lemon/circulation.h
changeset 708 994c7df296c9
parent 614 28f58740b6f8
child 690 1f08e846df29
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/lemon/circulation.h	Thu Dec 10 17:05:35 2009 +0100
     1.3 @@ -0,0 +1,794 @@
     1.4 +/* -*- mode: C++; indent-tabs-mode: nil; -*-
     1.5 + *
     1.6 + * This file is a part of LEMON, a generic C++ optimization library.
     1.7 + *
     1.8 + * Copyright (C) 2003-2009
     1.9 + * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
    1.10 + * (Egervary Research Group on Combinatorial Optimization, EGRES).
    1.11 + *
    1.12 + * Permission to use, modify and distribute this software is granted
    1.13 + * provided that this copyright notice appears in all copies. For
    1.14 + * precise terms see the accompanying LICENSE file.
    1.15 + *
    1.16 + * This software is provided "AS IS" with no warranty of any kind,
    1.17 + * express or implied, and with no claim as to its suitability for any
    1.18 + * purpose.
    1.19 + *
    1.20 + */
    1.21 +
    1.22 +#ifndef LEMON_CIRCULATION_H
    1.23 +#define LEMON_CIRCULATION_H
    1.24 +
    1.25 +#include <lemon/tolerance.h>
    1.26 +#include <lemon/elevator.h>
    1.27 +#include <limits>
    1.28 +
    1.29 +///\ingroup max_flow
    1.30 +///\file
    1.31 +///\brief Push-relabel algorithm for finding a feasible circulation.
    1.32 +///
    1.33 +namespace lemon {
    1.34 +
    1.35 +  /// \brief Default traits class of Circulation class.
    1.36 +  ///
    1.37 +  /// Default traits class of Circulation class.
    1.38 +  ///
    1.39 +  /// \tparam GR Type of the digraph the algorithm runs on.
    1.40 +  /// \tparam LM The type of the lower bound map.
    1.41 +  /// \tparam UM The type of the upper bound (capacity) map.
    1.42 +  /// \tparam SM The type of the supply map.
    1.43 +  template <typename GR, typename LM,
    1.44 +            typename UM, typename SM>
    1.45 +  struct CirculationDefaultTraits {
    1.46 +
    1.47 +    /// \brief The type of the digraph the algorithm runs on.
    1.48 +    typedef GR Digraph;
    1.49 +
    1.50 +    /// \brief The type of the lower bound map.
    1.51 +    ///
    1.52 +    /// The type of the map that stores the lower bounds on the arcs.
    1.53 +    /// It must conform to the \ref concepts::ReadMap "ReadMap" concept.
    1.54 +    typedef LM LowerMap;
    1.55 +
    1.56 +    /// \brief The type of the upper bound (capacity) map.
    1.57 +    ///
    1.58 +    /// The type of the map that stores the upper bounds (capacities)
    1.59 +    /// on the arcs.
    1.60 +    /// It must conform to the \ref concepts::ReadMap "ReadMap" concept.
    1.61 +    typedef UM UpperMap;
    1.62 +
    1.63 +    /// \brief The type of supply map.
    1.64 +    ///
    1.65 +    /// The type of the map that stores the signed supply values of the 
    1.66 +    /// nodes. 
    1.67 +    /// It must conform to the \ref concepts::ReadMap "ReadMap" concept.
    1.68 +    typedef SM SupplyMap;
    1.69 +
    1.70 +    /// \brief The type of the flow and supply values.
    1.71 +    typedef typename SupplyMap::Value Value;
    1.72 +
    1.73 +    /// \brief The type of the map that stores the flow values.
    1.74 +    ///
    1.75 +    /// The type of the map that stores the flow values.
    1.76 +    /// It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap"
    1.77 +    /// concept.
    1.78 +    typedef typename Digraph::template ArcMap<Value> FlowMap;
    1.79 +
    1.80 +    /// \brief Instantiates a FlowMap.
    1.81 +    ///
    1.82 +    /// This function instantiates a \ref FlowMap.
    1.83 +    /// \param digraph The digraph for which we would like to define
    1.84 +    /// the flow map.
    1.85 +    static FlowMap* createFlowMap(const Digraph& digraph) {
    1.86 +      return new FlowMap(digraph);
    1.87 +    }
    1.88 +
    1.89 +    /// \brief The elevator type used by the algorithm.
