doc/groups.dox
author Peter Kovacs <kpeter@inf.elte.hu>
Tue, 08 Jan 2008 02:53:42 +0100
changeset 49 9a556af88710
parent 40 8f4e8273a458
child 50 a34c58ff6e40
permissions -rw-r--r--
Doc improvements is some files.
alpar@40
     1
/* -*- C++ -*-
alpar@40
     2
 *
alpar@40
     3
 * This file is a part of LEMON, a generic C++ optimization library
alpar@40
     4
 *
alpar@40
     5
 * Copyright (C) 2003-2008
alpar@40
     6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
alpar@40
     7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
alpar@40
     8
 *
alpar@40
     9
 * Permission to use, modify and distribute this software is granted
alpar@40
    10
 * provided that this copyright notice appears in all copies. For
alpar@40
    11
 * precise terms see the accompanying LICENSE file.
alpar@40
    12
 *
alpar@40
    13
 * This software is provided "AS IS" with no warranty of any kind,
alpar@40
    14
 * express or implied, and with no claim as to its suitability for any
alpar@40
    15
 * purpose.
alpar@40
    16
 *
alpar@40
    17
 */
alpar@40
    18
alpar@40
    19
/**
alpar@40
    20
@defgroup datas Data Structures
alpar@40
    21
This group describes the several graph structures implemented in LEMON.
alpar@40
    22
*/
alpar@40
    23
alpar@40
    24
/**
alpar@40
    25
@defgroup graphs Graph Structures
alpar@40
    26
@ingroup datas
alpar@40
    27
\brief Graph structures implemented in LEMON.
alpar@40
    28
alpar@40
    29
The implementation of combinatorial algorithms heavily relies on 
alpar@40
    30
efficient graph implementations. LEMON offers data structures which are 
alpar@40
    31
planned to be easily used in an experimental phase of implementation studies, 
alpar@40
    32
and thereafter the program code can be made efficient by small modifications. 
alpar@40
    33
alpar@40
    34
The most efficient implementation of diverse applications require the
alpar@40
    35
usage of different physical graph implementations. These differences
alpar@40
    36
appear in the size of graph we require to handle, memory or time usage
alpar@40
    37
limitations or in the set of operations through which the graph can be
alpar@40
    38
accessed.  LEMON provides several physical graph structures to meet
alpar@40
    39
the diverging requirements of the possible users.  In order to save on
alpar@40
    40
running time or on memory usage, some structures may fail to provide
alpar@40
    41
some graph features like edge or node deletion.
alpar@40
    42
alpar@40
    43
Alteration of standard containers need a very limited number of 
alpar@40
    44
operations, these together satisfy the everyday requirements. 
alpar@40
    45
In the case of graph structures, different operations are needed which do 
alpar@40
    46
not alter the physical graph, but gives another view. If some nodes or 
alpar@40
    47
edges have to be hidden or the reverse oriented graph have to be used, then 
alpar@40
    48
this is the case. It also may happen that in a flow implementation 
alpar@40
    49
the residual graph can be accessed by another algorithm, or a node-set 
alpar@40
    50
is to be shrunk for another algorithm. 
alpar@40
    51
LEMON also provides a variety of graphs for these requirements called 
alpar@40
    52
\ref graph_adaptors "graph adaptors". Adaptors cannot be used alone but only 
alpar@40
    53
in conjunction with other graph representation. 
alpar@40
    54
alpar@40
    55
You are free to use the graph structure that fit your requirements
alpar@40
    56
the best, most graph algorithms and auxiliary data structures can be used
alpar@40
    57
with any graph structures. 
alpar@40
    58
*/
alpar@40
    59
alpar@40
    60
/**
alpar@40
    61
@defgroup semi_adaptors Semi-Adaptors Classes for Graphs
alpar@40
    62
@ingroup graphs
alpar@40
    63
\brief Graph types between real graphs and graph adaptors.
