|
1 /* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
2 * |
|
3 * This file is a part of LEMON, a generic C++ optimization library. |
|
4 * |
|
5 * Copyright (C) 2003-2008 |
|
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
7 * (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
8 * |
|
9 * Permission to use, modify and distribute this software is granted |
|
10 * provided that this copyright notice appears in all copies. For |
|
11 * precise terms see the accompanying LICENSE file. |
|
12 * |
|
13 * This software is provided "AS IS" with no warranty of any kind, |
|
14 * express or implied, and with no claim as to its suitability for any |
|
15 * purpose. |
|
16 * |
|
17 */ |
|
18 |
|
19 #ifndef LEMON_CIRCULATION_H |
|
20 #define LEMON_CIRCULATION_H |
|
21 |
|
22 #include <iostream> |
|
23 #include <queue> |
|
24 #include <lemon/tolerance.h> |
|
25 #include <lemon/elevator.h> |
|
26 |
|
27 ///\ingroup max_flow |
|
28 ///\file |
|
29 ///\brief Push-prelabel algorithm for finding a feasible circulation. |
|
30 /// |
|
31 namespace lemon { |
|
32 |
|
33 /// \brief Default traits class of Circulation class. |
|
34 /// |
|
35 /// Default traits class of Circulation class. |
|
36 /// \param _Graph Digraph type. |
|
37 /// \param _CapacityMap Type of capacity map. |
|
38 template <typename _Graph, typename _LCapMap, |
|
39 typename _UCapMap, typename _DeltaMap> |
|
40 struct CirculationDefaultTraits { |
|
41 |
|
42 /// \brief The digraph type the algorithm runs on. |
|
43 typedef _Graph Digraph; |
|
44 |
|
45 /// \brief The type of the map that stores the circulation lower |
|
46 /// bound. |
|
47 /// |
|
48 /// The type of the map that stores the circulation lower bound. |
|
49 /// It must meet the \ref concepts::ReadMap "ReadMap" concept. |
|
50 typedef _LCapMap LCapMap; |
|
51 |
|
52 /// \brief The type of the map that stores the circulation upper |
|
53 /// bound. |
|
54 /// |
|
55 /// The type of the map that stores the circulation upper bound. |
|
56 /// It must meet the \ref concepts::ReadMap "ReadMap" concept. |
|
57 typedef _UCapMap UCapMap; |
|
58 |
|
59 /// \brief The type of the map that stores the upper bound of |
|
60 /// node excess. |
|
61 /// |
|
62 /// The type of the map that stores the lower bound of node |
|
63 /// excess. It must meet the \ref concepts::ReadMap "ReadMap" |
|
64 /// concept. |
|
65 typedef _DeltaMap DeltaMap; |
|
66 |
|
67 /// \brief The type of the length of the arcs. |
|
68 typedef typename DeltaMap::Value Value; |
|
69 |
|
70 /// \brief The map type that stores the flow values. |
|
71 /// |
|
72 /// The map type that stores the flow values. |
|
73 /// It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|
74 typedef typename Digraph::template ArcMap<Value> FlowMap; |
|
75 |
|
76 /// \brief Instantiates a FlowMap. |
|
77 /// |
|
78 /// This function instantiates a \ref FlowMap. |
|
79 /// \param digraph The digraph, to which we would like to define |
|
80 /// the flow map. |
|
81 static FlowMap* createFlowMap(const Digraph& digraph) { |
|
82 return new FlowMap(digraph); |
|
83 } |
|
84 |
|
85 /// \brief The eleavator type used by Circulation algorithm. |
|
86 /// |
|
87 /// The elevator type used by Circulation algorithm. |
|
88 /// |
|
89 /// \sa Elevator |
|
90 /// \sa LinkedElevator |
|
91 typedef lemon::Elevator<Digraph, typename Digraph::Node> Elevator; |
|
92 |
|
93 /// \brief Instantiates an Elevator. |
|
94 /// |
|
