lemon/path.h
changeset 101 70f3967ca6eb
parent 98 c4582fc14f58
child 144 4e626dbbe408
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/lemon/path.h	Thu Mar 20 12:12:24 2008 +0000
     1.3 @@ -0,0 +1,1079 @@
     1.4 +/* -*- C++ -*-
     1.5 + *
     1.6 + * This file is a part of LEMON, a generic C++ optimization library
     1.7 + *
     1.8 + * Copyright (C) 2003-2008
     1.9 + * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
    1.10 + * (Egervary Research Group on Combinatorial Optimization, EGRES).
    1.11 + *
    1.12 + * Permission to use, modify and distribute this software is granted
    1.13 + * provided that this copyright notice appears in all copies. For
    1.14 + * precise terms see the accompanying LICENSE file.
    1.15 + *
    1.16 + * This software is provided "AS IS" with no warranty of any kind,
    1.17 + * express or implied, and with no claim as to its suitability for any
    1.18 + * purpose.
    1.19 + *
    1.20 + */
    1.21 +
    1.22 +///\ingroup paths
    1.23 +///\file
    1.24 +///\brief Classes for representing paths in digraphs.
    1.25 +///
    1.26 +
    1.27 +#ifndef LEMON_PATH_H
    1.28 +#define LEMON_PATH_H
    1.29 +
    1.30 +#include <vector>
    1.31 +#include <algorithm>
    1.32 +
    1.33 +#include <lemon/error.h>
    1.34 +#include <lemon/bits/invalid.h>
    1.35 +#include <lemon/concepts/path.h>
    1.36 +
    1.37 +namespace lemon {
    1.38 +
    1.39 +  /// \addtogroup paths
    1.40 +  /// @{
    1.41 +
    1.42 +
    1.43 +  /// \brief A structure for representing directed paths in a digraph.
    1.44 +  ///
    1.45 +  /// A structure for representing directed path in a digraph.
    1.46 +  /// \param Digraph The digraph type in which the path is.
    1.47 +  ///
    1.48 +  /// In a sense, the path can be treated as a list of arcs. The
    1.49 +  /// lemon path type stores just this list. As a consequence, it
    1.50 +  /// cannot enumerate the nodes of the path and the source node of
    1.51 +  /// a zero length path is undefined.
    1.52 +  ///
    1.53 +  /// This implementation is a back and front insertable and erasable
    1.54 +  /// path type. It can be indexed in O(1) time. The front and back
    1.55 +  /// insertion and erase is done in O(1) (amortized) time. The
    1.56 +  /// implementation uses two vectors for storing the front and back
    1.57 +  /// insertions.
    1.58 +  template <typename _Digraph>
    1.59 +  class Path {
    1.60 +  public:
    1.61 +
    1.62 +    typedef _Digraph Digraph;
    1.63 +    typedef typename Digraph::Arc Arc;
    1.64 +
    1.65 +    /// \brief Default constructor
    1.66 +    ///
    1.67 +    /// Default constructor
    1.68 +    Path() {}
    1.69 +
    1.70 +    /// \brief Template copy constructor
    1.71 +    ///
    1.72 +    /// This constuctor initializes the path from any other path type.
    1.73 +    /// It simply makes a copy of the given path.
    1.74 +    template <typename CPath>
    1.75 +    Path(const CPath& cpath) {
    1.76 +      copyPath(*this, cpath);
    1.77 +    }
    1.78 +
    1.79 +    /// \brief Template copy assignment
    1.80 +    ///
    1.81 +    /// This operator makes a copy of a path of any other type.
    1.82 +    template <typename CPath>
    1.83 +    Path& operator=(const CPath& cpath) {
    1.84 +      copyPath(*this, cpath);
    1.85 +      return *this;
    1.86 +    }
    1.87 +
    1.88 +    /// \brief Lemon style iterator for path arcs
    1.89 +    ///
    1.90 +    /// This class is used to iterate on the arcs of the paths.
    1.91 +    class ArcIt {
    1.92 +      friend class Path;
    1.93 +    public:
    1.94 +      /// \brief Default constructor
    1.95 +      ArcIt() {}
    1.96 +      /// \brief Invalid constructor
    1.97 +      ArcIt(Invalid) : path(0), idx(-1) {}
    1.98 +      /// \brief Initializate the iterator to the first arc of path
    1.99 +      ArcIt(const Path &_path) 
   1.100 +        : path(&_path), idx(_path.empty() ? -1 : 0) {}
   1.101 +
   1.102 +    private:
   1.103 +
   1.104 +      ArcIt(const Path &_path, int _idx) 
   1.105 +        : path(&_path), idx(_idx) {}
   1.106 +
   1.107 +    public:
   1.108 +
   1.109 +      /// \brief Conversion to Arc
   1.110 +      operator const Arc&() const {
   1.111 +        return path->nth(idx);
   1.112 +      }
   1.113 +
   1.114 +      /// \brief Next arc
   1.115 +      ArcIt& operator++() { 
   1.116 +        ++idx;
   1.117 +        if (idx >= path->length()) idx = -1; 
   1.118 +        return *this; 
   1.119 +      }
   1.120 +
   1.121 +      /// \brief Comparison operator
   1.122 +      bool operator==(const ArcIt& e) const { return idx==e.idx; }
   1.123 +      /// \brief Comparison operator
   1.124 +      bool operator!=(const ArcIt& e) const { return idx!=e.idx; }
   1.125 +      /// \brief Comparison operator
   1.126 +      bool operator<(const ArcIt& e) const { return idx<e.idx; }
   1.127 +
   1.128 +    private:
   1.129 +      const Path *path;
   1.130 +      int idx;
   1.131 +    };
   1.132 +
   1.133 +    /// \brief Length of the path.