alpar@40
    64
alpar@40
    65
Graph types between real graphs and graph adaptors. These classes wrap
alpar@40
    66
graphs to give new functionality as the adaptors do it. On the other
alpar@40
    67
hand they are not light-weight structures as the adaptors.
alpar@40
    68
*/
alpar@40
    69
alpar@40
    70
/**
alpar@40
    71
@defgroup maps Maps 
alpar@40
    72
@ingroup datas
alpar@40
    73
\brief Some special purpose map to make life easier.
alpar@40
    74
alpar@40
    75
LEMON provides several special maps that e.g. combine
alpar@40
    76
new maps from existing ones.
alpar@40
    77
*/
alpar@40
    78
alpar@40
    79
/**
alpar@40
    80
@defgroup graph_maps Graph Maps 
alpar@40
    81
@ingroup maps
alpar@40
    82
\brief Special Graph-Related Maps.
alpar@40
    83
alpar@40
    84
These maps are specifically designed to assign values to the nodes and edges of
alpar@40
    85
graphs.
alpar@40
    86
*/
alpar@40
    87
alpar@40
    88
alpar@40
    89
/**
alpar@40
    90
\defgroup map_adaptors Map Adaptors
alpar@40
    91
\ingroup maps
alpar@40
    92
\brief Tools to create new maps from existing ones
alpar@40
    93
alpar@40
    94
Map adaptors are used to create "implicit" maps from other maps.
alpar@40
    95
alpar@40
    96
Most of them are \ref lemon::concepts::ReadMap "ReadMap"s. They can
alpar@40
    97
make arithmetic operations between one or two maps (negation, scaling,
alpar@40
    98
addition, multiplication etc.) or e.g. convert a map to another one
alpar@40
    99
of different Value type.
alpar@40
   100
alpar@40
   101
The typical usage of this classes is the passing implicit maps to
alpar@40
   102
algorithms.  If a function type algorithm is called then the function
alpar@40
   103
type map adaptors can be used comfortable. For example let's see the
alpar@40
   104
usage of map adaptors with the \c graphToEps() function:
alpar@40
   105
\code
alpar@40
   106
  Color nodeColor(int deg) {
alpar@40
   107
    if (deg >= 2) {
alpar@40
   108
      return Color(0.5, 0.0, 0.5);
alpar@40
   109
    } else if (deg == 1) {
alpar@40
   110
      return Color(1.0, 0.5, 1.0);
alpar@40
   111
    } else {
alpar@40
   112
      return Color(0.0, 0.0, 0.0);
alpar@40
   113
    }
alpar@40
   114
  }
alpar@40
   115
  
alpar@40
   116
  Graph::NodeMap<int> degree_map(graph);
alpar@40
   117
  
alpar@40
   118
  graphToEps(graph, "graph.eps")
alpar@40
   119
    .coords(coords).scaleToA4().undirected()
alpar@40
   120
    .nodeColors(composeMap(functorMap(nodeColor), degree_map)) 
alpar@40
   121
    .run();
alpar@40
   122
\endcode 
alpar@40
   123
The \c functorMap() function makes an \c int to \c Color map from the
alpar@40
   124
\e nodeColor() function. The \c composeMap() compose the \e degree_map
alpar@40
   125
and the previous created map. The composed map is proper function to
alpar@40
   126
get color of each node.
alpar@40
   127
alpar@40
   128
The usage with class type algorithms is little bit harder. In this
alpar@40
   129
case the function type map adaptors can not be used, because the
alpar@40
   130
function map adaptors give back temporarly objects.
