test/connectivity_test.cc
author Alpar Juttner <alpar@cs.elte.hu>
Wed, 07 Nov 2012 18:10:07 +0100
branch1.1
changeset 795 b78a46fe8002
parent 761 f1398882a928
parent 792 761fe0846f49
child 808 bdfc038f364c
permissions -rw-r--r--
Merge bugfix #440 to branch 1.1
kpeter@647
     1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
kpeter@647
     2
 *
kpeter@647
     3
 * This file is a part of LEMON, a generic C++ optimization library.
kpeter@647
     4
 *
alpar@761
     5
 * Copyright (C) 2003-2011
kpeter@647
     6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
kpeter@647
     7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
kpeter@647
     8
 *
kpeter@647
     9
 * Permission to use, modify and distribute this software is granted
kpeter@647
    10
 * provided that this copyright notice appears in all copies. For
kpeter@647
    11
 * precise terms see the accompanying LICENSE file.
kpeter@647
    12
 *
kpeter@647
    13
 * This software is provided "AS IS" with no warranty of any kind,
kpeter@647
    14
 * express or implied, and with no claim as to its suitability for any
kpeter@647
    15
 * purpose.
kpeter@647
    16
 *
kpeter@647
    17
 */
kpeter@647
    18
kpeter@647
    19
#include <lemon/connectivity.h>
kpeter@647
    20
#include <lemon/list_graph.h>
kpeter@647
    21
#include <lemon/adaptors.h>
kpeter@647
    22
kpeter@647
    23
#include "test_tools.h"
kpeter@647
    24
kpeter@647
    25
using namespace lemon;
kpeter@647
    26
kpeter@647
    27
kpeter@647
    28
int main()
kpeter@647
    29
{
kpeter@647
    30
  typedef ListDigraph Digraph;
kpeter@647
    31
  typedef Undirector<Digraph> Graph;
alpar@761
    32
kpeter@647
    33
  {
kpeter@647
    34
    Digraph d;
kpeter@647
    35
    Digraph::NodeMap<int> order(d);
kpeter@647
    36
    Graph g(d);
alpar@761
    37
kpeter@647
    38
    check(stronglyConnected(d), "The empty digraph is strongly connected");
kpeter@647
    39
    check(countStronglyConnectedComponents(d) == 0,
kpeter@647
    40
          "The empty digraph has 0 strongly connected component");
kpeter@647
    41
    check(connected(g), "The empty graph is connected");
kpeter@647
    42
    check(countConnectedComponents(g) == 0,
kpeter@647
    43
          "The empty graph has 0 connected component");
kpeter@647
    44
kpeter@647
    45
    check(biNodeConnected(g), "The empty graph is bi-node-connected");
kpeter@647
    46
    check(countBiNodeConnectedComponents(g) == 0,
kpeter@647
    47
          "The empty graph has 0 bi-node-connected component");
kpeter@647
    48
    check(biEdgeConnected(g), "The empty graph is bi-edge-connected");
kpeter@647
    49
    check(countBiEdgeConnectedComponents(g) == 0,
kpeter@647
    50
          "The empty graph has 0 bi-edge-connected component");
alpar@761
    51
kpeter@647
    52
    check(dag(d), "The empty digraph is DAG.");
kpeter@647
    53
    check(checkedTopologicalSort(d, order), "The empty digraph is DAG.");
kpeter@647
    54
    check(loopFree(d), "The empty digraph is loop-free.");
kpeter@647
    55
    check(parallelFree(d), "The empty digraph is parallel-free.");
kpeter@647
    56
    check(simpleGraph(d), "The empty digraph is simple.");
kpeter@647
    57
kpeter@647
    58
    check(acyclic(g), "The empty graph is acyclic.");
