@40
   340
  for calculate maximum cardinality matching in general graph
alpar@40
   341
- \ref lemon::MaxWeightedMatching "MaxWeightedMatching" Edmond's blossom
alpar@40
   342
  shrinking algorithm for calculate maximum weighted matching in general
alpar@40
   343
  graph
alpar@40
   344
- \ref lemon::MaxWeightedPerfectMatching "MaxWeightedPerfectMatching"
alpar@40
   345
  Edmond's blossom shrinking algorithm for calculate maximum weighted
alpar@40
   346
  perfect matching in general graph
alpar@40
   347
alpar@40
   348
\image html bipartite_matching.png
alpar@40
   349
\image latex bipartite_matching.eps "Bipartite Matching" width=\textwidth
alpar@40
   350
*/
alpar@40
   351
alpar@40
   352
/**
kpeter@314
   353
@defgroup spantree Minimum Spanning Tree Algorithms
alpar@40
   354
@ingroup algs
kpeter@50
   355
\brief Algorithms for finding a minimum cost spanning tree in a graph.
alpar@40
   356
kpeter@50
   357
This group describes the algorithms for finding a minimum cost spanning
alpar@40
   358
tree in a graph
alpar@40
   359
*/
alpar@40
   360
alpar@40
   361
/**
kpeter@314
   362
@defgroup auxalg Auxiliary Algorithms
alpar@40
   363
@ingroup algs
kpeter@50
   364
\brief Auxiliary algorithms implemented in LEMON.
alpar@40
   365
kpeter@50
   366
This group describes some algorithms implemented in LEMON
kpeter@50
   367
in order to make it easier to implement complex algorithms.
alpar@40
   368
*/
alpar@40
   369
alpar@40
   370
/**
kpeter@314
   371
@defgroup approx Approximation Algorithms
kpeter@314
   372
@ingroup algs
kpeter@50
   373
\brief Approximation algorithms.
alpar@40
   374
kpeter@50
   375
This group describes the approximation and heuristic algorithms
kpeter@50
   376
implemented in LEMON.
alpar@40
   377
*/
alpar@40
   378
alpar@40
   379
/**
alpar@40
   380
@defgroup gen_opt_group General Optimization Tools
alpar@40
   381
\brief This group describes some general optimization frameworks
alpar@40
   382
implemented in LEMON.
alpar@40
   383
alpar@40
   384
This group describes some general optimization frameworks
alpar@40
   385
implemented in LEMON.
alpar@40
   386
*/
alpar@40
   387
alpar@40
   388
/**
kpeter@314
   389
@defgroup lp_group Lp and Mip Solvers
alpar@40
   390
@ingroup gen_opt_group
alpar@40
   391
\brief Lp and Mip solver interfaces for LEMON.
alpar@40
   392
alpar@40
   393
This group describes Lp and Mip solver interfaces for LEMON. The
alpar@40
   394
various LP solvers could be used in the same manner with this
alpar@40
   395
interface.
alpar@40
   396
*/
alpar@40
   397
alpar@209
   398
/**
kpeter@314
   399
@defgroup lp_utils Tools for Lp and Mip Solvers
alpar@40
   400
@ingroup lp_group
kpeter@50
   401
\brief Helper tools to the Lp and Mip solvers.
alpar@40
   402
alpar@40
   403
This group adds some helper tools to general optimization framework
alpar@40
   404
implemented in LEMON.
alpar@40
   405
*/
alpar@40
   406
alpar@40
   407
/**
alpar@40
   408
@defgroup metah Metaheuristics
alpar@40
   409
@ingroup gen_opt_group
alpar@40
   410
\brief Metaheuristics for LEMON library.
alpar@40
   411
kpeter@50
   412
This group describes some metaheuristic optimization tools.
alpar@40
   413
*/
alpar@40
   414
alpar@40
   415
/**
alpar@209
   416
@defgroup utils Tools and Utilities
kpeter@50
   417
\brief Tools and utilities for programming in LEMON
alpar@40
   418
kpeter@50
   419
Tools and utilities for programming in LEMON.
alpar@40
   420
*/
alpar@40
   421
alpar@40
   422
/**
alpar@40
   423
@defgroup gutils Basic Graph Utilities
alpar@40
   424
@ingroup utils
kpeter@50
   425
\brief Simple basic graph utilities.
alpar@40
   426
alpar@40
   427
This group describes some simple basic graph utilities.
alpar@40
   428
*/
alpar@40
   429
alpar@40
   430
/**
alpar@40
   431
@defgroup misc Miscellaneous Tools
alpar@40
   432
@ingroup utils
kpeter@50
   433
\brief Tools for development, debugging and testing.
kpeter@50
   434
kpeter@50
   435
This group describes several useful tools for development,
alpar@40
   436
debugging and testing.
alpar@40
   437
*/
alpar@40
   438
alpar@40
   439
/**
kpeter@314
   440
@defgroup timecount Time Measuring and Counting
alpar@40
   441
@ingroup misc
kpeter@50
   442
\brief Simple tools for measuring the performance of algorithms.
kpeter@50
   443
kpeter@50
   444
This group describes simple tools for measuring the performance
alpar@40
   445
of algorithms.