alpar@40
   131
\code
alpar@40
   132
  Graph graph;
alpar@40
   133
  
alpar@40
   134
  typedef Graph::EdgeMap<double> DoubleEdgeMap;
alpar@40
   135
  DoubleEdgeMap length(graph);
alpar@40
   136
  DoubleEdgeMap speed(graph);
alpar@40
   137
  
alpar@40
   138
  typedef DivMap<DoubleEdgeMap, DoubleEdgeMap> TimeMap;
alpar@40
   139
  
alpar@40
   140
  TimeMap time(length, speed);
alpar@40
   141
  
alpar@40
   142
  Dijkstra<Graph, TimeMap> dijkstra(graph, time);
alpar@40
   143
  dijkstra.run(source, target);
alpar@40
   144
\endcode
alpar@40
   145
alpar@40
   146
We have a length map and a maximum speed map on a graph. The minimum
alpar@40
   147
time to pass the edge can be calculated as the division of the two
alpar@40
   148
maps which can be done implicitly with the \c DivMap template
alpar@40
   149
class. We use the implicit minimum time map as the length map of the
alpar@40
   150
\c Dijkstra algorithm.
alpar@40
   151
*/
alpar@40
   152
alpar@40
   153
/**
alpar@40
   154
@defgroup matrices Matrices 
alpar@40
   155
@ingroup datas
alpar@40
   156
\brief Two dimensional data storages.
alpar@40
   157
alpar@40
   158
Two dimensional data storages.
alpar@40
   159
*/
alpar@40
   160
alpar@40
   161
/**
alpar@40
   162
@defgroup paths Path Structures
alpar@40
   163
@ingroup datas
alpar@40
   164
\brief Path structures implemented in LEMON.
alpar@40
   165
alpar@40
   166
LEMON provides flexible data structures
alpar@40
   167
to work with paths.
alpar@40
   168
alpar@40
   169
All of them have similar interfaces, and it can be copied easily with
alpar@40
   170
assignment operator and copy constructor. This make it easy and
alpar@40
   171
efficient to have e.g. the Dijkstra algorithm to store its result in
alpar@40
   172
any kind of path structure.
alpar@40
   173
alpar@40
   174
\sa lemon::concepts::Path
alpar@40
   175
alpar@40
   176
*/
alpar@40
   177
alpar@40
   178
/**
alpar@40
   179
@defgroup auxdat Auxiliary Data Structures
alpar@40
   180
@ingroup datas
alpar@40
   181
\brief Some data structures implemented in LEMON.
alpar@40
   182
alpar@40
   183
This group describes the data structures implemented in LEMON in
alpar@40
   184
order to make it easier to implement combinatorial algorithms.
alpar@40
   185
*/
alpar@40
   186
alpar@40
   187
alpar@40
   188
/**
alpar@40
   189
@defgroup algs Algorithms
alpar@40
   190
\brief This group describes the several algorithms
alpar@40
   191
implemented in LEMON.
alpar@40
   192
alpar@40
   193
This group describes the several algorithms
alpar@40
   194
implemented in LEMON.
alpar@40
   195
*/
alpar@40
   196
alpar@40
   197
/**
alpar@40
   198
@defgroup search Graph Search
alpar@40
   199
@ingroup algs
alpar@40
   200
\brief This group contains the common graph
alpar@40
   201
search algorithms.
alpar@40
   202
alpar@40
   203
This group contains the common graph
alpar@40
   204
search algorithms like Bfs and Dfs.
alpar@40
   205
*/
alpar@40
   206
alpar@40
   207
/**
alpar@40
   208
@defgroup shortest_path Shortest Path algorithms
alpar@40
   209
@ingroup algs
alpar@40
   210
\brief This group describes the algorithms
alpar@40
   211
for finding shortest paths.
alpar@40
   212
alpar@40
   213
This group describes the algorithms for finding shortest paths in
alpar@40
   214
graphs.
alpar@40
   215
alpar@40
   216
*/
alpar@40
   217
alpar@40
   218
/** 
alpar@40
   219
@defgroup max_flow Maximum Flow algorithms 
alpar@40
   220
@ingroup algs 
alpar@40
   221
\brief This group describes the algorithms for finding maximum flows.
