lemon/core.h
author Alpar Juttner <alpar@cs.elte.hu>
Tue, 30 Jul 2013 15:52:38 +0200
branch1.1
changeset 803 79f149ee0230
parent 790 9147b013331a
parent 800 756022ac1674
child 806 14394c9603c2
permissions -rw-r--r--
Merge bugfix #461 to branch 1.1
deba@220
     1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
deba@220
     2
 *
deba@220
     3
 * This file is a part of LEMON, a generic C++ optimization library.
deba@220
     4
 *
alpar@761
     5
 * Copyright (C) 2003-2011
deba@220
     6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
deba@220
     7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
deba@220
     8
 *
deba@220
     9
 * Permission to use, modify and distribute this software is granted
deba@220
    10
 * provided that this copyright notice appears in all copies. For
deba@220
    11
 * precise terms see the accompanying LICENSE file.
deba@220
    12
 *
deba@220
    13
 * This software is provided "AS IS" with no warranty of any kind,
deba@220
    14
 * express or implied, and with no claim as to its suitability for any
deba@220
    15
 * purpose.
deba@220
    16
 *
deba@220
    17
 */
deba@220
    18
deba@220
    19
#ifndef LEMON_CORE_H
deba@220
    20
#define LEMON_CORE_H
deba@220
    21
deba@220
    22
#include <vector>
deba@220
    23
#include <algorithm>
deba@220
    24
ladanyi@634
    25
#include <lemon/config.h>
deba@220
    26
#include <lemon/bits/enable_if.h>
deba@220
    27
#include <lemon/bits/traits.h>
alpar@319
    28
#include <lemon/assert.h>
deba@220
    29
ladanyi@672
    30
// Disable the following warnings when compiling with MSVC:
ladanyi@672
    31
// C4250: 'class1' : inherits 'class2::member' via dominance
ladanyi@672
    32
// C4355: 'this' : used in base member initializer list
ladanyi@672
    33
// C4503: 'function' : decorated name length exceeded, name was truncated
ladanyi@672
    34
// C4800: 'type' : forcing value to bool 'true' or 'false' (performance warning)
ladanyi@672
    35
// C4996: 'function': was declared deprecated
ladanyi@672
    36
#ifdef _MSC_VER
ladanyi@672
    37
#pragma warning( disable : 4250 4355 4503 4800 4996 )
ladanyi@672
    38
#endif
ladanyi@672
    39
alpar@800
    40
#ifdef __GNUC__
alpar@800
    41
// Needed by the [DI]GRAPH_TYPEDEFS marcos for gcc 4.8
alpar@800
    42
#pragma GCC diagnostic ignored "-Wunused-local-typedefs"
alpar@800
    43
#endif
alpar@800
    44
deba@220
    45
///\file
deba@220
    46
///\brief LEMON core utilities.
kpeter@229
    47
///
kpeter@229
    48
///This header file contains core utilities for LEMON.
deba@233
    49
///It is automatically included by all graph types, therefore it usually
kpeter@229
    50
///do not have to be included directly.
deba@220
    51
deba@220
    52
namespace lemon {
deba@220
    53
deba@220
    54
  /// \brief Dummy type to make it easier to create invalid iterators.
deba@220
    55
  ///
deba@220
    56
  /// Dummy type to make it easier to create invalid iterators.
deba@220
    57
  /// See \ref INVALID for the usage.
deba@220
    58
  struct Invalid {
deba@220
    59
  public:
deba@220
    60
    bool operator==(Invalid) { return true;  }
deba@220
    61
    bool operator!=(Invalid) { return false; }
deba@220
    62
    bool operator< (Invalid) { return false; }
deba@220
    63
  };
deba@220
    64
deba@220
    65
  /// \brief Invalid iterators.
deba@220
    66
  ///
deba@220
    67
  /// \ref Invalid is a global type that converts to each iterator
deba@220
    68
  /// in such a way that the value of the target iterator will be invalid.
deba@220
    69
#ifdef LEMON_ONLY_TEMPLATES
deba@220
    70
  const Invalid INVALID = Invalid();
deba@220
    71
#else
deba@220
    72
  extern const Invalid INVALID;
deba@220
    73
#endif
deba@220
    74
deba@220
    75
  /// \addtogroup gutils
deba@220
    76
  /// @{
deba@220
    77
kpeter@300
    78
  ///Create convenience typedefs for the digraph types and iterators
deba@220
    79
kpeter@282
    80
  ///This \c \#define creates convenient type definitions for the following
kpeter@282
    81
  ///types of \c Digraph: \c Node,  \c NodeIt, \c Arc, \c ArcIt, \c InArcIt,
deba@220
    82
  ///\c OutArcIt, \c BoolNodeMap, \c IntNodeMap, \c DoubleNodeMap,
deba@220
    83
  ///\c BoolArcMap, \c IntArcMap, \c DoubleArcMap.
deba@220
    84
  ///
deba@220
    85
  ///\note If the graph type is a dependent type, ie. the graph type depend
deba@220
    86
  ///on a template parameter, then use \c TEMPLATE_DIGRAPH_TYPEDEFS()
deba@220
    87
  ///macro.
deba@220
    88
#define DIGRAPH_TYPEDEFS(Digraph)                                       \
deba@220
    89
  typedef Digraph::Node Node;                                           \
deba@220
    90
  typedef Digraph::NodeIt NodeIt;                                       \
deba@220
    91
  typedef Digraph::Arc Arc;                                             \
deba@220
    92
  typedef Digraph::ArcIt ArcIt;                                         \
deba@220
    93
  typedef Digraph::InArcIt InArcIt;                                     \
deba@220
    94
  typedef Digraph::OutArcIt OutArcIt;                                   \
deba@220
    95
  typedef Digraph::NodeMap<bool> BoolNodeMap;                           \
deba@220
    96
  typedef Digraph::NodeMap<int> IntNodeMap;                             \
deba@220
    97
  typedef Digraph::NodeMap<double> DoubleNodeMap;                       \
deba@220
    98
  typedef Digraph::ArcMap<bool> BoolArcMap;                             \
deba@220
    99
  typedef Digraph::ArcMap<int> IntArcMap;                               \
kpeter@300
   100
  typedef Digraph::ArcMap<double> DoubleArcMap
deba@220
   101
kpeter@300
   102
  ///Create convenience typedefs for the digraph types and iterators
deba@220
   103
deba@220
   104
  ///\see DIGRAPH_TYPEDEFS
deba@220
   105
  ///
deba@220
   106
  ///\note Use this macro, if the graph type is a dependent type,
deba@220
   107
  ///ie. the graph type depend on a template parameter.
deba@220
   108
#define TEMPLATE_DIGRAPH_TYPEDEFS(Digraph)                              \
deba@220
   109
  typedef typename Digraph::Node Node;                                  \
deba@220
   110
  typedef typename Digraph::NodeIt NodeIt;                              \
deba@220
   111
  typedef typename Digraph::Arc Arc;                                    \
deba@220
   112
  typedef typename Digraph::ArcIt ArcIt;                                \
deba@220
   113
  typedef typename Digraph::InArcIt InArcIt;                            \
deba@220
   114
  typedef typename Digraph::OutArcIt OutArcIt;                          \
deba@220
   115
  typedef typename Digraph::template NodeMap<bool> BoolNodeMap;         \
deba@220
   116
  typedef typename Digraph::template NodeMap<int> IntNodeMap;           \
deba@220
   117
  typedef typename Digraph::template NodeMap<double> DoubleNodeMap;     \
deba@220
   118
  typedef typename Digraph::template ArcMap<bool> BoolArcMap;           \
deba@220
   119
  typedef typename Digraph::template ArcMap<int> IntArcMap;             \
kpeter@300
   120
  typedef typename Digraph::template ArcMap<double> DoubleArcMap
deba@220
   121
kpeter@300
   122
  ///Create convenience typedefs for the graph types and iterators
deba@220
   123
kpeter@282
   124
  ///This \c \#define creates the same convenient type definitions as defined
deba@220
   125
  ///by \ref DIGRAPH_TYPEDEFS(Graph) and six more, namely it creates
deba@220
   126
  ///\c Edge, \c EdgeIt, \c IncEdgeIt, \c BoolEdgeMap, \c IntEdgeMap,
deba@220
   127
  ///\c DoubleEdgeMap.
deba@220
   128
  ///
deba@220
   129
  ///\note If the graph type is a dependent type, ie. the graph type depend
kpeter@282
   130
  ///on a template parameter, then use \c TEMPLATE_GRAPH_TYPEDEFS()
deba@220
   131
  ///macro.
deba@220
   132
#define GRAPH_TYPEDEFS(Graph)                                           \
deba@220
   133
  DIGRAPH_TYPEDEFS(Graph);                                              \
deba@220
   134
  typedef Graph::Edge Edge;                                             \
deba@220
   135
  typedef Graph::EdgeIt EdgeIt;                                         \
deba@220
   136
  typedef Graph::IncEdgeIt IncEdgeIt;                                   \
deba@220
   137
  typedef Graph::EdgeMap<bool> BoolEdgeMap;                             \
deba@220
   138
  typedef Graph::EdgeMap<int> IntEdgeMap;                               \
kpeter@300
   139
  typedef Graph::EdgeMap<double> DoubleEdgeMap
deba@220
   140
kpeter@300
   141
  ///Create convenience typedefs for the graph types and iterators
deba@220
   142
deba@220
   143
  ///\see GRAPH_TYPEDEFS
deba@220
   144
  ///
deba@220
   145
  ///\note Use this macro, if the graph type is a dependent type,
deba@220
   146
  ///ie. the graph type depend on a template parameter.
deba@220
   147
#define TEMPLATE_GRAPH_TYPEDEFS(Graph)                                  \
deba@220
   148
  TEMPLATE_DIGRAPH_TYPEDEFS(Graph);                                     \
deba@220
   149
  typedef typename Graph::Edge Edge;                                    \
deba@220
   150
  typedef typename Graph::EdgeIt EdgeIt;                                \
deba@220
   151
  typedef typename Graph::IncEdgeIt IncEdgeIt;                          \
deba@220
   152
  typedef typename Graph::template EdgeMap<bool> BoolEdgeMap;           \
deba@220
   153
  typedef typename Graph::template EdgeMap<int> IntEdgeMap;             \
kpeter@300
   154
  typedef typename Graph::template EdgeMap<double> DoubleEdgeMap
deba@220
   155
kpeter@282
   156
  /// \brief Function to count the items in a graph.
deba@220
   157
  ///
kpeter@282
   158
  /// This function counts the items (nodes, arcs etc.) in a graph.
kpeter@282
   159
  /// The complexity of the function is linear because
deba@220
   160
  /// it iterates on all of the items.
deba@220
   161
  template <typename Graph, typename Item>
deba@220
   162
  inline int countItems(const Graph& g) {
deba@220
   163
    typedef typename ItemSetTraits<Graph, Item>::ItemIt ItemIt;
deba@220
   164
    int num = 0;
deba@220
   165
    for (ItemIt it(g); it != INVALID; ++it) {
deba@220
   166
      ++num;
deba@220
   167
    }
deba@220
   168
    return num;
deba@220
   169
  }
deba@220
   170
deba@220
   171
  // Node counting:
deba@220
   172
deba@220
   173
  namespace _core_bits {
deba@220
   174
deba@220
   175
    template <typename Graph, typename Enable = void>
deba@220
   176
    struct CountNodesSelector {
deba@220
   177
      static int count(const Graph &g) {
deba@220
   178
        return countItems<Graph, typename Graph::Node>(g);
deba@220
   179
      }
deba@220
   180
    };
deba@220
   181
deba@220
   182
    template <typename Graph>
deba@220
   183
    struct CountNodesSelector<
deba@220
   184
      Graph, typename
deba@220
   185
      enable_if<typename Graph::NodeNumTag, void>::type>
deba@220
   186
    {
deba@220
   187
      static int count(const Graph &g) {
deba@220
   188
        return g.nodeNum();
deba@220
   189
      }
deba@220
   190
    };
deba@220
   191
  }
deba@220
   192
deba@220
   193
  /// \brief Function to count the nodes in the graph.
deba@220
   194
  ///
deba@220
   195
  /// This function counts the nodes in the graph.
kpeter@282
   196
  /// The complexity of the function is <em>O</em>(<em>n</em>), but for some
kpeter@282
   197
  /// graph structures it is specialized to run in <em>O</em>(1).
deba@220
   198
  ///
kpeter@282
   199
  /// \note If the graph contains a \c nodeNum() member function and a
kpeter@282
   200
  /// \c NodeNumTag tag then this function calls directly the member
deba@220
   201
  /// function to query the cardinality of the node set.
