lemon/matching.h
branch1.1
changeset 808 bdfc038f364c
parent 722 5b926cc36a4b
equal deleted inserted replaced
2:979645abf089 3:dcc78936a7ef
     1 /* -*- mode: C++; indent-tabs-mode: nil; -*-
     1 /* -*- mode: C++; indent-tabs-mode: nil; -*-
     2  *
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library.
     3  * This file is a part of LEMON, a generic C++ optimization library.
     4  *
     4  *
     5  * Copyright (C) 2003-2009
     5  * Copyright (C) 2003-2011
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     8  *
     9  * Permission to use, modify and distribute this software is granted
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    10  * provided that this copyright notice appears in all copies. For
    39   ///
    39   ///
    40   /// \brief Maximum cardinality matching in general graphs
    40   /// \brief Maximum cardinality matching in general graphs
    41   ///
    41   ///
    42   /// This class implements Edmonds' alternating forest matching algorithm
    42   /// This class implements Edmonds' alternating forest matching algorithm
    43   /// for finding a maximum cardinality matching in a general undirected graph.
    43   /// for finding a maximum cardinality matching in a general undirected graph.
    44   /// It can be started from an arbitrary initial matching 
    44   /// It can be started from an arbitrary initial matching
    45   /// (the default is the empty one).
    45   /// (the default is the empty one).
    46   ///
    46   ///
    47   /// The dual solution of the problem is a map of the nodes to
    47   /// The dual solution of the problem is a map of the nodes to
    48   /// \ref MaxMatching::Status "Status", having values \c EVEN (or \c D),
    48   /// \ref MaxMatching::Status "Status", having values \c EVEN (or \c D),
    49   /// \c ODD (or \c A) and \c MATCHED (or \c C) defining the Gallai-Edmonds
    49   /// \c ODD (or \c A) and \c MATCHED (or \c C) defining the Gallai-Edmonds
    67     typedef typename Graph::template NodeMap<typename Graph::Arc>
    67     typedef typename Graph::template NodeMap<typename Graph::Arc>
    68     MatchingMap;
    68     MatchingMap;
    69 
    69 
    70     ///\brief Status constants for Gallai-Edmonds decomposition.
    70     ///\brief Status constants for Gallai-Edmonds decomposition.
    71     ///
    71     ///
    72     ///These constants are used for indicating the Gallai-Edmonds 
    72     ///These constants are used for indicating the Gallai-Edmonds
    73     ///decomposition of a graph. The nodes with status \c EVEN (or \c D)
    73     ///decomposition of a graph. The nodes with status \c EVEN (or \c D)
    74     ///induce a subgraph with factor-critical components, the nodes with
    74     ///induce a subgraph with factor-critical components, the nodes with
    75     ///status \c ODD (or \c A) form the canonical barrier, and the nodes
    75     ///status \c ODD (or \c A) form the canonical barrier, and the nodes
    76     ///with status \c MATCHED (or \c C) induce a subgraph having a 
    76     ///with status \c MATCHED (or \c C) induce a subgraph having a
    77     ///perfect matching.
    77     ///perfect matching.
    78     enum Status {
    78     enum Status {
    79       EVEN = 1,       ///< = 1. (\c D is an alias for \c EVEN.)
    79       EVEN = 1,       ///< = 1. (\c D is an alias for \c EVEN.)
    80       D = 1,
    80       D = 1,
    81       MATCHED = 0,    ///< = 0. (\c C is an alias for \c MATCHED.)
    81       MATCHED = 0,    ///< = 0. (\c C is an alias for \c MATCHED.)
   510           processSparse(n);
   510           processSparse(n);
   511         }
   511         }
   512       }
   512       }
   513     }
   513     }
   514 
   514 
   515     /// \brief Start Edmonds' algorithm with a heuristic improvement 
   515     /// \brief Start Edmonds' algorithm with a heuristic improvement
   516     /// for dense graphs
   516     /// for dense graphs
   517     ///
   517     ///
   518     /// This function runs Edmonds' algorithm with a heuristic of postponing
   518     /// This function runs Edmonds' algorithm with a heuristic of postponing
   519     /// shrinks, therefore resulting in a faster algorithm for dense graphs.
   519     /// shrinks, therefore resulting in a faster algorithm for dense graphs.
