lemon/core.h
author Alpar Juttner <alpar@cs.elte.hu>
Fri, 22 Jun 2012 16:25:56 +0200
changeset 787 7440937d154b
parent 672 da70af8844b9
parent 731 bb871cb8ac06
child 761 f1398882a928
child 789 157427808b40
permissions -rw-r--r--
Bugfix in path copy constructors and assignment operators (#444)
deba@220
     1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
deba@220
     2
 *
deba@220
     3
 * This file is a part of LEMON, a generic C++ optimization library.
deba@220
     4
 *
alpar@440
     5
 * Copyright (C) 2003-2009
deba@220
     6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
deba@220
     7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
deba@220
     8
 *
deba@220
     9
 * Permission to use, modify and distribute this software is granted
deba@220
    10
 * provided that this copyright notice appears in all copies. For
deba@220
    11
 * precise terms see the accompanying LICENSE file.
deba@220
    12
 *
deba@220
    13
 * This software is provided "AS IS" with no warranty of any kind,
deba@220
    14
 * express or implied, and with no claim as to its suitability for any
deba@220
    15
 * purpose.
deba@220
    16
 *
deba@220
    17
 */
deba@220
    18
deba@220
    19
#ifndef LEMON_CORE_H
deba@220
    20
#define LEMON_CORE_H
deba@220
    21
deba@220
    22
#include <vector>
deba@220
    23
#include <algorithm>
deba@220
    24
ladanyi@634
    25
#include <lemon/config.h>
deba@220
    26
#include <lemon/bits/enable_if.h>
deba@220
    27
#include <lemon/bits/traits.h>
alpar@319
    28
#include <lemon/assert.h>
deba@220
    29
ladanyi@672
    30
// Disable the following warnings when compiling with MSVC:
ladanyi@672
    31
// C4250: 'class1' : inherits 'class2::member' via dominance
ladanyi@672
    32
// C4355: 'this' : used in base member initializer list
ladanyi@672
    33
// C4503: 'function' : decorated name length exceeded, name was truncated
ladanyi@672
    34
// C4800: 'type' : forcing value to bool 'true' or 'false' (performance warning)
ladanyi@672
    35
// C4996: 'function': was declared deprecated
ladanyi@672
    36
#ifdef _MSC_VER
ladanyi@672
    37
#pragma warning( disable : 4250 4355 4503 4800 4996 )
ladanyi@672
    38
#endif
ladanyi@672
    39
deba@220
    40
///\file
deba@220
    41
///\brief LEMON core utilities.
kpeter@229
    42
///
kpeter@229
    43
///This header file contains core utilities for LEMON.
deba@233
    44
///It is automatically included by all graph types, therefore it usually
kpeter@229
    45
///do not have to be included directly.
deba@220
    46
deba@220
    47
namespace lemon {
deba@220
    48
deba@220
    49
  /// \brief Dummy type to make it easier to create invalid iterators.
deba@220
    50
  ///
deba@220
    51
  /// Dummy type to make it easier to create invalid iterators.
deba@220
    52
  /// See \ref INVALID for the usage.
deba@220
    53
  struct Invalid {
deba@220
    54
  public:
deba@220
    55
    bool operator==(Invalid) { return true;  }
deba@220
    56
    bool operator!=(Invalid) { return false; }
deba@220
    57
    bool operator< (Invalid) { return false; }
deba@220
    58
  };
deba@220
    59
deba@220
    60
  /// \brief Invalid iterators.
deba@220
    61
  ///
deba@220
    62
  /// \ref Invalid is a global type that converts to each iterator
deba@220
    63
  /// in such a way that the value of the target iterator will be invalid.
deba@220
    64
#ifdef LEMON_ONLY_TEMPLATES
deba@220
    65
  const Invalid INVALID = Invalid();
deba@220
    66
#else
deba@220
    67
  extern const Invalid INVALID;
deba@220
    68
#endif
deba@220
    69
deba@220
    70
  /// \addtogroup gutils
deba@220
    71
  /// @{
deba@220
    72
kpeter@300
    73
  ///Create convenience typedefs for the digraph types and iterators
deba@220
    74
kpeter@282
    75
  ///This \c \#define creates convenient type definitions for the following
kpeter@282
    76
  ///types of \c Digraph: \c Node,  \c NodeIt, \c Arc, \c ArcIt, \c InArcIt,
deba@220
    77
  ///\c OutArcIt, \c BoolNodeMap, \c IntNodeMap, \c DoubleNodeMap,
deba@220
    78
  ///\c BoolArcMap, \c IntArcMap, \c DoubleArcMap.
deba@220
    79
  ///
deba@220
    80
  ///\note If the graph type is a dependent type, ie. the graph type depend
deba@220
    81
  ///on a template parameter, then use \c TEMPLATE_DIGRAPH_TYPEDEFS()
deba@220
    82
  ///macro.
deba@220
    83
#define DIGRAPH_TYPEDEFS(Digraph)                                       \
deba@220
    84
  typedef Digraph::Node Node;                                           \
deba@220
    85
  typedef Digraph::NodeIt NodeIt;                                       \
deba@220
    86
  typedef Digraph::Arc Arc;                                             \
deba@220
    87
  typedef Digraph::ArcIt ArcIt;                                         \
deba@220
    88
  typedef Digraph::InArcIt InArcIt;                                     \
deba@220
    89
  typedef Digraph::OutArcIt OutArcIt;                                   \
deba@220
    90
  typedef Digraph::NodeMap<bool> BoolNodeMap;                           \
deba@220
    91
  typedef Digraph::NodeMap<int> IntNodeMap;                             \
deba@220
    92
  typedef Digraph::NodeMap<double> DoubleNodeMap;                       \
deba@220
    93
  typedef Digraph::ArcMap<bool> BoolArcMap;                             \
deba@220
    94
  typedef Digraph::ArcMap<int> IntArcMap;                               \
kpeter@300
    95
  typedef Digraph::ArcMap<double> DoubleArcMap
deba@220
    96
kpeter@300
    97
  ///Create convenience typedefs for the digraph types and iterators
deba@220
    98
deba@220
    99
  ///\see DIGRAPH_TYPEDEFS
deba@220
   100
  ///
deba@220
   101
  ///\note Use this macro, if the graph type is a dependent type,
deba@220
   102
  ///ie. the graph type depend on a template parameter.
deba@220
   103
#define TEMPLATE_DIGRAPH_TYPEDEFS(Digraph)                              \
deba@220
   104
  typedef typename Digraph::Node Node;                                  \
deba@220
   105
  typedef typename Digraph::NodeIt NodeIt;                              \
deba@220
   106
  typedef typename Digraph::Arc Arc;                                    \
deba@220
   107
  typedef typename Digraph::ArcIt ArcIt;                                \
deba@220
   108
  typedef typename Digraph::InArcIt InArcIt;                            \
deba@220
   109
  typedef typename Digraph::OutArcIt OutArcIt;                          \
deba@220
   110
  typedef typename Digraph::template NodeMap<bool> BoolNodeMap;         \
deba@220
   111
  typedef typename Digraph::template NodeMap<int> IntNodeMap;           \
deba@220
   112
  typedef typename Digraph::template NodeMap<double> DoubleNodeMap;     \
deba@220
   113
  typedef typename Digraph::template ArcMap<bool> BoolArcMap;           \
deba@220
   114
  typedef typename Digraph::template ArcMap<int> IntArcMap;             \
kpeter@300
   115
  typedef typename Digraph::template ArcMap<double> DoubleArcMap
deba@220
   116
kpeter@300
   117
  ///Create convenience typedefs for the graph types and iterators
deba@220
   118
kpeter@282
   119
  ///This \c \#define creates the same convenient type definitions as defined
deba@220
   120
  ///by \ref DIGRAPH_TYPEDEFS(Graph) and six more, namely it creates
deba@220
   121
  ///\c Edge, \c EdgeIt, \c IncEdgeIt, \c BoolEdgeMap, \c IntEdgeMap,
deba@220
   122
  ///\c DoubleEdgeMap.
deba@220
   123
  ///
deba@220
   124
  ///\note If the graph type is a dependent type, ie. the graph type depend
kpeter@282
   125
  ///on a template parameter, then use \c TEMPLATE_GRAPH_TYPEDEFS()
deba@220
   126
  ///macro.
deba@220
   127
#define GRAPH_TYPEDEFS(Graph)                                           \
deba@220
   128
  DIGRAPH_TYPEDEFS(Graph);                                              \
deba@220
   129
  typedef Graph::Edge Edge;                                             \
deba@220
   130
  typedef Graph::EdgeIt EdgeIt;                                         \
deba@220
   131
  typedef Graph::IncEdgeIt IncEdgeIt;                                   \
deba@220
   132
  typedef Graph::EdgeMap<bool> BoolEdgeMap;                             \
deba@220
   133
  typedef Graph::EdgeMap<int> IntEdgeMap;                               \
kpeter@300
   134
  typedef Graph::EdgeMap<double> DoubleEdgeMap
deba@220
   135
kpeter@300
   136
  ///Create convenience typedefs for the graph types and iterators
deba@220
   137
deba@220
   138
  ///\see GRAPH_TYPEDEFS
deba@220
   139
  ///
deba@220
   140
  ///\note Use this macro, if the graph type is a dependent type,
deba@220
   141
  ///ie. the graph type depend on a template parameter.
deba@220
   142
#define TEMPLATE_GRAPH_TYPEDEFS(Graph)                                  \
deba@220
   143
  TEMPLATE_DIGRAPH_TYPEDEFS(Graph);                                     \
deba@220
   144
  typedef typename Graph::Edge Edge;                                    \
deba@220
   145
  typedef typename Graph::EdgeIt EdgeIt;                                \
deba@220
   146
  typedef typename Graph::IncEdgeIt IncEdgeIt;                          \
deba@220
   147
  typedef typename Graph::template EdgeMap<bool> BoolEdgeMap;           \
deba@220
   148
  typedef typename Graph::template EdgeMap<int> IntEdgeMap;             \
kpeter@300
   149
  typedef typename Graph::template EdgeMap<double> DoubleEdgeMap
deba@220
   150
kpeter@282
   151
  /// \brief Function to count the items in a graph.
deba@220
   152
  ///
kpeter@282
   153
  /// This function counts the items (nodes, arcs etc.) in a graph.
kpeter@282
   154
  /// The complexity of the function is linear because
deba@220
   155
  /// it iterates on all of the items.
deba@220
   156
  template <typename Graph, typename Item>
deba@220
   157
  inline int countItems(const Graph& g) {
deba@220
   158
    typedef typename ItemSetTraits<Graph, Item>::ItemIt ItemIt;
deba@220
   159
    int num = 0;
deba@220
   160
    for (ItemIt it(g); it != INVALID; ++it) {
deba@220
   161
      ++num;
deba@220
   162
    }
deba@220
   163
    return num;
deba@220
   164
  }
deba@220
   165
deba@220
   166
  // Node counting:
deba@220
   167
deba@220
   168
  namespace _core_bits {
deba@220
   169
deba@220
   170
    template <typename Graph, typename Enable = void>
deba@220
   171
    struct CountNodesSelector {
deba@220
   172
      static int count(const Graph &g) {
deba@220
   173
        return countItems<Graph, typename Graph::Node>(g);
deba@220
   174
      }
deba@220
   175
    };
deba@220
   176
deba@220
   177
    template <typename Graph>
deba@220
   178
    struct CountNodesSelector<
deba@220
   179
      Graph, typename
deba@220
   180
      enable_if<typename Graph::NodeNumTag, void>::type>
deba@220
   181
    {
deba@220
   182
      static int count(const Graph &g) {
deba@220
   183
        return g.nodeNum();
deba@220
   184
      }
deba@220
   185
    };
deba@220
   186
  }
deba@220
   187
deba@220
   188
  /// \brief Function to count the nodes in the graph.
deba@220
   189
  ///
deba@220
   190
  /// This function counts the nodes in the graph.
kpeter@282
   191
  /// The complexity of the function is <em>O</em>(<em>n</em>), but for some
kpeter@282
   192
  /// graph structures it is specialized to run in <em>O</em>(1).
deba@220
   193
  ///
kpeter@282
   194
  /// \note If the graph contains a \c nodeNum() member function and a
kpeter@282
   195
  /// \c NodeNumTag tag then this function calls directly the member
deba@220
   196
  /// function to query the cardinality of the node set.