alpar@40
   222
alpar@40
   223
This group describes the algorithms for finding maximum flows and
alpar@40
   224
feasible circulations.
alpar@40
   225
alpar@40
   226
The maximum flow problem is to find a flow between a single-source and
alpar@40
   227
single-target that is maximum. Formally, there is \f$G=(V,A)\f$
alpar@40
   228
directed graph, an \f$c_a:A\rightarrow\mathbf{R}^+_0\f$ capacity
alpar@40
   229
function and given \f$s, t \in V\f$ source and target node. The
alpar@40
   230
maximum flow is the solution of the next optimization problem:
alpar@40
   231
alpar@40
   232
\f[ 0 \le f_a \le c_a \f]
alpar@40
   233
\f[ \sum_{v\in\delta^{-}(u)}f_{vu}=\sum_{v\in\delta^{+}(u)}f_{uv} \quad u \in V \setminus \{s,t\}\f]
alpar@40
   234
\f[ \max \sum_{v\in\delta^{+}(s)}f_{uv} - \sum_{v\in\delta^{-}(s)}f_{vu}\f]
alpar@40
   235
alpar@40
   236
The lemon contains several algorithms for solve maximum flow problems:
alpar@40
   237
- \ref lemon::EdmondsKarp "Edmonds-Karp" 
alpar@40
   238
- \ref lemon::Preflow "Goldberg's Preflow algorithm"
alpar@40
   239
- \ref lemon::DinitzSleatorTarjan "Dinitz's blocking flow algorithm with dynamic tree"
alpar@40
   240
- \ref lemon::GoldbergTarjan "Preflow algorithm with dynamic trees"
alpar@40
   241
alpar@40
   242
In most cases the \ref lemon::Preflow "preflow" algorithm provides the
alpar@40
   243
fastest method to compute the maximum flow. All impelementations
alpar@40
   244
provides functions for query the minimum cut, which is the dual linear
alpar@40
   245
programming probelm of the maximum flow.
alpar@40
   246
alpar@40
   247
*/
alpar@40
   248
alpar@40
   249
/**
alpar@40
   250
@defgroup min_cost_flow Minimum Cost Flow algorithms
alpar@40
   251
@ingroup algs
alpar@40
   252
alpar@40
   253
\brief This group describes the algorithms
alpar@40
   254
for finding minimum cost flows and circulations.
alpar@40
   255
alpar@40
   256
This group describes the algorithms for finding minimum cost flows and
alpar@40
   257
circulations.  
alpar@40
   258
*/
alpar@40
   259
alpar@40
   260
/**
alpar@40
   261
@defgroup min_cut Minimum Cut algorithms 
alpar@40
   262
@ingroup algs 
alpar@40
   263
alpar@40
   264
\brief This group describes the algorithms for finding minimum cut in
alpar@40
   265
graphs.
alpar@40
   266
alpar@40
   267
This group describes the algorithms for finding minimum cut in graphs.
alpar@40
   268
alpar@40
   269
The minimum cut problem is to find a non-empty and non-complete
alpar@40
   270
\f$X\f$ subset of the vertices with minimum overall capacity on
alpar@40
   271
outgoing arcs. Formally, there is \f$G=(V,A)\f$ directed graph, an
alpar@40
   272
\f$c_a:A\rightarrow\mathbf{R}^+_0\f$ capacity function. The minimum
alpar@40
   273
cut is the solution of the next optimization problem:
alpar@40
   274
alpar@40
   275
\f[ \min_{X \subset V, X\not\in \{\emptyset, V\}}\sum_{uv\in A, u\in X, v\not\in X}c_{uv}\f]
alpar@40
   276
alpar@40
   277
The lemon contains several algorithms related to minimum cut problems:
alpar@40
   278
alpar@40
   279
- \ref lemon::HaoOrlin "Hao-Orlin algorithm" for calculate minimum cut
alpar@40
   280
  in directed graphs  
alpar@40
   281
- \ref lemon::NagamochiIbaraki "Nagamochi-Ibaraki algorithm" for
alpar@40
   282
  calculate minimum cut in undirected graphs
alpar@40
   283
- \ref lemon::GomoryHuTree "Gomory-Hu tree computation" for calculate all
alpar@40
   284
  pairs minimum cut in undirected graphs
alpar@40
   285
alpar@40
   286
If you want to find minimum cut just between two distinict nodes,
alpar@40
   287
please see the \ref max_flow "Maximum Flow page".