kpeter@647
    59
    check(tree(g), "The empty graph is tree.");
kpeter@647
    60
    check(bipartite(g), "The empty graph is bipartite.");
kpeter@647
    61
    check(loopFree(g), "The empty graph is loop-free.");
kpeter@647
    62
    check(parallelFree(g), "The empty graph is parallel-free.");
kpeter@647
    63
    check(simpleGraph(g), "The empty graph is simple.");
kpeter@647
    64
  }
kpeter@647
    65
kpeter@647
    66
  {
kpeter@647
    67
    Digraph d;
kpeter@647
    68
    Digraph::NodeMap<int> order(d);
kpeter@647
    69
    Graph g(d);
kpeter@647
    70
    Digraph::Node n = d.addNode();
alpar@792
    71
    ignore_unused_variable_warning(n);
kpeter@647
    72
kpeter@647
    73
    check(stronglyConnected(d), "This digraph is strongly connected");
kpeter@647
    74
    check(countStronglyConnectedComponents(d) == 1,
kpeter@647
    75
          "This digraph has 1 strongly connected component");
kpeter@647
    76
    check(connected(g), "This graph is connected");
kpeter@647
    77
    check(countConnectedComponents(g) == 1,
kpeter@647
    78
          "This graph has 1 connected component");
kpeter@647
    79
kpeter@647
    80
    check(biNodeConnected(g), "This graph is bi-node-connected");
kpeter@647
    81
    check(countBiNodeConnectedComponents(g) == 0,
kpeter@647
    82
          "This graph has 0 bi-node-connected component");
kpeter@647
    83
    check(biEdgeConnected(g), "This graph is bi-edge-connected");
kpeter@647
    84
    check(countBiEdgeConnectedComponents(g) == 1,
kpeter@647
    85
          "This graph has 1 bi-edge-connected component");
alpar@761
    86
kpeter@647
    87
    check(dag(d), "This digraph is DAG.");
kpeter@647
    88
    check(checkedTopologicalSort(d, order), "This digraph is DAG.");
kpeter@647
    89
    check(loopFree(d), "This digraph is loop-free.");
kpeter@647
    90
    check(parallelFree(d), "This digraph is parallel-free.");
kpeter@647
    91
    check(simpleGraph(d), "This digraph is simple.");
kpeter@647
    92
kpeter@647
    93
    check(acyclic(g), "This graph is acyclic.");
kpeter@647
    94
    check(tree(g), "This graph is tree.");
kpeter@647
    95
    check(bipartite(g), "This graph is bipartite.");
kpeter@647
    96
    check(loopFree(g), "This graph is loop-free.");
kpeter@647
    97
    check(parallelFree(g), "This graph is parallel-free.");
kpeter@647
    98
    check(simpleGraph(g), "This graph is simple.");
kpeter@647
    99
  }
kpeter@647
   100
kpeter@647
   101
  {
kpeter@647
   102
    Digraph d;
kpeter@647
   103
    Digraph::NodeMap<int> order(d);
kpeter@647
   104
    Graph g(d);
alpar@761
   105
kpeter@647
   106
    Digraph::Node n1 = d.addNode();
kpeter@647
   107
    Digraph::Node n2 = d.addNode();
kpeter@647
   108
    Digraph::Node n3 = d.addNode();
kpeter@647
   109
    Digraph::Node n4 = d.addNode();
kpeter@647
   110
    Digraph::Node n5 = d.addNode();
kpeter@647
   111
    Digraph::Node n6 = d.addNode();
alpar@761
   112
kpeter@647
   113
    d.addArc(n1, n3);
kpeter@647
   114
    d.addArc(n3, n2);
kpeter@647
   115
    d.addArc(n2, n1);
kpeter@647
   116
    d.addArc(n4, n2);
kpeter@647
   117
    d.addArc(n4, n3);
kpeter@647
   118
    d.addArc(n5, n6);
kpeter@647
   119