   1.134 +    int length() const { return head.size() + tail.size(); }
   1.135 +    /// \brief Return whether the path is empty.
   1.136 +    bool empty() const { return head.empty() && tail.empty(); }
   1.137 +
   1.138 +    /// \brief Reset the path to an empty one.
   1.139 +    void clear() { head.clear(); tail.clear(); }
   1.140 +
   1.141 +    /// \brief The nth arc.
   1.142 +    ///
   1.143 +    /// \pre n is in the [0..length() - 1] range
   1.144 +    const Arc& nth(int n) const {
   1.145 +      return n < int(head.size()) ? *(head.rbegin() + n) :
   1.146 +        *(tail.begin() + (n - head.size()));
   1.147 +    }
   1.148 +
   1.149 +    /// \brief Initialize arc iterator to point to the nth arc
   1.150 +    ///
   1.151 +    /// \pre n is in the [0..length() - 1] range
   1.152 +    ArcIt nthIt(int n) const {
   1.153 +      return ArcIt(*this, n);
   1.154 +    }
   1.155 +
   1.156 +    /// \brief The first arc of the path
   1.157 +    const Arc& front() const {
   1.158 +      return head.empty() ? tail.front() : head.back();
   1.159 +    }
   1.160 +
   1.161 +    /// \brief Add a new arc before the current path
   1.162 +    void addFront(const Arc& arc) {
   1.163 +      head.push_back(arc);
   1.164 +    }
   1.165 +
   1.166 +    /// \brief Erase the first arc of the path
   1.167 +    void eraseFront() {
   1.168 +      if (!head.empty()) {
   1.169 +        head.pop_back();
   1.170 +      } else {
   1.171 +        head.clear();
   1.172 +        int halfsize = tail.size() / 2;
   1.173 +        head.resize(halfsize);
   1.174 +        std::copy(tail.begin() + 1, tail.begin() + halfsize + 1,
   1.175 +                  head.rbegin());
   1.176 +        std::copy(tail.begin() + halfsize + 1, tail.end(), tail.begin());
   1.177 +        tail.resize(tail.size() - halfsize - 1);
   1.178 +      }
   1.179 +    }
   1.180 +
   1.181 +    /// \brief The last arc of the path
   1.182 +    const Arc& back() const {
   1.183 +      return tail.empty() ? head.front() : tail.back();
   1.184 +    }
   1.185 +
   1.186 +    /// \brief Add a new arc behind the current path
   1.187 +    void addBack(const Arc& arc) {
   1.188 +      tail.push_back(arc);
   1.189 +    }
   1.190 +
   1.191 +    /// \brief Erase the last arc of the path
   1.192 +    void eraseBack() {
   1.193 +      if (!tail.empty()) {
   1.194 +        tail.pop_back();
   1.195 +      } else {
   1.196 +        int halfsize = head.size() / 2;
   1.197 +        tail.resize(halfsize);
   1.198 +        std::copy(head.begin() + 1, head.begin() + halfsize + 1,
   1.199 +                  tail.rbegin());
   1.200 +        std::copy(head.begin() + halfsize + 1, head.end(), head.begin());
   1.201 +        head.resize(head.size() - halfsize - 1);
   1.202 +      }
   1.203 +    }
   1.204 +
   1.205 +    typedef True BuildTag;
   1.206 +
   1.207 +    template <typename CPath>
   1.208 +    void build(const CPath& path) {
   1.209 +      int len = path.length();
   1.210 +      tail.reserve(len);
   1.211 +      for (typename CPath::ArcIt it(path); it != INVALID; ++it) {
   1.212 +        tail.push_back(it);
   1.213 +      }
   1.214 +    }
   1.215 +
   1.216 +    template <typename CPath>
   1.217 +    void buildRev(const CPath& path) {
   1.218 +      int len = path.length();
   1.219 +      head.reserve(len);
   1.220 +      for (typename CPath::RevArcIt it(path); it != INVALID; ++it) {
   1.221 +        head.push_back(it);
   1.222 +      }
   1.223 +    }
   1.224 +
   1.225 +  protected:
   1.226 +    typedef std::vector<Arc> Container;
   1.227 +    Container head, tail;
   1.228 +
   1.229 +  };
   1.230 +
   1.231 +  /// \brief A structure for representing directed paths in a digraph.
   1.232 +  ///
   1.233 +  /// A structure for representing directed path in a digraph.
   1.234 +  /// \param Digraph The digraph type in which the path is.
   1.235 +  ///
   1.236 +  /// In a sense, the path can be treated as a list of arcs. The
   1.237 +  /// lemon path type stores just this list. As a consequence it
   1.238 +  /// cannot enumerate the nodes in the path and the zero length paths
   1.239 +  /// cannot store the source.
   1.240 +  ///
   1.241 +  /// This implementation is a just back insertable and erasable path
   1.242 +  /// type. It can be indexed in O(1) time. The back insertion and
   1.243 +  /// erasure is amortized O(1) time. This implementation is faster
   1.244 +  /// then the \c Path type because it use just one vector for the
   1.245 +  /// arcs.
   1.246 +  template <typename _Digraph>
   1.247 +  class SimplePath {
   1.248 +  public:
   1.249 +
   1.250 +    typedef _Digraph Digraph;
   1.251 +    typedef typename Digraph::Arc Arc;
   1.252 +
   1.253 +    /// \brief Default constructor
   1.254 +    ///
   1.255 +    /// Default constructor
   1.256 +    SimplePath() {}
   1.257 +
   1.258 +    /// \brief Template copy constructor
   1.259 +    ///
   1.260 +    /// This path can be initialized with any other path type. It just
   1.261 +    /// makes a copy of the given path.