95 /// This function instantiates a \ref Elevator. |
|
96 /// \param digraph The digraph, to which we would like to define |
|
97 /// the elevator. |
|
98 /// \param max_level The maximum level of the elevator. |
|
99 static Elevator* createElevator(const Digraph& digraph, int max_level) { |
|
100 return new Elevator(digraph, max_level); |
|
101 } |
|
102 |
|
103 /// \brief The tolerance used by the algorithm |
|
104 /// |
|
105 /// The tolerance used by the algorithm to handle inexact computation. |
|
106 typedef lemon::Tolerance<Value> Tolerance; |
|
107 |
|
108 }; |
|
109 |
|
110 ///Push-relabel algorithm for the Network Circulation Problem. |
|
111 |
|
112 /** |
|
113 \ingroup max_flow |
|
114 This class implements a push-relabel algorithm |
|
115 or the Network Circulation Problem. |
|
116 The exact formulation of this problem is the following. |
|
117 \f[\sum_{e\in\rho(v)}x(e)-\sum_{e\in\delta(v)}x(e)\leq |
|
118 -delta(v)\quad \forall v\in V \f] |
|
119 \f[ lo(e)\leq x(e) \leq up(e) \quad \forall e\in E \f] |
|
120 */ |
|
121 template<class _Graph, |
|
122 class _LCapMap=typename _Graph::template ArcMap<int>, |
|
123 class _UCapMap=_LCapMap, |
|
124 class _DeltaMap=typename _Graph::template NodeMap< |
|
125 typename _UCapMap::Value>, |
|
126 class _Traits=CirculationDefaultTraits<_Graph, _LCapMap, |
|
127 _UCapMap, _DeltaMap> > |
|
128 class Circulation { |
|
129 |
|
130 typedef _Traits Traits; |
|
131 typedef typename Traits::Digraph Digraph; |
|
132 TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
|
133 |
|
134 typedef typename Traits::Value Value; |
|
135 |
|
136 typedef typename Traits::LCapMap LCapMap; |
|
137 typedef typename Traits::UCapMap UCapMap; |
|
138 typedef typename Traits::DeltaMap DeltaMap; |
|
139 typedef typename Traits::FlowMap FlowMap; |
|
140 typedef typename Traits::Elevator Elevator; |
|
141 typedef typename Traits::Tolerance Tolerance; |
|
142 |
|
143 typedef typename Digraph::template NodeMap<Value> ExcessMap; |
|
144 |
|
145 const Digraph &_g; |
|
146 int _node_num; |
|
147 |
|
148 const LCapMap *_lo; |
|
149 const UCapMap *_up; |
|
150 const DeltaMap *_delta; |
|
151 |
|
152 FlowMap *_flow; |
|
153 bool _local_flow; |
|
154 |
|
155 Elevator* _level; |
|
156 bool _local_level; |
|
157 |
|
158 ExcessMap* _excess; |
|
159 |
|
160 Tolerance _tol; |
|
161 int _el; |
|
162 |
|
163 public: |
|
164 |
|
165 typedef Circulation Create; |
|
166 |
|
167 ///\name Named template parameters |
|
168 |
|
169 ///@{ |
|
170 |
|
171 template <typename _FlowMap> |
|
172 struct DefFlowMapTraits : public Traits { |
|
173 typedef _FlowMap FlowMap; |
|
174 static FlowMap *createFlowMap(const Digraph&) { |
|
175 LEMON_ASSERT(false, "FlowMap is not initialized"); |
|
176 return 0; // ignore warnings |
|
177 } |
|
178 }; |
|
179 |
|
180 /// \brief \ref named-templ-param "Named parameter" for setting |
|
181 /// FlowMap type |
|
182 /// |
|
183 /// \ref named-templ-param "Named parameter" for setting FlowMap |
|
184 /// type |
|
185 template <typename _FlowMap> |
|
186 struct DefFlowMap |
|
187 : public Circulation<Digraph, LCapMap, UCapMap, DeltaMap, |
|
188 DefFlowMapTraits<_FlowMap> > { |
|
189 typedef Circulation<Digraph, LCapMap, UCapMap, DeltaMap, |
|
190 DefFlowMapTraits<_FlowMap> > Create; |
|
191 }; |
|
192 |
|
193 template <typename _Elevator> |
|
194 struct DefElevatorTraits : public Traits { |
|
195 typedef _Elevator Elevator; |
|
196 static Elevator *createElevator(const Digraph&, int) { |