    1.90 +    ///
    1.91 +    /// The elevator type used by the algorithm.
    1.92 +    ///
    1.93 +    /// \sa Elevator
    1.94 +    /// \sa LinkedElevator
    1.95 +    typedef lemon::Elevator<Digraph, typename Digraph::Node> Elevator;
    1.96 +
    1.97 +    /// \brief Instantiates an Elevator.
    1.98 +    ///
    1.99 +    /// This function instantiates an \ref Elevator.
   1.100 +    /// \param digraph The digraph for which we would like to define
   1.101 +    /// the elevator.
   1.102 +    /// \param max_level The maximum level of the elevator.
   1.103 +    static Elevator* createElevator(const Digraph& digraph, int max_level) {
   1.104 +      return new Elevator(digraph, max_level);
   1.105 +    }
   1.106 +
   1.107 +    /// \brief The tolerance used by the algorithm
   1.108 +    ///
   1.109 +    /// The tolerance used by the algorithm to handle inexact computation.
   1.110 +    typedef lemon::Tolerance<Value> Tolerance;
   1.111 +
   1.112 +  };
   1.113 +
   1.114 +  /**
   1.115 +     \brief Push-relabel algorithm for the network circulation problem.
   1.116 +
   1.117 +     \ingroup max_flow
   1.118 +     This class implements a push-relabel algorithm for the \e network
   1.119 +     \e circulation problem.
   1.120 +     It is to find a feasible circulation when lower and upper bounds
   1.121 +     are given for the flow values on the arcs and lower bounds are
   1.122 +     given for the difference between the outgoing and incoming flow
   1.123 +     at the nodes.
   1.124 +
   1.125 +     The exact formulation of this problem is the following.
   1.126 +     Let \f$G=(V,A)\f$ be a digraph, \f$lower: A\rightarrow\mathbf{R}\f$
   1.127 +     \f$upper: A\rightarrow\mathbf{R}\cup\{\infty\}\f$ denote the lower and
   1.128 +     upper bounds on the arcs, for which \f$lower(uv) \leq upper(uv)\f$
   1.129 +     holds for all \f$uv\in A\f$, and \f$sup: V\rightarrow\mathbf{R}\f$
   1.130 +     denotes the signed supply values of the nodes.
   1.131 +     If \f$sup(u)>0\f$, then \f$u\f$ is a supply node with \f$sup(u)\f$
   1.132 +     supply, if \f$sup(u)<0\f$, then \f$u\f$ is a demand node with
   1.133 +     \f$-sup(u)\f$ demand.
   1.134 +     A feasible circulation is an \f$f: A\rightarrow\mathbf{R}\f$
   1.135 +     solution of the following problem.
   1.136 +
   1.137 +     \f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu)
   1.138 +     \geq sup(u) \quad \forall u\in V, \f]
   1.139 +     \f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A. \f]
   1.140 +     
   1.141 +     The sum of the supply values, i.e. \f$\sum_{u\in V} sup(u)\f$ must be
   1.142 +     zero or negative in order to have a feasible solution (since the sum
   1.143 +     of the expressions on the left-hand side of the inequalities is zero).
   1.144 +     It means that the total demand must be greater or equal to the total
   1.145 +     supply and all the supplies have to be carried out from the supply nodes,
   1.146 +     but there could be demands that are not satisfied.
   1.147 +     If \f$\sum_{u\in V} sup(u)\f$ is zero, then all the supply/demand
   1.148 +     constraints have to be satisfied with equality, i.e. all demands
   1.149 +     have to be satisfied and all supplies have to be used.
   1.150 +     
   1.151 +     If you need the opposite inequalities in the supply/demand constraints
   1.152 +     (i.e. the total demand is less than the total supply and all the demands
   1.153 +     have to be satisfied while there could be supplies that are not used),
   1.154 +     then you could easily transform the problem to the above form by reversing
   1.155 +     the direction of the arcs and taking the negative of the supply values
   1.156 +     (e.g. using \ref ReverseDigraph and \ref NegMap adaptors).
   1.157 +
   1.158 +     This algorithm either calculates a feasible circulation, or provides
   1.159 +     a \ref barrier() "barrier", which prooves that a feasible soultion
   1.160 +     cannot exist.