deba@220
   202
  template <typename Graph>
deba@220
   203
  inline int countNodes(const Graph& g) {
deba@220
   204
    return _core_bits::CountNodesSelector<Graph>::count(g);
deba@220
   205
  }
deba@220
   206
deba@220
   207
  // Arc counting:
deba@220
   208
deba@220
   209
  namespace _core_bits {
deba@220
   210
deba@220
   211
    template <typename Graph, typename Enable = void>
deba@220
   212
    struct CountArcsSelector {
deba@220
   213
      static int count(const Graph &g) {
deba@220
   214
        return countItems<Graph, typename Graph::Arc>(g);
deba@220
   215
      }
deba@220
   216
    };
deba@220
   217
deba@220
   218
    template <typename Graph>
deba@220
   219
    struct CountArcsSelector<
deba@220
   220
      Graph,
deba@220
   221
      typename enable_if<typename Graph::ArcNumTag, void>::type>
deba@220
   222
    {
deba@220
   223
      static int count(const Graph &g) {
deba@220
   224
        return g.arcNum();
deba@220
   225
      }
deba@220
   226
    };
deba@220
   227
  }
deba@220
   228
deba@220
   229
  /// \brief Function to count the arcs in the graph.
deba@220
   230
  ///
deba@220
   231
  /// This function counts the arcs in the graph.
kpeter@282
   232
  /// The complexity of the function is <em>O</em>(<em>m</em>), but for some
kpeter@282
   233
  /// graph structures it is specialized to run in <em>O</em>(1).
deba@220
   234
  ///
kpeter@282
   235
  /// \note If the graph contains a \c arcNum() member function and a
kpeter@282
   236
  /// \c ArcNumTag tag then this function calls directly the member
deba@220
   237
  /// function to query the cardinality of the arc set.
deba@220
   238
  template <typename Graph>
deba@220
   239
  inline int countArcs(const Graph& g) {
deba@220
   240
    return _core_bits::CountArcsSelector<Graph>::count(g);
deba@220
   241
  }
deba@220
   242
deba@220
   243
  // Edge counting:
kpeter@282
   244
deba@220
   245
  namespace _core_bits {
deba@220
   246
deba@220
   247
    template <typename Graph, typename Enable = void>
deba@220
   248
    struct CountEdgesSelector {
deba@220
   249
      static int count(const Graph &g) {
deba@220
   250
        return countItems<Graph, typename Graph::Edge>(g);
deba@220
   251
      }
deba@220
   252
    };
deba@220
   253
deba@220
   254
    template <typename Graph>
deba@220
   255
    struct CountEdgesSelector<
deba@220
   256
      Graph,
deba@220
   257
      typename enable_if<typename Graph::EdgeNumTag, void>::type>
deba@220
   258
    {
deba@220
   259
      static int count(const Graph &g) {
deba@220
   260
        return g.edgeNum();
deba@220
   261
      }
deba@220
   262
    };
deba@220
   263
  }
deba@220
   264
deba@220
   265
  /// \brief Function to count the edges in the graph.
deba@220
   266
  ///
deba@220
   267
  /// This function counts the edges in the graph.
kpeter@282
   268
  /// The complexity of the function is <em>O</em>(<em>m</em>), but for some
kpeter@282
   269
  /// graph structures it is specialized to run in <em>O</em>(1).
deba@220
   270
  ///
kpeter@282
   271
  /// \note If the graph contains a \c edgeNum() member function and a
kpeter@282
   272
  /// \c EdgeNumTag tag then this function calls directly the member
deba@220
   273
  /// function to query the cardinality of the edge set.
deba@220
   274
  template <typename Graph>
deba@220
   275
  inline int countEdges(const Graph& g) {
deba@220
   276
    return _core_bits::CountEdgesSelector<Graph>::count(g);
deba@220
   277
deba@220
   278
  }
deba@220
   279
deba@220
   280
deba@220
   281
  template <typename Graph, typename DegIt>
deba@220
   282
  inline int countNodeDegree(const Graph& _g, const typename Graph::Node& _n) {
deba@220
   283
    int num = 0;
deba@220
   284
    for (DegIt it(_g, _n); it != INVALID; ++it) {
deba@220
   285
      ++num;
deba@220
   286
    }
deba@220
   287
    return num;
deba@220
   288
  }
deba@220
   289
deba@220
   290
  /// \brief Function to count the number of the out-arcs from node \c n.
deba@220
   291
  ///
deba@220
   292
  /// This function counts the number of the out-arcs from node \c n
kpeter@282
   293
  /// in the graph \c g.
deba@220
   294
  template <typename Graph>
kpeter@282
   295
  inline int countOutArcs(const Graph& g,  const typename Graph::Node& n) {
kpeter@282
   296
    return countNodeDegree<Graph, typename Graph::OutArcIt>(g, n);
deba@220
   297
  }
deba@220
   298
deba@220
   299
  /// \brief Function to count the number of the in-arcs to node \c n.
deba@220
   300
  ///
deba@220
   301
  /// This function counts the number of the in-arcs to node \c n
kpeter@282
   302
  /// in the graph \c g.
deba@220
   303
  template <typename Graph>
kpeter@282
   304
  inline int countInArcs(const Graph& g,  const typename Graph::Node& n) {
kpeter@282
   305
    return countNodeDegree<Graph, typename Graph::InArcIt>(g, n);
deba@220
   306
  }
deba@220
   307
deba@220
   308
  /// \brief Function to count the number of the inc-edges to node \c n.
deba@220
   309
  ///
deba@220
   310
  /// This function counts the number of the inc-edges to node \c n
kpeter@282
   311
  /// in the undirected graph \c g.
deba@220
   312
  template <typename Graph>
kpeter@282
   313
  inline int countIncEdges(const Graph& g,  const typename Graph::Node& n) {
kpeter@282
   314
    return countNodeDegree<Graph, typename Graph::IncEdgeIt>(g, n);
deba@220
   315
  }
deba@220
   316
deba@220
   317
  namespace _core_bits {
deba@220
   318
deba@220
   319
    template <typename Digraph, typename Item, typename RefMap>
deba@220
   320
    class MapCopyBase {
deba@220
   321
    public:
deba@220
   322
      virtual void copy(const Digraph& from, const RefMap& refMap) = 0;
deba@220
   323
deba@220
   324
      virtual ~MapCopyBase() {}
deba@220
   325
    };
deba@220
   326
deba@220
   327
    template <typename Digraph, typename Item, typename RefMap,
kpeter@282
   328
              typename FromMap, typename ToMap>
deba@220
   329
    class MapCopy : public MapCopyBase<Digraph, Item, RefMap> {
deba@220
   330
    public:
deba@220
   331
kpeter@282
   332
      MapCopy(const FromMap& map, ToMap& tmap)
kpeter@282
   333
        : _map(map), _tmap(tmap) {}
deba@220
   334
deba@220
   335
      virtual void copy(const Digraph& digraph, const RefMap& refMap) {
deba@220
   336
        typedef typename ItemSetTraits<Digraph, Item>::ItemIt ItemIt;
deba@220
   337
        for (ItemIt it(digraph); it != INVALID; ++it) {
deba@220
   338
          _tmap.set(refMap[it], _map[it]);
deba@220
   339
        }
deba@220
   340
      }
deba@220
   341
deba@220
   342
    private:
kpeter@282
   343
      const FromMap& _map;
deba@220
   344
      ToMap& _tmap;
deba@220
   345
    };
deba@220
   346
deba@220
   347
    template <typename Digraph, typename Item, typename RefMap, typename It>
deba@220
   348
    class ItemCopy : public MapCopyBase<Digraph, Item, RefMap> {
deba@220
   349
    public:
deba@220
   350
kpeter@282
   351
      ItemCopy(const Item& item, It& it) : _item(item), _it(it) {}
deba@220
   352
deba@220
   353
      virtual void copy(const Digraph&, const RefMap& refMap) {
deba@220
   354
        _it = refMap[_item];
deba@220
   355
      }
deba@220
   356
deba@220
   357
    private:
kpeter@282
   358
      Item _item;
deba@220
   359
      It& _it;
deba@220
   360
    };
deba@220
   361
deba@220
   362
    template <typename Digraph, typename Item, typename RefMap, typename Ref>
deba@220
   363
    class RefCopy : public MapCopyBase<Digraph, Item, RefMap> {
deba@220
   364
    public:
deba@220
   365
deba@220
   366
      RefCopy(Ref& map) : _map(map) {}
deba@220
   367
deba@220
   368
      virtual void copy(const Digraph& digraph, const RefMap& refMap) {
deba@220
   369
        typedef typename ItemSetTraits<Digraph, Item>::ItemIt ItemIt;
deba@220
   370
        for (ItemIt it(digraph); it != INVALID; ++it) {
deba@220
   371
          _map.set(it, refMap[it]);
deba@220
   372
        }
deba@220
   373
      }
deba@220
   374
deba@220
   375
    private:
deba@220
   376
      Ref& _map;
deba@220
   377
    };
deba@220
   378
deba@220
   379
    template <typename Digraph, typename Item, typename RefMap,
deba@220
   380
              typename CrossRef>
deba@220
   381
    class CrossRefCopy : public MapCopyBase<Digraph, Item, RefMap> {
deba@220
   382
    public:
deba@220
   383
deba@220
   384
      CrossRefCopy(CrossRef& cmap) : _cmap(cmap) {}
deba@220
   385
deba@220
   386
      virtual void copy(const Digraph& digraph, const RefMap& refMap) {
deba@220
   387
        typedef typename ItemSetTraits<Digraph, Item>::ItemIt ItemIt;
deba@220
   388
        for (ItemIt it(digraph); it != INVALID; ++it) {
deba@220
   389
          _cmap.set(refMap[it], it);
deba@220
   390
        }
deba@220
   391
      }
deba@220
   392
deba@220
   393
    private:
deba@220
   394
      CrossRef& _cmap;
deba@220
   395
    };
deba@220
   396
deba@220
   397
    template <typename Digraph, typename Enable = void>
deba@220
   398
    struct DigraphCopySelector {
deba@220
   399
      template <typename From, typename NodeRefMap, typename ArcRefMap>
kpeter@282
   400
      static void copy(const From& from, Digraph &to,
deba@220
   401
                       NodeRefMap& nodeRefMap, ArcRefMap& arcRefMap) {
kpeter@731
   402
        to.clear();
deba@220
   403
        for (typename From::NodeIt it(from); it != INVALID; ++it) {
deba@220
   404
          nodeRefMap[it] = to.addNode();
deba@220
   405
        }
deba@220
   406
        for (typename From::ArcIt it(from); it != INVALID; ++it) {
deba@220
   407
          arcRefMap[it] = to.addArc(nodeRefMap[from.source(it)],
deba@220
   408
                                    nodeRefMap[from.target(it)]);
deba@220
   409
        }
deba@220
   410
      }
deba@220
   411
    };
deba@220
   412
deba@220
   413
    template <typename Digraph>
deba@220
   414
    struct DigraphCopySelector<
deba@220
   415
      Digraph,
deba@220
   416
      typename enable_if<typename Digraph::BuildTag, void>::type>
deba@220
   417
    {
deba@220
   418
      template <typename From, typename NodeRefMap, typename ArcRefMap>
kpeter@282
   419
      static void copy(const From& from, Digraph &to,
deba@220
   420
                       NodeRefMap& nodeRefMap, ArcRefMap& arcRefMap) {
deba@220
   421
        to.build(from, nodeRefMap, arcRefMap);
deba@220
   422
      }
deba@220
   423
    };
deba@220
   424
deba@220
   425
    template <typename Graph, typename Enable = void>
deba@220
   426
    struct GraphCopySelector {
deba@220
   427
      template <typename From, typename NodeRefMap, typename EdgeRefMap>
kpeter@282
   428
      static void copy(const From& from, Graph &to,
deba@220
   429
                       NodeRefMap& nodeRefMap, EdgeRefMap& edgeRefMap) {
kpeter@731
   430
        to.clear();
deba@220
   431
        for (typename From::NodeIt it(from); it != INVALID; ++it) {
deba@220
   432
          nodeRefMap[it] = to.addNode();
deba@220
   433
        }
deba@220
   434
        for (typename From::EdgeIt it(from); it != INVALID; ++it) {
deba@220
   435
          edgeRefMap[it] = to.addEdge(nodeRefMap[from.u(it)],
deba@220
   436
                                      nodeRefMap[from.v(it)]);
deba@220
   437
        }
deba@220
   438
      }
deba@220
   439
    };
deba@220
   440
deba@220
   441
    template <typename Graph>
deba@220
   442
    struct GraphCopySelector<
deba@220
   443
      Graph,
deba@220
   444
      typename enable_if<typename Graph::BuildTag, void>::type>
deba@220
   445
    {
deba@220
   446
      template <typename From, typename NodeRefMap, typename EdgeRefMap>
kpeter@282
   447
      static void copy(const From& from, Graph &to,
deba@220
   448
                       NodeRefMap& nodeRefMap, EdgeRefMap& edgeRefMap) {
deba@220
   449
        to.build(from, nodeRefMap, edgeRefMap);
deba@220
   450
      }
deba@220
   451
    };
deba@220
   452
deba@220
   453
  }
deba@220
   454
deba@220
   455
  /// \brief Class to copy a digraph.
deba@220
   456
  ///
deba@220
   457
  /// Class to copy a digraph to another digraph (duplicate a digraph). The
kpeter@282
   458
  /// simplest way of using it is through the \c digraphCopy() function.