|
197 LEMON_ASSERT(false, "Elevator is not initialized"); |
|
198 return 0; // ignore warnings |
|
199 } |
|
200 }; |
|
201 |
|
202 /// \brief \ref named-templ-param "Named parameter" for setting |
|
203 /// Elevator type |
|
204 /// |
|
205 /// \ref named-templ-param "Named parameter" for setting Elevator |
|
206 /// type |
|
207 template <typename _Elevator> |
|
208 struct DefElevator |
|
209 : public Circulation<Digraph, LCapMap, UCapMap, DeltaMap, |
|
210 DefElevatorTraits<_Elevator> > { |
|
211 typedef Circulation<Digraph, LCapMap, UCapMap, DeltaMap, |
|
212 DefElevatorTraits<_Elevator> > Create; |
|
213 }; |
|
214 |
|
215 template <typename _Elevator> |
|
216 struct DefStandardElevatorTraits : public Traits { |
|
217 typedef _Elevator Elevator; |
|
218 static Elevator *createElevator(const Digraph& digraph, int max_level) { |
|
219 return new Elevator(digraph, max_level); |
|
220 } |
|
221 }; |
|
222 |
|
223 /// \brief \ref named-templ-param "Named parameter" for setting |
|
224 /// Elevator type |
|
225 /// |
|
226 /// \ref named-templ-param "Named parameter" for setting Elevator |
|
227 /// type. The Elevator should be standard constructor interface, ie. |
|
228 /// the digraph and the maximum level should be passed to it. |
|
229 template <typename _Elevator> |
|
230 struct DefStandardElevator |
|
231 : public Circulation<Digraph, LCapMap, UCapMap, DeltaMap, |
|
232 DefStandardElevatorTraits<_Elevator> > { |
|
233 typedef Circulation<Digraph, LCapMap, UCapMap, DeltaMap, |
|
234 DefStandardElevatorTraits<_Elevator> > Create; |
|
235 }; |
|
236 |
|
237 /// @} |
|
238 |
|
239 protected: |
|
240 |
|
241 Circulation() {} |
|
242 |
|
243 public: |
|
244 |
|
245 /// The constructor of the class. |
|
246 |
|
247 /// The constructor of the class. |
|
248 /// \param g The digraph the algorithm runs on. |
|
249 /// \param lo The lower bound capacity of the arcs. |
|
250 /// \param up The upper bound capacity of the arcs. |
|
251 /// \param delta The lower bound on node excess. |
|
252 Circulation(const Digraph &g,const LCapMap &lo, |
|
253 const UCapMap &up,const DeltaMap &delta) |
|
254 : _g(g), _node_num(), |
|
255 _lo(&lo),_up(&up),_delta(&delta),_flow(0),_local_flow(false), |
|
256 _level(0), _local_level(false), _excess(0), _el() {} |
|
257 |
|
258 /// Destrcutor. |
|
259 ~Circulation() { |
|
260 destroyStructures(); |
|
261 } |
|
262 |
|
263 private: |
|
264 |
|
265 void createStructures() { |
|
266 _node_num = _el = countNodes(_g); |
|
267 |
|
268 if (!_flow) { |
|
269 _flow = Traits::createFlowMap(_g); |
|
270 _local_flow = true; |
|
271 } |
|
272 if (!_level) { |
|
273 _level = Traits::createElevator(_g, _node_num); |
|
274 _local_level = true; |
|
275 } |
|
276 if (!_excess) { |
|
277 _excess = new ExcessMap(_g); |
|
278 } |
|
279 } |
|
280 |
|
281 void destroyStructures() { |
|
282 if (_local_flow) { |
|
283 delete _flow; |
|
284 } |
|
285 if (_local_level) { |
|
286 delete _level; |
|
287 } |
|
288 if (_excess) { |
|
289 delete _excess; |
|
290 } |
|
291 } |
|
292 |
|
293 public: |
|
294 |
|
295 /// Sets the lower bound capacity map. |
|
296 |
|
297 /// Sets the lower bound capacity map. |
|
298 /// \return \c (*this) |
|
299 Circulation& lowerCapMap(const LCapMap& map) { |
|
300 _lo = ↦ |
|
301 return *this; |
|
302 } |
|
303 |
|
304 /// Sets the upper bound capacity map. |
|
305 |
|
306 /// Sets the upper bound capacity map. |
|
307 /// \return \c (*this) |
|