   1.262 +    template <typename CPath>
   1.263 +    SimplePath(const CPath& cpath) {
   1.264 +      copyPath(*this, cpath);
   1.265 +    }
   1.266 +
   1.267 +    /// \brief Template copy assignment
   1.268 +    ///
   1.269 +    /// This path can be initialized with any other path type. It just
   1.270 +    /// makes a copy of the given path.
   1.271 +    template <typename CPath>
   1.272 +    SimplePath& operator=(const CPath& cpath) {
   1.273 +      copyPath(*this, cpath);
   1.274 +      return *this;
   1.275 +    }
   1.276 +
   1.277 +    /// \brief Iterator class to iterate on the arcs of the paths
   1.278 +    ///
   1.279 +    /// This class is used to iterate on the arcs of the paths
   1.280 +    ///
   1.281 +    /// Of course it converts to Digraph::Arc
   1.282 +    class ArcIt {
   1.283 +      friend class SimplePath;
   1.284 +    public:
   1.285 +      /// Default constructor
   1.286 +      ArcIt() {}
   1.287 +      /// Invalid constructor
   1.288 +      ArcIt(Invalid) : path(0), idx(-1) {}
   1.289 +      /// \brief Initializate the constructor to the first arc of path
   1.290 +      ArcIt(const SimplePath &_path) 
   1.291 +        : path(&_path), idx(_path.empty() ? -1 : 0) {}
   1.292 +
   1.293 +    private:
   1.294 +
   1.295 +      /// Constructor with starting point
   1.296 +      ArcIt(const SimplePath &_path, int _idx) 
   1.297 +        : idx(_idx), path(&_path) {}
   1.298 +
   1.299 +    public:
   1.300 +
   1.301 +      ///Conversion to Digraph::Arc
   1.302 +      operator const Arc&() const {
   1.303 +        return path->nth(idx);
   1.304 +      }
   1.305 +
   1.306 +      /// Next arc
   1.307 +      ArcIt& operator++() { 
   1.308 +        ++idx;
   1.309 +        if (idx >= path->length()) idx = -1; 
   1.310 +        return *this; 
   1.311 +      }
   1.312 +
   1.313 +      /// Comparison operator
   1.314 +      bool operator==(const ArcIt& e) const { return idx==e.idx; }
   1.315 +      /// Comparison operator
   1.316 +      bool operator!=(const ArcIt& e) const { return idx!=e.idx; }
   1.317 +      /// Comparison operator
   1.318 +      bool operator<(const ArcIt& e) const { return idx<e.idx; }
   1.319 +
   1.320 +    private:
   1.321 +      const SimplePath *path;
   1.322 +      int idx;
   1.323 +    };
   1.324 +
   1.325 +    /// \brief Length of the path.
   1.326 +    int length() const { return data.size(); }
   1.327 +    /// \brief Return true if the path is empty.
   1.328 +    bool empty() const { return data.empty(); }
   1.329 +
   1.330 +    /// \brief Reset the path to an empty one.
   1.331 +    void clear() { data.clear(); }
   1.332 +
   1.333 +    /// \brief The nth arc.
   1.334 +    ///
   1.335 +    /// \pre n is in the [0..length() - 1] range
   1.336 +    const Arc& nth(int n) const {
   1.337 +      return data[n];
   1.338 +    }
   1.339 +
   1.340 +    /// \brief  Initializes arc iterator to point to the nth arc.
   1.341 +    ArcIt nthIt(int n) const {
   1.342 +      return ArcIt(*this, n);
   1.343 +    }
   1.344 +
   1.345 +    /// \brief The first arc of the path.
   1.346 +    const Arc& front() const {
   1.347 +      return data.front();
   1.348 +    }
   1.349 +
   1.350 +    /// \brief The last arc of the path.
   1.351 +    const Arc& back() const {
   1.352 +      return data.back();
   1.353 +    }
   1.354 +
   1.355 +    /// \brief Add a new arc behind the current path.
   1.356 +    void addBack(const Arc& arc) {
   1.357 +      data.push_back(arc);
   1.358 +    }
   1.359 +
   1.360 +    /// \brief Erase the last arc of the path
   1.361 +    void eraseBack() {
   1.362 +      data.pop_back();
   1.363 +    }
   1.364 +
   1.365 +    typedef True BuildTag;
   1.366 +
   1.367 +    template <typename CPath>
   1.368 +    void build(const CPath& path) {
   1.369 +      int len = path.length();
   1.370 +      data.resize(len);
   1.371 +      int index = 0;
   1.372 +      for (typename CPath::ArcIt it(path); it != INVALID; ++it) {
   1.373 +        data[index] = it;;
   1.374 +        ++index;
   1.375 +      }
   1.376 +    }
   1.377 +
   1.378 +    template <typename CPath>
   1.379 +    void buildRev(const CPath& path) {
   1.380 +      int len = path.length();
   1.381 +      data.resize(len);
   1.382 +      int index = len;
   1.383 +      for (typename CPath::RevArcIt it(path); it != INVALID; ++it) {
   1.384 +        --index;
   1.385 +        data[index] = it;;
   1.386 +      }
   1.387 +    }
   1.388 +
   1.389 +  protected:
   1.390 +    typedef std::vector<Arc> Container;
   1.391 +    Container data;
   1.392 +
   1.393 +  };
   1.394 +
   1.395 +  /// \brief A structure for representing directed paths in a digraph.
   1.396 +  ///
   1.397 +  /// A structure for representing directed path in a digraph.
   1.398 +  /// \param Digraph The digraph type in which the path is.