deba@220
   459
  ///
kpeter@282
   460
  /// This class not only make a copy of a digraph, but it can create
deba@220
   461
  /// references and cross references between the nodes and arcs of
kpeter@282
   462
  /// the two digraphs, and it can copy maps to use with the newly created
kpeter@282
   463
  /// digraph.
deba@220
   464
  ///
kpeter@282
   465
  /// To make a copy from a digraph, first an instance of DigraphCopy
kpeter@282
   466
  /// should be created, then the data belongs to the digraph should
deba@220
   467
  /// assigned to copy. In the end, the \c run() member should be
deba@220
   468
  /// called.
deba@220
   469
  ///
kpeter@282
   470
  /// The next code copies a digraph with several data:
deba@220
   471
  ///\code
kpeter@282
   472
  ///  DigraphCopy<OrigGraph, NewGraph> cg(orig_graph, new_graph);
kpeter@282
   473
  ///  // Create references for the nodes
deba@220
   474
  ///  OrigGraph::NodeMap<NewGraph::Node> nr(orig_graph);
kpeter@282
   475
  ///  cg.nodeRef(nr);
kpeter@282
   476
  ///  // Create cross references (inverse) for the arcs
deba@220
   477
  ///  NewGraph::ArcMap<OrigGraph::Arc> acr(new_graph);
kpeter@282
   478
  ///  cg.arcCrossRef(acr);
kpeter@282
   479
  ///  // Copy an arc map
deba@220
   480
  ///  OrigGraph::ArcMap<double> oamap(orig_graph);
deba@220
   481
  ///  NewGraph::ArcMap<double> namap(new_graph);
kpeter@282
   482
  ///  cg.arcMap(oamap, namap);
kpeter@282
   483
  ///  // Copy a node
deba@220
   484
  ///  OrigGraph::Node on;
deba@220
   485
  ///  NewGraph::Node nn;
kpeter@282
   486
  ///  cg.node(on, nn);
kpeter@282
   487
  ///  // Execute copying
kpeter@282
   488
  ///  cg.run();
deba@220
   489
  ///\endcode
kpeter@282
   490
  template <typename From, typename To>
deba@220
   491
  class DigraphCopy {
deba@220
   492
  private:
deba@220
   493
deba@220
   494
    typedef typename From::Node Node;
deba@220
   495
    typedef typename From::NodeIt NodeIt;
deba@220
   496
    typedef typename From::Arc Arc;
deba@220
   497
    typedef typename From::ArcIt ArcIt;
deba@220
   498
deba@220
   499
    typedef typename To::Node TNode;
deba@220
   500
    typedef typename To::Arc TArc;
deba@220
   501
deba@220
   502
    typedef typename From::template NodeMap<TNode> NodeRefMap;
deba@220
   503
    typedef typename From::template ArcMap<TArc> ArcRefMap;
deba@220
   504
deba@220
   505
  public:
deba@220
   506
kpeter@282
   507
    /// \brief Constructor of DigraphCopy.
deba@220
   508
    ///
kpeter@282
   509
    /// Constructor of DigraphCopy for copying the content of the
kpeter@282
   510
    /// \c from digraph into the \c to digraph.
kpeter@282
   511
    DigraphCopy(const From& from, To& to)
deba@220
   512
      : _from(from), _to(to) {}
deba@220
   513
kpeter@282
   514
    /// \brief Destructor of DigraphCopy
deba@220
   515
    ///
kpeter@282
   516
    /// Destructor of DigraphCopy.
deba@220
   517
    ~DigraphCopy() {
deba@220
   518
      for (int i = 0; i < int(_node_maps.size()); ++i) {
deba@220
   519
        delete _node_maps[i];
deba@220
   520
      }
deba@220
   521
      for (int i = 0; i < int(_arc_maps.size()); ++i) {
deba@220
   522
        delete _arc_maps[i];
deba@220
   523
      }
deba@220
   524
deba@220
   525
    }
deba@220
   526
kpeter@282
   527
    /// \brief Copy the node references into the given map.
deba@220
   528
    ///
kpeter@282
   529
    /// This function copies the node references into the given map.
kpeter@282
   530
    /// The parameter should be a map, whose key type is the Node type of
kpeter@282
   531
    /// the source digraph, while the value type is the Node type of the
kpeter@282
   532
    /// destination digraph.
deba@220
   533
    template <typename NodeRef>
deba@220
   534
    DigraphCopy& nodeRef(NodeRef& map) {
deba@220
   535
      _node_maps.push_back(new _core_bits::RefCopy<From, Node,
deba@220
   536
                           NodeRefMap, NodeRef>(map));
deba@220
   537
      return *this;
deba@220
   538
    }
deba@220
   539
kpeter@282
   540
    /// \brief Copy the node cross references into the given map.
deba@220
   541
    ///
kpeter@282
   542
    /// This function copies the node cross references (reverse references)
kpeter@282
   543
    /// into the given map. The parameter should be a map, whose key type
kpeter@282
   544
    /// is the Node type of the destination digraph, while the value type is
kpeter@282
   545
    /// the Node type of the source digraph.
deba@220
   546
    template <typename NodeCrossRef>
deba@220
   547
    DigraphCopy& nodeCrossRef(NodeCrossRef& map) {
deba@220
   548
      _node_maps.push_back(new _core_bits::CrossRefCopy<From, Node,
deba@220
   549
                           NodeRefMap, NodeCrossRef>(map));
deba@220
   550
      return *this;
deba@220
   551
    }
deba@220
   552
kpeter@282
   553
    /// \brief Make a copy of the given node map.
deba@220
   554
    ///
kpeter@282
   555
    /// This function makes a copy of the given node map for the newly
kpeter@282
   556
    /// created digraph.
kpeter@282
   557
    /// The key type of the new map \c tmap should be the Node type of the
kpeter@282
   558
    /// destination digraph, and the key type of the original map \c map
kpeter@282
   559
    /// should be the Node type of the source digraph.
kpeter@282
   560
    template <typename FromMap, typename ToMap>
kpeter@282
   561
    DigraphCopy& nodeMap(const FromMap& map, ToMap& tmap) {
deba@220
   562
      _node_maps.push_back(new _core_bits::MapCopy<From, Node,
kpeter@282
   563
                           NodeRefMap, FromMap, ToMap>(map, tmap));
deba@220
   564
      return *this;
deba@220
   565
    }
deba@220
   566
deba@220
   567
    /// \brief Make a copy of the given node.
deba@220
   568
    ///
kpeter@282
   569
    /// This function makes a copy of the given node.
kpeter@282
   570
    DigraphCopy& node(const Node& node, TNode& tnode) {
deba@220
   571
      _node_maps.push_back(new _core_bits::ItemCopy<From, Node,
kpeter@282
   572
                           NodeRefMap, TNode>(node, tnode));
deba@220
   573
      return *this;
deba@220
   574
    }
deba@220
   575
kpeter@282
   576
    /// \brief Copy the arc references into the given map.
deba@220
   577
    ///
kpeter@282
   578
    /// This function copies the arc references into the given map.
kpeter@282
   579
    /// The parameter should be a map, whose key type is the Arc type of
kpeter@282
   580
    /// the source digraph, while the value type is the Arc type of the
kpeter@282
   581
    /// destination digraph.
deba@220
   582
    template <typename ArcRef>
deba@220
   583
    DigraphCopy& arcRef(ArcRef& map) {
deba@220
   584
      _arc_maps.push_back(new _core_bits::RefCopy<From, Arc,
deba@220
   585
                          ArcRefMap, ArcRef>(map));
deba@220
   586
      return *this;
deba@220
   587
    }
deba@220
   588
kpeter@282
   589
    /// \brief Copy the arc cross references into the given map.
deba@220
   590
    ///
kpeter@282
   591
    /// This function copies the arc cross references (reverse references)
kpeter@282
   592
    /// into the given map. The parameter should be a map, whose key type
kpeter@282
   593
    /// is the Arc type of the destination digraph, while the value type is
kpeter@282
   594
    /// the Arc type of the source digraph.
deba@220
   595
    template <typename ArcCrossRef>
deba@220
   596
    DigraphCopy& arcCrossRef(ArcCrossRef& map) {
deba@220
   597
      _arc_maps.push_back(new _core_bits::CrossRefCopy<From, Arc,
deba@220
   598
                          ArcRefMap, ArcCrossRef>(map));
deba@220
   599
      return *this;
deba@220
   600
    }
deba@220
   601
kpeter@282
   602
    /// \brief Make a copy of the given arc map.
deba@220
   603
    ///
kpeter@282
   604
    /// This function makes a copy of the given arc map for the newly
kpeter@282
   605
    /// created digraph.
kpeter@282
   606
    /// The key type of the new map \c tmap should be the Arc type of the
kpeter@282
   607
    /// destination digraph, and the key type of the original map \c map
kpeter@282
   608
    /// should be the Arc type of the source digraph.
kpeter@282
   609
    template <typename FromMap, typename ToMap>
kpeter@282
   610
    DigraphCopy& arcMap(const FromMap& map, ToMap& tmap) {
deba@220
   611
      _arc_maps.push_back(new _core_bits::MapCopy<From, Arc,
kpeter@282
   612
                          ArcRefMap, FromMap, ToMap>(map, tmap));
deba@220
   613
      return *this;
deba@220
   614
    }
deba@220
   615
deba@220
   616
    /// \brief Make a copy of the given arc.
deba@220
   617
    ///
kpeter@282
   618
    /// This function makes a copy of the given arc.
kpeter@282
   619
    DigraphCopy& arc(const Arc& arc, TArc& tarc) {
deba@220
   620
      _arc_maps.push_back(new _core_bits::ItemCopy<From, Arc,
kpeter@282
   621
                          ArcRefMap, TArc>(arc, tarc));
deba@220
   622
      return *this;
deba@220
   623
    }
deba@220
   624
kpeter@282
   625
    /// \brief Execute copying.
deba@220
   626
    ///
kpeter@282
   627
    /// This function executes the copying of the digraph along with the
kpeter@282
   628
    /// copying of the assigned data.
deba@220
   629
    void run() {
deba@220
   630
      NodeRefMap nodeRefMap(_from);
deba@220
   631
      ArcRefMap arcRefMap(_from);
deba@220
   632
      _core_bits::DigraphCopySelector<To>::
kpeter@282
   633
        copy(_from, _to, nodeRefMap, arcRefMap);
deba@220
   634
      for (int i = 0; i < int(_node_maps.size()); ++i) {
deba@220
   635
        _node_maps[i]->copy(_from, nodeRefMap);
deba@220
   636
      }
deba@220
   637
      for (int i = 0; i < int(_arc_maps.size()); ++i) {
deba@220
   638
        _arc_maps[i]->copy(_from, arcRefMap);
deba@220
   639
      }
deba@220
   640
    }
deba@220
   641
deba@220
   642
  protected:
deba@220
   643
deba@220
   644
    const From& _from;
deba@220
   645
    To& _to;
deba@220
   646
deba@220
   647
    std::vector<_core_bits::MapCopyBase<From, Node, NodeRefMap>* >
kpeter@282
   648
      _node_maps;
deba@220
   649
deba@220
   650
    std::vector<_core_bits::MapCopyBase<From, Arc, ArcRefMap>* >
kpeter@282
   651
      _arc_maps;
deba@220
   652
deba@220
   653
  };
deba@220
   654
deba@220
   655
  /// \brief Copy a digraph to another digraph.
deba@220
   656
  ///
kpeter@282
   657
  /// This function copies a digraph to another digraph.
kpeter@282
   658
  /// The complete usage of it is detailed in the DigraphCopy class, but
kpeter@282
   659
  /// a short example shows a basic work:
deba@220
   660
  ///\code
kpeter@282
   661
  /// digraphCopy(src, trg).nodeRef(nr).arcCrossRef(acr).run();
deba@220
   662
  ///\endcode
deba@220
   663
  ///
deba@220
   664
  /// After the copy the \c nr map will contain the mapping from the
deba@220
   665
  /// nodes of the \c from digraph to the nodes of the \c to digraph and
kpeter@282
   666
  /// \c acr will contain the mapping from the arcs of the \c to digraph
deba@220
   667
  /// to the arcs of the \c from digraph.
deba@220
   668
  ///
deba@220
   669
  /// \see DigraphCopy
kpeter@282
   670
  template <typename From, typename To>
kpeter@282
   671
  DigraphCopy<From, To> digraphCopy(const From& from, To& to) {
kpeter@282
   672
    return DigraphCopy<From, To>(from, to);
deba@220
   673
  }
deba@220
   674
deba@220
   675
  /// \brief Class to copy a graph.
deba@220
   676
  ///
deba@220
   677
  /// Class to copy a graph to another graph (duplicate a graph). The
kpeter@282
   678
  /// simplest way of using it is through the \c graphCopy() function.
deba@220
   679
  ///
kpeter@282
   680
  /// This class not only make a copy of a graph, but it can create
deba@220
   681
  /// references and cross references between the nodes, edges and arcs of
kpeter@282
   682
  /// the two graphs, and it can copy maps for using with the newly created
kpeter@282
   683
  /// graph.