alpar@40
   288
alpar@40
   289
*/
alpar@40
   290
alpar@40
   291
/**
alpar@40
   292
@defgroup graph_prop Connectivity and other graph properties
alpar@40
   293
@ingroup algs
alpar@40
   294
\brief This group describes the algorithms
alpar@40
   295
for discover the graph properties
alpar@40
   296
alpar@40
   297
This group describes the algorithms for discover the graph properties
alpar@40
   298
like connectivity, bipartiteness, euler property, simplicity, etc...
alpar@40
   299
alpar@40
   300
\image html edge_biconnected_components.png
alpar@40
   301
\image latex edge_biconnected_components.eps "bi-edge-connected components" width=\textwidth
alpar@40
   302
*/
alpar@40
   303
alpar@40
   304
/**
alpar@40
   305
@defgroup planar Planarity embedding and drawing
alpar@40
   306
@ingroup algs
alpar@40
   307
\brief This group contains algorithms for planarity embedding and drawing
alpar@40
   308
alpar@40
   309
This group contains algorithms for planarity checking, embedding and drawing.
alpar@40
   310
alpar@40
   311
\image html planar.png
alpar@40
   312
\image latex planar.eps "Plane graph" width=\textwidth
alpar@40
   313
*/
alpar@40
   314
alpar@40
   315
/**
alpar@40
   316
@defgroup matching Matching algorithms 
alpar@40
   317
@ingroup algs
alpar@40
   318
\brief This group describes the algorithms
alpar@40
   319
for find matchings in graphs and bipartite graphs.
alpar@40
   320
alpar@40
   321
This group provides some algorithm objects and function to calculate
alpar@40
   322
matchings in graphs and bipartite graphs. The general matching problem is
alpar@40
   323
finding a subset of the edges which does not shares common endpoints.
alpar@40
   324
 
alpar@40
   325
There are several different algorithms for calculate matchings in
alpar@40
   326
graphs.  The matching problems in bipartite graphs are generally
alpar@40
   327
easier than in general graphs. The goal of the matching optimization
alpar@40
   328
can be the finding maximum cardinality, maximum weight or minimum cost
alpar@40
   329
matching. The search can be constrained to find perfect or
alpar@40
   330
maximum cardinality matching.