   520     ///
   520     ///
   532     }
   532     }
   533 
   533 
   534 
   534 
   535     /// \brief Run Edmonds' algorithm
   535     /// \brief Run Edmonds' algorithm
   536     ///
   536     ///
   537     /// This function runs Edmonds' algorithm. An additional heuristic of 
   537     /// This function runs Edmonds' algorithm. An additional heuristic of
   538     /// postponing shrinks is used for relatively dense graphs 
   538     /// postponing shrinks is used for relatively dense graphs
   539     /// (for which <tt>m>=2*n</tt> holds).
   539     /// (for which <tt>m>=2*n</tt> holds).
   540     void run() {
   540     void run() {
   541       if (countEdges(_graph) < 2 * countNodes(_graph)) {
   541       if (countEdges(_graph) < 2 * countNodes(_graph)) {
   542         greedyInit();
   542         greedyInit();
   543         startSparse();
   543         startSparse();
   554 
   554 
   555     /// @{
   555     /// @{
   556 
   556 
   557     /// \brief Return the size (cardinality) of the matching.
   557     /// \brief Return the size (cardinality) of the matching.
   558     ///
   558     ///
   559     /// This function returns the size (cardinality) of the current matching. 
   559     /// This function returns the size (cardinality) of the current matching.
   560     /// After run() it returns the size of the maximum matching in the graph.
   560     /// After run() it returns the size of the maximum matching in the graph.
   561     int matchingSize() const {
   561     int matchingSize() const {
   562       int size = 0;
   562       int size = 0;
   563       for (NodeIt n(_graph); n != INVALID; ++n) {
   563       for (NodeIt n(_graph); n != INVALID; ++n) {
   564         if ((*_matching)[n] != INVALID) {
   564         if ((*_matching)[n] != INVALID) {
   568       return size / 2;
   568       return size / 2;
   569     }
   569     }
   570 
   570 
   571     /// \brief Return \c true if the given edge is in the matching.
   571     /// \brief Return \c true if the given edge is in the matching.
   572     ///
   572     ///
   573     /// This function returns \c true if the given edge is in the current 
   573     /// This function returns \c true if the given edge is in the current
   574     /// matching.
   574     /// matching.
   575     bool matching(const Edge& edge) const {
   575     bool matching(const Edge& edge) const {
   576       return edge == (*_matching)[_graph.u(edge)];
   576       return edge == (*_matching)[_graph.u(edge)];
   577     }
   577     }
   578 
   578 
   579     /// \brief Return the matching arc (or edge) incident to the given node.
   579     /// \brief Return the matching arc (or edge) incident to the given node.
   580     ///
   580     ///
   581     /// This function returns the matching arc (or edge) incident to the
   581     /// This function returns the matching arc (or edge) incident to the
   582     /// given node in the current matching or \c INVALID if the node is 
   582     /// given node in the current matching or \c INVALID if the node is
   583     /// not covered by the matching.
   583     /// not covered by the matching.
   584     Arc matching(const Node& n) const {
   584     Arc matching(const Node& n) const {
   585       return (*_matching)[n];
   585       return (*_matching)[n];
   586     }
   586     }
   587 
   587 
   593       return *_matching;
   593       return *_matching;
   594     }
   594     }
   595 
   595 
   596     /// \brief Return the mate of the given node.
   596     /// \brief Return the mate of the given node.
   597     ///
   597     ///
   598     /// This function returns the mate of the given node in the current 
   598     /// This function returns the mate of the given node in the current
   599     /// matching or \c INVALID if the node is not covered by the matching.
   599     /// matching or \c INVALID if the node is not covered by the matching.
   600     Node mate(const Node& n) const {
   600     Node mate(const Node& n) const {
   601       return (*_matching)[n] != INVALID ?
   601       return (*_matching)[n] != INVALID ?
   602         _graph.target((*_matching)[n]) : INVALID;
   602         _graph.target((*_matching)[n]) : INVALID;
   603     }
   603     }
   604 
   604 
   605     /// @}
   605     /// @}
   606 
   606 
   607     /// \name Dual Solution
   607     /// \name Dual Solution
   608     /// Functions to get the dual solution, i.e. the Gallai-Edmonds 
   608     /// Functions to get the dual solution, i.e. the Gallai-Edmonds
   609     /// decomposition.
   609     /// decomposition.