deba@220
   684
  ///
deba@220
   685
  /// To make a copy from a graph, first an instance of GraphCopy
deba@220
   686
  /// should be created, then the data belongs to the graph should
deba@220
   687
  /// assigned to copy. In the end, the \c run() member should be
deba@220
   688
  /// called.
deba@220
   689
  ///
deba@220
   690
  /// The next code copies a graph with several data:
deba@220
   691
  ///\code
kpeter@282
   692
  ///  GraphCopy<OrigGraph, NewGraph> cg(orig_graph, new_graph);
kpeter@282
   693
  ///  // Create references for the nodes
deba@220
   694
  ///  OrigGraph::NodeMap<NewGraph::Node> nr(orig_graph);
kpeter@282
   695
  ///  cg.nodeRef(nr);
kpeter@282
   696
  ///  // Create cross references (inverse) for the edges
kpeter@282
   697
  ///  NewGraph::EdgeMap<OrigGraph::Edge> ecr(new_graph);
kpeter@282
   698
  ///  cg.edgeCrossRef(ecr);
kpeter@282
   699
  ///  // Copy an edge map
kpeter@282
   700
  ///  OrigGraph::EdgeMap<double> oemap(orig_graph);
kpeter@282
   701
  ///  NewGraph::EdgeMap<double> nemap(new_graph);
kpeter@282
   702
  ///  cg.edgeMap(oemap, nemap);
kpeter@282
   703
  ///  // Copy a node
deba@220
   704
  ///  OrigGraph::Node on;
deba@220
   705
  ///  NewGraph::Node nn;
kpeter@282
   706
  ///  cg.node(on, nn);
kpeter@282
   707
  ///  // Execute copying
kpeter@282
   708
  ///  cg.run();
deba@220
   709
  ///\endcode
kpeter@282
   710
  template <typename From, typename To>
deba@220
   711
  class GraphCopy {
deba@220
   712
  private:
deba@220
   713
deba@220
   714
    typedef typename From::Node Node;
deba@220
   715
    typedef typename From::NodeIt NodeIt;
deba@220
   716
    typedef typename From::Arc Arc;
deba@220
   717
    typedef typename From::ArcIt ArcIt;
deba@220
   718
    typedef typename From::Edge Edge;
deba@220
   719
    typedef typename From::EdgeIt EdgeIt;
deba@220
   720
deba@220
   721
    typedef typename To::Node TNode;
deba@220
   722
    typedef typename To::Arc TArc;
deba@220
   723
    typedef typename To::Edge TEdge;
deba@220
   724
deba@220
   725
    typedef typename From::template NodeMap<TNode> NodeRefMap;
deba@220
   726
    typedef typename From::template EdgeMap<TEdge> EdgeRefMap;
deba@220
   727
deba@220
   728
    struct ArcRefMap {
kpeter@282
   729
      ArcRefMap(const From& from, const To& to,
deba@220
   730
                const EdgeRefMap& edge_ref, const NodeRefMap& node_ref)
kpeter@282
   731
        : _from(from), _to(to),
deba@220
   732
          _edge_ref(edge_ref), _node_ref(node_ref) {}
deba@220
   733
deba@220
   734
      typedef typename From::Arc Key;
deba@220
   735
      typedef typename To::Arc Value;
deba@220
   736
deba@220
   737
      Value operator[](const Key& key) const {
deba@220
   738
        bool forward = _from.u(key) != _from.v(key) ?
deba@220
   739
          _node_ref[_from.source(key)] ==
deba@220
   740
          _to.source(_to.direct(_edge_ref[key], true)) :
deba@220
   741
          _from.direction(key);
deba@220
   742
        return _to.direct(_edge_ref[key], forward);
deba@220
   743
      }
deba@220
   744
kpeter@282
   745
      const From& _from;
deba@220
   746
      const To& _to;
deba@220
   747
      const EdgeRefMap& _edge_ref;
deba@220
   748
      const NodeRefMap& _node_ref;
deba@220
   749
    };
deba@220
   750
deba@220
   751
  public:
deba@220
   752
kpeter@282
   753
    /// \brief Constructor of GraphCopy.
deba@220
   754
    ///
kpeter@282
   755
    /// Constructor of GraphCopy for copying the content of the
kpeter@282
   756
    /// \c from graph into the \c to graph.
kpeter@282
   757
    GraphCopy(const From& from, To& to)
deba@220
   758
      : _from(from), _to(to) {}
deba@220
   759
kpeter@282
   760
    /// \brief Destructor of GraphCopy
deba@220
   761
    ///
kpeter@282
   762
    /// Destructor of GraphCopy.
deba@220
   763
    ~GraphCopy() {
deba@220
   764
      for (int i = 0; i < int(_node_maps.size()); ++i) {
deba@220
   765
        delete _node_maps[i];
deba@220
   766
      }
deba@220
   767
      for (int i = 0; i < int(_arc_maps.size()); ++i) {
deba@220
   768
        delete _arc_maps[i];
deba@220
   769
      }
deba@220
   770
      for (int i = 0; i < int(_edge_maps.size()); ++i) {
deba@220
   771
        delete _edge_maps[i];
deba@220
   772
      }
deba@220
   773
    }
deba@220
   774
kpeter@282
   775
    /// \brief Copy the node references into the given map.
deba@220
   776
    ///
kpeter@282
   777
    /// This function copies the node references into the given map.
kpeter@282
   778
    /// The parameter should be a map, whose key type is the Node type of
kpeter@282
   779
    /// the source graph, while the value type is the Node type of the
kpeter@282
   780
    /// destination graph.
deba@220
   781
    template <typename NodeRef>
deba@220
   782
    GraphCopy& nodeRef(NodeRef& map) {
deba@220
   783
      _node_maps.push_back(new _core_bits::RefCopy<From, Node,
deba@220
   784
                           NodeRefMap, NodeRef>(map));
deba@220
   785
      return *this;
deba@220
   786
    }
deba@220
   787
kpeter@282
   788
    /// \brief Copy the node cross references into the given map.
deba@220
   789
    ///
kpeter@282
   790
    /// This function copies the node cross references (reverse references)
kpeter@282
   791
    /// into the given map. The parameter should be a map, whose key type
kpeter@282
   792
    /// is the Node type of the destination graph, while the value type is
kpeter@282
   793
    /// the Node type of the source graph.
deba@220
   794
    template <typename NodeCrossRef>
deba@220
   795
    GraphCopy& nodeCrossRef(NodeCrossRef& map) {
deba@220
   796
      _node_maps.push_back(new _core_bits::CrossRefCopy<From, Node,
deba@220
   797
                           NodeRefMap, NodeCrossRef>(map));
deba@220
   798
      return *this;
deba@220
   799
    }
deba@220
   800
kpeter@282
   801
    /// \brief Make a copy of the given node map.
deba@220
   802
    ///
kpeter@282
   803
    /// This function makes a copy of the given node map for the newly
kpeter@282
   804
    /// created graph.
kpeter@282
   805
    /// The key type of the new map \c tmap should be the Node type of the
kpeter@282
   806
    /// destination graph, and the key type of the original map \c map
kpeter@282
   807
    /// should be the Node type of the source graph.
kpeter@282
   808
    template <typename FromMap, typename ToMap>
kpeter@282
   809
    GraphCopy& nodeMap(const FromMap& map, ToMap& tmap) {
deba@220
   810
      _node_maps.push_back(new _core_bits::MapCopy<From, Node,
kpeter@282
   811
                           NodeRefMap, FromMap, ToMap>(map, tmap));
deba@220
   812
      return *this;
deba@220
   813
    }
deba@220
   814
deba@220
   815
    /// \brief Make a copy of the given node.
deba@220
   816
    ///
kpeter@282
   817
    /// This function makes a copy of the given node.
kpeter@282
   818
    GraphCopy& node(const Node& node, TNode& tnode) {
deba@220
   819
      _node_maps.push_back(new _core_bits::ItemCopy<From, Node,
kpeter@282
   820
                           NodeRefMap, TNode>(node, tnode));
deba@220
   821
      return *this;
deba@220
   822
    }
deba@220
   823
kpeter@282
   824
    /// \brief Copy the arc references into the given map.
deba@220
   825
    ///
kpeter@282
   826
    /// This function copies the arc references into the given map.
kpeter@282
   827
    /// The parameter should be a map, whose key type is the Arc type of
kpeter@282
   828
    /// the source graph, while the value type is the Arc type of the
kpeter@282
   829
    /// destination graph.
deba@220
   830
    template <typename ArcRef>
deba@220
   831
    GraphCopy& arcRef(ArcRef& map) {
deba@220
   832
      _arc_maps.push_back(new _core_bits::RefCopy<From, Arc,
deba@220
   833
                          ArcRefMap, ArcRef>(map));
deba@220
   834
      return *this;
deba@220
   835
    }
deba@220
   836
kpeter@282
   837
    /// \brief Copy the arc cross references into the given map.
deba@220
   838
    ///
kpeter@282
   839
    /// This function copies the arc cross references (reverse references)
kpeter@282
   840
    /// into the given map. The parameter should be a map, whose key type
kpeter@282
   841
    /// is the Arc type of the destination graph, while the value type is
kpeter@282
   842
    /// the Arc type of the source graph.
deba@220
   843
    template <typename ArcCrossRef>
deba@220
   844
    GraphCopy& arcCrossRef(ArcCrossRef& map) {
deba@220
   845
      _arc_maps.push_back(new _core_bits::CrossRefCopy<From, Arc,
deba@220
   846
                          ArcRefMap, ArcCrossRef>(map));
deba@220
   847
      return *this;
deba@220
   848
    }
deba@220
   849
kpeter@282
   850
    /// \brief Make a copy of the given arc map.
deba@220
   851
    ///
kpeter@282
   852
    /// This function makes a copy of the given arc map for the newly
kpeter@282
   853
    /// created graph.
kpeter@282
   854
    /// The key type of the new map \c tmap should be the Arc type of the
kpeter@282
   855
    /// destination graph, and the key type of the original map \c map
kpeter@282
   856
    /// should be the Arc type of the source graph.
kpeter@282
   857
    template <typename FromMap, typename ToMap>
kpeter@282
   858
    GraphCopy& arcMap(const FromMap& map, ToMap& tmap) {
deba@220
   859
      _arc_maps.push_back(new _core_bits::MapCopy<From, Arc,
kpeter@282
   860
                          ArcRefMap, FromMap, ToMap>(map, tmap));
deba@220
   861
      return *this;
deba@220
   862
    }
deba@220
   863
deba@220
   864
    /// \brief Make a copy of the given arc.
deba@220
   865
    ///
kpeter@282
   866
    /// This function makes a copy of the given arc.
kpeter@282
   867
    GraphCopy& arc(const Arc& arc, TArc& tarc) {
deba@220
   868
      _arc_maps.push_back(new _core_bits::ItemCopy<From, Arc,
kpeter@282
   869
                          ArcRefMap, TArc>(arc, tarc));
deba@220
   870
      return *this;
deba@220
   871
    }
deba@220
   872
kpeter@282
   873
    /// \brief Copy the edge references into the given map.
deba@220
   874
    ///
kpeter@282
   875
    /// This function copies the edge references into the given map.
kpeter@282
   876
    /// The parameter should be a map, whose key type is the Edge type of
kpeter@282
   877
    /// the source graph, while the value type is the Edge type of the
kpeter@282
   878
    /// destination graph.
deba@220
   879
    template <typename EdgeRef>
deba@220
   880
    GraphCopy& edgeRef(EdgeRef& map) {
deba@220
   881
      _edge_maps.push_back(new _core_bits::RefCopy<From, Edge,
deba@220
   882
                           EdgeRefMap, EdgeRef>(map));
deba@220
   883
      return *this;
deba@220
   884
    }
deba@220
   885
kpeter@282
   886
    /// \brief Copy the edge cross references into the given map.
deba@220
   887
    ///
kpeter@282
   888
    /// This function copies the edge cross references (reverse references)
kpeter@282
   889
    /// into the given map. The parameter should be a map, whose key type
kpeter@282
   890
    /// is the Edge type of the destination graph, while the value type is
kpeter@282
   891
    /// the Edge type of the source graph.
deba@220
   892
    template <typename EdgeCrossRef>
deba@220
   893
    GraphCopy& edgeCrossRef(EdgeCrossRef& map) {
deba@220
   894
      _edge_maps.push_back(new _core_bits::CrossRefCopy<From,
deba@220
   895
                           Edge, EdgeRefMap, EdgeCrossRef>(map));
deba@220
   896
      return *this;
deba@220
   897
    }
deba@220
   898
kpeter@282
   899
    /// \brief Make a copy of the given edge map.
deba@220
   900
    ///
kpeter@282
   901
    /// This function makes a copy of the given edge map for the newly
kpeter@282
   902
    /// created graph.
kpeter@282
   903
    /// The key type of the new map \c tmap should be the Edge type of the
kpeter@282
   904
    /// destination graph, and the key type of the original map \c map
kpeter@282
   905
    /// should be the Edge type of the source graph.