alpar@40
   331
alpar@40
   332
Lemon contains the next algorithms:
alpar@40
   333
- \ref lemon::MaxBipartiteMatching "MaxBipartiteMatching" Hopcroft-Karp 
alpar@40
   334
  augmenting path algorithm for calculate maximum cardinality matching in 
alpar@40
   335
  bipartite graphs
alpar@40
   336
- \ref lemon::PrBipartiteMatching "PrBipartiteMatching" Push-Relabel 
alpar@40
   337
  algorithm for calculate maximum cardinality matching in bipartite graphs 
alpar@40
   338
- \ref lemon::MaxWeightedBipartiteMatching "MaxWeightedBipartiteMatching" 
alpar@40
   339
  Successive shortest path algorithm for calculate maximum weighted matching 
alpar@40
   340
  and maximum weighted bipartite matching in bipartite graph
alpar@40
   341
- \ref lemon::MinCostMaxBipartiteMatching "MinCostMaxBipartiteMatching" 
alpar@40
   342
  Successive shortest path algorithm for calculate minimum cost maximum 
alpar@40
   343
  matching in bipartite graph
alpar@40
   344
- \ref lemon::MaxMatching "MaxMatching" Edmond's blossom shrinking algorithm
alpar@40
   345
  for calculate maximum cardinality matching in general graph
alpar@40
   346
- \ref lemon::MaxWeightedMatching "MaxWeightedMatching" Edmond's blossom
alpar@40
   347
  shrinking algorithm for calculate maximum weighted matching in general
alpar@40
   348
  graph
alpar@40
   349
- \ref lemon::MaxWeightedPerfectMatching "MaxWeightedPerfectMatching"
alpar@40
   350
  Edmond's blossom shrinking algorithm for calculate maximum weighted
alpar@40
   351
  perfect matching in general graph
alpar@40
   352
alpar@40
   353
\image html bipartite_matching.png
alpar@40
   354
\image latex bipartite_matching.eps "Bipartite Matching" width=\textwidth
alpar@40
   355
alpar@40
   356
*/
alpar@40
   357
alpar@40
   358
/**
alpar@40
   359
@defgroup spantree Minimum Spanning Tree algorithms
alpar@40
   360
@ingroup algs
alpar@40
   361
\brief This group contains the algorithms for finding a minimum cost spanning
alpar@40
   362
tree in a graph
alpar@40
   363
alpar@40
   364
This group contains the algorithms for finding a minimum cost spanning
alpar@40
   365
tree in a graph
alpar@40
   366
*/
alpar@40
   367
alpar@40
   368
alpar@40
   369
/**
alpar@40
   370
@defgroup auxalg Auxiliary algorithms
alpar@40
   371
@ingroup algs
alpar@40
   372
\brief Some algorithms implemented in LEMON.
alpar@40
   373
alpar@40
   374
This group describes the algorithms in LEMON in order to make 
alpar@40
   375
it easier to implement complex algorithms.
alpar@40
   376
*/
alpar@40
   377
alpar@40
   378
/**
alpar@40
   379
@defgroup approx Approximation algorithms
alpar@40
   380
\brief Approximation algorithms
alpar@40
   381
alpar@40
   382
Approximation and heuristic algorithms
alpar@40
   383
*/
alpar@40
   384
alpar@40
   385
/**
alpar@40
   386
@defgroup gen_opt_group General Optimization Tools
alpar@40
   387
\brief This group describes some general optimization frameworks
alpar@40
   388
implemented in LEMON.
alpar@40
   389
alpar@40
   390
This group describes some general optimization frameworks
alpar@40
   391
implemented in LEMON.
alpar@40
   392
alpar@40
   393
*/
alpar@40
   394
alpar@40
   395
/**
alpar@40
   396
@defgroup lp_group Lp and Mip solvers
alpar@40
   397
@ingroup gen_opt_group
alpar@40
   398
\brief Lp and Mip solver interfaces for LEMON.
alpar@40
   399
alpar@40
   400
This group describes Lp and Mip solver interfaces for LEMON. The
alpar@40
   401
various LP solvers could be used in the same manner with this
alpar@40
   402
interface.
alpar@40
   403
alpar@40
   404
*/
alpar@40
   405
alpar@40
   406
/** 
alpar@40
   407
@defgroup lp_utils Tools for Lp and Mip solvers 
alpar@40
   408
@ingroup lp_group
alpar@40
   409
\brief This group adds some helper tools to the Lp and Mip solvers
alpar@40
   410
implemented in LEMON.
alpar@40
   411
alpar@40
   412
This group adds some helper tools to general optimization framework
alpar@40
   413
implemented in LEMON.
alpar@40
   414
*/
alpar@40
   415
alpar@40
   416
/**
alpar@40
   417
@defgroup metah Metaheuristics
alpar@40
   418
@ingroup gen_opt_group
alpar@40
   419
\brief Metaheuristics for LEMON library.