deba@220
   197
  template <typename Graph>
deba@220
   198
  inline int countNodes(const Graph& g) {
deba@220
   199
    return _core_bits::CountNodesSelector<Graph>::count(g);
deba@220
   200
  }
deba@220
   201
deba@220
   202
  // Arc counting:
deba@220
   203
deba@220
   204
  namespace _core_bits {
deba@220
   205
deba@220
   206
    template <typename Graph, typename Enable = void>
deba@220
   207
    struct CountArcsSelector {
deba@220
   208
      static int count(const Graph &g) {
deba@220
   209
        return countItems<Graph, typename Graph::Arc>(g);
deba@220
   210
      }
deba@220
   211
    };
deba@220
   212
deba@220
   213
    template <typename Graph>
deba@220
   214
    struct CountArcsSelector<
deba@220
   215
      Graph,
deba@220
   216
      typename enable_if<typename Graph::ArcNumTag, void>::type>
deba@220
   217
    {
deba@220
   218
      static int count(const Graph &g) {
deba@220
   219
        return g.arcNum();
deba@220
   220
      }
deba@220
   221
    };
deba@220
   222
  }
deba@220
   223
deba@220
   224
  /// \brief Function to count the arcs in the graph.
deba@220
   225
  ///
deba@220
   226
  /// This function counts the arcs in the graph.
kpeter@282
   227
  /// The complexity of the function is <em>O</em>(<em>m</em>), but for some
kpeter@282
   228
  /// graph structures it is specialized to run in <em>O</em>(1).
deba@220
   229
  ///
kpeter@282
   230
  /// \note If the graph contains a \c arcNum() member function and a
kpeter@282
   231
  /// \c ArcNumTag tag then this function calls directly the member
deba@220
   232
  /// function to query the cardinality of the arc set.
deba@220
   233
  template <typename Graph>
deba@220
   234
  inline int countArcs(const Graph& g) {
deba@220
   235
    return _core_bits::CountArcsSelector<Graph>::count(g);
deba@220
   236
  }
deba@220
   237
deba@220
   238
  // Edge counting:
kpeter@282
   239
deba@220
   240
  namespace _core_bits {
deba@220
   241
deba@220
   242
    template <typename Graph, typename Enable = void>
deba@220
   243
    struct CountEdgesSelector {
deba@220
   244
      static int count(const Graph &g) {
deba@220
   245
        return countItems<Graph, typename Graph::Edge>(g);
deba@220
   246
      }
deba@220
   247
    };
deba@220
   248
deba@220
   249
    template <typename Graph>
deba@220
   250
    struct CountEdgesSelector<
deba@220
   251
      Graph,
deba@220
   252
      typename enable_if<typename Graph::EdgeNumTag, void>::type>
deba@220
   253
    {
deba@220
   254
      static int count(const Graph &g) {
deba@220
   255
        return g.edgeNum();
deba@220
   256
      }
deba@220
   257
    };
deba@220
   258
  }
deba@220
   259
deba@220
   260
  /// \brief Function to count the edges in the graph.
deba@220
   261
  ///
deba@220
   262
  /// This function counts the edges in the graph.
kpeter@282
   263
  /// The complexity of the function is <em>O</em>(<em>m</em>), but for some
kpeter@282
   264
  /// graph structures it is specialized to run in <em>O</em>(1).
deba@220
   265
  ///
kpeter@282
   266
  /// \note If the graph contains a \c edgeNum() member function and a
kpeter@282
   267
  /// \c EdgeNumTag tag then this function calls directly the member
deba@220
   268
  /// function to query the cardinality of the edge set.
deba@220
   269
  template <typename Graph>
deba@220
   270
  inline int countEdges(const Graph& g) {
deba@220
   271
    return _core_bits::CountEdgesSelector<Graph>::count(g);
deba@220
   272
deba@220
   273
  }
deba@220
   274
deba@220
   275
deba@220
   276
  template <typename Graph, typename DegIt>
deba@220
   277
  inline int countNodeDegree(const Graph& _g, const typename Graph::Node& _n) {
deba@220
   278
    int num = 0;
deba@220
   279
    for (DegIt it(_g, _n); it != INVALID; ++it) {
deba@220
   280
      ++num;
deba@220
   281
    }
deba@220
   282
    return num;
deba@220
   283
  }
deba@220
   284
deba@220
   285
  /// \brief Function to count the number of the out-arcs from node \c n.
deba@220
   286
  ///
deba@220
   287
  /// This function counts the number of the out-arcs from node \c n
kpeter@282
   288
  /// in the graph \c g.
deba@220
   289
  template <typename Graph>
kpeter@282
   290
  inline int countOutArcs(const Graph& g,  const typename Graph::Node& n) {
kpeter@282
   291
    return countNodeDegree<Graph, typename Graph::OutArcIt>(g, n);
deba@220
   292
  }
deba@220
   293
deba@220
   294
  /// \brief Function to count the number of the in-arcs to node \c n.
deba@220
   295
  ///
deba@220
   296
  /// This function counts the number of the in-arcs to node \c n
kpeter@282
   297
  /// in the graph \c g.
deba@220
   298
  template <typename Graph>
kpeter@282
   299
  inline int countInArcs(const Graph& g,  const typename Graph::Node& n) {
kpeter@282
   300
    return countNodeDegree<Graph, typename Graph::InArcIt>(g, n);
deba@220
   301
  }
deba@220
   302
deba@220
   303
  /// \brief Function to count the number of the inc-edges to node \c n.
deba@220
   304
  ///
deba@220
   305
  /// This function counts the number of the inc-edges to node \c n
kpeter@282
   306
  /// in the undirected graph \c g.
deba@220
   307
  template <typename Graph>
kpeter@282
   308
  inline int countIncEdges(const Graph& g,  const typename Graph::Node& n) {
kpeter@282
   309
    return countNodeDegree<Graph, typename Graph::IncEdgeIt>(g, n);
deba@220
   310
  }
deba@220
   311
deba@220
   312
  namespace _core_bits {
deba@220
   313
deba@220
   314
    template <typename Digraph, typename Item, typename RefMap>
deba@220
   315
    class MapCopyBase {
deba@220
   316
    public:
deba@220
   317
      virtual void copy(const Digraph& from, const RefMap& refMap) = 0;
deba@220
   318
deba@220
   319
      virtual ~MapCopyBase() {}
deba@220
   320
    };
deba@220
   321
deba@220
   322
    template <typename Digraph, typename Item, typename RefMap,
kpeter@282
   323
              typename FromMap, typename ToMap>
deba@220
   324
    class MapCopy : public MapCopyBase<Digraph, Item, RefMap> {
deba@220
   325
    public:
deba@220
   326
kpeter@282
   327
      MapCopy(const FromMap& map, ToMap& tmap)
kpeter@282
   328
        : _map(map), _tmap(tmap) {}
deba@220
   329
deba@220
   330
      virtual void copy(const Digraph& digraph, const RefMap& refMap) {
deba@220
   331
        typedef typename ItemSetTraits<Digraph, Item>::ItemIt ItemIt;
deba@220
   332
        for (ItemIt it(digraph); it != INVALID; ++it) {
deba@220
   333
          _tmap.set(refMap[it], _map[it]);
deba@220
   334
        }
deba@220
   335
      }
deba@220
   336
deba@220
   337
    private:
kpeter@282
   338
      const FromMap& _map;
deba@220
   339
      ToMap& _tmap;
deba@220
   340
    };
deba@220
   341
deba@220
   342
    template <typename Digraph, typename Item, typename RefMap, typename It>
deba@220
   343
    class ItemCopy : public MapCopyBase<Digraph, Item, RefMap> {
deba@220
   344
    public:
deba@220
   345
kpeter@282
   346
      ItemCopy(const Item& item, It& it) : _item(item), _it(it) {}
deba@220
   347
deba@220
   348
      virtual void copy(const Digraph&, const RefMap& refMap) {
deba@220
   349
        _it = refMap[_item];
deba@220
   350
      }
deba@220
   351
deba@220
   352
    private:
kpeter@282
   353
      Item _item;
deba@220
   354
      It& _it;
deba@220
   355
    };
deba@220
   356
deba@220
   357
    template <typename Digraph, typename Item, typename RefMap, typename Ref>
deba@220
   358
    class RefCopy : public MapCopyBase<Digraph, Item, RefMap> {
deba@220
   359
    public:
deba@220
   360
deba@220
   361
      RefCopy(Ref& map) : _map(map) {}
deba@220
   362
deba@220
   363
      virtual void copy(const Digraph& digraph, const RefMap& refMap) {
deba@220
   364
        typedef typename ItemSetTraits<Digraph, Item>::ItemIt ItemIt;
deba@220
   365
        for (ItemIt it(digraph); it != INVALID; ++it) {
deba@220
   366
          _map.set(it, refMap[it]);
deba@220
   367
        }
deba@220
   368
      }
deba@220
   369
deba@220
   370
    private:
deba@220
   371
      Ref& _map;
deba@220
   372
    };
deba@220
   373
deba@220
   374
    template <typename Digraph, typename Item, typename RefMap,
deba@220
   375
              typename CrossRef>
deba@220
   376
    class CrossRefCopy : public MapCopyBase<Digraph, Item, RefMap> {
deba@220
   377
    public:
deba@220
   378
deba@220
   379
      CrossRefCopy(CrossRef& cmap) : _cmap(cmap) {}
deba@220
   380
deba@220
   381
      virtual void copy(const Digraph& digraph, const RefMap& refMap) {
deba@220
   382
        typedef typename ItemSetTraits<Digraph, Item>::ItemIt ItemIt;
deba@220
   383
        for (ItemIt it(digraph); it != INVALID; ++it) {
deba@220
   384
          _cmap.set(refMap[it], it);
deba@220
   385
        }
deba@220
   386
      }
deba@220
   387
deba@220
   388
    private:
deba@220
   389
      CrossRef& _cmap;
deba@220
   390
    };
deba@220
   391
deba@220
   392
    template <typename Digraph, typename Enable = void>
deba@220
   393
    struct DigraphCopySelector {
deba@220
   394
      template <typename From, typename NodeRefMap, typename ArcRefMap>
kpeter@282
   395
      static void copy(const From& from, Digraph &to,
deba@220
   396
                       NodeRefMap& nodeRefMap, ArcRefMap& arcRefMap) {
kpeter@731
   397
        to.clear();
deba@220
   398
        for (typename From::NodeIt it(from); it != INVALID; ++it) {
deba@220
   399
          nodeRefMap[it] = to.addNode();
deba@220
   400
        }
deba@220
   401
        for (typename From::ArcIt it(from); it != INVALID; ++it) {
deba@220
   402
          arcRefMap[it] = to.addArc(nodeRefMap[from.source(it)],
deba@220
   403
                                    nodeRefMap[from.target(it)]);
deba@220
   404
        }
deba@220
   405
      }
deba@220
   406
    };
deba@220
   407
deba@220
   408
    template <typename Digraph>
deba@220
   409
    struct DigraphCopySelector<
deba@220
   410
      Digraph,
deba@220
   411
      typename enable_if<typename Digraph::BuildTag, void>::type>
deba@220
   412
    {
deba@220
   413
      template <typename From, typename NodeRefMap, typename ArcRefMap>
kpeter@282
   414
      static void copy(const From& from, Digraph &to,
deba@220
   415
                       NodeRefMap& nodeRefMap, ArcRefMap& arcRefMap) {
deba@220
   416
        to.build(from, nodeRefMap, arcRefMap);
deba@220
   417
      }
deba@220
   418
    };
deba@220
   419
deba@220
   420
    template <typename Graph, typename Enable = void>
deba@220
   421
    struct GraphCopySelector {
deba@220
   422
      template <typename From, typename NodeRefMap, typename EdgeRefMap>
kpeter@282
   423
      static void copy(const From& from, Graph &to,
deba@220
   424
                       NodeRefMap& nodeRefMap, EdgeRefMap& edgeRefMap) {
kpeter@731
   425
        to.clear();
deba@220
   426
        for (typename From::NodeIt it(from); it != INVALID; ++it) {
deba@220
   427
          nodeRefMap[it] = to.addNode();
deba@220
   428
        }
deba@220
   429
        for (typename From::EdgeIt it(from); it != INVALID; ++it) {
deba@220
   430
          edgeRefMap[it] = to.addEdge(nodeRefMap[from.u(it)],
deba@220
   431
                                      nodeRefMap[from.v(it)]);
deba@220
   432
        }
deba@220
   433
      }
deba@220
   434
    };
deba@220
   435
deba@220
   436
    template <typename Graph>
deba@220
   437
    struct GraphCopySelector<
deba@220
   438
      Graph,
deba@220
   439
      typename enable_if<typename Graph::BuildTag, void>::type>
deba@220
   440
    {
deba@220
   441
      template <typename From, typename NodeRefMap, typename EdgeRefMap>
kpeter@282
   442
      static void copy(const From& from, Graph &to,
deba@220
   443
                       NodeRefMap& nodeRefMap, EdgeRefMap& edgeRefMap) {
deba@220
   444
        to.build(from, nodeRefMap, edgeRefMap);
deba@220
   445
      }
deba@220
   446
    };
deba@220
   447
deba@220
   448
  }
deba@220
   449
deba@220
   450
  /// \brief Class to copy a digraph.
deba@220
   451
  ///
deba@220
   452
  /// Class to copy a digraph to another digraph (duplicate a digraph). The
kpeter@282
   453
  /// simplest way of using it is through the \c digraphCopy() function.