kpeter@282
   906
    template <typename FromMap, typename ToMap>
kpeter@282
   907
    GraphCopy& edgeMap(const FromMap& map, ToMap& tmap) {
deba@220
   908
      _edge_maps.push_back(new _core_bits::MapCopy<From, Edge,
kpeter@282
   909
                           EdgeRefMap, FromMap, ToMap>(map, tmap));
deba@220
   910
      return *this;
deba@220
   911
    }
deba@220
   912
deba@220
   913
    /// \brief Make a copy of the given edge.
deba@220
   914
    ///
kpeter@282
   915
    /// This function makes a copy of the given edge.
kpeter@282
   916
    GraphCopy& edge(const Edge& edge, TEdge& tedge) {
deba@220
   917
      _edge_maps.push_back(new _core_bits::ItemCopy<From, Edge,
kpeter@282
   918
                           EdgeRefMap, TEdge>(edge, tedge));
deba@220
   919
      return *this;
deba@220
   920
    }
deba@220
   921
kpeter@282
   922
    /// \brief Execute copying.
deba@220
   923
    ///
kpeter@282
   924
    /// This function executes the copying of the graph along with the
kpeter@282
   925
    /// copying of the assigned data.
deba@220
   926
    void run() {
deba@220
   927
      NodeRefMap nodeRefMap(_from);
deba@220
   928
      EdgeRefMap edgeRefMap(_from);
kpeter@282
   929
      ArcRefMap arcRefMap(_from, _to, edgeRefMap, nodeRefMap);
deba@220
   930
      _core_bits::GraphCopySelector<To>::
kpeter@282
   931
        copy(_from, _to, nodeRefMap, edgeRefMap);
deba@220
   932
      for (int i = 0; i < int(_node_maps.size()); ++i) {
deba@220
   933
        _node_maps[i]->copy(_from, nodeRefMap);
deba@220
   934
      }
deba@220
   935
      for (int i = 0; i < int(_edge_maps.size()); ++i) {
deba@220
   936
        _edge_maps[i]->copy(_from, edgeRefMap);
deba@220
   937
      }
deba@220
   938
      for (int i = 0; i < int(_arc_maps.size()); ++i) {
deba@220
   939
        _arc_maps[i]->copy(_from, arcRefMap);
deba@220
   940
      }
deba@220
   941
    }
deba@220
   942
deba@220
   943
  private:
deba@220
   944
deba@220
   945
    const From& _from;
deba@220
   946
    To& _to;
deba@220
   947
deba@220
   948
    std::vector<_core_bits::MapCopyBase<From, Node, NodeRefMap>* >
kpeter@282
   949
      _node_maps;
deba@220
   950
deba@220
   951
    std::vector<_core_bits::MapCopyBase<From, Arc, ArcRefMap>* >
kpeter@282
   952
      _arc_maps;
deba@220
   953
deba@220
   954
    std::vector<_core_bits::MapCopyBase<From, Edge, EdgeRefMap>* >
kpeter@282
   955
      _edge_maps;
deba@220
   956
deba@220
   957
  };
deba@220
   958
deba@220
   959
  /// \brief Copy a graph to another graph.
deba@220
   960
  ///
kpeter@282
   961
  /// This function copies a graph to another graph.
kpeter@282
   962
  /// The complete usage of it is detailed in the GraphCopy class,
kpeter@282
   963
  /// but a short example shows a basic work:
deba@220
   964
  ///\code
kpeter@282
   965
  /// graphCopy(src, trg).nodeRef(nr).edgeCrossRef(ecr).run();
deba@220
   966
  ///\endcode
deba@220
   967
  ///
deba@220
   968
  /// After the copy the \c nr map will contain the mapping from the
deba@220
   969
  /// nodes of the \c from graph to the nodes of the \c to graph and
kpeter@282
   970
  /// \c ecr will contain the mapping from the edges of the \c to graph
kpeter@282
   971
  /// to the edges of the \c from graph.
deba@220
   972
  ///
deba@220
   973
  /// \see GraphCopy
kpeter@282
   974
  template <typename From, typename To>
kpeter@282
   975
  GraphCopy<From, To>
kpeter@282
   976
  graphCopy(const From& from, To& to) {
kpeter@282
   977
    return GraphCopy<From, To>(from, to);
deba@220
   978
  }
deba@220
   979
deba@220
   980
  namespace _core_bits {
deba@220
   981
deba@220
   982
    template <typename Graph, typename Enable = void>
deba@220
   983
    struct FindArcSelector {
deba@220
   984
      typedef typename Graph::Node Node;
deba@220
   985
      typedef typename Graph::Arc Arc;
deba@220
   986
      static Arc find(const Graph &g, Node u, Node v, Arc e) {
deba@220
   987
        if (e == INVALID) {
deba@220
   988
          g.firstOut(e, u);
deba@220
   989
        } else {
deba@220
   990
          g.nextOut(e);
deba@220
   991
        }
deba@220
   992
        while (e != INVALID && g.target(e) != v) {
deba@220
   993
          g.nextOut(e);
deba@220
   994
        }
deba@220
   995
        return e;
deba@220
   996
      }
deba@220
   997
    };
deba@220
   998
deba@220
   999
    template <typename Graph>
deba@220
  1000
    struct FindArcSelector<
deba@220
  1001
      Graph,
kpeter@282
  1002
      typename enable_if<typename Graph::FindArcTag, void>::type>
deba@220
  1003
    {
deba@220
  1004
      typedef typename Graph::Node Node;
deba@220
  1005
      typedef typename Graph::Arc Arc;
deba@220
  1006
      static Arc find(const Graph &g, Node u, Node v, Arc prev) {
deba@220
  1007
        return g.findArc(u, v, prev);
deba@220
  1008
      }
deba@220
  1009
    };
deba@220
  1010
  }
deba@220
  1011
kpeter@282
  1012
  /// \brief Find an arc between two nodes of a digraph.
deba@220
  1013
  ///
kpeter@282
  1014
  /// This function finds an arc from node \c u to node \c v in the
kpeter@282
  1015
  /// digraph \c g.
deba@220
  1016
  ///
deba@220
  1017
  /// If \c prev is \ref INVALID (this is the default value), then
deba@220
  1018
  /// it finds the first arc from \c u to \c v. Otherwise it looks for
deba@220
  1019
  /// the next arc from \c u to \c v after \c prev.
deba@220
  1020
  /// \return The found arc or \ref INVALID if there is no such an arc.
deba@220
  1021
  ///
deba@220
  1022
  /// Thus you can iterate through each arc from \c u to \c v as it follows.
deba@220
  1023
  ///\code
kpeter@282
  1024
  /// for(Arc e = findArc(g,u,v); e != INVALID; e = findArc(g,u,v,e)) {
deba@220
  1025
  ///   ...
deba@220
  1026
  /// }
deba@220
  1027
  ///\endcode
deba@220
  1028
  ///
kpeter@282
  1029
  /// \note \ref ConArcIt provides iterator interface for the same
kpeter@282
  1030
  /// functionality.
kpeter@282
  1031
  ///
deba@220
  1032
  ///\sa ConArcIt
kpeter@282
  1033
  ///\sa ArcLookUp, AllArcLookUp, DynArcLookUp
deba@220
  1034
  template <typename Graph>
deba@220
  1035
  inline typename Graph::Arc
deba@220
  1036
  findArc(const Graph &g, typename Graph::Node u, typename Graph::Node v,
deba@220
  1037
          typename Graph::Arc prev = INVALID) {
deba@220
  1038
    return _core_bits::FindArcSelector<Graph>::find(g, u, v, prev);
deba@220
  1039
  }
deba@220
  1040
kpeter@282
  1041
  /// \brief Iterator for iterating on parallel arcs connecting the same nodes.
deba@220
  1042
  ///
kpeter@282
  1043
  /// Iterator for iterating on parallel arcs connecting the same nodes. It is
kpeter@282
  1044
  /// a higher level interface for the \ref findArc() function. You can
deba@220
  1045
  /// use it the following way:
deba@220
  1046
  ///\code
deba@220
  1047
  /// for (ConArcIt<Graph> it(g, src, trg); it != INVALID; ++it) {
deba@220
  1048
  ///   ...
deba@220
  1049
  /// }
deba@220
  1050
  ///\endcode
deba@220
  1051
  ///
deba@220
  1052
  ///\sa findArc()
kpeter@282
  1053
  ///\sa ArcLookUp, AllArcLookUp, DynArcLookUp
kpeter@550
  1054
  template <typename GR>
kpeter@550
  1055
  class ConArcIt : public GR::Arc {
kpeter@609
  1056
    typedef typename GR::Arc Parent;
kpeter@609
  1057
deba@220
  1058
  public:
deba@220
  1059
kpeter@609
  1060
    typedef typename GR::Arc Arc;
kpeter@609
  1061
    typedef typename GR::Node Node;
deba@220
  1062
deba@220
  1063
    /// \brief Constructor.
deba@220
  1064
    ///
kpeter@282
  1065
    /// Construct a new ConArcIt iterating on the arcs that
kpeter@282
  1066
    /// connects nodes \c u and \c v.
kpeter@609
  1067
    ConArcIt(const GR& g, Node u, Node v) : _graph(g) {
deba@220
  1068
      Parent::operator=(findArc(_graph, u, v));
deba@220
  1069
    }
deba@220
  1070
deba@220
  1071
    /// \brief Constructor.
deba@220
  1072
    ///
kpeter@282
  1073
    /// Construct a new ConArcIt that continues the iterating from arc \c a.
kpeter@609
  1074
    ConArcIt(const GR& g, Arc a) : Parent(a), _graph(g) {}
deba@220
  1075
deba@220
  1076
    /// \brief Increment operator.
deba@220
  1077
    ///
deba@220
  1078
    /// It increments the iterator and gives back the next arc.
deba@220
  1079
    ConArcIt& operator++() {
deba@220
  1080
      Parent::operator=(findArc(_graph, _graph.source(*this),
deba@220
  1081
                                _graph.target(*this), *this));
deba@220
  1082
      return *this;
deba@220
  1083
    }
deba@220
  1084
  private:
kpeter@609
  1085
    const GR& _graph;
deba@220
  1086
  };
deba@220
  1087
deba@220
  1088
  namespace _core_bits {
deba@220
  1089
deba@220
  1090
    template <typename Graph, typename Enable = void>
deba@220
  1091
    struct FindEdgeSelector {
deba@220
  1092
      typedef typename Graph::Node Node;
deba@220
  1093
      typedef typename Graph::Edge Edge;
deba@220
  1094
      static Edge find(const Graph &g, Node u, Node v, Edge e) {
deba@220
  1095
        bool b;
deba@220
  1096
        if (u != v) {
deba@220
  1097
          if (e == INVALID) {
deba@220
  1098
            g.firstInc(e, b, u);
deba@220
  1099
          } else {
deba@220
  1100
            b = g.u(e) == u;
deba@220
  1101
            g.nextInc(e, b);
deba@220
  1102
          }
deba@220
  1103
          while (e != INVALID && (b ? g.v(e) : g.u(e)) != v) {
deba@220
  1104
            g.nextInc(e, b);
deba@220
  1105
          }
deba@220
  1106
        } else {
deba@220
  1107
          if (e == INVALID) {
deba@220
  1108
            g.firstInc(e, b, u);
deba@220
  1109
          } else {
deba@220
  1110
            b = true;
deba@220
  1111
            g.nextInc(e, b);
deba@220
  1112
          }
deba@220
  1113
          while (e != INVALID && (!b || g.v(e) != v)) {
deba@220
  1114
            g.nextInc(e, b);
deba@220
  1115
          }
deba@220
  1116
        }
deba@220
  1117
        return e;
deba@220
  1118
      }
deba@220
  1119
    };
deba@220
  1120
deba@220
  1121
    template <typename Graph>
deba@220
  1122
    struct FindEdgeSelector<
deba@220
  1123
      Graph,
deba@220
  1124
      typename enable_if<typename Graph::FindEdgeTag, void>::type>
deba@220
  1125
    {
deba@220
  1126
      typedef typename Graph::Node Node;
deba@220
  1127
      typedef typename Graph::Edge Edge;
deba@220
  1128
      static Edge find(const Graph &g, Node u, Node v, Edge prev) {
deba@220
  1129
        return g.findEdge(u, v, prev);
deba@220
  1130
      }
deba@220
  1131
    };
deba@220
  1132
  }
deba@220
  1133
kpeter@282
  1134
  /// \brief Find an edge between two nodes of a graph.
deba@220
  1135
  ///
kpeter@282
  1136
  /// This function finds an edge from node \c u to node \c v in graph \c g.
kpeter@282
  1137
  /// If node \c u and node \c v is equal then each loop edge
deba@220
  1138
  /// will be enumerated once.
deba@220
  1139
  ///
deba@220
  1140
  /// If \c prev is \ref INVALID (this is the default value), then
kpeter@282
  1141
  /// it finds the first edge from \c u to \c v. Otherwise it looks for
kpeter@282
  1142
  /// the next edge from \c u to \c v after \c prev.