alpar@40
   420
alpar@40
   421
This group contains some metaheuristic optimization tools.
alpar@40
   422
*/
alpar@40
   423
alpar@40
   424
/**
alpar@40
   425
@defgroup utils Tools and Utilities 
alpar@40
   426
\brief Tools and Utilities for Programming in LEMON
alpar@40
   427
alpar@40
   428
Tools and Utilities for Programming in LEMON
alpar@40
   429
*/
alpar@40
   430
alpar@40
   431
/**
alpar@40
   432
@defgroup gutils Basic Graph Utilities
alpar@40
   433
@ingroup utils
alpar@40
   434
\brief This group describes some simple basic graph utilities.
alpar@40
   435
alpar@40
   436
This group describes some simple basic graph utilities.
alpar@40
   437
*/
alpar@40
   438
alpar@40
   439
/**
alpar@40
   440
@defgroup misc Miscellaneous Tools
alpar@40
   441
@ingroup utils
alpar@40
   442
Here you can find several useful tools for development,
alpar@40
   443
debugging and testing.
alpar@40
   444
*/
alpar@40
   445
alpar@40
   446
alpar@40
   447
/**
alpar@40
   448
@defgroup timecount Time measuring and Counting
alpar@40
   449
@ingroup misc
alpar@40
   450
Here you can find simple tools for measuring the performance
alpar@40
   451
of algorithms.
alpar@40
   452
*/
alpar@40
   453
alpar@40
   454
/**
alpar@40
   455
@defgroup graphbits Tools for Graph Implementation
alpar@40
   456
@ingroup utils
alpar@40
   457
\brief Tools to Make It Easier to Make Graphs.
alpar@40
   458
alpar@40
   459
This group describes the tools that makes it easier to make graphs and
alpar@40
   460
the maps that dynamically update with the graph changes.
alpar@40
   461
*/
alpar@40
   462
alpar@40
   463
/**
alpar@40
   464
@defgroup exceptions Exceptions
alpar@40
   465
@ingroup utils
alpar@40
   466
This group contains the exceptions thrown by LEMON library
alpar@40
   467
*/
alpar@40
   468
alpar@40
   469
/**
alpar@40
   470
@defgroup io_group Input-Output
alpar@40
   471
\brief Several Graph Input-Output methods
alpar@40
   472
alpar@40
   473
Here you can find tools for importing and exporting graphs 
alpar@40
   474
and graph related data. Now it supports the LEMON format, the
alpar@40
   475
\c DIMACS format and the encapsulated postscript format.
alpar@40
   476
*/
alpar@40
   477
alpar@40
   478
/**
alpar@40
   479
@defgroup lemon_io Lemon Input-Output
alpar@40
   480
@ingroup io_group
alpar@40
   481
\brief Reading and writing LEMON format
alpar@40
   482
alpar@40
   483
Methods for reading and writing LEMON format. More about this
alpar@40
   484
format you can find on the \ref graph-io-page "Graph Input-Output"
alpar@40
   485
tutorial pages.
alpar@40
   486
*/
alpar@40
   487
alpar@40
   488
/**
alpar@40
   489
@defgroup section_io Section readers and writers
alpar@40
   490
@ingroup lemon_io
alpar@40
   491
\brief Section readers and writers for lemon Input-Output.
alpar@40
   492
alpar@40
   493
Here you can find which section readers and writers can attach to
alpar@40
   494
the LemonReader and LemonWriter.
alpar@40
   495
*/
alpar@40
   496
alpar@40
   497
/**
alpar@40
   498
@defgroup item_io Item Readers and Writers
alpar@40
   499
@ingroup lemon_io
alpar@40
   500
\brief Item readers and writers for lemon Input-Output.
alpar@40
   501
alpar@40
   502
The Input-Output classes can handle more data type by example
alpar@40
   503
as map or attribute value. Each of these should be written and
alpar@40
   504
read some way. The module make possible to do this.  