deba@220
   454
  ///
kpeter@282
   455
  /// This class not only make a copy of a digraph, but it can create
deba@220
   456
  /// references and cross references between the nodes and arcs of
kpeter@282
   457
  /// the two digraphs, and it can copy maps to use with the newly created
kpeter@282
   458
  /// digraph.
deba@220
   459
  ///
kpeter@282
   460
  /// To make a copy from a digraph, first an instance of DigraphCopy
kpeter@282
   461
  /// should be created, then the data belongs to the digraph should
deba@220
   462
  /// assigned to copy. In the end, the \c run() member should be
deba@220
   463
  /// called.
deba@220
   464
  ///
kpeter@282
   465
  /// The next code copies a digraph with several data:
deba@220
   466
  ///\code
kpeter@282
   467
  ///  DigraphCopy<OrigGraph, NewGraph> cg(orig_graph, new_graph);
kpeter@282
   468
  ///  // Create references for the nodes
deba@220
   469
  ///  OrigGraph::NodeMap<NewGraph::Node> nr(orig_graph);
kpeter@282
   470
  ///  cg.nodeRef(nr);
kpeter@282
   471
  ///  // Create cross references (inverse) for the arcs
deba@220
   472
  ///  NewGraph::ArcMap<OrigGraph::Arc> acr(new_graph);
kpeter@282
   473
  ///  cg.arcCrossRef(acr);
kpeter@282
   474
  ///  // Copy an arc map
deba@220
   475
  ///  OrigGraph::ArcMap<double> oamap(orig_graph);
deba@220
   476
  ///  NewGraph::ArcMap<double> namap(new_graph);
kpeter@282
   477
  ///  cg.arcMap(oamap, namap);
kpeter@282
   478
  ///  // Copy a node
deba@220
   479
  ///  OrigGraph::Node on;
deba@220
   480
  ///  NewGraph::Node nn;
kpeter@282
   481
  ///  cg.node(on, nn);
kpeter@282
   482
  ///  // Execute copying
kpeter@282
   483
  ///  cg.run();
deba@220
   484
  ///\endcode
kpeter@282
   485
  template <typename From, typename To>
deba@220
   486
  class DigraphCopy {
deba@220
   487
  private:
deba@220
   488
deba@220
   489
    typedef typename From::Node Node;
deba@220
   490
    typedef typename From::NodeIt NodeIt;
deba@220
   491
    typedef typename From::Arc Arc;
deba@220
   492
    typedef typename From::ArcIt ArcIt;
deba@220
   493
deba@220
   494
    typedef typename To::Node TNode;
deba@220
   495
    typedef typename To::Arc TArc;
deba@220
   496
deba@220
   497
    typedef typename From::template NodeMap<TNode> NodeRefMap;
deba@220
   498
    typedef typename From::template ArcMap<TArc> ArcRefMap;
deba@220
   499
deba@220
   500
  public:
deba@220
   501
kpeter@282
   502
    /// \brief Constructor of DigraphCopy.
deba@220
   503
    ///
kpeter@282
   504
    /// Constructor of DigraphCopy for copying the content of the
kpeter@282
   505
    /// \c from digraph into the \c to digraph.
kpeter@282
   506
    DigraphCopy(const From& from, To& to)
deba@220
   507
      : _from(from), _to(to) {}
deba@220
   508
kpeter@282
   509
    /// \brief Destructor of DigraphCopy
deba@220
   510
    ///
kpeter@282
   511
    /// Destructor of DigraphCopy.
deba@220
   512
    ~DigraphCopy() {
deba@220
   513
      for (int i = 0; i < int(_node_maps.size()); ++i) {
deba@220
   514
        delete _node_maps[i];
deba@220
   515
      }
deba@220
   516
      for (int i = 0; i < int(_arc_maps.size()); ++i) {
deba@220
   517
        delete _arc_maps[i];
deba@220
   518
      }
deba@220
   519
deba@220
   520
    }
deba@220
   521
kpeter@282
   522
    /// \brief Copy the node references into the given map.
deba@220
   523
    ///
kpeter@282
   524
    /// This function copies the node references into the given map.
kpeter@282
   525
    /// The parameter should be a map, whose key type is the Node type of
kpeter@282
   526
    /// the source digraph, while the value type is the Node type of the
kpeter@282
   527
    /// destination digraph.
deba@220
   528
    template <typename NodeRef>
deba@220
   529
    DigraphCopy& nodeRef(NodeRef& map) {
deba@220
   530
      _node_maps.push_back(new _core_bits::RefCopy<From, Node,
deba@220
   531
                           NodeRefMap, NodeRef>(map));
deba@220
   532
      return *this;
deba@220
   533
    }
deba@220
   534
kpeter@282
   535
    /// \brief Copy the node cross references into the given map.
deba@220
   536
    ///
kpeter@282
   537
    /// This function copies the node cross references (reverse references)
kpeter@282
   538
    /// into the given map. The parameter should be a map, whose key type
kpeter@282
   539
    /// is the Node type of the destination digraph, while the value type is
kpeter@282
   540
    /// the Node type of the source digraph.
deba@220
   541
    template <typename NodeCrossRef>
deba@220
   542
    DigraphCopy& nodeCrossRef(NodeCrossRef& map) {
deba@220
   543
      _node_maps.push_back(new _core_bits::CrossRefCopy<From, Node,
deba@220
   544
                           NodeRefMap, NodeCrossRef>(map));
deba@220
   545
      return *this;
deba@220
   546
    }
deba@220
   547
kpeter@282
   548
    /// \brief Make a copy of the given node map.
deba@220
   549
    ///
kpeter@282
   550
    /// This function makes a copy of the given node map for the newly
kpeter@282
   551
    /// created digraph.
kpeter@282
   552
    /// The key type of the new map \c tmap should be the Node type of the
kpeter@282
   553
    /// destination digraph, and the key type of the original map \c map
kpeter@282
   554
    /// should be the Node type of the source digraph.
kpeter@282
   555
    template <typename FromMap, typename ToMap>
kpeter@282
   556
    DigraphCopy& nodeMap(const FromMap& map, ToMap& tmap) {
deba@220
   557
      _node_maps.push_back(new _core_bits::MapCopy<From, Node,
kpeter@282
   558
                           NodeRefMap, FromMap, ToMap>(map, tmap));
deba@220
   559
      return *this;
deba@220
   560
    }
deba@220
   561
deba@220
   562
    /// \brief Make a copy of the given node.
deba@220
   563
    ///
kpeter@282
   564
    /// This function makes a copy of the given node.
kpeter@282
   565
    DigraphCopy& node(const Node& node, TNode& tnode) {
deba@220
   566
      _node_maps.push_back(new _core_bits::ItemCopy<From, Node,
kpeter@282
   567
                           NodeRefMap, TNode>(node, tnode));
deba@220
   568
      return *this;
deba@220
   569
    }
deba@220
   570
kpeter@282
   571
    /// \brief Copy the arc references into the given map.
deba@220
   572
    ///
kpeter@282
   573
    /// This function copies the arc references into the given map.
kpeter@282
   574
    /// The parameter should be a map, whose key type is the Arc type of
kpeter@282
   575
    /// the source digraph, while the value type is the Arc type of the
kpeter@282
   576
    /// destination digraph.
deba@220
   577
    template <typename ArcRef>
deba@220
   578
    DigraphCopy& arcRef(ArcRef& map) {
deba@220
   579
      _arc_maps.push_back(new _core_bits::RefCopy<From, Arc,
deba@220
   580
                          ArcRefMap, ArcRef>(map));
deba@220
   581
      return *this;
deba@220
   582
    }
deba@220
   583
kpeter@282
   584
    /// \brief Copy the arc cross references into the given map.
deba@220
   585
    ///
kpeter@282
   586
    /// This function copies the arc cross references (reverse references)
kpeter@282
   587
    /// into the given map. The parameter should be a map, whose key type
kpeter@282
   588
    /// is the Arc type of the destination digraph, while the value type is
kpeter@282
   589
    /// the Arc type of the source digraph.
deba@220
   590
    template <typename ArcCrossRef>
deba@220
   591
    DigraphCopy& arcCrossRef(ArcCrossRef& map) {
deba@220
   592
      _arc_maps.push_back(new _core_bits::CrossRefCopy<From, Arc,
deba@220
   593
                          ArcRefMap, ArcCrossRef>(map));
deba@220
   594
      return *this;
deba@220
   595
    }
deba@220
   596
kpeter@282
   597
    /// \brief Make a copy of the given arc map.
deba@220
   598
    ///
kpeter@282
   599
    /// This function makes a copy of the given arc map for the newly
kpeter@282
   600
    /// created digraph.
kpeter@282
   601
    /// The key type of the new map \c tmap should be the Arc type of the
kpeter@282
   602
    /// destination digraph, and the key type of the original map \c map
kpeter@282
   603
    /// should be the Arc type of the source digraph.
kpeter@282
   604
    template <typename FromMap, typename ToMap>
kpeter@282
   605
    DigraphCopy& arcMap(const FromMap& map, ToMap& tmap) {
deba@220
   606
      _arc_maps.push_back(new _core_bits::MapCopy<From, Arc,
kpeter@282
   607
                          ArcRefMap, FromMap, ToMap>(map, tmap));
deba@220
   608
      return *this;
deba@220
   609
    }
deba@220
   610
deba@220
   611
    /// \brief Make a copy of the given arc.
deba@220
   612
    ///
kpeter@282
   613
    /// This function makes a copy of the given arc.
kpeter@282
   614
    DigraphCopy& arc(const Arc& arc, TArc& tarc) {
deba@220
   615
      _arc_maps.push_back(new _core_bits::ItemCopy<From, Arc,
kpeter@282
   616
                          ArcRefMap, TArc>(arc, tarc));
deba@220
   617
      return *this;
deba@220
   618
    }
deba@220
   619
kpeter@282
   620
    /// \brief Execute copying.
deba@220
   621
    ///
kpeter@282
   622
    /// This function executes the copying of the digraph along with the
kpeter@282
   623
    /// copying of the assigned data.
deba@220
   624
    void run() {
deba@220
   625
      NodeRefMap nodeRefMap(_from);
deba@220
   626
      ArcRefMap arcRefMap(_from);
deba@220
   627
      _core_bits::DigraphCopySelector<To>::
kpeter@282
   628
        copy(_from, _to, nodeRefMap, arcRefMap);
deba@220
   629
      for (int i = 0; i < int(_node_maps.size()); ++i) {
deba@220
   630
        _node_maps[i]->copy(_from, nodeRefMap);
deba@220
   631
      }
deba@220
   632
      for (int i = 0; i < int(_arc_maps.size()); ++i) {
deba@220
   633
        _arc_maps[i]->copy(_from, arcRefMap);
deba@220
   634
      }
deba@220
   635
    }
deba@220
   636
deba@220
   637
  protected:
deba@220
   638
deba@220
   639
    const From& _from;
deba@220
   640
    To& _to;
deba@220
   641
deba@220
   642
    std::vector<_core_bits::MapCopyBase<From, Node, NodeRefMap>* >
kpeter@282
   643
      _node_maps;
deba@220
   644
deba@220
   645
    std::vector<_core_bits::MapCopyBase<From, Arc, ArcRefMap>* >
kpeter@282
   646
      _arc_maps;
deba@220
   647
deba@220
   648
  };
deba@220
   649
deba@220
   650
  /// \brief Copy a digraph to another digraph.
deba@220
   651
  ///
kpeter@282
   652
  /// This function copies a digraph to another digraph.
kpeter@282
   653
  /// The complete usage of it is detailed in the DigraphCopy class, but
kpeter@282
   654
  /// a short example shows a basic work:
deba@220
   655
  ///\code
kpeter@282
   656
  /// digraphCopy(src, trg).nodeRef(nr).arcCrossRef(acr).run();
deba@220
   657
  ///\endcode
deba@220
   658
  ///
deba@220
   659
  /// After the copy the \c nr map will contain the mapping from the
deba@220
   660
  /// nodes of the \c from digraph to the nodes of the \c to digraph and
kpeter@282
   661
  /// \c acr will contain the mapping from the arcs of the \c to digraph
deba@220
   662
  /// to the arcs of the \c from digraph.
deba@220
   663
  ///
deba@220
   664
  /// \see DigraphCopy
kpeter@282
   665
  template <typename From, typename To>
kpeter@282
   666
  DigraphCopy<From, To> digraphCopy(const From& from, To& to) {
kpeter@282
   667
    return DigraphCopy<From, To>(from, to);
deba@220
   668
  }
deba@220
   669
deba@220
   670
  /// \brief Class to copy a graph.
deba@220
   671
  ///
deba@220
   672
  /// Class to copy a graph to another graph (duplicate a graph). The
kpeter@282
   673
  /// simplest way of using it is through the \c graphCopy() function.
deba@220
   674
  ///
kpeter@282
   675
  /// This class not only make a copy of a graph, but it can create
deba@220
   676
  /// references and cross references between the nodes, edges and arcs of
kpeter@282
   677
  /// the two graphs, and it can copy maps for using with the newly created
kpeter@282
   678
  /// graph.