308 Circulation& upperCapMap(const LCapMap& map) { |
|
309 _up = ↦ |
|
310 return *this; |
|
311 } |
|
312 |
|
313 /// Sets the lower bound map on excess. |
|
314 |
|
315 /// Sets the lower bound map on excess. |
|
316 /// \return \c (*this) |
|
317 Circulation& deltaMap(const DeltaMap& map) { |
|
318 _delta = ↦ |
|
319 return *this; |
|
320 } |
|
321 |
|
322 /// Sets the flow map. |
|
323 |
|
324 /// Sets the flow map. |
|
325 /// \return \c (*this) |
|
326 Circulation& flowMap(FlowMap& map) { |
|
327 if (_local_flow) { |
|
328 delete _flow; |
|
329 _local_flow = false; |
|
330 } |
|
331 _flow = ↦ |
|
332 return *this; |
|
333 } |
|
334 |
|
335 /// Returns the flow map. |
|
336 |
|
337 /// \return The flow map. |
|
338 /// |
|
339 const FlowMap& flowMap() { |
|
340 return *_flow; |
|
341 } |
|
342 |
|
343 /// Sets the elevator. |
|
344 |
|
345 /// Sets the elevator. |
|
346 /// \return \c (*this) |
|
347 Circulation& elevator(Elevator& elevator) { |
|
348 if (_local_level) { |
|
349 delete _level; |
|
350 _local_level = false; |
|
351 } |
|
352 _level = &elevator; |
|
353 return *this; |
|
354 } |
|
355 |
|
356 /// Returns the elevator. |
|
357 |
|
358 /// \return The elevator. |
|
359 /// |
|
360 const Elevator& elevator() { |
|
361 return *_level; |
|
362 } |
|
363 |
|
364 /// Sets the tolerance used by algorithm. |
|
365 |
|
366 /// Sets the tolerance used by algorithm. |
|
367 /// |
|
368 Circulation& tolerance(const Tolerance& tolerance) const { |
|
369 _tol = tolerance; |
|
370 return *this; |
|
371 } |
|
372 |
|
373 /// Returns the tolerance used by algorithm. |
|
374 |
|
375 /// Returns the tolerance used by algorithm. |
|
376 /// |
|
377 const Tolerance& tolerance() const { |
|
378 return tolerance; |
|
379 } |
|
380 |
|
381 /// \name Execution control |
|
382 /// The simplest way to execute the algorithm is to use one of the |
|
383 /// member functions called \c run(). |
|
384 /// \n |
|
385 /// If you need more control on initial solution or execution then |
|
386 /// you have to call one \ref init() function and then the start() |
|
387 /// function. |
|
388 |
|
389 ///@{ |
|
390 |
|
391 /// Initializes the internal data structures. |
|
392 |
|
393 /// Initializes the internal data structures. This function sets |
|
394 /// all flow values to the lower bound. |
|
395 /// \return This function returns false if the initialization |
|
396 /// process found a barrier. |
|
397 void init() |
|
398 { |
|
399 createStructures(); |
|
400 |
|
401 for(NodeIt n(_g);n!=INVALID;++n) { |
|
402 _excess->set(n, (*_delta)[n]); |
|
403 } |
|
404 |
|
405 for (ArcIt e(_g);e!=INVALID;++e) { |
|
406 _flow->set(e, (*_lo)[e]); |
|
407 _excess->set(_g.target(e), (*_excess)[_g.target(e)] + (*_flow)[e]); |
|
408 _excess->set(_g.source(e), (*_excess)[_g.source(e)] - (*_flow)[e]); |
|
409 } |
|
410 |
|
411 // global relabeling tested, but in general case it provides |
|
412 // worse performance for random digraphs |
|
413 _level->initStart(); |
|
414 for(NodeIt n(_g);n!=INVALID;++n) |
|
415 _level->initAddItem(n); |
|
416 _level->initFinish(); |
|
417 for(NodeIt n(_g);n!=INVALID;++n) |
|
418 if(_tol.positive((*_excess)[n])) |
|
419 _level->activate(n); |
|
420 } |
|
421 |
|
422 /// Initializes the internal data structures. |
|
423 |
|
424 /// Initializes the internal data structures. This functions uses |
|
425 /// greedy approach to construct the initial solution. |
|
426 void greedyInit() |
|
427 { |
|
428 createStructures(); |