   1.161 +
   1.162 +     Note that this algorithm also provides a feasible solution for the
   1.163 +     \ref min_cost_flow "minimum cost flow problem".
   1.164 +
   1.165 +     \tparam GR The type of the digraph the algorithm runs on.
   1.166 +     \tparam LM The type of the lower bound map. The default
   1.167 +     map type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>".
   1.168 +     \tparam UM The type of the upper bound (capacity) map.
   1.169 +     The default map type is \c LM.
   1.170 +     \tparam SM The type of the supply map. The default map type is
   1.171 +     \ref concepts::Digraph::NodeMap "GR::NodeMap<UM::Value>".
   1.172 +  */
   1.173 +#ifdef DOXYGEN
   1.174 +template< typename GR,
   1.175 +          typename LM,
   1.176 +          typename UM,
   1.177 +          typename SM,
   1.178 +          typename TR >
   1.179 +#else
   1.180 +template< typename GR,
   1.181 +          typename LM = typename GR::template ArcMap<int>,
   1.182 +          typename UM = LM,
   1.183 +          typename SM = typename GR::template NodeMap<typename UM::Value>,
   1.184 +          typename TR = CirculationDefaultTraits<GR, LM, UM, SM> >
   1.185 +#endif
   1.186 +  class Circulation {
   1.187 +  public:
   1.188 +
   1.189 +    ///The \ref CirculationDefaultTraits "traits class" of the algorithm.
   1.190 +    typedef TR Traits;
   1.191 +    ///The type of the digraph the algorithm runs on.
   1.192 +    typedef typename Traits::Digraph Digraph;
   1.193 +    ///The type of the flow and supply values.
   1.194 +    typedef typename Traits::Value Value;
   1.195 +
   1.196 +    ///The type of the lower bound map.
   1.197 +    typedef typename Traits::LowerMap LowerMap;
   1.198 +    ///The type of the upper bound (capacity) map.
   1.199 +    typedef typename Traits::UpperMap UpperMap;
   1.200 +    ///The type of the supply map.
   1.201 +    typedef typename Traits::SupplyMap SupplyMap;
   1.202 +    ///The type of the flow map.
   1.203 +    typedef typename Traits::FlowMap FlowMap;
   1.204 +
   1.205 +    ///The type of the elevator.
   1.206 +    typedef typename Traits::Elevator Elevator;
   1.207 +    ///The type of the tolerance.
   1.208 +    typedef typename Traits::Tolerance Tolerance;
   1.209 +
   1.210 +  private:
   1.211 +
   1.212 +    TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
   1.213 +
   1.214 +    const Digraph &_g;
   1.215 +    int _node_num;
   1.216 +
   1.217 +    const LowerMap *_lo;
   1.218 +    const UpperMap *_up;
   1.219 +    const SupplyMap *_supply;
   1.220 +
   1.221 +    FlowMap *_flow;
   1.222 +    bool _local_flow;
   1.223 +
   1.224 +    Elevator* _level;
   1.225 +    bool _local_level;
   1.226 +
   1.227 +    typedef typename Digraph::template NodeMap<Value> ExcessMap;
   1.228 +    ExcessMap* _excess;
   1.229 +
   1.230 +    Tolerance _tol;
   1.231 +    int _el;
   1.232 +
   1.233 +  public:
   1.234 +
   1.235 +    typedef Circulation Create;
   1.236 +
   1.237 +    ///\name Named Template Parameters
   1.238 +
   1.239 +    ///@{
   1.240 +
   1.241 +    template <typename T>
   1.242 +    struct SetFlowMapTraits : public Traits {
   1.243 +      typedef T FlowMap;
   1.244 +      static FlowMap *createFlowMap(const Digraph&) {
   1.245 +        LEMON_ASSERT(false, "FlowMap is not initialized");
   1.246 +        return 0; // ignore warnings
   1.247 +      }
   1.248 +    };
   1.249 +
   1.250 +    /// \brief \ref named-templ-param "Named parameter" for setting
   1.251 +    /// FlowMap type
   1.252 +    ///
   1.253 +    /// \ref named-templ-param "Named parameter" for setting FlowMap
   1.254 +    /// type.