deba@220
   679
  ///
deba@220
   680
  /// To make a copy from a graph, first an instance of GraphCopy
deba@220
   681
  /// should be created, then the data belongs to the graph should
deba@220
   682
  /// assigned to copy. In the end, the \c run() member should be
deba@220
   683
  /// called.
deba@220
   684
  ///
deba@220
   685
  /// The next code copies a graph with several data:
deba@220
   686
  ///\code
kpeter@282
   687
  ///  GraphCopy<OrigGraph, NewGraph> cg(orig_graph, new_graph);
kpeter@282
   688
  ///  // Create references for the nodes
deba@220
   689
  ///  OrigGraph::NodeMap<NewGraph::Node> nr(orig_graph);
kpeter@282
   690
  ///  cg.nodeRef(nr);
kpeter@282
   691
  ///  // Create cross references (inverse) for the edges
kpeter@282
   692
  ///  NewGraph::EdgeMap<OrigGraph::Edge> ecr(new_graph);
kpeter@282
   693
  ///  cg.edgeCrossRef(ecr);
kpeter@282
   694
  ///  // Copy an edge map
kpeter@282
   695
  ///  OrigGraph::EdgeMap<double> oemap(orig_graph);
kpeter@282
   696
  ///  NewGraph::EdgeMap<double> nemap(new_graph);
kpeter@282
   697
  ///  cg.edgeMap(oemap, nemap);
kpeter@282
   698
  ///  // Copy a node
deba@220
   699
  ///  OrigGraph::Node on;
deba@220
   700
  ///  NewGraph::Node nn;
kpeter@282
   701
  ///  cg.node(on, nn);
kpeter@282
   702
  ///  // Execute copying
kpeter@282
   703
  ///  cg.run();
deba@220
   704
  ///\endcode
kpeter@282
   705
  template <typename From, typename To>
deba@220
   706
  class GraphCopy {
deba@220
   707
  private:
deba@220
   708
deba@220
   709
    typedef typename From::Node Node;
deba@220
   710
    typedef typename From::NodeIt NodeIt;
deba@220
   711
    typedef typename From::Arc Arc;
deba@220
   712
    typedef typename From::ArcIt ArcIt;
deba@220
   713
    typedef typename From::Edge Edge;
deba@220
   714
    typedef typename From::EdgeIt EdgeIt;
deba@220
   715
deba@220
   716
    typedef typename To::Node TNode;
deba@220
   717
    typedef typename To::Arc TArc;
deba@220
   718
    typedef typename To::Edge TEdge;
deba@220
   719
deba@220
   720
    typedef typename From::template NodeMap<TNode> NodeRefMap;
deba@220
   721
    typedef typename From::template EdgeMap<TEdge> EdgeRefMap;
deba@220
   722
deba@220
   723
    struct ArcRefMap {
kpeter@282
   724
      ArcRefMap(const From& from, const To& to,
deba@220
   725
                const EdgeRefMap& edge_ref, const NodeRefMap& node_ref)
kpeter@282
   726
        : _from(from), _to(to),
deba@220
   727
          _edge_ref(edge_ref), _node_ref(node_ref) {}
deba@220
   728
deba@220
   729
      typedef typename From::Arc Key;
deba@220
   730
      typedef typename To::Arc Value;
deba@220
   731
deba@220
   732
      Value operator[](const Key& key) const {
deba@220
   733
        bool forward = _from.u(key) != _from.v(key) ?
deba@220
   734
          _node_ref[_from.source(key)] ==
deba@220
   735
          _to.source(_to.direct(_edge_ref[key], true)) :
deba@220
   736
          _from.direction(key);
deba@220
   737
        return _to.direct(_edge_ref[key], forward);
deba@220
   738
      }
deba@220
   739
kpeter@282
   740
      const From& _from;
deba@220
   741
      const To& _to;
deba@220
   742
      const EdgeRefMap& _edge_ref;
deba@220
   743
      const NodeRefMap& _node_ref;
deba@220
   744
    };
deba@220
   745
deba@220
   746
  public:
deba@220
   747
kpeter@282
   748
    /// \brief Constructor of GraphCopy.
deba@220
   749
    ///
kpeter@282
   750
    /// Constructor of GraphCopy for copying the content of the
kpeter@282
   751
    /// \c from graph into the \c to graph.
kpeter@282
   752
    GraphCopy(const From& from, To& to)
deba@220
   753
      : _from(from), _to(to) {}
deba@220
   754
kpeter@282
   755
    /// \brief Destructor of GraphCopy
deba@220
   756
    ///
kpeter@282
   757
    /// Destructor of GraphCopy.
deba@220
   758
    ~GraphCopy() {
deba@220
   759
      for (int i = 0; i < int(_node_maps.size()); ++i) {
deba@220
   760
        delete _node_maps[i];
deba@220
   761
      }
deba@220
   762
      for (int i = 0; i < int(_arc_maps.size()); ++i) {
deba@220
   763
        delete _arc_maps[i];
deba@220
   764
      }
deba@220
   765
      for (int i = 0; i < int(_edge_maps.size()); ++i) {
deba@220
   766
        delete _edge_maps[i];
deba@220
   767
      }
deba@220
   768
    }
deba@220
   769
kpeter@282
   770
    /// \brief Copy the node references into the given map.
deba@220
   771
    ///
kpeter@282
   772
    /// This function copies the node references into the given map.
kpeter@282
   773
    /// The parameter should be a map, whose key type is the Node type of
kpeter@282
   774
    /// the source graph, while the value type is the Node type of the
kpeter@282
   775
    /// destination graph.
deba@220
   776
    template <typename NodeRef>
deba@220
   777
    GraphCopy& nodeRef(NodeRef& map) {
deba@220
   778
      _node_maps.push_back(new _core_bits::RefCopy<From, Node,
deba@220
   779
                           NodeRefMap, NodeRef>(map));
deba@220
   780
      return *this;
deba@220
   781
    }
deba@220
   782
kpeter@282
   783
    /// \brief Copy the node cross references into the given map.
deba@220
   784
    ///
kpeter@282
   785
    /// This function copies the node cross references (reverse references)
kpeter@282
   786
    /// into the given map. The parameter should be a map, whose key type
kpeter@282
   787
    /// is the Node type of the destination graph, while the value type is
kpeter@282
   788
    /// the Node type of the source graph.
deba@220
   789
    template <typename NodeCrossRef>
deba@220
   790
    GraphCopy& nodeCrossRef(NodeCrossRef& map) {
deba@220
   791
      _node_maps.push_back(new _core_bits::CrossRefCopy<From, Node,
deba@220
   792
                           NodeRefMap, NodeCrossRef>(map));
deba@220
   793
      return *this;
deba@220
   794
    }
deba@220
   795
kpeter@282
   796
    /// \brief Make a copy of the given node map.
deba@220
   797
    ///
kpeter@282
   798
    /// This function makes a copy of the given node map for the newly
kpeter@282
   799
    /// created graph.
kpeter@282
   800
    /// The key type of the new map \c tmap should be the Node type of the
kpeter@282
   801
    /// destination graph, and the key type of the original map \c map
kpeter@282
   802
    /// should be the Node type of the source graph.
kpeter@282
   803
    template <typename FromMap, typename ToMap>
kpeter@282
   804
    GraphCopy& nodeMap(const FromMap& map, ToMap& tmap) {
deba@220
   805
      _node_maps.push_back(new _core_bits::MapCopy<From, Node,
kpeter@282
   806
                           NodeRefMap, FromMap, ToMap>(map, tmap));
deba@220
   807
      return *this;
deba@220
   808
    }
deba@220
   809
deba@220
   810
    /// \brief Make a copy of the given node.
deba@220
   811
    ///
kpeter@282
   812
    /// This function makes a copy of the given node.
kpeter@282
   813
    GraphCopy& node(const Node& node, TNode& tnode) {
deba@220
   814
      _node_maps.push_back(new _core_bits::ItemCopy<From, Node,
kpeter@282
   815
                           NodeRefMap, TNode>(node, tnode));
deba@220
   816
      return *this;
deba@220
   817
    }
deba@220
   818
kpeter@282
   819
    /// \brief Copy the arc references into the given map.
deba@220
   820
    ///
kpeter@282
   821
    /// This function copies the arc references into the given map.
kpeter@282
   822
    /// The parameter should be a map, whose key type is the Arc type of
kpeter@282
   823
    /// the source graph, while the value type is the Arc type of the
kpeter@282
   824
    /// destination graph.
deba@220
   825
    template <typename ArcRef>
deba@220
   826
    GraphCopy& arcRef(ArcRef& map) {
deba@220
   827
      _arc_maps.push_back(new _core_bits::RefCopy<From, Arc,
deba@220
   828
                          ArcRefMap, ArcRef>(map));
deba@220
   829
      return *this;
deba@220
   830
    }
deba@220
   831
kpeter@282
   832
    /// \brief Copy the arc cross references into the given map.
deba@220
   833
    ///
kpeter@282
   834
    /// This function copies the arc cross references (reverse references)
kpeter@282
   835
    /// into the given map. The parameter should be a map, whose key type
kpeter@282
   836
    /// is the Arc type of the destination graph, while the value type is
kpeter@282
   837
    /// the Arc type of the source graph.
deba@220
   838
    template <typename ArcCrossRef>
deba@220
   839
    GraphCopy& arcCrossRef(ArcCrossRef& map) {
deba@220
   840
      _arc_maps.push_back(new _core_bits::CrossRefCopy<From, Arc,
deba@220
   841
                          ArcRefMap, ArcCrossRef>(map));
deba@220
   842
      return *this;
deba@220
   843
    }
deba@220
   844
kpeter@282
   845
    /// \brief Make a copy of the given arc map.
deba@220
   846
    ///
kpeter@282
   847
    /// This function makes a copy of the given arc map for the newly
kpeter@282
   848
    /// created graph.
kpeter@282
   849
    /// The key type of the new map \c tmap should be the Arc type of the
kpeter@282
   850
    /// destination graph, and the key type of the original map \c map
kpeter@282
   851
    /// should be the Arc type of the source graph.
kpeter@282
   852
    template <typename FromMap, typename ToMap>
kpeter@282
   853
    GraphCopy& arcMap(const FromMap& map, ToMap& tmap) {
deba@220
   854
      _arc_maps.push_back(new _core_bits::MapCopy<From, Arc,
kpeter@282
   855
                          ArcRefMap, FromMap, ToMap>(map, tmap));
deba@220
   856
      return *this;
deba@220
   857
    }
deba@220
   858
deba@220
   859
    /// \brief Make a copy of the given arc.
deba@220
   860
    ///
kpeter@282
   861
    /// This function makes a copy of the given arc.
kpeter@282
   862
    GraphCopy& arc(const Arc& arc, TArc& tarc) {
deba@220
   863
      _arc_maps.push_back(new _core_bits::ItemCopy<From, Arc,
kpeter@282
   864
                          ArcRefMap, TArc>(arc, tarc));
deba@220
   865
      return *this;
deba@220
   866
    }
deba@220
   867
kpeter@282
   868
    /// \brief Copy the edge references into the given map.
deba@220
   869
    ///
kpeter@282
   870
    /// This function copies the edge references into the given map.
kpeter@282
   871
    /// The parameter should be a map, whose key type is the Edge type of
kpeter@282
   872
    /// the source graph, while the value type is the Edge type of the
kpeter@282
   873
    /// destination graph.
deba@220
   874
    template <typename EdgeRef>
deba@220
   875
    GraphCopy& edgeRef(EdgeRef& map) {
deba@220
   876
      _edge_maps.push_back(new _core_bits::RefCopy<From, Edge,
deba@220
   877
                           EdgeRefMap, EdgeRef>(map));
deba@220
   878
      return *this;
deba@220
   879
    }
deba@220
   880
kpeter@282
   881
    /// \brief Copy the edge cross references into the given map.
deba@220
   882
    ///
kpeter@282
   883
    /// This function copies the edge cross references (reverse references)
kpeter@282
   884
    /// into the given map. The parameter should be a map, whose key type
kpeter@282
   885
    /// is the Edge type of the destination graph, while the value type is
kpeter@282
   886
    /// the Edge type of the source graph.
deba@220
   887
    template <typename EdgeCrossRef>
deba@220
   888
    GraphCopy& edgeCrossRef(EdgeCrossRef& map) {
deba@220
   889
      _edge_maps.push_back(new _core_bits::CrossRefCopy<From,
deba@220
   890
                           Edge, EdgeRefMap, EdgeCrossRef>(map));
deba@220
   891
      return *this;
deba@220
   892
    }
deba@220
   893
kpeter@282
   894
    /// \brief Make a copy of the given edge map.
deba@220
   895
    ///
kpeter@282
   896
    /// This function makes a copy of the given edge map for the newly
kpeter@282
   897
    /// created graph.