    d.addArc(n6, n5);
kpeter@647
   120
kpeter@647
   121
    check(!stronglyConnected(d), "This digraph is not strongly connected");
kpeter@647
   122
    check(countStronglyConnectedComponents(d) == 3,
kpeter@647
   123
          "This digraph has 3 strongly connected components");
kpeter@647
   124
    check(!connected(g), "This graph is not connected");
kpeter@647
   125
    check(countConnectedComponents(g) == 2,
kpeter@647
   126
          "This graph has 2 connected components");
kpeter@647
   127
kpeter@647
   128
    check(!dag(d), "This digraph is not DAG.");
kpeter@647
   129
    check(!checkedTopologicalSort(d, order), "This digraph is not DAG.");
kpeter@647
   130
    check(loopFree(d), "This digraph is loop-free.");
kpeter@647
   131
    check(parallelFree(d), "This digraph is parallel-free.");
kpeter@647
   132
    check(simpleGraph(d), "This digraph is simple.");
kpeter@647
   133
kpeter@647
   134
    check(!acyclic(g), "This graph is not acyclic.");
kpeter@647
   135
    check(!tree(g), "This graph is not tree.");
kpeter@647
   136
    check(!bipartite(g), "This graph is not bipartite.");
kpeter@647
   137
    check(loopFree(g), "This graph is loop-free.");
kpeter@647
   138
    check(!parallelFree(g), "This graph is not parallel-free.");
kpeter@647
   139
    check(!simpleGraph(g), "This graph is not simple.");
alpar@761
   140
kpeter@647
   141
    d.addArc(n3, n3);
alpar@761
   142
kpeter@647
   143
    check(!loopFree(d), "This digraph is not loop-free.");
kpeter@647
   144
    check(!loopFree(g), "This graph is not loop-free.");
kpeter@647
   145
    check(!simpleGraph(d), "This digraph is not simple.");
alpar@761
   146
kpeter@647
   147
    d.addArc(n3, n2);
alpar@761
   148
kpeter@647
   149
    check(!parallelFree(d), "This digraph is not parallel-free.");
kpeter@647
   150
  }
alpar@761
   151
kpeter@647
   152
  {
kpeter@647
   153
    Digraph d;
kpeter@647
   154
    Digraph::ArcMap<bool> cutarcs(d, false);
kpeter@647
   155
    Graph g(d);
alpar@761
   156
kpeter@647
   157
    Digraph::Node n1 = d.addNode();
kpeter@647
   158
    Digraph::Node n2 = d.addNode();
kpeter@647
   159
    Digraph::Node n3 = d.addNode();
kpeter@647
   160
    Digraph::Node n4 = d.addNode();
kpeter@647
   161
    Digraph::Node n5 = d.addNode();
kpeter@647
   162
    Digraph::Node n6 = d.addNode();
kpeter@647
   163
    Digraph::Node n7 = d.addNode();
kpeter@647
   164
    Digraph::Node n8 = d.addNode();
kpeter@647
   165
kpeter@647
   166
    d.addArc(n1, n2);
kpeter@647
   167
    d.addArc(n5, n1);
kpeter@647
   168
    d.addArc(n2, n8);
kpeter@647
   169
    d.addArc(n8, n5);
kpeter@647
   170
    d.addArc(n6, n4);
kpeter@647
   171
    d.addArc(n4, n6);
kpeter@647
   172
    d.addArc(n2, n5);
kpeter@647
   173
    d.addArc(n1, n8);
kpeter@647
   174
    d.addArc(n6, n7);
kpeter@647
   175
    d.addArc(n7, n6);
alpar@761
   176
kpeter@647
   177
    check(!stronglyConnected(d), "This digraph is not strongly connected");
kpeter@647
   178
    check(countStronglyConnectedComponents(d) == 3,
kpeter@647
   179
          "This digraph has 3 strongly connected components");
kpeter@647
   180
    Digraph::NodeMap<int> scomp1(d);
kpeter@647
   181
    check(stronglyConnectedComponents(d, scomp1) == 3,