kpeter@282
  1143
  /// \return The found edge or \ref INVALID if there is no such an edge.
deba@220
  1144
  ///
kpeter@282
  1145
  /// Thus you can iterate through each edge between \c u and \c v
kpeter@282
  1146
  /// as it follows.
deba@220
  1147
  ///\code
kpeter@282
  1148
  /// for(Edge e = findEdge(g,u,v); e != INVALID; e = findEdge(g,u,v,e)) {
deba@220
  1149
  ///   ...
deba@220
  1150
  /// }
deba@220
  1151
  ///\endcode
deba@220
  1152
  ///
kpeter@282
  1153
  /// \note \ref ConEdgeIt provides iterator interface for the same
kpeter@282
  1154
  /// functionality.
kpeter@282
  1155
  ///
deba@220
  1156
  ///\sa ConEdgeIt
deba@220
  1157
  template <typename Graph>
deba@220
  1158
  inline typename Graph::Edge
deba@220
  1159
  findEdge(const Graph &g, typename Graph::Node u, typename Graph::Node v,
deba@220
  1160
            typename Graph::Edge p = INVALID) {
deba@220
  1161
    return _core_bits::FindEdgeSelector<Graph>::find(g, u, v, p);
deba@220
  1162
  }
deba@220
  1163
kpeter@282
  1164
  /// \brief Iterator for iterating on parallel edges connecting the same nodes.
deba@220
  1165
  ///
kpeter@282
  1166
  /// Iterator for iterating on parallel edges connecting the same nodes.
kpeter@282
  1167
  /// It is a higher level interface for the findEdge() function. You can
deba@220
  1168
  /// use it the following way:
deba@220
  1169
  ///\code
kpeter@282
  1170
  /// for (ConEdgeIt<Graph> it(g, u, v); it != INVALID; ++it) {
deba@220
  1171
  ///   ...
deba@220
  1172
  /// }
deba@220
  1173
  ///\endcode
deba@220
  1174
  ///
deba@220
  1175
  ///\sa findEdge()
kpeter@550
  1176
  template <typename GR>
kpeter@550
  1177
  class ConEdgeIt : public GR::Edge {
kpeter@609
  1178
    typedef typename GR::Edge Parent;
kpeter@609
  1179
deba@220
  1180
  public:
deba@220
  1181
kpeter@609
  1182
    typedef typename GR::Edge Edge;
kpeter@609
  1183
    typedef typename GR::Node Node;
deba@220
  1184
deba@220
  1185
    /// \brief Constructor.
deba@220
  1186
    ///
kpeter@282
  1187
    /// Construct a new ConEdgeIt iterating on the edges that
kpeter@282
  1188
    /// connects nodes \c u and \c v.
kpeter@609
  1189
    ConEdgeIt(const GR& g, Node u, Node v) : _graph(g), _u(u), _v(v) {
kpeter@429
  1190
      Parent::operator=(findEdge(_graph, _u, _v));
deba@220
  1191
    }
deba@220
  1192
deba@220
  1193
    /// \brief Constructor.
deba@220
  1194
    ///
kpeter@282
  1195
    /// Construct a new ConEdgeIt that continues iterating from edge \c e.
kpeter@609
  1196
    ConEdgeIt(const GR& g, Edge e) : Parent(e), _graph(g) {}
deba@220
  1197
deba@220
  1198
    /// \brief Increment operator.
deba@220
  1199
    ///
deba@220
  1200
    /// It increments the iterator and gives back the next edge.
deba@220
  1201
    ConEdgeIt& operator++() {
kpeter@429
  1202
      Parent::operator=(findEdge(_graph, _u, _v, *this));
deba@220
  1203
      return *this;
deba@220
  1204
    }
deba@220
  1205
  private:
kpeter@609
  1206
    const GR& _graph;
kpeter@429
  1207
    Node _u, _v;
deba@220
  1208
  };
deba@220
  1209
deba@220
  1210
kpeter@282
  1211
  ///Dynamic arc look-up between given endpoints.
deba@220
  1212
deba@220
  1213
  ///Using this class, you can find an arc in a digraph from a given
kpeter@282
  1214
  ///source to a given target in amortized time <em>O</em>(log<em>d</em>),
deba@220
  1215
  ///where <em>d</em> is the out-degree of the source node.
deba@220
  1216
  ///
deba@220
  1217
  ///It is possible to find \e all parallel arcs between two nodes with
deba@233
  1218
  ///the \c operator() member.
deba@220
  1219
  ///
kpeter@282
  1220
  ///This is a dynamic data structure. Consider to use \ref ArcLookUp or
kpeter@282
  1221
  ///\ref AllArcLookUp if your digraph is not changed so frequently.
deba@220
  1222
  ///
kpeter@282
  1223
  ///This class uses a self-adjusting binary search tree, the Splay tree
kpeter@282
  1224
  ///of Sleator and Tarjan to guarantee the logarithmic amortized
kpeter@282
  1225
  ///time bound for arc look-ups. This class also guarantees the
deba@220
  1226
  ///optimal time bound in a constant factor for any distribution of
deba@220
  1227
  ///queries.
deba@220
  1228
  ///
kpeter@550
  1229
  ///\tparam GR The type of the underlying digraph.
deba@220
  1230
  ///
deba@220
  1231
  ///\sa ArcLookUp
deba@220
  1232
  ///\sa AllArcLookUp
kpeter@550
  1233
  template <typename GR>
deba@220
  1234
  class DynArcLookUp
kpeter@550
  1235
    : protected ItemSetTraits<GR, typename GR::Arc>::ItemNotifier::ObserverBase
deba@220
  1236
  {
kpeter@550
  1237
    typedef typename ItemSetTraits<GR, typename GR::Arc>
deba@220
  1238
    ::ItemNotifier::ObserverBase Parent;
deba@220
  1239
kpeter@550
  1240
    TEMPLATE_DIGRAPH_TYPEDEFS(GR);
kpeter@609
  1241
kpeter@609
  1242
  public:
kpeter@609
  1243
kpeter@609
  1244
    /// The Digraph type
kpeter@550
  1245
    typedef GR Digraph;
deba@220
  1246
deba@220
  1247
  protected:
deba@220
  1248
alpar@761
  1249
    class AutoNodeMap :
alpar@761
  1250
      public ItemSetTraits<GR, Node>::template Map<Arc>::Type {
kpeter@609
  1251
      typedef typename ItemSetTraits<GR, Node>::template Map<Arc>::Type Parent;
kpeter@609
  1252
deba@220
  1253
    public:
deba@220
  1254
kpeter@550
  1255
      AutoNodeMap(const GR& digraph) : Parent(digraph, INVALID) {}
deba@220
  1256
deba@220
  1257
      virtual void add(const Node& node) {
deba@220
  1258
        Parent::add(node);
deba@220
  1259
        Parent::set(node, INVALID);
deba@220
  1260
      }
deba@220
  1261
deba@220
  1262
      virtual void add(const std::vector<Node>& nodes) {
deba@220
  1263
        Parent::add(nodes);
deba@220
  1264
        for (int i = 0; i < int(nodes.size()); ++i) {
deba@220
  1265
          Parent::set(nodes[i], INVALID);
deba@220
  1266
        }
deba@220
  1267
      }
deba@220
  1268
deba@220
  1269
      virtual void build() {
deba@220
  1270
        Parent::build();
deba@220
  1271
        Node it;
deba@220
  1272
        typename Parent::Notifier* nf = Parent::notifier();
deba@220
  1273
        for (nf->first(it); it != INVALID; nf->next(it)) {
deba@220
  1274
          Parent::set(it, INVALID);
deba@220
  1275
        }
deba@220
  1276
      }
deba@220
  1277
    };
deba@220
  1278
deba@220
  1279
    class ArcLess {
deba@220
  1280
      const Digraph &g;
deba@220
  1281
    public:
deba@220
  1282
      ArcLess(const Digraph &_g) : g(_g) {}
deba@220
  1283
      bool operator()(Arc a,Arc b) const
deba@220
  1284
      {
deba@220
  1285
        return g.target(a)<g.target(b);
deba@220
  1286
      }
deba@220
  1287
    };
deba@220
  1288
alpar@761
  1289
  protected:
kpeter@609
  1290
kpeter@609
  1291
    const Digraph &_g;
kpeter@609
  1292
    AutoNodeMap _head;
kpeter@609
  1293
    typename Digraph::template ArcMap<Arc> _parent;
kpeter@609
  1294
    typename Digraph::template ArcMap<Arc> _left;
kpeter@609
  1295
    typename Digraph::template ArcMap<Arc> _right;
kpeter@609
  1296
deba@220
  1297
  public:
deba@220
  1298
deba@220
  1299
    ///Constructor
deba@220
  1300
deba@220
  1301
    ///Constructor.
deba@220
  1302
    ///
deba@220
  1303
    ///It builds up the search database.
deba@220
  1304
    DynArcLookUp(const Digraph &g)
deba@220
  1305
      : _g(g),_head(g),_parent(g),_left(g),_right(g)
deba@220
  1306
    {
deba@220
  1307
      Parent::attach(_g.notifier(typename Digraph::Arc()));
deba@220
  1308
      refresh();
deba@220
  1309
    }
deba@220
  1310
deba@220
  1311
  protected:
deba@220
  1312
deba@220
  1313
    virtual void add(const Arc& arc) {
deba@220
  1314
      insert(arc);
deba@220
  1315
    }
deba@220
  1316
deba@220
  1317
    virtual void add(const std::vector<Arc>& arcs) {
deba@220
  1318
      for (int i = 0; i < int(arcs.size()); ++i) {
deba@220
  1319
        insert(arcs[i]);
deba@220
  1320
      }
deba@220
  1321
    }
deba@220
  1322
deba@220
  1323
    virtual void erase(const Arc& arc) {
deba@220
  1324
      remove(arc);
deba@220
  1325
    }
deba@220
  1326
deba@220
  1327
    virtual void erase(const std::vector<Arc>& arcs) {
deba@220
  1328
      for (int i = 0; i < int(arcs.size()); ++i) {
deba@220
  1329
        remove(arcs[i]);
deba@220
  1330
      }
deba@220
  1331
    }
deba@220
  1332
deba@220
  1333
    virtual void build() {
deba@220
  1334
      refresh();
deba@220
  1335
    }
deba@220
  1336
deba@220
  1337
    virtual void clear() {
deba@220
  1338
      for(NodeIt n(_g);n!=INVALID;++n) {
kpeter@573
  1339
        _head[n] = INVALID;
deba@220
  1340
      }
deba@220
  1341
    }
deba@220
  1342
deba@220
  1343
    void insert(Arc arc) {
deba@220
  1344
      Node s = _g.source(arc);
deba@220
  1345
      Node t = _g.target(arc);
kpeter@573
  1346
      _left[arc] = INVALID;
kpeter@573
  1347
      _right[arc] = INVALID;
deba@220
  1348
deba@220
  1349
      Arc e = _head[s];
deba@220
  1350
      if (e == INVALID) {
kpeter@573
  1351
        _head[s] = arc;
kpeter@573
  1352
        _parent[arc] = INVALID;
deba@220
  1353
        return;
deba@220
  1354
      }
deba@220
  1355
      while (true) {
deba@220
  1356
        if (t < _g.target(e)) {
deba@220
  1357
          if (_left[e] == INVALID) {
kpeter@573
  1358
            _left[e] = arc;
kpeter@573
  1359
            _parent[arc] = e;
deba@220
  1360
            splay(arc);
deba@220
  1361
            return;
deba@220
  1362
          } else {
deba@220
  1363
            e = _left[e];
deba@220
  1364
          }
deba@220
  1365
        } else {
deba@220
  1366
          if (_right[e] == INVALID) {
kpeter@573
  1367
            _right[e] = arc;
kpeter@573
  1368
            _parent[arc] = e;
deba@220
  1369
            splay(arc);
deba@220
  1370
            return;
deba@220
  1371
          } else {
deba@220
  1372
            e = _right[e];
deba@220
  1373
          }
deba@220
  1374
        }
deba@220
  1375
      }
deba@220
  1376
    }
deba@220
  1377
deba@220
  1378
    void remove(Arc arc) {
deba@220
  1379
      if (_left[arc] == INVALID) {
deba@220
  1380
        if (_right[arc] != INVALID) {
kpeter@573
  1381
          _parent[_right[arc]] = _parent[arc];
deba@220
  1382
        }
deba@220
  1383
        if (_parent[arc] != INVALID) {
deba@220
  1384
          if (_left[_parent[arc]] == arc) {
kpeter@573
  1385
            _left[_parent[arc]] = _right[arc];
deba@220
  1386
          } else {
kpeter@573
  1387
            _right[_parent[arc]] = _right[arc];
deba@220
  1388
          }
deba@220
  1389
        } else {
kpeter@573
  1390
          _head[_g.source(arc)] = _right[arc];
deba@220
  1391
        }
deba@220
  1392
      } else if (_right[arc] == INVALID) {
kpeter@573
  1393
        _parent[_left[arc]] = _parent[arc];
deba@220
  1394
        if (_parent[arc] != INVALID) {
deba@220
  1395
          if (_left[_parent[arc]] == arc) {
kpeter@573
  1396
            _left[_parent[arc]] = _left[arc];
deba@220
  1397
          } else {
kpeter@573
  1398