kpeter@282
   898
    /// The key type of the new map \c tmap should be the Edge type of the
kpeter@282
   899
    /// destination graph, and the key type of the original map \c map
kpeter@282
   900
    /// should be the Edge type of the source graph.
kpeter@282
   901
    template <typename FromMap, typename ToMap>
kpeter@282
   902
    GraphCopy& edgeMap(const FromMap& map, ToMap& tmap) {
deba@220
   903
      _edge_maps.push_back(new _core_bits::MapCopy<From, Edge,
kpeter@282
   904
                           EdgeRefMap, FromMap, ToMap>(map, tmap));
deba@220
   905
      return *this;
deba@220
   906
    }
deba@220
   907
deba@220
   908
    /// \brief Make a copy of the given edge.
deba@220
   909
    ///
kpeter@282
   910
    /// This function makes a copy of the given edge.
kpeter@282
   911
    GraphCopy& edge(const Edge& edge, TEdge& tedge) {
deba@220
   912
      _edge_maps.push_back(new _core_bits::ItemCopy<From, Edge,
kpeter@282
   913
                           EdgeRefMap, TEdge>(edge, tedge));
deba@220
   914
      return *this;
deba@220
   915
    }
deba@220
   916
kpeter@282
   917
    /// \brief Execute copying.
deba@220
   918
    ///
kpeter@282
   919
    /// This function executes the copying of the graph along with the
kpeter@282
   920
    /// copying of the assigned data.
deba@220
   921
    void run() {
deba@220
   922
      NodeRefMap nodeRefMap(_from);
deba@220
   923
      EdgeRefMap edgeRefMap(_from);
kpeter@282
   924
      ArcRefMap arcRefMap(_from, _to, edgeRefMap, nodeRefMap);
deba@220
   925
      _core_bits::GraphCopySelector<To>::
kpeter@282
   926
        copy(_from, _to, nodeRefMap, edgeRefMap);
deba@220
   927
      for (int i = 0; i < int(_node_maps.size()); ++i) {
deba@220
   928
        _node_maps[i]->copy(_from, nodeRefMap);
deba@220
   929
      }
deba@220
   930
      for (int i = 0; i < int(_edge_maps.size()); ++i) {
deba@220
   931
        _edge_maps[i]->copy(_from, edgeRefMap);
deba@220
   932
      }
deba@220
   933
      for (int i = 0; i < int(_arc_maps.size()); ++i) {
deba@220
   934
        _arc_maps[i]->copy(_from, arcRefMap);
deba@220
   935
      }
deba@220
   936
    }
deba@220
   937
deba@220
   938
  private:
deba@220
   939
deba@220
   940
    const From& _from;
deba@220
   941
    To& _to;
deba@220
   942
deba@220
   943
    std::vector<_core_bits::MapCopyBase<From, Node, NodeRefMap>* >
kpeter@282
   944
      _node_maps;
deba@220
   945
deba@220
   946
    std::vector<_core_bits::MapCopyBase<From, Arc, ArcRefMap>* >
kpeter@282
   947
      _arc_maps;
deba@220
   948
deba@220
   949
    std::vector<_core_bits::MapCopyBase<From, Edge, EdgeRefMap>* >
kpeter@282
   950
      _edge_maps;
deba@220
   951
deba@220
   952
  };
deba@220
   953
deba@220
   954
  /// \brief Copy a graph to another graph.
deba@220
   955
  ///
kpeter@282
   956
  /// This function copies a graph to another graph.
kpeter@282
   957
  /// The complete usage of it is detailed in the GraphCopy class,
kpeter@282
   958
  /// but a short example shows a basic work:
deba@220
   959
  ///\code
kpeter@282
   960
  /// graphCopy(src, trg).nodeRef(nr).edgeCrossRef(ecr).run();
deba@220
   961
  ///\endcode
deba@220
   962
  ///
deba@220
   963
  /// After the copy the \c nr map will contain the mapping from the
deba@220
   964
  /// nodes of the \c from graph to the nodes of the \c to graph and
kpeter@282
   965
  /// \c ecr will contain the mapping from the edges of the \c to graph
kpeter@282
   966
  /// to the edges of the \c from graph.
deba@220
   967
  ///
deba@220
   968
  /// \see GraphCopy
kpeter@282
   969
  template <typename From, typename To>
kpeter@282
   970
  GraphCopy<From, To>
kpeter@282
   971
  graphCopy(const From& from, To& to) {
kpeter@282
   972
    return GraphCopy<From, To>(from, to);
deba@220
   973
  }
deba@220
   974
deba@220
   975
  namespace _core_bits {
deba@220
   976
deba@220
   977
    template <typename Graph, typename Enable = void>
deba@220
   978
    struct FindArcSelector {
deba@220
   979
      typedef typename Graph::Node Node;
deba@220
   980
      typedef typename Graph::Arc Arc;
deba@220
   981
      static Arc find(const Graph &g, Node u, Node v, Arc e) {
deba@220
   982
        if (e == INVALID) {
deba@220
   983
          g.firstOut(e, u);
deba@220
   984
        } else {
deba@220
   985
          g.nextOut(e);
deba@220
   986
        }
deba@220
   987
        while (e != INVALID && g.target(e) != v) {
deba@220
   988
          g.nextOut(e);
deba@220
   989
        }
deba@220
   990
        return e;
deba@220
   991
      }
deba@220
   992
    };
deba@220
   993
deba@220
   994
    template <typename Graph>
deba@220
   995
    struct FindArcSelector<
deba@220
   996
      Graph,
kpeter@282
   997
      typename enable_if<typename Graph::FindArcTag, void>::type>
deba@220
   998
    {
deba@220
   999
      typedef typename Graph::Node Node;
deba@220
  1000
      typedef typename Graph::Arc Arc;
deba@220
  1001
      static Arc find(const Graph &g, Node u, Node v, Arc prev) {
deba@220
  1002
        return g.findArc(u, v, prev);
deba@220
  1003
      }
deba@220
  1004
    };
deba@220
  1005
  }
deba@220
  1006
kpeter@282
  1007
  /// \brief Find an arc between two nodes of a digraph.
deba@220
  1008
  ///
kpeter@282
  1009
  /// This function finds an arc from node \c u to node \c v in the
kpeter@282
  1010
  /// digraph \c g.
deba@220
  1011
  ///
deba@220
  1012
  /// If \c prev is \ref INVALID (this is the default value), then
deba@220
  1013
  /// it finds the first arc from \c u to \c v. Otherwise it looks for
deba@220
  1014
  /// the next arc from \c u to \c v after \c prev.
deba@220
  1015
  /// \return The found arc or \ref INVALID if there is no such an arc.
deba@220
  1016
  ///
deba@220
  1017
  /// Thus you can iterate through each arc from \c u to \c v as it follows.
deba@220
  1018
  ///\code
kpeter@282
  1019
  /// for(Arc e = findArc(g,u,v); e != INVALID; e = findArc(g,u,v,e)) {
deba@220
  1020
  ///   ...
deba@220
  1021
  /// }
deba@220
  1022
  ///\endcode
deba@220
  1023
  ///
kpeter@282
  1024
  /// \note \ref ConArcIt provides iterator interface for the same
kpeter@282
  1025
  /// functionality.
kpeter@282
  1026
  ///
deba@220
  1027
  ///\sa ConArcIt
kpeter@282
  1028
  ///\sa ArcLookUp, AllArcLookUp, DynArcLookUp
deba@220
  1029
  template <typename Graph>
deba@220
  1030
  inline typename Graph::Arc
deba@220
  1031
  findArc(const Graph &g, typename Graph::Node u, typename Graph::Node v,
deba@220
  1032
          typename Graph::Arc prev = INVALID) {
deba@220
  1033
    return _core_bits::FindArcSelector<Graph>::find(g, u, v, prev);
deba@220
  1034
  }
deba@220
  1035
kpeter@282
  1036
  /// \brief Iterator for iterating on parallel arcs connecting the same nodes.
deba@220
  1037
  ///
kpeter@282
  1038
  /// Iterator for iterating on parallel arcs connecting the same nodes. It is
kpeter@282
  1039
  /// a higher level interface for the \ref findArc() function. You can
deba@220
  1040
  /// use it the following way:
deba@220
  1041
  ///\code
deba@220
  1042
  /// for (ConArcIt<Graph> it(g, src, trg); it != INVALID; ++it) {
deba@220
  1043
  ///   ...
deba@220
  1044
  /// }
deba@220
  1045
  ///\endcode
deba@220
  1046
  ///
deba@220
  1047
  ///\sa findArc()
kpeter@282
  1048
  ///\sa ArcLookUp, AllArcLookUp, DynArcLookUp
kpeter@550
  1049
  template <typename GR>
kpeter@550
  1050
  class ConArcIt : public GR::Arc {
kpeter@609
  1051
    typedef typename GR::Arc Parent;
kpeter@609
  1052
deba@220
  1053
  public:
deba@220
  1054
kpeter@609
  1055
    typedef typename GR::Arc Arc;
kpeter@609
  1056
    typedef typename GR::Node Node;
deba@220
  1057
deba@220
  1058
    /// \brief Constructor.
deba@220
  1059
    ///
kpeter@282
  1060
    /// Construct a new ConArcIt iterating on the arcs that
kpeter@282
  1061
    /// connects nodes \c u and \c v.
kpeter@609
  1062
    ConArcIt(const GR& g, Node u, Node v) : _graph(g) {
deba@220
  1063
      Parent::operator=(findArc(_graph, u, v));
deba@220
  1064
    }
deba@220
  1065
deba@220
  1066
    /// \brief Constructor.
deba@220
  1067
    ///
kpeter@282
  1068
    /// Construct a new ConArcIt that continues the iterating from arc \c a.
kpeter@609
  1069
    ConArcIt(const GR& g, Arc a) : Parent(a), _graph(g) {}
deba@220
  1070
deba@220
  1071
    /// \brief Increment operator.
deba@220
  1072
    ///
deba@220
  1073
    /// It increments the iterator and gives back the next arc.
deba@220
  1074
    ConArcIt& operator++() {
deba@220
  1075
      Parent::operator=(findArc(_graph, _graph.source(*this),
deba@220
  1076
                                _graph.target(*this), *this));
deba@220
  1077
      return *this;
deba@220
  1078
    }
deba@220
  1079
  private:
kpeter@609
  1080
    const GR& _graph;
deba@220
  1081
  };
deba@220
  1082
deba@220
  1083
  namespace _core_bits {
deba@220
  1084
deba@220
  1085
    template <typename Graph, typename Enable = void>
deba@220
  1086
    struct FindEdgeSelector {
deba@220
  1087
      typedef typename Graph::Node Node;
deba@220
  1088
      typedef typename Graph::Edge Edge;
deba@220
  1089
      static Edge find(const Graph &g, Node u, Node v, Edge e) {
deba@220
  1090
        bool b;
deba@220
  1091
        if (u != v) {
deba@220
  1092
          if (e == INVALID) {
deba@220
  1093
            g.firstInc(e, b, u);
deba@220
  1094
          } else {
deba@220
  1095
            b = g.u(e) == u;
deba@220
  1096
            g.nextInc(e, b);
deba@220
  1097
          }
deba@220
  1098
          while (e != INVALID && (b ? g.v(e) : g.u(e)) != v) {
deba@220
  1099
            g.nextInc(e, b);
deba@220
  1100
          }
deba@220
  1101
        } else {
deba@220
  1102
          if (e == INVALID) {
deba@220
  1103
            g.firstInc(e, b, u);
deba@220
  1104
          } else {
deba@220
  1105
            b = true;
deba@220
  1106
            g.nextInc(e, b);
deba@220
  1107
          }
deba@220
  1108
          while (e != INVALID && (!b || g.v(e) != v)) {
deba@220
  1109
            g.nextInc(e, b);
deba@220
  1110
          }
deba@220
  1111
        }
deba@220
  1112
        return e;
deba@220
  1113
      }
deba@220
  1114
    };
deba@220
  1115
deba@220
  1116
    template <typename Graph>
deba@220
  1117
    struct FindEdgeSelector<
deba@220
  1118
      Graph,
deba@220
  1119
      typename enable_if<typename Graph::FindEdgeTag, void>::type>
deba@220
  1120
    {
deba@220
  1121
      typedef typename Graph::Node Node;
deba@220
  1122
      typedef typename Graph::Edge Edge;
deba@220
  1123
      static Edge find(const Graph &g, Node u, Node v, Edge prev) {
deba@220
  1124
        return g.findEdge(u, v, prev);
deba@220
  1125
      }
deba@220
  1126
    };
deba@220
  1127
  }
deba@220
  1128
kpeter@282
  1129
  /// \brief Find an edge between two nodes of a graph.
deba@220
  1130
  ///
kpeter@282
  1131
  /// This function finds an edge from node \c u to node \c v in graph \c g.
kpeter@282
  1132
  /// If node \c u and node \c v is equal then each loop edge
deba@220
  1133
  /// will be enumerated once.