alpar@40
   505
*/
alpar@40
   506
alpar@40
   507
/**
alpar@40
   508
@defgroup eps_io Postscript exporting
alpar@40
   509
@ingroup io_group
alpar@40
   510
\brief General \c EPS drawer and graph exporter
alpar@40
   511
alpar@40
   512
This group contains general \c EPS drawing methods and special
alpar@40
   513
graph exporting tools. 
alpar@40
   514
*/
alpar@40
   515
alpar@40
   516
alpar@40
   517
/**
alpar@40
   518
@defgroup concept Concepts
alpar@40
   519
\brief Skeleton classes and concept checking classes
alpar@40
   520
alpar@40
   521
This group describes the data/algorithm skeletons and concept checking
alpar@40
   522
classes implemented in LEMON.
alpar@40
   523
alpar@40
   524
The purpose of the classes in this group is fourfold.
alpar@40
   525
 
alpar@40
   526
- These classes contain the documentations of the concepts. In order
alpar@40
   527
  to avoid document multiplications, an implementation of a concept
alpar@40
   528
  simply refers to the corresponding concept class.
alpar@40
   529
alpar@40
   530
- These classes declare every functions, <tt>typedef</tt>s etc. an
alpar@40
   531
  implementation of the concepts should provide, however completely
alpar@40
   532
  without implementations and real data structures behind the
alpar@40
   533
  interface. On the other hand they should provide nothing else. All
alpar@40
   534
  the algorithms working on a data structure meeting a certain concept
alpar@40
   535
  should compile with these classes. (Though it will not run properly,
alpar@40
   536
  of course.) In this way it is easily to check if an algorithm
alpar@40
   537
  doesn't use any extra feature of a certain implementation.
alpar@40
   538
alpar@40
   539
- The concept descriptor classes also provide a <em>checker class</em>
alpar@40
   540
  that makes it possible check whether a certain implementation of a
alpar@40
   541
  concept indeed provides all the required features.
alpar@40
   542
alpar@40
   543
- Finally, They can serve as a skeleton of a new implementation of a concept.
alpar@40
   544
alpar@40
   545
*/
alpar@40
   546
alpar@40
   547
alpar@40
   548
/**
alpar@40
   549
@defgroup graph_concepts Graph Structure Concepts
alpar@40
   550
@ingroup concept
alpar@40
   551
\brief Skeleton and concept checking classes for graph structures
alpar@40
   552
alpar@40
   553
This group contains the skeletons and concept checking classes of LEMON's
alpar@40
   554
graph structures and helper classes used to implement these.
alpar@40
   555
*/
alpar@40
   556
alpar@40
   557
/* --- Unused group
alpar@40
   558
@defgroup experimental Experimental Structures and Algorithms
alpar@40
   559
This group contains some Experimental structures and algorithms.
alpar@40
   560
The stuff here is subject to change.
alpar@40
   561
*/
alpar@40
   562
alpar@40
   563
/**
alpar@40
   564
\anchor demoprograms
alpar@40
   565
alpar@40
   566
@defgroup demos Demo programs
alpar@40
   567
alpar@40
   568
Some demo programs are listed here. Their full source codes can be found in
alpar@40
   569
the \c demo subdirectory of the source tree.
alpar@40
   570
alpar@41
   571
It order to compile them, use <tt>--enable-demo</tt> configure option when
alpar@41
   572
build the library.
alpar@40
   573
alpar@40
   574
*/
alpar@40
   575
alpar@40
   576
/**
alpar@40
   577
@defgroup tools Standalone utility applications
alpar@40
   578
alpar@40
   579
Some utility applications are listed here. 
alpar@40
   580
alpar@40
   581
The standard compilation procedure (<tt>./configure;make</tt>) will compile
alpar@40
   582
them, as well. 
alpar@40
   583
alpar@40
   584
*/
alpar@40
   585