            _right[_parent[arc]] = _left[arc];
deba@220
  1399
          }
deba@220
  1400
        } else {
kpeter@573
  1401
          _head[_g.source(arc)] = _left[arc];
deba@220
  1402
        }
deba@220
  1403
      } else {
deba@220
  1404
        Arc e = _left[arc];
deba@220
  1405
        if (_right[e] != INVALID) {
deba@220
  1406
          e = _right[e];
deba@220
  1407
          while (_right[e] != INVALID) {
deba@220
  1408
            e = _right[e];
deba@220
  1409
          }
deba@220
  1410
          Arc s = _parent[e];
kpeter@573
  1411
          _right[_parent[e]] = _left[e];
deba@220
  1412
          if (_left[e] != INVALID) {
kpeter@573
  1413
            _parent[_left[e]] = _parent[e];
deba@220
  1414
          }
deba@220
  1415
kpeter@573
  1416
          _left[e] = _left[arc];
kpeter@573
  1417
          _parent[_left[arc]] = e;
kpeter@573
  1418
          _right[e] = _right[arc];
kpeter@573
  1419
          _parent[_right[arc]] = e;
deba@220
  1420
kpeter@573
  1421
          _parent[e] = _parent[arc];
deba@220
  1422
          if (_parent[arc] != INVALID) {
deba@220
  1423
            if (_left[_parent[arc]] == arc) {
kpeter@573
  1424
              _left[_parent[arc]] = e;
deba@220
  1425
            } else {
kpeter@573
  1426
              _right[_parent[arc]] = e;
deba@220
  1427
            }
deba@220
  1428
          }
deba@220
  1429
          splay(s);
deba@220
  1430
        } else {
kpeter@573
  1431
          _right[e] = _right[arc];
kpeter@573
  1432
          _parent[_right[arc]] = e;
kpeter@573
  1433
          _parent[e] = _parent[arc];
deba@220
  1434
deba@220
  1435
          if (_parent[arc] != INVALID) {
deba@220
  1436
            if (_left[_parent[arc]] == arc) {
kpeter@573
  1437
              _left[_parent[arc]] = e;
deba@220
  1438
            } else {
kpeter@573
  1439
              _right[_parent[arc]] = e;
deba@220
  1440
            }
deba@220
  1441
          } else {
kpeter@573
  1442
            _head[_g.source(arc)] = e;
deba@220
  1443
          }
deba@220
  1444
        }
deba@220
  1445
      }
deba@220
  1446
    }
deba@220
  1447
deba@220
  1448
    Arc refreshRec(std::vector<Arc> &v,int a,int b)
deba@220
  1449
    {
deba@220
  1450
      int m=(a+b)/2;
deba@220
  1451
      Arc me=v[m];
deba@220
  1452
      if (a < m) {
deba@220
  1453
        Arc left = refreshRec(v,a,m-1);
kpeter@573
  1454
        _left[me] = left;
kpeter@573
  1455
        _parent[left] = me;
deba@220
  1456
      } else {
kpeter@573
  1457
        _left[me] = INVALID;
deba@220
  1458
      }
deba@220
  1459
      if (m < b) {
deba@220
  1460
        Arc right = refreshRec(v,m+1,b);
kpeter@573
  1461
        _right[me] = right;
kpeter@573
  1462
        _parent[right] = me;
deba@220
  1463
      } else {
kpeter@573
  1464
        _right[me] = INVALID;
deba@220
  1465
      }
deba@220
  1466
      return me;
deba@220
  1467
    }
deba@220
  1468
deba@220
  1469
    void refresh() {
deba@220
  1470
      for(NodeIt n(_g);n!=INVALID;++n) {
deba@220
  1471
        std::vector<Arc> v;
deba@233
  1472
        for(OutArcIt a(_g,n);a!=INVALID;++a) v.push_back(a);
deba@233
  1473
        if (!v.empty()) {
deba@220
  1474
          std::sort(v.begin(),v.end(),ArcLess(_g));
deba@220
  1475
          Arc head = refreshRec(v,0,v.size()-1);
kpeter@573
  1476
          _head[n] = head;
kpeter@573
  1477
          _parent[head] = INVALID;
deba@220
  1478
        }
kpeter@573
  1479
        else _head[n] = INVALID;
deba@220
  1480
      }
deba@220
  1481
    }
deba@220
  1482
deba@220
  1483
    void zig(Arc v) {
deba@220
  1484
      Arc w = _parent[v];
kpeter@573
  1485
      _parent[v] = _parent[w];
kpeter@573
  1486
      _parent[w] = v;
kpeter@573
  1487
      _left[w] = _right[v];
kpeter@573
  1488
      _right[v] = w;
deba@220
  1489
      if (_parent[v] != INVALID) {
deba@220
  1490
        if (_right[_parent[v]] == w) {
kpeter@573
  1491
          _right[_parent[v]] = v;
deba@220
  1492
        } else {
kpeter@573
  1493
          _left[_parent[v]] = v;
deba@220
  1494
        }
deba@220
  1495
      }
deba@220
  1496
      if (_left[w] != INVALID){
kpeter@573
  1497
        _parent[_left[w]] = w;
deba@220
  1498
      }
deba@220
  1499
    }
deba@220
  1500
deba@220
  1501
    void zag(Arc v) {
deba@220
  1502
      Arc w = _parent[v];
kpeter@573
  1503
      _parent[v] = _parent[w];
kpeter@573
  1504
      _parent[w] = v;
kpeter@573
  1505
      _right[w] = _left[v];
kpeter@573
  1506
      _left[v] = w;
deba@220
  1507
      if (_parent[v] != INVALID){
deba@220
  1508
        if (_left[_parent[v]] == w) {
kpeter@573
  1509
          _left[_parent[v]] = v;
deba@220
  1510
        } else {
kpeter@573
  1511
          _right[_parent[v]] = v;
deba@220
  1512
        }
deba@220
  1513
      }
deba@220
  1514
      if (_right[w] != INVALID){
kpeter@573
  1515
        _parent[_right[w]] = w;
deba@220
  1516
      }
deba@220
  1517
    }
deba@220
  1518
deba@220
  1519
    void splay(Arc v) {
deba@220
  1520
      while (_parent[v] != INVALID) {
deba@220
  1521
        if (v == _left[_parent[v]]) {
deba@220
  1522
          if (_parent[_parent[v]] == INVALID) {
deba@220
  1523
            zig(v);
deba@220
  1524
          } else {
deba@220
  1525
            if (_parent[v] == _left[_parent[_parent[v]]]) {
deba@220
  1526
              zig(_parent[v]);
deba@220
  1527
              zig(v);
deba@220
  1528
            } else {
deba@220
  1529
              zig(v);
deba@220
  1530
              zag(v);
deba@220
  1531
            }
deba@220
  1532
          }
deba@220
  1533
        } else {
deba@220
  1534
          if (_parent[_parent[v]] == INVALID) {
deba@220
  1535
            zag(v);
deba@220
  1536
          } else {
deba@220
  1537
            if (_parent[v] == _left[_parent[_parent[v]]]) {
deba@220
  1538
              zag(v);
deba@220
  1539
              zig(v);
deba@220
  1540
            } else {
deba@220
  1541
              zag(_parent[v]);
deba@220
  1542
              zag(v);
deba@220
  1543
            }
deba@220
  1544
          }
deba@220
  1545
        }
deba@220
  1546
      }
deba@220
  1547
      _head[_g.source(v)] = v;
deba@220
  1548
    }
deba@220
  1549
deba@220
  1550
deba@220
  1551
  public:
deba@220
  1552
deba@220
  1553
    ///Find an arc between two nodes.
deba@220
  1554
deba@233
  1555
    ///Find an arc between two nodes.
kpeter@282
  1556
    ///\param s The source node.
kpeter@282
  1557
    ///\param t The target node.
deba@233
  1558
    ///\param p The previous arc between \c s and \c t. It it is INVALID or
deba@233
  1559
    ///not given, the operator finds the first appropriate arc.
deba@233
  1560
    ///\return An arc from \c s to \c t after \c p or
deba@233
  1561
    ///\ref INVALID if there is no more.
deba@233
  1562
    ///
deba@233
  1563
    ///For example, you can count the number of arcs from \c u to \c v in the
deba@233
  1564
    ///following way.
deba@233
  1565
    ///\code
deba@233
  1566
    ///DynArcLookUp<ListDigraph> ae(g);
deba@233
  1567
    ///...
kpeter@282
  1568
    ///int n = 0;
kpeter@282
  1569
    ///for(Arc a = ae(u,v); a != INVALID; a = ae(u,v,a)) n++;
deba@233
  1570
    ///\endcode
deba@233
  1571
    ///
kpeter@282
  1572
    ///Finding the arcs take at most <em>O</em>(log<em>d</em>)
deba@233
  1573
    ///amortized time, specifically, the time complexity of the lookups
deba@233
  1574
    ///is equal to the optimal search tree implementation for the
deba@233
  1575
    ///current query distribution in a constant factor.
deba@233
  1576
    ///
deba@233
  1577
    ///\note This is a dynamic data structure, therefore the data
kpeter@282
  1578
    ///structure is updated after each graph alteration. Thus although
kpeter@282
  1579
    ///this data structure is theoretically faster than \ref ArcLookUp
kpeter@313
  1580
    ///and \ref AllArcLookUp, it often provides worse performance than
deba@233
  1581
    ///them.
deba@233
  1582
    Arc operator()(Node s, Node t, Arc p = INVALID) const  {
deba@233
  1583
      if (p == INVALID) {
deba@233
  1584
        Arc a = _head[s];
deba@233
  1585
        if (a == INVALID) return INVALID;
deba@233
  1586
        Arc r = INVALID;
deba@233
  1587
        while (true) {
deba@233
  1588
          if (_g.target(a) < t) {
deba@233
  1589
            if (_right[a] == INVALID) {
deba@233
  1590
              const_cast<DynArcLookUp&>(*this).splay(a);
deba@233
  1591
              return r;
deba@233
  1592
            } else {
deba@233
  1593
              a = _right[a];
deba@233
  1594
            }
deba@233
  1595
          } else {
deba@233
  1596
            if (_g.target(a) == t) {
deba@233
  1597
              r = a;
deba@233
  1598
            }
deba@233
  1599
            if (_left[a] == INVALID) {
deba@233
  1600
              const_cast<DynArcLookUp&>(*this).splay(a);
deba@233
  1601
              return r;
deba@233
  1602
            } else {
deba@233
  1603
              a = _left[a];
deba@233
  1604
            }
deba@233
  1605
          }
deba@233
  1606
        }
deba@233
  1607
      } else {
deba@233
  1608
        Arc a = p;
deba@233
  1609
        if (_right[a] != INVALID) {
deba@233
  1610
          a = _right[a];
deba@233
  1611
          while (_left[a] != INVALID) {
deba@233
  1612
            a = _left[a];
deba@233
  1613
          }
deba@220
  1614
          const_cast<DynArcLookUp&>(*this).splay(a);
deba@233
  1615
        } else {
deba@233
  1616
          while (_parent[a] != INVALID && _right[_parent[a]] ==  a) {
deba@233
  1617
            a = _parent[a];
deba@233
  1618
          }
deba@233
  1619
          if (_parent[a] == INVALID) {
deba@220
  1620
            return INVALID;
deba@220
  1621
          } else {
deba@233
  1622
            a = _parent[a];
deba@220
  1623
            const_cast<DynArcLookUp&>(*this).splay(a);
deba@220
  1624
          }
deba@220
  1625
        }
deba@233
  1626
        if (_g.target(a) == t) return a;
deba@233
  1627
        else return INVALID;
deba@220
  1628
      }
deba@220
  1629
    }
deba@220
  1630
deba@220
  1631
  };
deba@220
  1632
kpeter@282
  1633
  ///Fast arc look-up between given endpoints.
deba@220
  1634
deba@220
  1635
  ///Using this class, you can find an arc in a digraph from a given
kpeter@282
  1636
  ///source to a given target in time <em>O</em>(log<em>d</em>),
deba@220
  1637
  ///where <em>d</em> is the out-degree of the source node.
deba@220
  1638
  ///
deba@220
  1639
  ///It is not possible to find \e all parallel arcs between two nodes.
deba@220
  1640
  ///Use \ref AllArcLookUp for this purpose.
deba@220
  1641
  ///
kpeter@282
  1642
  ///\warning This class is static, so you should call refresh() (or at
kpeter@282
  1643
  ///least refresh(Node)) to refresh this data structure whenever the
kpeter@282
  1644
  ///digraph changes. This is a time consuming (superlinearly proportional
kpeter@282
  1645
  ///(<em>O</em>(<em>m</em> log<em>m</em>)) to the number of arcs).