alpar@40
   446
*/
alpar@40
   447
alpar@40
   448
/**
alpar@40
   449
@defgroup exceptions Exceptions
alpar@40
   450
@ingroup utils
kpeter@50
   451
\brief Exceptions defined in LEMON.
kpeter@50
   452
kpeter@50
   453
This group describes the exceptions defined in LEMON.
alpar@40
   454
*/
alpar@40
   455
alpar@40
   456
/**
alpar@40
   457
@defgroup io_group Input-Output
kpeter@50
   458
\brief Graph Input-Output methods
alpar@40
   459
alpar@209
   460
This group describes the tools for importing and exporting graphs
kpeter@314
   461
and graph related data. Now it supports the \ref lgf-format
kpeter@314
   462
"LEMON Graph Format", the \c DIMACS format and the encapsulated
kpeter@314
   463
postscript (EPS) format.
alpar@40
   464
*/
alpar@40
   465
alpar@40
   466
/**
ladanyi@236
   467
@defgroup lemon_io LEMON Input-Output
alpar@40
   468
@ingroup io_group
kpeter@314
   469
\brief Reading and writing LEMON Graph Format.
alpar@40
   470
alpar@210
   471
This group describes methods for reading and writing
ladanyi@236
   472
\ref lgf-format "LEMON Graph Format".
alpar@40
   473
*/
alpar@40
   474
alpar@40
   475
/**
kpeter@314
   476
@defgroup eps_io Postscript Exporting
alpar@40
   477
@ingroup io_group
alpar@40
   478
\brief General \c EPS drawer and graph exporter
alpar@40
   479
kpeter@50
   480
This group describes general \c EPS drawing methods and special
alpar@209
   481
graph exporting tools.
alpar@40
   482
*/
alpar@40
   483
alpar@40
   484
/**
alpar@40
   485
@defgroup concept Concepts
alpar@40
   486
\brief Skeleton classes and concept checking classes
alpar@40
   487
alpar@40
   488
This group describes the data/algorithm skeletons and concept checking
alpar@40
   489
classes implemented in LEMON.
alpar@40
   490
alpar@40
   491
The purpose of the classes in this group is fourfold.
alpar@209
   492
kpeter@318
   493
- These classes contain the documentations of the %concepts. In order
alpar@40
   494
  to avoid document multiplications, an implementation of a concept
alpar@40
   495
  simply refers to the corresponding concept class.
alpar@40
   496
alpar@40
   497
- These classes declare every functions, <tt>typedef</tt>s etc. an
kpeter@318
   498
  implementation of the %concepts should provide, however completely
alpar@40
   499
  without implementations and real data structures behind the
alpar@40
   500
  interface. On the other hand they should provide nothing else. All
alpar@40
   501
  the algorithms working on a data structure meeting a certain concept
alpar@40
   502
  should compile with these classes. (Though it will not run properly,
alpar@40
   503
  of course.) In this way it is easily to check if an algorithm
alpar@40
   504
  doesn't use any extra feature of a certain implementation.
alpar@40
   505
alpar@40
   506
- The concept descriptor classes also provide a <em>checker class</em>
kpeter@50
   507
  that makes it possible to check whether a certain implementation of a
alpar@40
   508
  concept indeed provides all the required features.
alpar@40
   509
alpar@40
   510
- Finally, They can serve as a skeleton of a new implementation of a concept.
alpar@40
   511
*/
alpar@40
   512
alpar@40
   513
/**
alpar@40
   514
@defgroup graph_concepts Graph Structure Concepts
alpar@40
   515
@ingroup concept
alpar@40
   516
\brief Skeleton and concept checking classes for graph structures
alpar@40
   517
kpeter@50
   518
This group describes the skeletons and concept checking classes of LEMON's
alpar@40
   519
graph structures and helper classes used to implement these.
alpar@40
   520
*/
alpar@40
   521
kpeter@314
   522
/**
kpeter@314
   523
@defgroup map_concepts Map Concepts
kpeter@314
   524
@ingroup concept
kpeter@314
   525
\brief Skeleton and concept checking classes for maps
kpeter@314
   526
kpeter@314
   527
This group describes the skeletons and concept checking classes of maps.
alpar@40
   528
*/
alpar@40
   529
alpar@40
   530
/**
alpar@40
   531
\anchor demoprograms
alpar@40
   532
alpar@40
   533
@defgroup demos Demo programs
alpar@40
   534
alpar@40
   535
Some demo programs are listed here. Their full source codes can be found in
alpar@40
   536
the \c demo subdirectory of the source tree.
alpar@40
   537
alpar@41
   538
It order to compile them, use <tt>--enable-demo</tt> configure option when
alpar@41
   539
build the library.
alpar@40
   540
*/
alpar@40
   541
alpar@40
   542
/**
alpar@40
   543
@defgroup tools Standalone utility applications
alpar@40
   544
alpar@209
   545
Some utility applications are listed here.
alpar@40
   546
alpar@40
   547
The standard compilation procedure (<tt>./configure;make</tt>) will compile
alpar@209
   548
them, as well.
alpar@40
   549
*/
alpar@40
   550