   1.399 +  ///
   1.400 +  /// In a sense, the path can be treated as a list of arcs. The
   1.401 +  /// lemon path type stores just this list. As a consequence it
   1.402 +  /// cannot enumerate the nodes in the path and the zero length paths
   1.403 +  /// cannot store the source.
   1.404 +  ///
   1.405 +  /// This implementation is a back and front insertable and erasable
   1.406 +  /// path type. It can be indexed in O(k) time, where k is the rank
   1.407 +  /// of the arc in the path. The length can be computed in O(n)
   1.408 +  /// time. The front and back insertion and erasure is O(1) time
   1.409 +  /// and it can be splited and spliced in O(1) time.
   1.410 +  template <typename _Digraph>
   1.411 +  class ListPath {
   1.412 +  public:
   1.413 +
   1.414 +    typedef _Digraph Digraph;
   1.415 +    typedef typename Digraph::Arc Arc;
   1.416 +
   1.417 +  protected:
   1.418 +
   1.419 +    // the std::list<> is incompatible 
   1.420 +    // hard to create invalid iterator
   1.421 +    struct Node {
   1.422 +      Arc arc;
   1.423 +      Node *next, *prev;
   1.424 +    };
   1.425 +
   1.426 +    Node *first, *last;
   1.427 +
   1.428 +    std::allocator<Node> alloc;
   1.429 +
   1.430 +  public:
   1.431 + 
   1.432 +    /// \brief Default constructor
   1.433 +    ///
   1.434 +    /// Default constructor
   1.435 +    ListPath() : first(0), last(0) {}
   1.436 +
   1.437 +    /// \brief Template copy constructor
   1.438 +    ///
   1.439 +    /// This path can be initialized with any other path type. It just
   1.440 +    /// makes a copy of the given path.
   1.441 +    template <typename CPath>
   1.442 +    ListPath(const CPath& cpath) : first(0), last(0) {
   1.443 +      copyPath(*this, cpath);
   1.444 +    }
   1.445 +
   1.446 +    /// \brief Destructor of the path
   1.447 +    ///
   1.448 +    /// Destructor of the path
   1.449 +    ~ListPath() {
   1.450 +      clear();
   1.451 +    }
   1.452 +
   1.453 +    /// \brief Template copy assignment
   1.454 +    ///
   1.455 +    /// This path can be initialized with any other path type. It just
   1.456 +    /// makes a copy of the given path.
   1.457 +    template <typename CPath>
   1.458 +    ListPath& operator=(const CPath& cpath) {
   1.459 +      copyPath(*this, cpath);
   1.460 +      return *this;
   1.461 +    }
   1.462 +
   1.463 +    /// \brief Iterator class to iterate on the arcs of the paths
   1.464 +    ///
   1.465 +    /// This class is used to iterate on the arcs of the paths
   1.466 +    ///
   1.467 +    /// Of course it converts to Digraph::Arc
   1.468 +    class ArcIt {
   1.469 +      friend class ListPath;
   1.470 +    public:
   1.471 +      /// Default constructor
   1.472 +      ArcIt() {}
   1.473 +      /// Invalid constructor
   1.474 +      ArcIt(Invalid) : path(0), node(0) {}
   1.475 +      /// \brief Initializate the constructor to the first arc of path
   1.476 +      ArcIt(const ListPath &_path) 
   1.477 +        : path(&_path), node(_path.first) {}
   1.478 +
   1.479 +    protected:
   1.480 +
   1.481 +      ArcIt(const ListPath &_path, Node *_node) 
   1.482 +        : path(&_path), node(_node) {}
   1.483 +
   1.484 +
   1.485 +    public:
   1.486 +
   1.487 +      ///Conversion to Digraph::Arc
   1.488 +      operator const Arc&() const {
   1.489 +        return node->arc;
   1.490 +      }
   1.491 +
   1.492 +      /// Next arc
   1.493 +      ArcIt& operator++() { 
   1.494 +        node = node->next;
   1.495 +        return *this; 
   1.496 +      }
   1.497 +
   1.498 +      /// Comparison operator
   1.499 +      bool operator==(const ArcIt& e) const { return node==e.node; }
   1.500 +      /// Comparison operator
   1.501 +      bool operator!=(const ArcIt& e) const { return node!=e.node; }
   1.502 +      /// Comparison operator
   1.503 +      bool operator<(const ArcIt& e) const { return node<e.node; }
   1.504 +
   1.505 +    private:
   1.506 +      const ListPath *path;
   1.507 +      Node *node;
   1.508 +    };
   1.509 +
   1.510 +    /// \brief The nth arc.
   1.511 +    ///
   1.512 +    /// This function looks for the nth arc in O(n) time.
   1.513 +    /// \pre n is in the [0..length() - 1] range
   1.514 +    const Arc& nth(int n) const {
   1.515 +      Node *node = first;
   1.516 +      for (int i = 0; i < n; ++i) {
   1.517 +        node = node->next;
   1.518 +      }
   1.519 +      return node->arc;
   1.520 +    }
   1.521 +
   1.522 +    /// \brief Initializes arc iterator to point to the nth arc.
   1.523 +    ArcIt nthIt(int n) const {
   1.524 +      Node *node = first;
   1.525 +      for (int i = 0; i < n; ++i) {
   1.526 +        node = node->next;
   1.527 +      }
   1.528 +      return ArcIt(*this, node);
   1.529 +    }
   1.530 +
   1.531 +    /// \brief Length of the path.
   1.532 +    int length() const {
   1.533 +      int len = 0;
   1.534 +      Node *node = first;
   1.535 +      while (node != 0) {
   1.536 +        node = node->next;
   1.537 +        ++len;
   1.538 +      }
   1.539 +      return len;
   1.540 +    }
   1.541 +
   1.542 +    /// \brief Return true if the path is empty.