   610 
   610 
   611     /// @{
   611     /// @{
   612 
   612 
   613     /// \brief Return the status of the given node in the Edmonds-Gallai
   613     /// \brief Return the status of the given node in the Edmonds-Gallai
   646   /// This class provides an efficient implementation of Edmond's
   646   /// This class provides an efficient implementation of Edmond's
   647   /// maximum weighted matching algorithm. The implementation is based
   647   /// maximum weighted matching algorithm. The implementation is based
   648   /// on extensive use of priority queues and provides
   648   /// on extensive use of priority queues and provides
   649   /// \f$O(nm\log n)\f$ time complexity.
   649   /// \f$O(nm\log n)\f$ time complexity.
   650   ///
   650   ///
   651   /// The maximum weighted matching problem is to find a subset of the 
   651   /// The maximum weighted matching problem is to find a subset of the
   652   /// edges in an undirected graph with maximum overall weight for which 
   652   /// edges in an undirected graph with maximum overall weight for which
   653   /// each node has at most one incident edge.
   653   /// each node has at most one incident edge.
   654   /// It can be formulated with the following linear program.
   654   /// It can be formulated with the following linear program.
   655   /// \f[ \sum_{e \in \delta(u)}x_e \le 1 \quad \forall u\in V\f]
   655   /// \f[ \sum_{e \in \delta(u)}x_e \le 1 \quad \forall u\in V\f]
   656   /** \f[ \sum_{e \in \gamma(B)}x_e \le \frac{\vert B \vert - 1}{2}
   656   /** \f[ \sum_{e \in \gamma(B)}x_e \le \frac{\vert B \vert - 1}{2}
   657       \quad \forall B\in\mathcal{O}\f] */
   657       \quad \forall B\in\mathcal{O}\f] */
   671   /// \f[y_u \ge 0 \quad \forall u \in V\f]
   671   /// \f[y_u \ge 0 \quad \forall u \in V\f]
   672   /// \f[z_B \ge 0 \quad \forall B \in \mathcal{O}\f]
   672   /// \f[z_B \ge 0 \quad \forall B \in \mathcal{O}\f]
   673   /** \f[\min \sum_{u \in V}y_u + \sum_{B \in \mathcal{O}}
   673   /** \f[\min \sum_{u \in V}y_u + \sum_{B \in \mathcal{O}}
   674       \frac{\vert B \vert - 1}{2}z_B\f] */
   674       \frac{\vert B \vert - 1}{2}z_B\f] */
   675   ///
   675   ///
   676   /// The algorithm can be executed with the run() function. 
   676   /// The algorithm can be executed with the run() function.
   677   /// After it the matching (the primal solution) and the dual solution
   677   /// After it the matching (the primal solution) and the dual solution
   678   /// can be obtained using the query functions and the 
   678   /// can be obtained using the query functions and the
   679   /// \ref MaxWeightedMatching::BlossomIt "BlossomIt" nested class, 
   679   /// \ref MaxWeightedMatching::BlossomIt "BlossomIt" nested class,
   680   /// which is able to iterate on the nodes of a blossom. 
   680   /// which is able to iterate on the nodes of a blossom.
   681   /// If the value type is integer, then the dual solution is multiplied
   681   /// If the value type is integer, then the dual solution is multiplied
   682   /// by \ref MaxWeightedMatching::dualScale "4".
   682   /// by \ref MaxWeightedMatching::dualScale "4".
   683   ///
   683   ///
   684   /// \tparam GR The undirected graph type the algorithm runs on.
   684   /// \tparam GR The undirected graph type the algorithm runs on.
   685   /// \tparam WM The type edge weight map. The default type is 
   685   /// \tparam WM The type edge weight map. The default type is
   686   /// \ref concepts::Graph::EdgeMap "GR::EdgeMap<int>".
   686   /// \ref concepts::Graph::EdgeMap "GR::EdgeMap<int>".