deba@220
  1134
  ///
deba@220
  1135
  /// If \c prev is \ref INVALID (this is the default value), then
kpeter@282
  1136
  /// it finds the first edge from \c u to \c v. Otherwise it looks for
kpeter@282
  1137
  /// the next edge from \c u to \c v after \c prev.
kpeter@282
  1138
  /// \return The found edge or \ref INVALID if there is no such an edge.
deba@220
  1139
  ///
kpeter@282
  1140
  /// Thus you can iterate through each edge between \c u and \c v
kpeter@282
  1141
  /// as it follows.
deba@220
  1142
  ///\code
kpeter@282
  1143
  /// for(Edge e = findEdge(g,u,v); e != INVALID; e = findEdge(g,u,v,e)) {
deba@220
  1144
  ///   ...
deba@220
  1145
  /// }
deba@220
  1146
  ///\endcode
deba@220
  1147
  ///
kpeter@282
  1148
  /// \note \ref ConEdgeIt provides iterator interface for the same
kpeter@282
  1149
  /// functionality.
kpeter@282
  1150
  ///
deba@220
  1151
  ///\sa ConEdgeIt
deba@220
  1152
  template <typename Graph>
deba@220
  1153
  inline typename Graph::Edge
deba@220
  1154
  findEdge(const Graph &g, typename Graph::Node u, typename Graph::Node v,
deba@220
  1155
            typename Graph::Edge p = INVALID) {
deba@220
  1156
    return _core_bits::FindEdgeSelector<Graph>::find(g, u, v, p);
deba@220
  1157
  }
deba@220
  1158
kpeter@282
  1159
  /// \brief Iterator for iterating on parallel edges connecting the same nodes.
deba@220
  1160
  ///
kpeter@282
  1161
  /// Iterator for iterating on parallel edges connecting the same nodes.
kpeter@282
  1162
  /// It is a higher level interface for the findEdge() function. You can
deba@220
  1163
  /// use it the following way:
deba@220
  1164
  ///\code
kpeter@282
  1165
  /// for (ConEdgeIt<Graph> it(g, u, v); it != INVALID; ++it) {
deba@220
  1166
  ///   ...
deba@220
  1167
  /// }
deba@220
  1168
  ///\endcode
deba@220
  1169
  ///
deba@220
  1170
  ///\sa findEdge()
kpeter@550
  1171
  template <typename GR>
kpeter@550
  1172
  class ConEdgeIt : public GR::Edge {
kpeter@609
  1173
    typedef typename GR::Edge Parent;
kpeter@609
  1174
deba@220
  1175
  public:
deba@220
  1176
kpeter@609
  1177
    typedef typename GR::Edge Edge;
kpeter@609
  1178
    typedef typename GR::Node Node;
deba@220
  1179
deba@220
  1180
    /// \brief Constructor.
deba@220
  1181
    ///
kpeter@282
  1182
    /// Construct a new ConEdgeIt iterating on the edges that
kpeter@282
  1183
    /// connects nodes \c u and \c v.
kpeter@609
  1184
    ConEdgeIt(const GR& g, Node u, Node v) : _graph(g), _u(u), _v(v) {
kpeter@429
  1185
      Parent::operator=(findEdge(_graph, _u, _v));
deba@220
  1186
    }
deba@220
  1187
deba@220
  1188
    /// \brief Constructor.
deba@220
  1189
    ///
kpeter@282
  1190
    /// Construct a new ConEdgeIt that continues iterating from edge \c e.
kpeter@609
  1191
    ConEdgeIt(const GR& g, Edge e) : Parent(e), _graph(g) {}
deba@220
  1192
deba@220
  1193
    /// \brief Increment operator.
deba@220
  1194
    ///
deba@220
  1195
    /// It increments the iterator and gives back the next edge.
deba@220
  1196
    ConEdgeIt& operator++() {
kpeter@429
  1197
      Parent::operator=(findEdge(_graph, _u, _v, *this));
deba@220
  1198
      return *this;
deba@220
  1199
    }
deba@220
  1200
  private:
kpeter@609
  1201
    const GR& _graph;
kpeter@429
  1202
    Node _u, _v;
deba@220
  1203
  };
deba@220
  1204
deba@220
  1205
kpeter@282
  1206
  ///Dynamic arc look-up between given endpoints.
deba@220
  1207
deba@220
  1208
  ///Using this class, you can find an arc in a digraph from a given
kpeter@282
  1209
  ///source to a given target in amortized time <em>O</em>(log<em>d</em>),
deba@220
  1210
  ///where <em>d</em> is the out-degree of the source node.
deba@220
  1211
  ///
deba@220
  1212
  ///It is possible to find \e all parallel arcs between two nodes with
deba@233
  1213
  ///the \c operator() member.
deba@220
  1214
  ///
kpeter@282
  1215
  ///This is a dynamic data structure. Consider to use \ref ArcLookUp or
kpeter@282
  1216
  ///\ref AllArcLookUp if your digraph is not changed so frequently.
deba@220
  1217
  ///
kpeter@282
  1218
  ///This class uses a self-adjusting binary search tree, the Splay tree
kpeter@282
  1219
  ///of Sleator and Tarjan to guarantee the logarithmic amortized
kpeter@282
  1220
  ///time bound for arc look-ups. This class also guarantees the
deba@220
  1221
  ///optimal time bound in a constant factor for any distribution of
deba@220
  1222
  ///queries.
deba@220
  1223
  ///
kpeter@550
  1224
  ///\tparam GR The type of the underlying digraph.
deba@220
  1225
  ///
deba@220
  1226
  ///\sa ArcLookUp
deba@220
  1227
  ///\sa AllArcLookUp
kpeter@550
  1228
  template <typename GR>
deba@220
  1229
  class DynArcLookUp
kpeter@550
  1230
    : protected ItemSetTraits<GR, typename GR::Arc>::ItemNotifier::ObserverBase
deba@220
  1231
  {
kpeter@550
  1232
    typedef typename ItemSetTraits<GR, typename GR::Arc>
deba@220
  1233
    ::ItemNotifier::ObserverBase Parent;
deba@220
  1234
kpeter@550
  1235
    TEMPLATE_DIGRAPH_TYPEDEFS(GR);
kpeter@609
  1236
kpeter@609
  1237
  public:
kpeter@609
  1238
kpeter@609
  1239
    /// The Digraph type
kpeter@550
  1240
    typedef GR Digraph;
deba@220
  1241
deba@220
  1242
  protected:
deba@220
  1243
kpeter@550
  1244
    class AutoNodeMap : public ItemSetTraits<GR, Node>::template Map<Arc>::Type {
kpeter@609
  1245
      typedef typename ItemSetTraits<GR, Node>::template Map<Arc>::Type Parent;
kpeter@609
  1246
deba@220
  1247
    public:
deba@220
  1248
kpeter@550
  1249
      AutoNodeMap(const GR& digraph) : Parent(digraph, INVALID) {}
deba@220
  1250
deba@220
  1251
      virtual void add(const Node& node) {
deba@220
  1252
        Parent::add(node);
deba@220
  1253
        Parent::set(node, INVALID);
deba@220
  1254
      }
deba@220
  1255
deba@220
  1256
      virtual void add(const std::vector<Node>& nodes) {
deba@220
  1257
        Parent::add(nodes);
deba@220
  1258
        for (int i = 0; i < int(nodes.size()); ++i) {
deba@220
  1259
          Parent::set(nodes[i], INVALID);
deba@220
  1260
        }
deba@220
  1261
      }
deba@220
  1262
deba@220
  1263
      virtual void build() {
deba@220
  1264
        Parent::build();
deba@220
  1265
        Node it;
deba@220
  1266
        typename Parent::Notifier* nf = Parent::notifier();
deba@220
  1267
        for (nf->first(it); it != INVALID; nf->next(it)) {
deba@220
  1268
          Parent::set(it, INVALID);
deba@220
  1269
        }
deba@220
  1270
      }
deba@220
  1271
    };
deba@220
  1272
deba@220
  1273
    class ArcLess {
deba@220
  1274
      const Digraph &g;
deba@220
  1275
    public:
deba@220
  1276
      ArcLess(const Digraph &_g) : g(_g) {}
deba@220
  1277
      bool operator()(Arc a,Arc b) const
deba@220
  1278
      {
deba@220
  1279
        return g.target(a)<g.target(b);
deba@220
  1280
      }
deba@220
  1281
    };
deba@220
  1282
kpeter@609
  1283
  protected: 
kpeter@609
  1284
kpeter@609
  1285
    const Digraph &_g;
kpeter@609
  1286
    AutoNodeMap _head;
kpeter@609
  1287
    typename Digraph::template ArcMap<Arc> _parent;
kpeter@609
  1288
    typename Digraph::template ArcMap<Arc> _left;
kpeter@609
  1289
    typename Digraph::template ArcMap<Arc> _right;
kpeter@609
  1290
deba@220
  1291
  public:
deba@220
  1292
deba@220
  1293
    ///Constructor
deba@220
  1294
deba@220
  1295
    ///Constructor.
deba@220
  1296
    ///
deba@220
  1297
    ///It builds up the search database.
deba@220
  1298
    DynArcLookUp(const Digraph &g)
deba@220
  1299
      : _g(g),_head(g),_parent(g),_left(g),_right(g)
deba@220
  1300
    {
deba@220
  1301
      Parent::attach(_g.notifier(typename Digraph::Arc()));
deba@220
  1302
      refresh();
deba@220
  1303
    }
deba@220
  1304
deba@220
  1305
  protected:
deba@220
  1306
deba@220
  1307
    virtual void add(const Arc& arc) {
deba@220
  1308
      insert(arc);
deba@220
  1309
    }
deba@220
  1310
deba@220
  1311
    virtual void add(const std::vector<Arc>& arcs) {
deba@220
  1312
      for (int i = 0; i < int(arcs.size()); ++i) {
deba@220
  1313
        insert(arcs[i]);
deba@220
  1314
      }
deba@220
  1315
    }
deba@220
  1316
deba@220
  1317
    virtual void erase(const Arc& arc) {
deba@220
  1318
      remove(arc);
deba@220
  1319
    }
deba@220
  1320
deba@220
  1321
    virtual void erase(const std::vector<Arc>& arcs) {
deba@220
  1322
      for (int i = 0; i < int(arcs.size()); ++i) {
deba@220
  1323
        remove(arcs[i]);
deba@220
  1324
      }
deba@220
  1325
    }
deba@220
  1326
deba@220
  1327
    virtual void build() {
deba@220
  1328
      refresh();
deba@220
  1329
    }
deba@220
  1330
deba@220
  1331
    virtual void clear() {
deba@220
  1332
      for(NodeIt n(_g);n!=INVALID;++n) {
kpeter@573
  1333
        _head[n] = INVALID;
deba@220
  1334
      }
deba@220
  1335
    }
deba@220
  1336
deba@220
  1337
    void insert(Arc arc) {
deba@220
  1338
      Node s = _g.source(arc);
deba@220
  1339
      Node t = _g.target(arc);
kpeter@573
  1340
      _left[arc] = INVALID;
kpeter@573
  1341
      _right[arc] = INVALID;
deba@220
  1342
deba@220
  1343
      Arc e = _head[s];
deba@220
  1344
      if (e == INVALID) {
kpeter@573
  1345
        _head[s] = arc;
kpeter@573
  1346
        _parent[arc] = INVALID;
deba@220
  1347
        return;
deba@220
  1348
      }
deba@220
  1349
      while (true) {
deba@220
  1350
        if (t < _g.target(e)) {
deba@220
  1351
          if (_left[e] == INVALID) {
kpeter@573
  1352
            _left[e] = arc;
kpeter@573
  1353
            _parent[arc] = e;
deba@220
  1354
            splay(arc);
deba@220
  1355
            return;
deba@220
  1356
          } else {
deba@220
  1357
            e = _left[e];
deba@220
  1358
          }
deba@220
  1359
        } else {
deba@220
  1360
          if (_right[e] == INVALID) {
kpeter@573
  1361
            _right[e] = arc;
kpeter@573
  1362
            _parent[arc] = e;
deba@220
  1363
            splay(arc);
deba@220
  1364
            return;
deba@220
  1365
          } else {
deba@220
  1366
            e = _right[e];
deba@220
  1367
          }
deba@220
  1368
        }
deba@220
  1369
      }
deba@220
  1370
    }
deba@220
  1371
deba@220
  1372
    void remove(Arc arc) {
deba@220
  1373
      if (_left[arc] == INVALID) {
deba@220
  1374
        if (_right[arc] != INVALID) {
kpeter@573
  1375
          _parent[_right[arc]] = _parent[arc];
deba@220
  1376
        }
deba@220
  1377
        if (_parent[arc] != INVALID) {
deba@220
  1378
          if (_left[_parent[arc]] == arc) {
kpeter@573
  1379
            _left[_parent[arc]] = _right[arc];
deba@220
  1380
          } else {
kpeter@573
  1381
            _right[_parent[arc]] = _right[arc];
deba@220
  1382
          }
deba@220
  1383
        } else {
kpeter@573
  1384
          _head[_g.source(arc)] = _right[arc];
deba@220
  1385
        }
deba@220
  1386
      } else if (_right[arc] == INVALID) {