   1.543 +    bool empty() const { return first == 0; }
   1.544 +
   1.545 +    /// \brief Reset the path to an empty one.
   1.546 +    void clear() {
   1.547 +      while (first != 0) {
   1.548 +        last = first->next;
   1.549 +        alloc.destroy(first);
   1.550 +        alloc.deallocate(first, 1);
   1.551 +        first = last;
   1.552 +      }
   1.553 +    }
   1.554 +
   1.555 +    /// \brief The first arc of the path
   1.556 +    const Arc& front() const {
   1.557 +      return first->arc;
   1.558 +    }
   1.559 +
   1.560 +    /// \brief Add a new arc before the current path
   1.561 +    void addFront(const Arc& arc) {
   1.562 +      Node *node = alloc.allocate(1);
   1.563 +      alloc.construct(node, Node());
   1.564 +      node->prev = 0;
   1.565 +      node->next = first;
   1.566 +      node->arc = arc;
   1.567 +      if (first) {
   1.568 +        first->prev = node;
   1.569 +        first = node;
   1.570 +      } else {
   1.571 +        first = last = node;
   1.572 +      }
   1.573 +    }
   1.574 +
   1.575 +    /// \brief Erase the first arc of the path
   1.576 +    void eraseFront() {
   1.577 +      Node *node = first;
   1.578 +      first = first->next;
   1.579 +      if (first) {
   1.580 +        first->prev = 0;
   1.581 +      } else {
   1.582 +        last = 0;
   1.583 +      }
   1.584 +      alloc.destroy(node);
   1.585 +      alloc.deallocate(node, 1);
   1.586 +    }
   1.587 +
   1.588 +    /// \brief The last arc of the path.
   1.589 +    const Arc& back() const {
   1.590 +      return last->arc;
   1.591 +    }
   1.592 +
   1.593 +    /// \brief Add a new arc behind the current path.
   1.594 +    void addBack(const Arc& arc) {
   1.595 +      Node *node = alloc.allocate(1);
   1.596 +      alloc.construct(node, Node());
   1.597 +      node->next = 0;
   1.598 +      node->prev = last;
   1.599 +      node->arc = arc;
   1.600 +      if (last) {
   1.601 +        last->next = node;
   1.602 +        last = node;
   1.603 +      } else {
   1.604 +        last = first = node;
   1.605 +      }
   1.606 +    }
   1.607 +
   1.608 +    /// \brief Erase the last arc of the path
   1.609 +    void eraseBack() {
   1.610 +      Node *node = last;
   1.611 +      last = last->prev;
   1.612 +      if (last) {
   1.613 +        last->next = 0;
   1.614 +      } else {
   1.615 +        first = 0;
   1.616 +      }
   1.617 +      alloc.destroy(node);
   1.618 +      alloc.deallocate(node, 1);
   1.619 +    }
   1.620 +
   1.621 +    /// \brief Splice a path to the back of the current path.
   1.622 +    ///
   1.623 +    /// It splices \c tpath to the back of the current path and \c
   1.624 +    /// tpath becomes empty. The time complexity of this function is
   1.625 +    /// O(1).
   1.626 +    void spliceBack(ListPath& tpath) {
   1.627 +      if (first) {
   1.628 +        if (tpath.first) {
   1.629 +          last->next = tpath.first;
   1.630 +          tpath.first->prev = last;
   1.631 +          last = tpath.last;
   1.632 +        }
   1.633 +      } else {
   1.634 +        first = tpath.first;
   1.635 +        last = tpath.last;
   1.636 +      }
   1.637 +      tpath.first = tpath.last = 0;
   1.638 +    }
   1.639 +
   1.640 +    /// \brief Splice a path to the front of the current path.
   1.641 +    ///
   1.642 +    /// It splices \c tpath before the current path and \c tpath
   1.643 +    /// becomes empty. The time complexity of this function
   1.644 +    /// is O(1).
   1.645 +    void spliceFront(ListPath& tpath) {
   1.646 +      if (first) {
   1.647 +        if (tpath.first) {
   1.648 +          first->prev = tpath.last;
   1.649 +          tpath.last->next = first;
   1.650 +          first = tpath.first;
   1.651 +        }
   1.652 +      } else {
   1.653 +        first = tpath.first;
   1.654 +        last = tpath.last;
   1.655 +      }
   1.656 +      tpath.first = tpath.last = 0;
   1.657 +    }
   1.658 +
   1.659 +    /// \brief Splice a path into the current path.
   1.660 +    ///
   1.661 +    /// It splices the \c tpath into the current path before the
   1.662 +    /// position of \c it iterator and \c tpath becomes empty. The
   1.663 +    /// time complexity of this function is O(1). If the \c it is
   1.664 +    /// \c INVALID then it will splice behind the current path.
   1.665 +    void splice(ArcIt it, ListPath& tpath) {
   1.666 +      if (it.node) {
   1.667 +        if (tpath.first) {
   1.668 +          tpath.first->prev = it.node->prev;
   1.669 +          if (it.node->prev) {
   1.670 +            it.node->prev->next = tpath.first;
   1.671 +          } else {
   1.672 +            first = tpath.first;
   1.673 +          }
   1.674 +          it.node->prev = tpath.last;
   1.675 +          tpath.last->next = it.node;
   1.676 +        }
   1.677 +      } else {
   1.678 +        if (first) {
   1.679 +          if (tpath.first) {
   1.680 +            last->next = tpath.first;
   1.681 +            tpath.first->prev = last;
   1.682 +            last = tpath.last;
   1.683 +          }
   1.684 +        } else {
   1.685 +          first = tpath.first;
   1.686 +          last = tpath.last;
   1.687 +        }
   1.688 +      }
   1.689 +      tpath.first = tpath.last = 0;
   1.690 +    }
   1.691 +
   1.692 +    /// \brief Split the current path.