   687 #ifdef DOXYGEN
   687 #ifdef DOXYGEN
   688   template <typename GR, typename WM>
   688   template <typename GR, typename WM>
   689 #else
   689 #else
   690   template <typename GR,
   690   template <typename GR,
  1718       }
  1718       }
  1719       for (int i = 0; i < _blossom_num; ++i) {
  1719       for (int i = 0; i < _blossom_num; ++i) {
  1720         (*_delta2_index)[i] = _delta2->PRE_HEAP;
  1720         (*_delta2_index)[i] = _delta2->PRE_HEAP;
  1721         (*_delta4_index)[i] = _delta4->PRE_HEAP;
  1721         (*_delta4_index)[i] = _delta4->PRE_HEAP;
  1722       }
  1722       }
  1723       
  1723 
  1724       _delta1->clear();
  1724       _delta1->clear();
  1725       _delta2->clear();
  1725       _delta2->clear();
  1726       _delta3->clear();
  1726       _delta3->clear();
  1727       _delta4->clear();
  1727       _delta4->clear();
  1728       _blossom_set->clear();
  1728       _blossom_set->clear();
  1866     }
  1866     }
  1867 
  1867 
  1868     /// @}
  1868     /// @}
  1869 
  1869 
  1870     /// \name Primal Solution
  1870     /// \name Primal Solution
  1871     /// Functions to get the primal solution, i.e. the maximum weighted 
  1871     /// Functions to get the primal solution, i.e. the maximum weighted
  1872     /// matching.\n
  1872     /// matching.\n
  1873     /// Either \ref run() or \ref start() function should be called before
  1873     /// Either \ref run() or \ref start() function should be called before
  1874     /// using them.
  1874     /// using them.
  1875 
  1875 
  1876     /// @{
  1876     /// @{
  1905       return num /= 2;
  1905       return num /= 2;
  1906     }
  1906     }
  1907 
  1907 
  1908     /// \brief Return \c true if the given edge is in the matching.
  1908     /// \brief Return \c true if the given edge is in the matching.
  1909     ///
  1909     ///
  1910     /// This function returns \c true if the given edge is in the found 
  1910     /// This function returns \c true if the given edge is in the found
  1911     /// matching.
  1911     /// matching.
  1912     ///
  1912     ///
  1913     /// \pre Either run() or start() must be called before using this function.
  1913     /// \pre Either run() or start() must be called before using this function.
  1914     bool matching(const Edge& edge) const {
  1914     bool matching(const Edge& edge) const {
  1915       return edge == (*_matching)[_graph.u(edge)];
  1915       return edge == (*_matching)[_graph.u(edge)];
  1916     }
  1916     }
  1917 
  1917 
  1918     /// \brief Return the matching arc (or edge) incident to the given node.
  1918     /// \brief Return the matching arc (or edge) incident to the given node.
  1919     ///
  1919     ///
  1920     /// This function returns the matching arc (or edge) incident to the
  1920     /// This function returns the matching arc (or edge) incident to the
  1921     /// given node in the found matching or \c INVALID if the node is 
  1921     /// given node in the found matching or \c INVALID if the node is
  1922     /// not covered by the matching.
  1922     /// not covered by the matching.
  1923     ///
  1923     ///
  1924     /// \pre Either run() or start() must be called before using this function.
  1924     /// \pre Either run() or start() must be called before using this function.
  1925     Arc matching(const Node& node) const {
  1925     Arc matching(const Node& node) const {
  1926       return (*_matching)[node];
  1926       return (*_matching)[node];
  1934       return *_matching;
  1934       return *_matching;
  1935     }
  1935     }
  1936 
  1936 
  1937     /// \brief Return the mate of the given node.
  1937     /// \brief Return the mate of the given node.
  1938     ///
  1938     ///
  1939     /// This function returns the mate of the given node in the found 
  1939     /// This function returns the mate of the given node in the found
  1940     /// matching or \c INVALID if the node is not covered by the matching.
  1940     /// matching or \c INVALID if the node is not covered by the matching.
  1941     ///
  1941     ///
  1942     /// \pre Either run() or start() must be called before using this function.
  1942     /// \pre Either run() or start() must be called before using this function.
  1943     Node mate(const Node& node) const {
  1943     Node mate(const Node& node) const {
  1944       return (*_matching)[node] != INVALID ?
  1944       return (*_matching)[node] != INVALID ?
  1954 
  1954 
  1955     /// @{
  1955     /// @{
  1956 
  1956 
  1957     /// \brief Return the value of the dual solution.
  1957     /// \brief Return the value of the dual solution.
  1958     ///
  1958     ///
  1959     /// This function returns the value of the dual solution. 
  1959     /// This function returns the value of the dual solution.