kpeter@647
   182
          "This digraph has 3 strongly connected components");
kpeter@647
   183
    check(scomp1[n1] != scomp1[n3] && scomp1[n1] != scomp1[n4] &&
kpeter@647
   184
          scomp1[n3] != scomp1[n4], "Wrong stronglyConnectedComponents()");
kpeter@647
   185
    check(scomp1[n1] == scomp1[n2] && scomp1[n1] == scomp1[n5] &&
kpeter@647
   186
          scomp1[n1] == scomp1[n8], "Wrong stronglyConnectedComponents()");
kpeter@647
   187
    check(scomp1[n4] == scomp1[n6] && scomp1[n4] == scomp1[n7],
kpeter@647
   188
          "Wrong stronglyConnectedComponents()");
kpeter@647
   189
    Digraph::ArcMap<bool> scut1(d, false);
kpeter@647
   190
    check(stronglyConnectedCutArcs(d, scut1) == 0,
kpeter@647
   191
          "This digraph has 0 strongly connected cut arc.");
kpeter@647
   192
    for (Digraph::ArcIt a(d); a != INVALID; ++a) {
kpeter@647
   193
      check(!scut1[a], "Wrong stronglyConnectedCutArcs()");
kpeter@647
   194
    }
kpeter@647
   195
kpeter@647
   196
    check(!connected(g), "This graph is not connected");
kpeter@647
   197
    check(countConnectedComponents(g) == 3,
kpeter@647
   198
          "This graph has 3 connected components");
kpeter@647
   199
    Graph::NodeMap<int> comp(g);
kpeter@647
   200
    check(connectedComponents(g, comp) == 3,
kpeter@647
   201
          "This graph has 3 connected components");
kpeter@647
   202
    check(comp[n1] != comp[n3] && comp[n1] != comp[n4] &&
kpeter@647
   203
          comp[n3] != comp[n4], "Wrong connectedComponents()");
kpeter@647
   204
    check(comp[n1] == comp[n2] && comp[n1] == comp[n5] &&
kpeter@647
   205
          comp[n1] == comp[n8], "Wrong connectedComponents()");
kpeter@647
   206
    check(comp[n4] == comp[n6] && comp[n4] == comp[n7],
kpeter@647
   207
          "Wrong connectedComponents()");
kpeter@647
   208
kpeter@647
   209
    cutarcs[d.addArc(n3, n1)] = true;
kpeter@647
   210
    cutarcs[d.addArc(n3, n5)] = true;
kpeter@647
   211
    cutarcs[d.addArc(n3, n8)] = true;
kpeter@647
   212
    cutarcs[d.addArc(n8, n6)] = true;
kpeter@647
   213
    cutarcs[d.addArc(n8, n7)] = true;
kpeter@647
   214
kpeter@647
   215
    check(!stronglyConnected(d), "This digraph is not strongly connected");
kpeter@647
   216
    check(countStronglyConnectedComponents(d) == 3,
kpeter@647
   217
          "This digraph has 3 strongly connected components");
kpeter@647
   218
    Digraph::NodeMap<int> scomp2(d);
kpeter@647
   219
    check(stronglyConnectedComponents(d, scomp2) == 3,
kpeter@647
   220
          "This digraph has 3 strongly connected components");
kpeter@647
   221
    check(scomp2[n3] == 0, "Wrong stronglyConnectedComponents()");
kpeter@647
   222
    check(scomp2[n1] == 1 && scomp2[n2] == 1 && scomp2[n5] == 1 &&
kpeter@647
   223
          scomp2[n8] == 1, "Wrong stronglyConnectedComponents()");
kpeter@647
   224
    check(scomp2[n4] == 2 && scomp2[n6] == 2 && scomp2[n7] == 2,
kpeter@647
   225
          "Wrong stronglyConnectedComponents()");
kpeter@647
   226
    Digraph::ArcMap<bool> scut2(d, false);
kpeter@647
   227
    check(stronglyConnectedCutArcs(d, scut2) == 5,
kpeter@647
   228
          "This digraph has 5 strongly connected cut arcs.");
kpeter@647
   229
    for (Digraph::ArcIt a(d); a != INVALID; ++a) {