   1.693 +    ///
   1.694 +    /// It splits the current path into two parts. The part before
   1.695 +    /// the iterator \c it will remain in the current path and the part
   1.696 +    /// starting with
   1.697 +    /// \c it will put into \c tpath. If \c tpath have arcs
   1.698 +    /// before the operation they are removed first.  The time
   1.699 +    /// complexity of this function is O(1) plus the the time of emtying
   1.700 +    /// \c tpath. If \c it is \c INVALID then it just clears \c tpath
   1.701 +    void split(ArcIt it, ListPath& tpath) {
   1.702 +      tpath.clear();
   1.703 +      if (it.node) {
   1.704 +        tpath.first = it.node;
   1.705 +        tpath.last = last;
   1.706 +        if (it.node->prev) {
   1.707 +          last = it.node->prev;
   1.708 +          last->next = 0;
   1.709 +        } else {
   1.710 +          first = last = 0;
   1.711 +        }
   1.712 +        it.node->prev = 0;
   1.713 +      }
   1.714 +    }
   1.715 +
   1.716 +
   1.717 +    typedef True BuildTag;
   1.718 +
   1.719 +    template <typename CPath>
   1.720 +    void build(const CPath& path) {
   1.721 +      for (typename CPath::ArcIt it(path); it != INVALID; ++it) {
   1.722 +        addBack(it);
   1.723 +      }
   1.724 +    }
   1.725 +
   1.726 +    template <typename CPath>
   1.727 +    void buildRev(const CPath& path) {
   1.728 +      for (typename CPath::RevArcIt it(path); it != INVALID; ++it) {
   1.729 +        addFront(it);
   1.730 +      }
   1.731 +    }
   1.732 +
   1.733 +  };
   1.734 +
   1.735 +  /// \brief A structure for representing directed paths in a digraph.
   1.736 +  ///
   1.737 +  /// A structure for representing directed path in a digraph.
   1.738 +  /// \param Digraph The digraph type in which the path is.
   1.739 +  ///
   1.740 +  /// In a sense, the path can be treated as a list of arcs. The
   1.741 +  /// lemon path type stores just this list. As a consequence it
   1.742 +  /// cannot enumerate the nodes in the path and the source node of
   1.743 +  /// a zero length path is undefined.
   1.744 +  ///
   1.745 +  /// This implementation is completly static, i.e. it can be copy constucted
   1.746 +  /// or copy assigned from another path, but otherwise it cannot be
   1.747 +  /// modified.
   1.748 +  ///
   1.749 +  /// Being the the most memory efficient path type in LEMON,
   1.750 +  /// it is intented to be
   1.751 +  /// used when you want to store a large number of paths.
   1.752 +  template <typename _Digraph>
   1.753 +  class StaticPath {
   1.754 +  public:
   1.755 +
   1.756 +    typedef _Digraph Digraph;
   1.757 +    typedef typename Digraph::Arc Arc;
   1.758 +
   1.759 +    /// \brief Default constructor
   1.760 +    ///
   1.761 +    /// Default constructor
   1.762 +    StaticPath() : len(0), arcs(0) {}
   1.763 +    
   1.764 +    /// \brief Template copy constructor
   1.765 +    ///
   1.766 +    /// This path can be initialized from any other path type.
   1.767 +    template <typename CPath>
   1.768 +    StaticPath(const CPath& cpath) : arcs(0) {
   1.769 +      copyPath(*this, cpath);
   1.770 +    }
   1.771 +
   1.772 +    /// \brief Destructor of the path
   1.773 +    ///
   1.774 +    /// Destructor of the path
   1.775 +    ~StaticPath() {
   1.776 +      if (arcs) delete[] arcs;
   1.777 +    }
   1.778 +
   1.779 +    /// \brief Template copy assignment
   1.780 +    ///
   1.781 +    /// This path can be made equal to any other path type. It simply
   1.782 +    /// makes a copy of the given path.
   1.783 +    template <typename CPath>
   1.784 +    StaticPath& operator=(const CPath& cpath) {
   1.785 +      copyPath(*this, cpath);
   1.786 +      return *this;
   1.787 +    }
   1.788 +
   1.789 +    /// \brief Iterator class to iterate on the arcs of the paths
   1.790 +    ///
   1.791 +    /// This class is used to iterate on the arcs of the paths
   1.792 +    ///
   1.793 +    /// Of course it converts to Digraph::Arc
   1.794 +    class ArcIt {
   1.795 +      friend class StaticPath;
   1.796 +    public:
   1.797 +      /// Default constructor
   1.798 +      ArcIt() {}
   1.799 +      /// Invalid constructor
   1.800 +      ArcIt(Invalid) : path(0), idx(-1) {}
   1.801 +      /// Initializate the constructor to the first arc of path
   1.802 +      ArcIt(const StaticPath &_path) 
   1.803 +        : path(&_path), idx(_path.empty() ? -1 : 0) {}
   1.804 +
   1.805 +    private:
   1.806 +
   1.807 +      /// Constructor with starting point
   1.808 +      ArcIt(const StaticPath &_path, int _idx) 
   1.809 +        : idx(_idx), path(&_path) {}
   1.810 +
   1.811 +    public:
   1.812 +
   1.813 +      ///Conversion to Digraph::Arc
   1.814 +      operator const Arc&() const {
   1.815 +        return path->nth(idx);
   1.816 +      }
   1.817 +
   1.818 +      /// Next arc
   1.819 +      ArcIt& operator++() { 
   1.820 +        ++idx;
   1.821 +        if (idx >= path->length()) idx = -1; 
   1.822 +        return *this; 
   1.823 +      }
   1.824 +
   1.825 +      /// Comparison operator
   1.826 +      bool operator==(const ArcIt& e) const { return idx==e.idx; }
   1.827 +      /// Comparison operator
   1.828 +      bool operator!=(const ArcIt& e) const { return idx!=e.idx; }
   1.829 +      /// Comparison operator
   1.830 +      bool operator<(const ArcIt& e) const { return idx<e.idx; }
   1.831 +
   1.832 +    private:
   1.833 +      const StaticPath *path;
   1.834 +      int idx;
   1.835 +    };
   1.836 +
   1.837 +    /// \brief The nth arc.