deba@220
  1646
  ///
kpeter@550
  1647
  ///\tparam GR The type of the underlying digraph.
deba@220
  1648
  ///
deba@220
  1649
  ///\sa DynArcLookUp
deba@220
  1650
  ///\sa AllArcLookUp
kpeter@550
  1651
  template<class GR>
deba@220
  1652
  class ArcLookUp
deba@220
  1653
  {
kpeter@609
  1654
    TEMPLATE_DIGRAPH_TYPEDEFS(GR);
kpeter@609
  1655
deba@220
  1656
  public:
kpeter@609
  1657
kpeter@609
  1658
    /// The Digraph type
kpeter@550
  1659
    typedef GR Digraph;
deba@220
  1660
deba@220
  1661
  protected:
deba@220
  1662
    const Digraph &_g;
deba@220
  1663
    typename Digraph::template NodeMap<Arc> _head;
deba@220
  1664
    typename Digraph::template ArcMap<Arc> _left;
deba@220
  1665
    typename Digraph::template ArcMap<Arc> _right;
deba@220
  1666
deba@220
  1667
    class ArcLess {
deba@220
  1668
      const Digraph &g;
deba@220
  1669
    public:
deba@220
  1670
      ArcLess(const Digraph &_g) : g(_g) {}
deba@220
  1671
      bool operator()(Arc a,Arc b) const
deba@220
  1672
      {
deba@220
  1673
        return g.target(a)<g.target(b);
deba@220
  1674
      }
deba@220
  1675
    };
deba@220
  1676
deba@220
  1677
  public:
deba@220
  1678
deba@220
  1679
    ///Constructor
deba@220
  1680
deba@220
  1681
    ///Constructor.
deba@220
  1682
    ///
deba@220
  1683
    ///It builds up the search database, which remains valid until the digraph
deba@220
  1684
    ///changes.
deba@220
  1685
    ArcLookUp(const Digraph &g) :_g(g),_head(g),_left(g),_right(g) {refresh();}
deba@220
  1686
deba@220
  1687
  private:
deba@220
  1688
    Arc refreshRec(std::vector<Arc> &v,int a,int b)
deba@220
  1689
    {
deba@220
  1690
      int m=(a+b)/2;
deba@220
  1691
      Arc me=v[m];
deba@220
  1692
      _left[me] = a<m?refreshRec(v,a,m-1):INVALID;
deba@220
  1693
      _right[me] = m<b?refreshRec(v,m+1,b):INVALID;
deba@220
  1694
      return me;
deba@220
  1695
    }
deba@220
  1696
  public:
kpeter@282
  1697
    ///Refresh the search data structure at a node.
deba@220
  1698
deba@220
  1699
    ///Build up the search database of node \c n.
deba@220
  1700
    ///
kpeter@282
  1701
    ///It runs in time <em>O</em>(<em>d</em> log<em>d</em>), where <em>d</em>
kpeter@282
  1702
    ///is the number of the outgoing arcs of \c n.
deba@220
  1703
    void refresh(Node n)
deba@220
  1704
    {
deba@220
  1705
      std::vector<Arc> v;
deba@220
  1706
      for(OutArcIt e(_g,n);e!=INVALID;++e) v.push_back(e);
deba@220
  1707
      if(v.size()) {
deba@220
  1708
        std::sort(v.begin(),v.end(),ArcLess(_g));
deba@220
  1709
        _head[n]=refreshRec(v,0,v.size()-1);
deba@220
  1710
      }
deba@220
  1711
      else _head[n]=INVALID;
deba@220
  1712
    }
deba@220
  1713
    ///Refresh the full data structure.
deba@220
  1714
deba@220
  1715
    ///Build up the full search database. In fact, it simply calls
deba@220
  1716
    ///\ref refresh(Node) "refresh(n)" for each node \c n.
deba@220
  1717
    ///
kpeter@282
  1718
    ///It runs in time <em>O</em>(<em>m</em> log<em>D</em>), where <em>m</em> is
kpeter@282
  1719
    ///the number of the arcs in the digraph and <em>D</em> is the maximum
deba@220
  1720
    ///out-degree of the digraph.
deba@220
  1721
    void refresh()
deba@220
  1722
    {
deba@220
  1723
      for(NodeIt n(_g);n!=INVALID;++n) refresh(n);
deba@220
  1724
    }
deba@220
  1725
deba@220
  1726
    ///Find an arc between two nodes.
deba@220
  1727
kpeter@313
  1728
    ///Find an arc between two nodes in time <em>O</em>(log<em>d</em>),
kpeter@313
  1729
    ///where <em>d</em> is the number of outgoing arcs of \c s.
kpeter@282
  1730
    ///\param s The source node.
kpeter@282
  1731
    ///\param t The target node.
deba@220
  1732
    ///\return An arc from \c s to \c t if there exists,
deba@220
  1733
    ///\ref INVALID otherwise.
deba@220
  1734
    ///
deba@220
  1735
    ///\warning If you change the digraph, refresh() must be called before using
deba@220
  1736
    ///this operator. If you change the outgoing arcs of
kpeter@282
  1737
    ///a single node \c n, then \ref refresh(Node) "refresh(n)" is enough.
deba@220
  1738
    Arc operator()(Node s, Node t) const
deba@220
  1739
    {
deba@220
  1740
      Arc e;
deba@220
  1741
      for(e=_head[s];
deba@220
  1742
          e!=INVALID&&_g.target(e)!=t;
deba@220
  1743
          e = t < _g.target(e)?_left[e]:_right[e]) ;
deba@220
  1744
      return e;
deba@220
  1745
    }
deba@220
  1746
deba@220
  1747
  };
deba@220
  1748
kpeter@282
  1749
  ///Fast look-up of all arcs between given endpoints.
deba@220
  1750
deba@220
  1751
  ///This class is the same as \ref ArcLookUp, with the addition
kpeter@282
  1752
  ///that it makes it possible to find all parallel arcs between given
kpeter@282
  1753
  ///endpoints.
deba@220
  1754
  ///
kpeter@282
  1755
  ///\warning This class is static, so you should call refresh() (or at
kpeter@282
  1756
  ///least refresh(Node)) to refresh this data structure whenever the
kpeter@282
  1757
  ///digraph changes. This is a time consuming (superlinearly proportional
kpeter@282
  1758
  ///(<em>O</em>(<em>m</em> log<em>m</em>)) to the number of arcs).
deba@220
  1759
  ///
kpeter@550
  1760
  ///\tparam GR The type of the underlying digraph.
deba@220
  1761
  ///
deba@220
  1762
  ///\sa DynArcLookUp
deba@220
  1763
  ///\sa ArcLookUp
kpeter@550
  1764
  template<class GR>
kpeter@550
  1765
  class AllArcLookUp : public ArcLookUp<GR>
deba@220
  1766
  {
kpeter@550
  1767
    using ArcLookUp<GR>::_g;
kpeter@550
  1768
    using ArcLookUp<GR>::_right;
kpeter@550
  1769
    using ArcLookUp<GR>::_left;
kpeter@550
  1770
    using ArcLookUp<GR>::_head;
deba@220
  1771
kpeter@550
  1772
    TEMPLATE_DIGRAPH_TYPEDEFS(GR);
deba@220
  1773
kpeter@609
  1774
    typename GR::template ArcMap<Arc> _next;
deba@220
  1775
deba@220
  1776
    Arc refreshNext(Arc head,Arc next=INVALID)
deba@220
  1777
    {
deba@220
  1778
      if(head==INVALID) return next;
deba@220
  1779
      else {
deba@220
  1780
        next=refreshNext(_right[head],next);
deba@220
  1781
        _next[head]=( next!=INVALID && _g.target(next)==_g.target(head))
deba@220
  1782
          ? next : INVALID;
deba@220
  1783
        return refreshNext(_left[head],head);
deba@220
  1784
      }
deba@220
  1785
    }
deba@220
  1786
deba@220
  1787
    void refreshNext()
deba@220
  1788
    {
deba@220
  1789
      for(NodeIt n(_g);n!=INVALID;++n) refreshNext(_head[n]);
deba@220
  1790
    }
deba@220
  1791
deba@220
  1792
  public:
kpeter@609
  1793
kpeter@609
  1794
    /// The Digraph type
kpeter@609
  1795
    typedef GR Digraph;
kpeter@609
  1796
deba@220
  1797
    ///Constructor
deba@220
  1798
deba@220
  1799
    ///Constructor.
deba@220
  1800
    ///
deba@220
  1801
    ///It builds up the search database, which remains valid until the digraph
deba@220
  1802
    ///changes.
kpeter@550
  1803
    AllArcLookUp(const Digraph &g) : ArcLookUp<GR>(g), _next(g) {refreshNext();}
deba@220
  1804
deba@220
  1805
    ///Refresh the data structure at a node.
deba@220
  1806
deba@220
  1807
    ///Build up the search database of node \c n.
deba@220
  1808
    ///
kpeter@282
  1809
    ///It runs in time <em>O</em>(<em>d</em> log<em>d</em>), where <em>d</em> is
deba@220
  1810
    ///the number of the outgoing arcs of \c n.
deba@220
  1811
    void refresh(Node n)
deba@220
  1812
    {
kpeter@550
  1813
      ArcLookUp<GR>::refresh(n);
deba@220
  1814
      refreshNext(_head[n]);
deba@220
  1815
    }
deba@220
  1816
deba@220
  1817
    ///Refresh the full data structure.
deba@220
  1818
deba@220
  1819
    ///Build up the full search database. In fact, it simply calls
deba@220
  1820
    ///\ref refresh(Node) "refresh(n)" for each node \c n.
deba@220
  1821
    ///
kpeter@282
  1822
    ///It runs in time <em>O</em>(<em>m</em> log<em>D</em>), where <em>m</em> is
kpeter@282
  1823
    ///the number of the arcs in the digraph and <em>D</em> is the maximum
deba@220
  1824
    ///out-degree of the digraph.
deba@220
  1825
    void refresh()
deba@220
  1826
    {
deba@220
  1827
      for(NodeIt n(_g);n!=INVALID;++n) refresh(_head[n]);
deba@220
  1828
    }
deba@220
  1829
deba@220
  1830
    ///Find an arc between two nodes.
deba@220
  1831
deba@220
  1832
    ///Find an arc between two nodes.
kpeter@282
  1833
    ///\param s The source node.
kpeter@282
  1834
    ///\param t The target node.
deba@220
  1835
    ///\param prev The previous arc between \c s and \c t. It it is INVALID or
deba@220
  1836
    ///not given, the operator finds the first appropriate arc.
deba@220
  1837
    ///\return An arc from \c s to \c t after \c prev or
deba@220
  1838
    ///\ref INVALID if there is no more.
deba@220
  1839
    ///
deba@220
  1840
    ///For example, you can count the number of arcs from \c u to \c v in the
deba@220
  1841
    ///following way.
deba@220
  1842
    ///\code
deba@220
  1843
    ///AllArcLookUp<ListDigraph> ae(g);
deba@220
  1844
    ///...
kpeter@282
  1845
    ///int n = 0;
kpeter@282
  1846
    ///for(Arc a = ae(u,v); a != INVALID; a=ae(u,v,a)) n++;
deba@220
  1847
    ///\endcode
deba@220
  1848
    ///
kpeter@313
  1849
    ///Finding the first arc take <em>O</em>(log<em>d</em>) time,
kpeter@313
  1850
    ///where <em>d</em> is the number of outgoing arcs of \c s. Then the
deba@220
  1851
    ///consecutive arcs are found in constant time.
deba@220
  1852
    ///
deba@220
  1853
    ///\warning If you change the digraph, refresh() must be called before using
deba@220
  1854
    ///this operator. If you change the outgoing arcs of
kpeter@282
  1855
    ///a single node \c n, then \ref refresh(Node) "refresh(n)" is enough.
deba@220
  1856
    ///
alpar@789
  1857
    Arc operator()(Node s, Node t, Arc prev=INVALID) const
deba@220
  1858
    {
alpar@789
  1859
      if(prev==INVALID)
alpar@789
  1860
        {
alpar@789
  1861
          Arc f=INVALID;
alpar@789
  1862
          Arc e;
alpar@789
  1863
          for(e=_head[s];
alpar@789
  1864
              e!=INVALID&&_g.target(e)!=t;
alpar@789
  1865
              e = t < _g.target(e)?_left[e]:_right[e]) ;
alpar@789
  1866
          while(e!=INVALID)
alpar@789
  1867
            if(_g.target(e)==t)
alpar@789
  1868
              {
alpar@789
  1869
                f = e;
alpar@789
  1870
                e = _left[e];
alpar@789
  1871
              }
alpar@789
  1872
            else e = _right[e];
alpar@789
  1873
          return f;
alpar@789
  1874
        }
alpar@789
  1875
      else return _next[prev];
deba@220
  1876
    }
deba@220
  1877
deba@220
  1878
  };
deba@220
  1879
deba@220
  1880
  /// @}
deba@220
  1881
deba@220
  1882
} //namespace lemon
deba@220
  1883
deba@220
  1884
#endif