kpeter@647
   230
      check(scut2[a] == cutarcs[a], "Wrong stronglyConnectedCutArcs()");
kpeter@647
   231
    }
kpeter@647
   232
  }
kpeter@647
   233
kpeter@647
   234
  {
kpeter@647
   235
    // DAG example for topological sort from the book New Algorithms
kpeter@647
   236
    // (T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein)
kpeter@647
   237
    Digraph d;
kpeter@647
   238
    Digraph::NodeMap<int> order(d);
alpar@761
   239
kpeter@647
   240
    Digraph::Node belt = d.addNode();
kpeter@647
   241
    Digraph::Node trousers = d.addNode();
kpeter@647
   242
    Digraph::Node necktie = d.addNode();
kpeter@647
   243
    Digraph::Node coat = d.addNode();
kpeter@647
   244
    Digraph::Node socks = d.addNode();
kpeter@647
   245
    Digraph::Node shirt = d.addNode();
kpeter@647
   246
    Digraph::Node shoe = d.addNode();
kpeter@647
   247
    Digraph::Node watch = d.addNode();
kpeter@647
   248
    Digraph::Node pants = d.addNode();
alpar@792
   249
    ignore_unused_variable_warning(watch);
kpeter@647
   250
kpeter@647
   251
    d.addArc(socks, shoe);
kpeter@647
   252
    d.addArc(pants, shoe);
kpeter@647
   253
    d.addArc(pants, trousers);
kpeter@647
   254
    d.addArc(trousers, shoe);
kpeter@647
   255
    d.addArc(trousers, belt);
kpeter@647
   256
    d.addArc(belt, coat);
kpeter@647
   257
    d.addArc(shirt, belt);
kpeter@647
   258
    d.addArc(shirt, necktie);
kpeter@647
   259
    d.addArc(necktie, coat);
alpar@761
   260
kpeter@647
   261
    check(dag(d), "This digraph is DAG.");
kpeter@647
   262
    topologicalSort(d, order);
kpeter@647
   263
    for (Digraph::ArcIt a(d); a != INVALID; ++a) {
kpeter@647
   264
      check(order[d.source(a)] < order[d.target(a)],
kpeter@647
   265
            "Wrong topologicalSort()");
kpeter@647
   266
    }
kpeter@647
   267
  }
kpeter@647
   268
kpeter@647
   269
  {
kpeter@647
   270
    ListGraph g;
kpeter@647
   271
    ListGraph::NodeMap<bool> map(g);
alpar@761
   272
kpeter@647
   273
    ListGraph::Node n1 = g.addNode();
kpeter@647
   274
    ListGraph::Node n2 = g.addNode();
kpeter@647
   275
    ListGraph::Node n3 = g.addNode();
kpeter@647
   276
    ListGraph::Node n4 = g.addNode();
kpeter@647
   277
    ListGraph::Node n5 = g.addNode();
kpeter@647
   278
    ListGraph::Node n6 = g.addNode();
kpeter@647
   279
    ListGraph::Node n7 = g.addNode();
kpeter@647
   280
kpeter@647
   281
    g.addEdge(n1, n3);
kpeter@647
   282
    g.addEdge(n1, n4);
kpeter@647
   283
    g.addEdge(n2, n5);
kpeter@647
   284
    g.addEdge(n3, n6);
kpeter@647
   285
    g.addEdge(n4, n6);
kpeter@647
   286
    g.addEdge(n4, n7);
kpeter@647
   287
    g.addEdge(n5, n7);
alpar@761
   288
kpeter@647
   289
    check(bipartite(g), "This graph is bipartite");
kpeter@647
   290
    check(bipartitePartitions(g, map), "This graph is bipartite");
alpar@761
   291
kpeter@647
   292
    check(map[n1] == map[n2] && map[n1] == map[n6] && map[n1] == map[n7],
kpeter@647
   293
          "Wrong bipartitePartitions()");
kpeter@647
   294
    check(map[n3] == map[n4] && map[n3] == map[n5],
kpeter@647
   295
          "Wrong bipartitePartitions()");
kpeter@647
   296
  }
kpeter@647
   297
kpeter@647
   298
  return 0;
kpeter@647
   299
}