kpeter@573
  1387
        _parent[_left[arc]] = _parent[arc];
deba@220
  1388
        if (_parent[arc] != INVALID) {
deba@220
  1389
          if (_left[_parent[arc]] == arc) {
kpeter@573
  1390
            _left[_parent[arc]] = _left[arc];
deba@220
  1391
          } else {
kpeter@573
  1392
            _right[_parent[arc]] = _left[arc];
deba@220
  1393
          }
deba@220
  1394
        } else {
kpeter@573
  1395
          _head[_g.source(arc)] = _left[arc];
deba@220
  1396
        }
deba@220
  1397
      } else {
deba@220
  1398
        Arc e = _left[arc];
deba@220
  1399
        if (_right[e] != INVALID) {
deba@220
  1400
          e = _right[e];
deba@220
  1401
          while (_right[e] != INVALID) {
deba@220
  1402
            e = _right[e];
deba@220
  1403
          }
deba@220
  1404
          Arc s = _parent[e];
kpeter@573
  1405
          _right[_parent[e]] = _left[e];
deba@220
  1406
          if (_left[e] != INVALID) {
kpeter@573
  1407
            _parent[_left[e]] = _parent[e];
deba@220
  1408
          }
deba@220
  1409
kpeter@573
  1410
          _left[e] = _left[arc];
kpeter@573
  1411
          _parent[_left[arc]] = e;
kpeter@573
  1412
          _right[e] = _right[arc];
kpeter@573
  1413
          _parent[_right[arc]] = e;
deba@220
  1414
kpeter@573
  1415
          _parent[e] = _parent[arc];
deba@220
  1416
          if (_parent[arc] != INVALID) {
deba@220
  1417
            if (_left[_parent[arc]] == arc) {
kpeter@573
  1418
              _left[_parent[arc]] = e;
deba@220
  1419
            } else {
kpeter@573
  1420
              _right[_parent[arc]] = e;
deba@220
  1421
            }
deba@220
  1422
          }
deba@220
  1423
          splay(s);
deba@220
  1424
        } else {
kpeter@573
  1425
          _right[e] = _right[arc];
kpeter@573
  1426
          _parent[_right[arc]] = e;
kpeter@573
  1427
          _parent[e] = _parent[arc];
deba@220
  1428
deba@220
  1429
          if (_parent[arc] != INVALID) {
deba@220
  1430
            if (_left[_parent[arc]] == arc) {
kpeter@573
  1431
              _left[_parent[arc]] = e;
deba@220
  1432
            } else {
kpeter@573
  1433
              _right[_parent[arc]] = e;
deba@220
  1434
            }
deba@220
  1435
          } else {
kpeter@573
  1436
            _head[_g.source(arc)] = e;
deba@220
  1437
          }
deba@220
  1438
        }
deba@220
  1439
      }
deba@220
  1440
    }
deba@220
  1441
deba@220
  1442
    Arc refreshRec(std::vector<Arc> &v,int a,int b)
deba@220
  1443
    {
deba@220
  1444
      int m=(a+b)/2;
deba@220
  1445
      Arc me=v[m];
deba@220
  1446
      if (a < m) {
deba@220
  1447
        Arc left = refreshRec(v,a,m-1);
kpeter@573
  1448
        _left[me] = left;
kpeter@573
  1449
        _parent[left] = me;
deba@220
  1450
      } else {
kpeter@573
  1451
        _left[me] = INVALID;
deba@220
  1452
      }
deba@220
  1453
      if (m < b) {
deba@220
  1454
        Arc right = refreshRec(v,m+1,b);
kpeter@573
  1455
        _right[me] = right;
kpeter@573
  1456
        _parent[right] = me;
deba@220
  1457
      } else {
kpeter@573
  1458
        _right[me] = INVALID;
deba@220
  1459
      }
deba@220
  1460
      return me;
deba@220
  1461
    }
deba@220
  1462
deba@220
  1463
    void refresh() {
deba@220
  1464
      for(NodeIt n(_g);n!=INVALID;++n) {
deba@220
  1465
        std::vector<Arc> v;
deba@233
  1466
        for(OutArcIt a(_g,n);a!=INVALID;++a) v.push_back(a);
deba@233
  1467
        if (!v.empty()) {
deba@220
  1468
          std::sort(v.begin(),v.end(),ArcLess(_g));
deba@220
  1469
          Arc head = refreshRec(v,0,v.size()-1);
kpeter@573
  1470
          _head[n] = head;
kpeter@573
  1471
          _parent[head] = INVALID;
deba@220
  1472
        }
kpeter@573
  1473
        else _head[n] = INVALID;
deba@220
  1474
      }
deba@220
  1475
    }
deba@220
  1476
deba@220
  1477
    void zig(Arc v) {
deba@220
  1478
      Arc w = _parent[v];
kpeter@573
  1479
      _parent[v] = _parent[w];
kpeter@573
  1480
      _parent[w] = v;
kpeter@573
  1481
      _left[w] = _right[v];
kpeter@573
  1482
      _right[v] = w;
deba@220
  1483
      if (_parent[v] != INVALID) {
deba@220
  1484
        if (_right[_parent[v]] == w) {
kpeter@573
  1485
          _right[_parent[v]] = v;
deba@220
  1486
        } else {
kpeter@573
  1487
          _left[_parent[v]] = v;
deba@220
  1488
        }
deba@220
  1489
      }
deba@220
  1490
      if (_left[w] != INVALID){
kpeter@573
  1491
        _parent[_left[w]] = w;
deba@220
  1492
      }
deba@220
  1493
    }
deba@220
  1494
deba@220
  1495
    void zag(Arc v) {
deba@220
  1496
      Arc w = _parent[v];
kpeter@573
  1497
      _parent[v] = _parent[w];
kpeter@573
  1498
      _parent[w] = v;
kpeter@573
  1499
      _right[w] = _left[v];
kpeter@573
  1500
      _left[v] = w;
deba@220
  1501
      if (_parent[v] != INVALID){
deba@220
  1502
        if (_left[_parent[v]] == w) {
kpeter@573
  1503
          _left[_parent[v]] = v;
deba@220
  1504
        } else {
kpeter@573
  1505
          _right[_parent[v]] = v;
deba@220
  1506
        }
deba@220
  1507
      }
deba@220
  1508
      if (_right[w] != INVALID){
kpeter@573
  1509
        _parent[_right[w]] = w;
deba@220
  1510
      }
deba@220
  1511
    }
deba@220
  1512
deba@220
  1513
    void splay(Arc v) {
deba@220
  1514
      while (_parent[v] != INVALID) {
deba@220
  1515
        if (v == _left[_parent[v]]) {
deba@220
  1516
          if (_parent[_parent[v]] == INVALID) {
deba@220
  1517
            zig(v);
deba@220
  1518
          } else {
deba@220
  1519
            if (_parent[v] == _left[_parent[_parent[v]]]) {
deba@220
  1520
              zig(_parent[v]);
deba@220
  1521
              zig(v);
deba@220
  1522
            } else {
deba@220
  1523
              zig(v);
deba@220
  1524
              zag(v);
deba@220
  1525
            }
deba@220
  1526
          }
deba@220
  1527
        } else {
deba@220
  1528
          if (_parent[_parent[v]] == INVALID) {
deba@220
  1529
            zag(v);
deba@220
  1530
          } else {
deba@220
  1531
            if (_parent[v] == _left[_parent[_parent[v]]]) {
deba@220
  1532
              zag(v);
deba@220
  1533
              zig(v);
deba@220
  1534
            } else {
deba@220
  1535
              zag(_parent[v]);
deba@220
  1536
              zag(v);
deba@220
  1537
            }
deba@220
  1538
          }
deba@220
  1539
        }
deba@220
  1540
      }
deba@220
  1541
      _head[_g.source(v)] = v;
deba@220
  1542
    }
deba@220
  1543
deba@220
  1544
deba@220
  1545
  public:
deba@220
  1546
deba@220
  1547
    ///Find an arc between two nodes.
deba@220
  1548
deba@233
  1549
    ///Find an arc between two nodes.
kpeter@282
  1550
    ///\param s The source node.
kpeter@282
  1551
    ///\param t The target node.
deba@233
  1552
    ///\param p The previous arc between \c s and \c t. It it is INVALID or
deba@233
  1553
    ///not given, the operator finds the first appropriate arc.
deba@233
  1554
    ///\return An arc from \c s to \c t after \c p or
deba@233
  1555
    ///\ref INVALID if there is no more.
deba@233
  1556
    ///
deba@233
  1557
    ///For example, you can count the number of arcs from \c u to \c v in the
deba@233
  1558
    ///following way.
deba@233
  1559
    ///\code
deba@233
  1560
    ///DynArcLookUp<ListDigraph> ae(g);
deba@233
  1561
    ///...
kpeter@282
  1562
    ///int n = 0;
kpeter@282
  1563
    ///for(Arc a = ae(u,v); a != INVALID; a = ae(u,v,a)) n++;
deba@233
  1564
    ///\endcode
deba@233
  1565
    ///
kpeter@282
  1566
    ///Finding the arcs take at most <em>O</em>(log<em>d</em>)
deba@233
  1567
    ///amortized time, specifically, the time complexity of the lookups
deba@233
  1568
    ///is equal to the optimal search tree implementation for the
deba@233
  1569
    ///current query distribution in a constant factor.
deba@233
  1570
    ///
deba@233
  1571
    ///\note This is a dynamic data structure, therefore the data
kpeter@282
  1572
    ///structure is updated after each graph alteration. Thus although
kpeter@282
  1573
    ///this data structure is theoretically faster than \ref ArcLookUp
kpeter@313
  1574
    ///and \ref AllArcLookUp, it often provides worse performance than
deba@233
  1575
    ///them.
deba@233
  1576
    Arc operator()(Node s, Node t, Arc p = INVALID) const  {
deba@233
  1577
      if (p == INVALID) {
deba@233
  1578
        Arc a = _head[s];
deba@233
  1579
        if (a == INVALID) return INVALID;
deba@233
  1580
        Arc r = INVALID;
deba@233
  1581
        while (true) {
deba@233
  1582
          if (_g.target(a) < t) {
deba@233
  1583
            if (_right[a] == INVALID) {
deba@233
  1584
              const_cast<DynArcLookUp&>(*this).splay(a);
deba@233
  1585
              return r;
deba@233
  1586
            } else {
deba@233
  1587
              a = _right[a];
deba@233
  1588
            }
deba@233
  1589
          } else {
deba@233
  1590
            if (_g.target(a) == t) {
deba@233
  1591
              r = a;
deba@233
  1592
            }
deba@233
  1593
            if (_left[a] == INVALID) {
deba@233
  1594
              const_cast<DynArcLookUp&>(*this).splay(a);
deba@233
  1595
              return r;
deba@233
  1596
            } else {
deba@233
  1597
              a = _left[a];
deba@233
  1598
            }
deba@233
  1599
          }
deba@233
  1600
        }
deba@233
  1601
      } else {
deba@233
  1602
        Arc a = p;
deba@233
  1603
        if (_right[a] != INVALID) {
deba@233
  1604
          a = _right[a];
deba@233
  1605
          while (_left[a] != INVALID) {
deba@233
  1606
            a = _left[a];
deba@233
  1607
          }
deba@220
  1608
          const_cast<DynArcLookUp&>(*this).splay(a);
deba@233
  1609
        } else {
deba@233
  1610
          while (_parent[a] != INVALID && _right[_parent[a]] ==  a) {
deba@233
  1611
            a = _parent[a];
deba@233
  1612
          }
deba@233
  1613
          if (_parent[a] == INVALID) {
deba@220
  1614
            return INVALID;
deba@220
  1615
          } else {
deba@233
  1616
            a = _parent[a];
deba@220
  1617
            const_cast<DynArcLookUp&>(*this).splay(a);
deba@220
  1618
          }
deba@220
  1619
        }
deba@233
  1620
        if (_g.target(a) == t) return a;
deba@233
  1621
        else return INVALID;
deba@220
  1622
      }
deba@220
  1623
    }
deba@220
  1624
deba@220
  1625
  };
deba@220
  1626
kpeter@282
  1627
  ///Fast arc look-up between given endpoints.
deba@220
  1628
deba@220
  1629
  ///Using this class, you can find an arc in a digraph from a given
kpeter@282
  1630
  ///source to a given target in time <em>O</em>(log<em>d</em>),
deba@220
  1631
  ///where <em>d</em> is the out-degree of the source node.
deba@220
  1632
  ///
deba@220
  1633
  ///It is not possible to find \e all parallel arcs between two nodes.
deba@220
  1634
  ///Use \ref AllArcLookUp for this purpose.