  1960     /// It should be equal to the primal value scaled by \ref dualScale 
  1960     /// It should be equal to the primal value scaled by \ref dualScale
  1961     /// "dual scale".
  1961     /// "dual scale".
  1962     ///
  1962     ///
  1963     /// \pre Either run() or start() must be called before using this function.
  1963     /// \pre Either run() or start() must be called before using this function.
  1964     Value dualValue() const {
  1964     Value dualValue() const {
  1965       Value sum = 0;
  1965       Value sum = 0;
  2010       return _blossom_potential[k].value;
  2010       return _blossom_potential[k].value;
  2011     }
  2011     }
  2012 
  2012 
  2013     /// \brief Iterator for obtaining the nodes of a blossom.
  2013     /// \brief Iterator for obtaining the nodes of a blossom.
  2014     ///
  2014     ///
  2015     /// This class provides an iterator for obtaining the nodes of the 
  2015     /// This class provides an iterator for obtaining the nodes of the
  2016     /// given blossom. It lists a subset of the nodes.
  2016     /// given blossom. It lists a subset of the nodes.
  2017     /// Before using this iterator, you must allocate a 
  2017     /// Before using this iterator, you must allocate a
  2018     /// MaxWeightedMatching class and execute it.
  2018     /// MaxWeightedMatching class and execute it.
  2019     class BlossomIt {
  2019     class BlossomIt {
  2020     public:
  2020     public:
  2021 
  2021 
  2022       /// \brief Constructor.
  2022       /// \brief Constructor.
  2023       ///
  2023       ///
  2024       /// Constructor to get the nodes of the given variable.
  2024       /// Constructor to get the nodes of the given variable.
  2025       ///
  2025       ///
  2026       /// \pre Either \ref MaxWeightedMatching::run() "algorithm.run()" or 
  2026       /// \pre Either \ref MaxWeightedMatching::run() "algorithm.run()" or
  2027       /// \ref MaxWeightedMatching::start() "algorithm.start()" must be 
  2027       /// \ref MaxWeightedMatching::start() "algorithm.start()" must be
  2028       /// called before initializing this iterator.
  2028       /// called before initializing this iterator.
  2029       BlossomIt(const MaxWeightedMatching& algorithm, int variable)
  2029       BlossomIt(const MaxWeightedMatching& algorithm, int variable)
  2030         : _algorithm(&algorithm)
  2030         : _algorithm(&algorithm)
  2031       {
  2031       {
  2032         _index = _algorithm->_blossom_potential[variable].begin;
  2032         _index = _algorithm->_blossom_potential[variable].begin;
  2075   /// This class provides an efficient implementation of Edmond's
  2075   /// This class provides an efficient implementation of Edmond's
  2076   /// maximum weighted perfect matching algorithm. The implementation
  2076   /// maximum weighted perfect matching algorithm. The implementation
  2077   /// is based on extensive use of priority queues and provides
  2077   /// is based on extensive use of priority queues and provides
  2078   /// \f$O(nm\log n)\f$ time complexity.
  2078   /// \f$O(nm\log n)\f$ time complexity.
  2079   ///
  2079   ///
  2080   /// The maximum weighted perfect matching problem is to find a subset of 
  2080   /// The maximum weighted perfect matching problem is to find a subset of
  2081   /// the edges in an undirected graph with maximum overall weight for which 
  2081   /// the edges in an undirected graph with maximum overall weight for which
  2082   /// each node has exactly one incident edge.
  2082   /// each node has exactly one incident edge.
  2083   /// It can be formulated with the following linear program.
  2083   /// It can be formulated with the following linear program.
  2084   /// \f[ \sum_{e \in \delta(u)}x_e = 1 \quad \forall u\in V\f]
  2084   /// \f[ \sum_{e \in \delta(u)}x_e = 1 \quad \forall u\in V\f]
  2085   /** \f[ \sum_{e \in \gamma(B)}x_e \le \frac{\vert B \vert - 1}{2}
  2085   /** \f[ \sum_{e \in \gamma(B)}x_e \le \frac{\vert B \vert - 1}{2}
  2086       \quad \forall B\in\mathcal{O}\f] */
  2086       \quad \forall B\in\mathcal{O}\f] */
  2099       w_{uv} \quad \forall uv\in E\f] */
  2099       w_{uv} \quad \forall uv\in E\f] */
  2100   /// \f[z_B \ge 0 \quad \forall B \in \mathcal{O}\f]
  2100   /// \f[z_B \ge 0 \quad \forall B \in \mathcal{O}\f]
  2101   /** \f[\min \sum_{u \in V}y_u + \sum_{B \in \mathcal{O}}
  2101   /** \f[\min \sum_{u \in V}y_u + \sum_{B \in \mathcal{O}}
  2102       \frac{\vert B \vert - 1}{2}z_B\f] */
  2102       \frac{\vert B \vert - 1}{2}z_B\f] */
  2103   ///
  2103   ///
  2104   /// The algorithm can be executed with the run() function. 