   1.838 +    ///
   1.839 +    /// \pre n is in the [0..length() - 1] range
   1.840 +    const Arc& nth(int n) const {
   1.841 +      return arcs[n];
   1.842 +    }
   1.843 +
   1.844 +    /// \brief The arc iterator pointing to the nth arc.
   1.845 +    ArcIt nthIt(int n) const {
   1.846 +      return ArcIt(*this, n);
   1.847 +    }
   1.848 +
   1.849 +    /// \brief The length of the path.
   1.850 +    int length() const { return len; }
   1.851 +
   1.852 +    /// \brief Return true when the path is empty.
   1.853 +    int empty() const { return len == 0; }
   1.854 +
   1.855 +    /// \break Erase all arcs in the digraph.
   1.856 +    void clear() {
   1.857 +      len = 0;
   1.858 +      if (arcs) delete[] arcs;
   1.859 +      arcs = 0;
   1.860 +    }
   1.861 +
   1.862 +    /// \brief The first arc of the path.
   1.863 +    const Arc& front() const {
   1.864 +      return arcs[0];
   1.865 +    }
   1.866 +
   1.867 +    /// \brief The last arc of the path.
   1.868 +    const Arc& back() const {
   1.869 +      return arcs[len - 1];
   1.870 +    }
   1.871 +
   1.872 +
   1.873 +    typedef True BuildTag;
   1.874 +
   1.875 +    template <typename CPath>
   1.876 +    void build(const CPath& path) {
   1.877 +      len = path.length();
   1.878 +      arcs = new Arc[len];
   1.879 +      int index = 0;
   1.880 +      for (typename CPath::ArcIt it(path); it != INVALID; ++it) {
   1.881 +        arcs[index] = it;
   1.882 +        ++index;
   1.883 +      }
   1.884 +    }
   1.885 +
   1.886 +    template <typename CPath>
   1.887 +    void buildRev(const CPath& path) {
   1.888 +      len = path.length();
   1.889 +      arcs = new Arc[len];
   1.890 +      int index = len;
   1.891 +      for (typename CPath::RevArcIt it(path); it != INVALID; ++it) {
   1.892 +        --index;
   1.893 +        arcs[index] = it;
   1.894 +      }
   1.895 +    }
   1.896 +
   1.897 +  private:
   1.898 +    int len;
   1.899 +    Arc* arcs;
   1.900 +  };
   1.901 +
   1.902 +  ///////////////////////////////////////////////////////////////////////
   1.903 +  // Additional utilities
   1.904 +  ///////////////////////////////////////////////////////////////////////
   1.905 +
   1.906 +  namespace _path_bits {
   1.907 +
   1.908 +    template <typename Path, typename Enable = void>
   1.909 +    struct RevTagIndicator {
   1.910 +      static const bool value = false;
   1.911 +    };
   1.912 +
   1.913 +    template <typename Digraph>
   1.914 +    struct RevTagIndicator<
   1.915 +      Digraph, 
   1.916 +      typename enable_if<typename Digraph::RevTag, void>::type
   1.917 +    > {
   1.918 +      static const bool value = true;
   1.919 +    };
   1.920 +
   1.921 +    template <typename Target, typename Source,
   1.922 +              typename BuildEnable = void, typename RevEnable = void>
   1.923 +    struct PathCopySelector {
   1.924 +      static void copy(Target& target, const Source& source) {
   1.925 +        target.clear();
   1.926 +        for (typename Source::ArcIt it(source); it != INVALID; ++it) {
   1.927 +          target.addBack(it);
   1.928 +        }
   1.929 +      }
   1.930 +    };
   1.931 +
   1.932 +    template <typename Target, typename Source, typename BuildEnable>
   1.933 +    struct PathCopySelector<
   1.934 +      Target, Source, BuildEnable, 
   1.935 +      typename enable_if<typename Source::RevPathTag, void>::type> {
   1.936 +      static void copy(Target& target, const Source& source) {
   1.937 +        target.clear();
   1.938 +        for (typename Source::RevArcIt it(source); it != INVALID; ++it) {
   1.939 +          target.addFront(it);
   1.940 +        }
   1.941 +      }
   1.942 +    };
   1.943 +
   1.944 +    template <typename Target, typename Source, typename RevEnable>
   1.945 +    struct PathCopySelector<
   1.946 +      Target, Source, 
   1.947 +      typename enable_if<typename Target::BuildTag, void>::type, RevEnable> {
   1.948 +      static void copy(Target& target, const Source& source) {
   1.949 +        target.clear();
   1.950 +        target.build(source);
   1.951 +      }
   1.952 +    };
   1.953 +
   1.954 +    template <typename Target, typename Source>
   1.955 +    struct PathCopySelector<
   1.956 +      Target, Source, 
   1.957 +      typename enable_if<typename Target::BuildTag, void>::type,
   1.958 +      typename enable_if<typename Source::RevPathTag, void>::type> {
   1.959 +      static void copy(Target& target, const Source& source) {
   1.960 +        target.clear();
   1.961 +        target.buildRev(source);
   1.962 +      }
   1.963 +    };
   1.964 +
   1.965 +  }
   1.966 +
   1.967 +
   1.968 +  /// \brief Make a copy of a path.