deba@220
  1635
  ///
kpeter@282
  1636
  ///\warning This class is static, so you should call refresh() (or at
kpeter@282
  1637
  ///least refresh(Node)) to refresh this data structure whenever the
kpeter@282
  1638
  ///digraph changes. This is a time consuming (superlinearly proportional
kpeter@282
  1639
  ///(<em>O</em>(<em>m</em> log<em>m</em>)) to the number of arcs).
deba@220
  1640
  ///
kpeter@550
  1641
  ///\tparam GR The type of the underlying digraph.
deba@220
  1642
  ///
deba@220
  1643
  ///\sa DynArcLookUp
deba@220
  1644
  ///\sa AllArcLookUp
kpeter@550
  1645
  template<class GR>
deba@220
  1646
  class ArcLookUp
deba@220
  1647
  {
kpeter@609
  1648
    TEMPLATE_DIGRAPH_TYPEDEFS(GR);
kpeter@609
  1649
deba@220
  1650
  public:
kpeter@609
  1651
kpeter@609
  1652
    /// The Digraph type
kpeter@550
  1653
    typedef GR Digraph;
deba@220
  1654
deba@220
  1655
  protected:
deba@220
  1656
    const Digraph &_g;
deba@220
  1657
    typename Digraph::template NodeMap<Arc> _head;
deba@220
  1658
    typename Digraph::template ArcMap<Arc> _left;
deba@220
  1659
    typename Digraph::template ArcMap<Arc> _right;
deba@220
  1660
deba@220
  1661
    class ArcLess {
deba@220
  1662
      const Digraph &g;
deba@220
  1663
    public:
deba@220
  1664
      ArcLess(const Digraph &_g) : g(_g) {}
deba@220
  1665
      bool operator()(Arc a,Arc b) const
deba@220
  1666
      {
deba@220
  1667
        return g.target(a)<g.target(b);
deba@220
  1668
      }
deba@220
  1669
    };
deba@220
  1670
deba@220
  1671
  public:
deba@220
  1672
deba@220
  1673
    ///Constructor
deba@220
  1674
deba@220
  1675
    ///Constructor.
deba@220
  1676
    ///
deba@220
  1677
    ///It builds up the search database, which remains valid until the digraph
deba@220
  1678
    ///changes.
deba@220
  1679
    ArcLookUp(const Digraph &g) :_g(g),_head(g),_left(g),_right(g) {refresh();}
deba@220
  1680
deba@220
  1681
  private:
deba@220
  1682
    Arc refreshRec(std::vector<Arc> &v,int a,int b)
deba@220
  1683
    {
deba@220
  1684
      int m=(a+b)/2;
deba@220
  1685
      Arc me=v[m];
deba@220
  1686
      _left[me] = a<m?refreshRec(v,a,m-1):INVALID;
deba@220
  1687
      _right[me] = m<b?refreshRec(v,m+1,b):INVALID;
deba@220
  1688
      return me;
deba@220
  1689
    }
deba@220
  1690
  public:
kpeter@282
  1691
    ///Refresh the search data structure at a node.
deba@220
  1692
deba@220
  1693
    ///Build up the search database of node \c n.
deba@220
  1694
    ///
kpeter@282
  1695
    ///It runs in time <em>O</em>(<em>d</em> log<em>d</em>), where <em>d</em>
kpeter@282
  1696
    ///is the number of the outgoing arcs of \c n.
deba@220
  1697
    void refresh(Node n)
deba@220
  1698
    {
deba@220
  1699
      std::vector<Arc> v;
deba@220
  1700
      for(OutArcIt e(_g,n);e!=INVALID;++e) v.push_back(e);
deba@220
  1701
      if(v.size()) {
deba@220
  1702
        std::sort(v.begin(),v.end(),ArcLess(_g));
deba@220
  1703
        _head[n]=refreshRec(v,0,v.size()-1);
deba@220
  1704
      }
deba@220
  1705
      else _head[n]=INVALID;
deba@220
  1706
    }
deba@220
  1707
    ///Refresh the full data structure.
deba@220
  1708
deba@220
  1709
    ///Build up the full search database. In fact, it simply calls
deba@220
  1710
    ///\ref refresh(Node) "refresh(n)" for each node \c n.
deba@220
  1711
    ///
kpeter@282
  1712
    ///It runs in time <em>O</em>(<em>m</em> log<em>D</em>), where <em>m</em> is
kpeter@282
  1713
    ///the number of the arcs in the digraph and <em>D</em> is the maximum
deba@220
  1714
    ///out-degree of the digraph.
deba@220
  1715
    void refresh()
deba@220
  1716
    {
deba@220
  1717
      for(NodeIt n(_g);n!=INVALID;++n) refresh(n);
deba@220
  1718
    }
deba@220
  1719
deba@220
  1720
    ///Find an arc between two nodes.
deba@220
  1721
kpeter@313
  1722
    ///Find an arc between two nodes in time <em>O</em>(log<em>d</em>),
kpeter@313
  1723
    ///where <em>d</em> is the number of outgoing arcs of \c s.
kpeter@282
  1724
    ///\param s The source node.
kpeter@282
  1725
    ///\param t The target node.
deba@220
  1726
    ///\return An arc from \c s to \c t if there exists,
deba@220
  1727
    ///\ref INVALID otherwise.
deba@220
  1728
    ///
deba@220
  1729
    ///\warning If you change the digraph, refresh() must be called before using
deba@220
  1730
    ///this operator. If you change the outgoing arcs of
kpeter@282
  1731
    ///a single node \c n, then \ref refresh(Node) "refresh(n)" is enough.
deba@220
  1732
    Arc operator()(Node s, Node t) const
deba@220
  1733
    {
deba@220
  1734
      Arc e;
deba@220
  1735
      for(e=_head[s];
deba@220
  1736
          e!=INVALID&&_g.target(e)!=t;
deba@220
  1737
          e = t < _g.target(e)?_left[e]:_right[e]) ;
deba@220
  1738
      return e;
deba@220
  1739
    }
deba@220
  1740
deba@220
  1741
  };
deba@220
  1742
kpeter@282
  1743
  ///Fast look-up of all arcs between given endpoints.
deba@220
  1744
deba@220
  1745
  ///This class is the same as \ref ArcLookUp, with the addition
kpeter@282
  1746
  ///that it makes it possible to find all parallel arcs between given
kpeter@282
  1747
  ///endpoints.
deba@220
  1748
  ///
kpeter@282
  1749
  ///\warning This class is static, so you should call refresh() (or at
kpeter@282
  1750
  ///least refresh(Node)) to refresh this data structure whenever the
kpeter@282
  1751
  ///digraph changes. This is a time consuming (superlinearly proportional
kpeter@282
  1752
  ///(<em>O</em>(<em>m</em> log<em>m</em>)) to the number of arcs).
deba@220
  1753
  ///
kpeter@550
  1754
  ///\tparam GR The type of the underlying digraph.
deba@220
  1755
  ///
deba@220
  1756
  ///\sa DynArcLookUp
deba@220
  1757
  ///\sa ArcLookUp
kpeter@550
  1758
  template<class GR>
kpeter@550
  1759
  class AllArcLookUp : public ArcLookUp<GR>
deba@220
  1760
  {
kpeter@550
  1761
    using ArcLookUp<GR>::_g;
kpeter@550
  1762
    using ArcLookUp<GR>::_right;
kpeter@550
  1763
    using ArcLookUp<GR>::_left;
kpeter@550
  1764
    using ArcLookUp<GR>::_head;
deba@220
  1765
kpeter@550
  1766
    TEMPLATE_DIGRAPH_TYPEDEFS(GR);
deba@220
  1767
kpeter@609
  1768
    typename GR::template ArcMap<Arc> _next;
deba@220
  1769
deba@220
  1770
    Arc refreshNext(Arc head,Arc next=INVALID)
deba@220
  1771
    {
deba@220
  1772
      if(head==INVALID) return next;
deba@220
  1773
      else {
deba@220
  1774
        next=refreshNext(_right[head],next);
deba@220
  1775
        _next[head]=( next!=INVALID && _g.target(next)==_g.target(head))
deba@220
  1776
          ? next : INVALID;
deba@220
  1777
        return refreshNext(_left[head],head);
deba@220
  1778
      }
deba@220
  1779
    }
deba@220
  1780
deba@220
  1781
    void refreshNext()
deba@220
  1782
    {
deba@220
  1783
      for(NodeIt n(_g);n!=INVALID;++n) refreshNext(_head[n]);
deba@220
  1784
    }
deba@220
  1785
deba@220
  1786
  public:
kpeter@609
  1787
kpeter@609
  1788
    /// The Digraph type
kpeter@609
  1789
    typedef GR Digraph;
kpeter@609
  1790
deba@220
  1791
    ///Constructor
deba@220
  1792
deba@220
  1793
    ///Constructor.
deba@220
  1794
    ///
deba@220
  1795
    ///It builds up the search database, which remains valid until the digraph
deba@220
  1796
    ///changes.
kpeter@550
  1797
    AllArcLookUp(const Digraph &g) : ArcLookUp<GR>(g), _next(g) {refreshNext();}
deba@220
  1798
deba@220
  1799
    ///Refresh the data structure at a node.
deba@220
  1800
deba@220
  1801
    ///Build up the search database of node \c n.
deba@220
  1802
    ///
kpeter@282
  1803
    ///It runs in time <em>O</em>(<em>d</em> log<em>d</em>), where <em>d</em> is
deba@220
  1804
    ///the number of the outgoing arcs of \c n.
deba@220
  1805
    void refresh(Node n)
deba@220
  1806
    {
kpeter@550
  1807
      ArcLookUp<GR>::refresh(n);
deba@220
  1808
      refreshNext(_head[n]);
deba@220
  1809
    }
deba@220
  1810
deba@220
  1811
    ///Refresh the full data structure.
deba@220
  1812
deba@220
  1813
    ///Build up the full search database. In fact, it simply calls
deba@220
  1814
    ///\ref refresh(Node) "refresh(n)" for each node \c n.
deba@220
  1815
    ///
kpeter@282
  1816
    ///It runs in time <em>O</em>(<em>m</em> log<em>D</em>), where <em>m</em> is
kpeter@282
  1817
    ///the number of the arcs in the digraph and <em>D</em> is the maximum
deba@220
  1818
    ///out-degree of the digraph.
deba@220
  1819
    void refresh()
deba@220
  1820
    {
deba@220
  1821
      for(NodeIt n(_g);n!=INVALID;++n) refresh(_head[n]);
deba@220
  1822
    }
deba@220
  1823
deba@220
  1824
    ///Find an arc between two nodes.
deba@220
  1825
deba@220
  1826
    ///Find an arc between two nodes.
kpeter@282
  1827
    ///\param s The source node.
kpeter@282
  1828
    ///\param t The target node.
deba@220
  1829
    ///\param prev The previous arc between \c s and \c t. It it is INVALID or
deba@220
  1830
    ///not given, the operator finds the first appropriate arc.
deba@220
  1831
    ///\return An arc from \c s to \c t after \c prev or
deba@220
  1832
    ///\ref INVALID if there is no more.
deba@220
  1833
    ///
deba@220
  1834
    ///For example, you can count the number of arcs from \c u to \c v in the
deba@220
  1835
    ///following way.
deba@220
  1836
    ///\code
deba@220
  1837
    ///AllArcLookUp<ListDigraph> ae(g);
deba@220
  1838
    ///...
kpeter@282
  1839
    ///int n = 0;
kpeter@282
  1840
    ///for(Arc a = ae(u,v); a != INVALID; a=ae(u,v,a)) n++;
deba@220
  1841
    ///\endcode
deba@220
  1842
    ///
kpeter@313
  1843
    ///Finding the first arc take <em>O</em>(log<em>d</em>) time,
kpeter@313
  1844
    ///where <em>d</em> is the number of outgoing arcs of \c s. Then the
deba@220
  1845
    ///consecutive arcs are found in constant time.
deba@220
  1846
    ///
deba@220
  1847
    ///\warning If you change the digraph, refresh() must be called before using
deba@220
  1848
    ///this operator. If you change the outgoing arcs of
kpeter@282
  1849
    ///a single node \c n, then \ref refresh(Node) "refresh(n)" is enough.
deba@220
  1850
    ///
deba@220
  1851
#ifdef DOXYGEN
deba@220
  1852
    Arc operator()(Node s, Node t, Arc prev=INVALID) const {}
deba@220
  1853
#else
kpeter@550
  1854
    using ArcLookUp<GR>::operator() ;
deba@220
  1855
    Arc operator()(Node s, Node t, Arc prev) const
deba@220
  1856
    {
deba@220
  1857
      return prev==INVALID?(*this)(s,t):_next[prev];
deba@220
  1858
    }
deba@220
  1859
#endif
deba@220
  1860
deba@220
  1861
  };
deba@220
  1862
deba@220
  1863
  /// @}
deba@220
  1864
deba@220
  1865
} //namespace lemon
deba@220
  1866
deba@220
  1867
#endif