|
429 |
|
430 for(NodeIt n(_g);n!=INVALID;++n) { |
|
431 _excess->set(n, (*_delta)[n]); |
|
432 } |
|
433 |
|
434 for (ArcIt e(_g);e!=INVALID;++e) { |
|
435 if (!_tol.positive((*_excess)[_g.target(e)] + (*_up)[e])) { |
|
436 _flow->set(e, (*_up)[e]); |
|
437 _excess->set(_g.target(e), (*_excess)[_g.target(e)] + (*_up)[e]); |
|
438 _excess->set(_g.source(e), (*_excess)[_g.source(e)] - (*_up)[e]); |
|
439 } else if (_tol.positive((*_excess)[_g.target(e)] + (*_lo)[e])) { |
|
440 _flow->set(e, (*_lo)[e]); |
|
441 _excess->set(_g.target(e), (*_excess)[_g.target(e)] + (*_lo)[e]); |
|
442 _excess->set(_g.source(e), (*_excess)[_g.source(e)] - (*_lo)[e]); |
|
443 } else { |
|
444 Value fc = -(*_excess)[_g.target(e)]; |
|
445 _flow->set(e, fc); |
|
446 _excess->set(_g.target(e), 0); |
|
447 _excess->set(_g.source(e), (*_excess)[_g.source(e)] - fc); |
|
448 } |
|
449 } |
|
450 |
|
451 _level->initStart(); |
|
452 for(NodeIt n(_g);n!=INVALID;++n) |
|
453 _level->initAddItem(n); |
|
454 _level->initFinish(); |
|
455 for(NodeIt n(_g);n!=INVALID;++n) |
|
456 if(_tol.positive((*_excess)[n])) |
|
457 _level->activate(n); |
|
458 } |
|
459 |
|
460 ///Starts the algorithm |
|
461 |
|
462 ///This function starts the algorithm. |
|
463 ///\return This function returns true if it found a feasible circulation. |
|
464 /// |
|
465 ///\sa barrier() |
|
466 bool start() |
|
467 { |
|
468 |
|
469 Node act; |
|
470 Node bact=INVALID; |
|
471 Node last_activated=INVALID; |
|
472 while((act=_level->highestActive())!=INVALID) { |
|
473 int actlevel=(*_level)[act]; |
|
474 int mlevel=_node_num; |
|
475 Value exc=(*_excess)[act]; |
|
476 |
|
477 for(OutArcIt e(_g,act);e!=INVALID; ++e) { |
|
478 Node v = _g.target(e); |
|
479 Value fc=(*_up)[e]-(*_flow)[e]; |
|
480 if(!_tol.positive(fc)) continue; |
|
481 if((*_level)[v]<actlevel) { |
|
482 if(!_tol.less(fc, exc)) { |
|
483 _flow->set(e, (*_flow)[e] + exc); |
|
484 _excess->set(v, (*_excess)[v] + exc); |
|
485 if(!_level->active(v) && _tol.positive((*_excess)[v])) |
|
486 _level->activate(v); |
|
487 _excess->set(act,0); |
|
488 _level->deactivate(act); |
|
489 goto next_l; |
|
490 } |
|
491 else { |
|
492 _flow->set(e, (*_up)[e]); |
|
493 _excess->set(v, (*_excess)[v] + fc); |
|
494 if(!_level->active(v) && _tol.positive((*_excess)[v])) |
|
495 _level->activate(v); |
|
496 exc-=fc; |
|
497 } |
|
498 } |
|
499 else if((*_level)[v]<mlevel) mlevel=(*_level)[v]; |
|
500 } |
|
501 for(InArcIt e(_g,act);e!=INVALID; ++e) { |
|
502 Node v = _g.source(e); |
|
503 Value fc=(*_flow)[e]-(*_lo)[e]; |
|
504 if(!_tol.positive(fc)) continue; |
|
505 if((*_level)[v]<actlevel) { |
|
506 if(!_tol.less(fc, exc)) { |
|
507 _flow->set(e, (*_flow)[e] - exc); |
|
508 _excess->set(v, (*_excess)[v] + exc); |
|
509 if(!_level->active(v) && _tol.positive((*_excess)[v])) |
|
510 _level->activate(v); |
|
511 _excess->set(act,0); |
|
512 _level->deactivate(act); |
|
513 goto next_l; |
|
514 } |
|
515 else { |
|
516 _flow->set(e, (*_lo)[e]); |
|
517 _excess->set(v, (*_excess)[v] + fc); |
|
518 if(!_level->active(v) && _tol.positive((*_excess)[v])) |
|
519 _level->activate(v); |
|
520 exc-=fc; |
|
521 } |
|
522 } |
|
523 else if((*_level)[v]<mlevel) mlevel=(*_level)[v]; |
|
524 } |
|
525 |
|
526 _excess->set(act, exc); |
|
527 if(!_tol.positive(exc)) _level->deactivate(act); |
|
528 else if(mlevel==_node_num) { |
|
529 _level->liftHighestActiveToTop(); |
|
530 _el = _node_num; |
|
531 return false; |
|