  2104   /// The algorithm can be executed with the run() function.
  2105   /// After it the matching (the primal solution) and the dual solution
  2105   /// After it the matching (the primal solution) and the dual solution
  2106   /// can be obtained using the query functions and the 
  2106   /// can be obtained using the query functions and the
  2107   /// \ref MaxWeightedPerfectMatching::BlossomIt "BlossomIt" nested class, 
  2107   /// \ref MaxWeightedPerfectMatching::BlossomIt "BlossomIt" nested class,
  2108   /// which is able to iterate on the nodes of a blossom. 
  2108   /// which is able to iterate on the nodes of a blossom.
  2109   /// If the value type is integer, then the dual solution is multiplied
  2109   /// If the value type is integer, then the dual solution is multiplied
  2110   /// by \ref MaxWeightedMatching::dualScale "4".
  2110   /// by \ref MaxWeightedMatching::dualScale "4".
  2111   ///
  2111   ///
  2112   /// \tparam GR The undirected graph type the algorithm runs on.
  2112   /// \tparam GR The undirected graph type the algorithm runs on.
  2113   /// \tparam WM The type edge weight map. The default type is 
  2113   /// \tparam WM The type edge weight map. The default type is
  2114   /// \ref concepts::Graph::EdgeMap "GR::EdgeMap<int>".
  2114   /// \ref concepts::Graph::EdgeMap "GR::EdgeMap<int>".
  2115 #ifdef DOXYGEN
  2115 #ifdef DOXYGEN
  2116   template <typename GR, typename WM>
  2116   template <typename GR, typename WM>
  2117 #else
  2117 #else
  2118   template <typename GR,
  2118   template <typename GR,
  3113     }
  3113     }
  3114 
  3114 
  3115     /// @}
  3115     /// @}
  3116 
  3116 
  3117     /// \name Primal Solution
  3117     /// \name Primal Solution
  3118     /// Functions to get the primal solution, i.e. the maximum weighted 
  3118     /// Functions to get the primal solution, i.e. the maximum weighted
  3119     /// perfect matching.\n
  3119     /// perfect matching.\n
  3120     /// Either \ref run() or \ref start() function should be called before
  3120     /// Either \ref run() or \ref start() function should be called before
  3121     /// using them.
  3121     /// using them.
  3122 
  3122 
  3123     /// @{
  3123     /// @{
  3137       return sum /= 2;
  3137       return sum /= 2;
  3138     }
  3138     }
  3139 
  3139 
  3140     /// \brief Return \c true if the given edge is in the matching.
  3140     /// \brief Return \c true if the given edge is in the matching.
  3141     ///
  3141     ///
  3142     /// This function returns \c true if the given edge is in the found 
  3142     /// This function returns \c true if the given edge is in the found
  3143     /// matching.
  3143     /// matching.
  3144     ///
  3144     ///
  3145     /// \pre Either run() or start() must be called before using this function.
  3145     /// \pre Either run() or start() must be called before using this function.
  3146     bool matching(const Edge& edge) const {
  3146     bool matching(const Edge& edge) const {
  3147       return static_cast<const Edge&>((*_matching)[_graph.u(edge)]) == edge;
  3147       return static_cast<const Edge&>((*_matching)[_graph.u(edge)]) == edge;
  3148     }
  3148     }
  3149 
  3149 
  3150     /// \brief Return the matching arc (or edge) incident to the given node.
  3150     /// \brief Return the matching arc (or edge) incident to the given node.
  3151     ///
  3151     ///
  3152     /// This function returns the matching arc (or edge) incident to the
  3152     /// This function returns the matching arc (or edge) incident to the
  3153     /// given node in the found matching or \c INVALID if the node is 
  3153     /// given node in the found matching or \c INVALID if the node is
  3154     /// not covered by the matching.