   1.969 +  ///
   1.970 +  ///  This function makes a copy of a path.
   1.971 +  template <typename Target, typename Source>
   1.972 +  void copyPath(Target& target, const Source& source) {
   1.973 +    checkConcept<concepts::PathDumper<typename Source::Digraph>, Source>();
   1.974 +    _path_bits::PathCopySelector<Target, Source>::copy(target, source);
   1.975 +  }
   1.976 +
   1.977 +  /// \brief Check the consistency of a path.
   1.978 +  ///
   1.979 +  /// This function checks that the target of each arc is the same
   1.980 +  /// as the source of the next one. 
   1.981 +  /// 
   1.982 +  template <typename Digraph, typename Path>
   1.983 +  bool checkPath(const Digraph& digraph, const Path& path) {
   1.984 +    typename Path::ArcIt it(path);
   1.985 +    if (it == INVALID) return true;
   1.986 +    typename Digraph::Node node = digraph.target(it);
   1.987 +    ++it;
   1.988 +    while (it != INVALID) {
   1.989 +      if (digraph.source(it) != node) return false;
   1.990 +      node = digraph.target(it);
   1.991 +      ++it;
   1.992 +    }
   1.993 +    return true;
   1.994 +  }
   1.995 +
   1.996 +  /// \brief The source of a path
   1.997 +  ///
   1.998 +  /// This function returns the source of the given path.
   1.999 +  template <typename Digraph, typename Path>
  1.1000 +  typename Digraph::Node pathSource(const Digraph& digraph, const Path& path) {
  1.1001 +    return digraph.source(path.front());
  1.1002 +  }
  1.1003 +
  1.1004 +  /// \brief The target of a path
  1.1005 +  ///
  1.1006 +  /// This function returns the target of the given path.
  1.1007 +  template <typename Digraph, typename Path>
  1.1008 +  typename Digraph::Node pathTarget(const Digraph& digraph, const Path& path) {
  1.1009 +    return digraph.target(path.back());
  1.1010 +  }
  1.1011 +
  1.1012 +  /// \brief Class which helps to iterate through the nodes of a path
  1.1013 +  ///
  1.1014 +  /// In a sense, the path can be treated as a list of arcs. The
  1.1015 +  /// lemon path type stores only this list. As a consequence, it
  1.1016 +  /// cannot enumerate the nodes in the path and the zero length paths
  1.1017 +  /// cannot have a source node.
  1.1018 +  ///
  1.1019 +  /// This class implements the node iterator of a path structure. To
  1.1020 +  /// provide this feature, the underlying digraph should be passed to
  1.1021 +  /// the constructor of the iterator.
  1.1022 +  template <typename Path>
  1.1023 +  class PathNodeIt {
  1.1024 +  private:
  1.1025 +    const typename Path::Digraph *_digraph;
  1.1026 +    typename Path::ArcIt _it;
  1.1027 +    typename Path::Digraph::Node _nd;
  1.1028 +
  1.1029 +  public:
  1.1030 +
  1.1031 +    typedef typename Path::Digraph Digraph;
  1.1032 +    typedef typename Digraph::Node Node;
  1.1033 +    
  1.1034 +    /// Default constructor
  1.1035 +    PathNodeIt() {}
  1.1036 +    /// Invalid constructor
  1.1037 +    PathNodeIt(Invalid) 
  1.1038 +      : _digraph(0), _it(INVALID), _nd(INVALID) {}
  1.1039 +    /// Constructor
  1.1040 +    PathNodeIt(const Digraph& digraph, const Path& path) 
  1.1041 +      : _digraph(&digraph), _it(path) {
  1.1042 +      _nd = (_it != INVALID ? _digraph->source(_it) : INVALID);
  1.1043 +    }
  1.1044 +    /// Constructor
  1.1045 +    PathNodeIt(const Digraph& digraph, const Path& path, const Node& src) 
  1.1046 +      : _digraph(&digraph), _it(path), _nd(src) {}
  1.1047 +
  1.1048 +    ///Conversion to Digraph::Node
  1.1049 +    operator Node() const {
  1.1050 +      return _nd;
  1.1051 +    }
  1.1052 +
  1.1053 +    /// Next node
  1.1054 +    PathNodeIt& operator++() {
  1.1055 +      if (_it == INVALID) _nd = INVALID;
  1.1056 +      else {
  1.1057 +	_nd = _digraph->target(_it);
  1.1058 +	++_it;
  1.1059 +      }
  1.1060 +      return *this;
  1.1061 +    }
  1.1062 +
  1.1063 +    /// Comparison operator
  1.1064 +    bool operator==(const PathNodeIt& n) const { 
  1.1065 +      return _it == n._it && _nd == n._nd; 
  1.1066 +    }
  1.1067 +    /// Comparison operator
  1.1068 +    bool operator!=(const PathNodeIt& n) const { 
  1.1069 +      return _it != n._it || _nd != n._nd; 
  1.1070 +    }
  1.1071 +    /// Comparison operator
  1.1072 +    bool operator<(const PathNodeIt& n) const { 
  1.1073 +      return (_it < n._it && _nd != INVALID);
  1.1074 +    }
  1.1075 +    
  1.1076 +  };
  1.1077 +  
  1.1078 +  ///@}
  1.1079 +
  1.1080 +} // namespace lemon
  1.1081 +
  1.1082 +#endif // LEMON_PATH_H