532 } |
|
533 else { |
|
534 _level->liftHighestActive(mlevel+1); |
|
535 if(_level->onLevel(actlevel)==0) { |
|
536 _el = actlevel; |
|
537 return false; |
|
538 } |
|
539 } |
|
540 next_l: |
|
541 ; |
|
542 } |
|
543 return true; |
|
544 } |
|
545 |
|
546 /// Runs the circulation algorithm. |
|
547 |
|
548 /// Runs the circulation algorithm. |
|
549 /// \note fc.run() is just a shortcut of the following code. |
|
550 /// \code |
|
551 /// fc.greedyInit(); |
|
552 /// return fc.start(); |
|
553 /// \endcode |
|
554 bool run() { |
|
555 greedyInit(); |
|
556 return start(); |
|
557 } |
|
558 |
|
559 /// @} |
|
560 |
|
561 /// \name Query Functions |
|
562 /// The result of the %Circulation algorithm can be obtained using |
|
563 /// these functions. |
|
564 /// \n |
|
565 /// Before the use of these functions, |
|
566 /// either run() or start() must be called. |
|
567 |
|
568 ///@{ |
|
569 |
|
570 /** |
|
571 \brief Returns a barrier |
|
572 |
|
573 Barrier is a set \e B of nodes for which |
|
574 \f[ \sum_{v\in B}-delta(v)< |
|
575 \sum_{e\in\rho(B)}lo(e)-\sum_{e\in\delta(B)}up(e) \f] |
|
576 holds. The existence of a set with this property prooves that a feasible |
|
577 flow cannot exists. |
|
578 \sa checkBarrier() |
|
579 \sa run() |
|
580 */ |
|
581 template<class GT> |
|
582 void barrierMap(GT &bar) |
|
583 { |
|
584 for(NodeIt n(_g);n!=INVALID;++n) |
|
585 bar.set(n, (*_level)[n] >= _el); |
|
586 } |
|
587 |
|
588 ///Returns true if the node is in the barrier |
|
589 |
|
590 ///Returns true if the node is in the barrier |
|
591 ///\sa barrierMap() |
|
592 bool barrier(const Node& node) |
|
593 { |
|
594 return (*_level)[node] >= _el; |
|
595 } |
|
596 |
|
597 /// \brief Returns the flow on the arc. |
|
598 /// |
|
599 /// Sets the \c flowMap to the flow on the arcs. This method can |
|
600 /// be called after the second phase of algorithm. |
|
601 Value flow(const Arc& arc) const { |
|
602 return (*_flow)[arc]; |
|
603 } |
|
604 |
|
605 /// @} |
|
606 |
|
607 /// \name Checker Functions |
|
608 /// The feasibility of the results can be checked using |
|
609 /// these functions. |
|
610 /// \n |
|
611 /// Before the use of these functions, |
|
612 /// either run() or start() must be called. |
|
613 |
|
614 ///@{ |
|
615 |
|
616 ///Check if the \c flow is a feasible circulation |
|
617 bool checkFlow() { |
|
618 for(ArcIt e(_g);e!=INVALID;++e) |
|
619 if((*_flow)[e]<(*_lo)[e]||(*_flow)[e]>(*_up)[e]) return false; |
|
620 for(NodeIt n(_g);n!=INVALID;++n) |
|
621 { |
|
622 Value dif=-(*_delta)[n]; |
|
623 for(InArcIt e(_g,n);e!=INVALID;++e) dif-=(*_flow)[e]; |
|
624 for(OutArcIt e(_g,n);e!=INVALID;++e) dif+=(*_flow)[e]; |
|
625 if(_tol.negative(dif)) return false; |
|
626 } |
|
627 return true; |
|
628 } |
|
629 |
|
630 ///Check whether or not the last execution provides a barrier |
|
631 |
|
632 ///Check whether or not the last execution provides a barrier |
|
633 ///\sa barrier() |
|
634 bool checkBarrier() |
|
635 { |
|
636 Value delta=0; |
|
637 for(NodeIt n(_g);n!=INVALID;++n) |
|
638 if(barrier(n)) |
|
639 delta-=(*_delta)[n]; |
|
640 for(ArcIt e(_g);e!=INVALID;++e) |
|
641 { |
|
642 Node s=_g.source(e); |
|
643 Node t=_g.target(e); |
|
644 if(barrier(s)&&!barrier(t)) delta+=(*_up)[e]; |
|
645 else if(barrier(t)&&!barrier(s)) delta-=(*_lo)[e]; |
|
646 } |
|
647 return _tol.negative(delta); |
|
648 } |
|
649 |
|
650 /// @} |
|
651 |
|
652 }; |
|
653 |
|
654 } |
|
655 |
|
656 #endif |