  3154     /// not covered by the matching.
  3155     ///
  3155     ///
  3156     /// \pre Either run() or start() must be called before using this function.
  3156     /// \pre Either run() or start() must be called before using this function.
  3157     Arc matching(const Node& node) const {
  3157     Arc matching(const Node& node) const {
  3158       return (*_matching)[node];
  3158       return (*_matching)[node];
  3166       return *_matching;
  3166       return *_matching;
  3167     }
  3167     }
  3168 
  3168 
  3169     /// \brief Return the mate of the given node.
  3169     /// \brief Return the mate of the given node.
  3170     ///
  3170     ///
  3171     /// This function returns the mate of the given node in the found 
  3171     /// This function returns the mate of the given node in the found
  3172     /// matching or \c INVALID if the node is not covered by the matching.
  3172     /// matching or \c INVALID if the node is not covered by the matching.
  3173     ///
  3173     ///
  3174     /// \pre Either run() or start() must be called before using this function.
  3174     /// \pre Either run() or start() must be called before using this function.
  3175     Node mate(const Node& node) const {
  3175     Node mate(const Node& node) const {
  3176       return _graph.target((*_matching)[node]);
  3176       return _graph.target((*_matching)[node]);
  3185 
  3185 
  3186     /// @{
  3186     /// @{
  3187 
  3187 
  3188     /// \brief Return the value of the dual solution.
  3188     /// \brief Return the value of the dual solution.
  3189     ///
  3189     ///
  3190     /// This function returns the value of the dual solution. 
  3190     /// This function returns the value of the dual solution.
  3191     /// It should be equal to the primal value scaled by \ref dualScale 
  3191     /// It should be equal to the primal value scaled by \ref dualScale
  3192     /// "dual scale".
  3192     /// "dual scale".
  3193     ///
  3193     ///
  3194     /// \pre Either run() or start() must be called before using this function.
  3194     /// \pre Either run() or start() must be called before using this function.
  3195     Value dualValue() const {
  3195     Value dualValue() const {
  3196       Value sum = 0;
  3196       Value sum = 0;
  3241       return _blossom_potential[k].value;
  3241       return _blossom_potential[k].value;
  3242     }
  3242     }
  3243 
  3243 
  3244     /// \brief Iterator for obtaining the nodes of a blossom.
  3244     /// \brief Iterator for obtaining the nodes of a blossom.
  3245     ///
  3245     ///
  3246     /// This class provides an iterator for obtaining the nodes of the 
  3246     /// This class provides an iterator for obtaining the nodes of the
  3247     /// given blossom. It lists a subset of the nodes.
  3247     /// given blossom. It lists a subset of the nodes.
  3248     /// Before using this iterator, you must allocate a 
  3248     /// Before using this iterator, you must allocate a
  3249     /// MaxWeightedPerfectMatching class and execute it.
  3249     /// MaxWeightedPerfectMatching class and execute it.
  3250     class BlossomIt {
  3250     class BlossomIt {
  3251     public:
  3251     public:
  3252 
  3252 
  3253       /// \brief Constructor.
  3253       /// \brief Constructor.
  3254       ///
  3254       ///
  3255       /// Constructor to get the nodes of the given variable.
  3255       /// Constructor to get the nodes of the given variable.
  3256       ///
  3256       ///
  3257       /// \pre Either \ref MaxWeightedPerfectMatching::run() "algorithm.run()" 
  3257       /// \pre Either \ref MaxWeightedPerfectMatching::run() "algorithm.run()"
  3258       /// or \ref MaxWeightedPerfectMatching::start() "algorithm.start()" 
  3258       /// or \ref MaxWeightedPerfectMatching::start() "algorithm.start()"
  3259       /// must be called before initializing this iterator.
  3259       /// must be called before initializing this iterator.
  3260       BlossomIt(const MaxWeightedPerfectMatching& algorithm, int variable)
  3260       BlossomIt(const MaxWeightedPerfectMatching& algorithm, int variable)
  3261         : _algorithm(&algorithm)
  3261         : _algorithm(&algorithm)
  3262       {
  3262       {
  3263         _index = _algorithm->_blossom_potential[variable].begin;
  3263         _index = _algorithm->_blossom_potential[variable].begin;