   1.255 +    template <typename T>
   1.256 +    struct SetFlowMap
   1.257 +      : public Circulation<Digraph, LowerMap, UpperMap, SupplyMap,
   1.258 +                           SetFlowMapTraits<T> > {
   1.259 +      typedef Circulation<Digraph, LowerMap, UpperMap, SupplyMap,
   1.260 +                          SetFlowMapTraits<T> > Create;
   1.261 +    };
   1.262 +
   1.263 +    template <typename T>
   1.264 +    struct SetElevatorTraits : public Traits {
   1.265 +      typedef T Elevator;
   1.266 +      static Elevator *createElevator(const Digraph&, int) {
   1.267 +        LEMON_ASSERT(false, "Elevator is not initialized");
   1.268 +        return 0; // ignore warnings
   1.269 +      }
   1.270 +    };
   1.271 +
   1.272 +    /// \brief \ref named-templ-param "Named parameter" for setting
   1.273 +    /// Elevator type
   1.274 +    ///
   1.275 +    /// \ref named-templ-param "Named parameter" for setting Elevator
   1.276 +    /// type. If this named parameter is used, then an external
   1.277 +    /// elevator object must be passed to the algorithm using the
   1.278 +    /// \ref elevator(Elevator&) "elevator()" function before calling
   1.279 +    /// \ref run() or \ref init().
   1.280 +    /// \sa SetStandardElevator
   1.281 +    template <typename T>
   1.282 +    struct SetElevator
   1.283 +      : public Circulation<Digraph, LowerMap, UpperMap, SupplyMap,
   1.284 +                           SetElevatorTraits<T> > {
   1.285 +      typedef Circulation<Digraph, LowerMap, UpperMap, SupplyMap,
   1.286 +                          SetElevatorTraits<T> > Create;
   1.287 +    };
   1.288 +
   1.289 +    template <typename T>
   1.290 +    struct SetStandardElevatorTraits : public Traits {
   1.291 +      typedef T Elevator;
   1.292 +      static Elevator *createElevator(const Digraph& digraph, int max_level) {
   1.293 +        return new Elevator(digraph, max_level);
   1.294 +      }
   1.295 +    };
   1.296 +
   1.297 +    /// \brief \ref named-templ-param "Named parameter" for setting
   1.298 +    /// Elevator type with automatic allocation
   1.299 +    ///
   1.300 +    /// \ref named-templ-param "Named parameter" for setting Elevator
   1.301 +    /// type with automatic allocation.
   1.302 +    /// The Elevator should have standard constructor interface to be
   1.303 +    /// able to automatically created by the algorithm (i.e. the
   1.304 +    /// digraph and the maximum level should be passed to it).
   1.305 +    /// However an external elevator object could also be passed to the
   1.306 +    /// algorithm with the \ref elevator(Elevator&) "elevator()" function
   1.307 +    /// before calling \ref run() or \ref init().
   1.308 +    /// \sa SetElevator
   1.309 +    template <typename T>
   1.310 +    struct SetStandardElevator
   1.311 +      : public Circulation<Digraph, LowerMap, UpperMap, SupplyMap,
   1.312 +                       SetStandardElevatorTraits<T> > {
   1.313 +      typedef Circulation<Digraph, LowerMap, UpperMap, SupplyMap,
   1.314 +                      SetStandardElevatorTraits<T> > Create;
   1.315 +    };
   1.316 +
   1.317 +    /// @}
   1.318 +
   1.319 +  protected:
   1.320 +
   1.321 +    Circulation() {}
   1.322 +
   1.323 +  public:
   1.324 +
   1.325 +    /// Constructor.
   1.326 +
   1.327 +    /// The constructor of the class.
   1.328 +    ///
   1.329 +    /// \param graph The digraph the algorithm runs on.
   1.330 +    /// \param lower The lower bounds for the flow values on the arcs.
   1.331 +    /// \param upper The upper bounds (capacities) for the flow values 
   1.332 +    /// on the arcs.
   1.333 +    /// \param supply The signed supply values of the nodes.
   1.334 +    Circulation(const Digraph &graph, const LowerMap &lower,
   1.335 +                const UpperMap &upper, const SupplyMap &supply)
   1.336 +      : _g(graph), _lo(&lower), _up(&upper), _supply(&supply),
   1.337 +        _flow(NULL), _local_flow(false), _level(NULL), _local_level(false),
   1.338 +        _excess(NULL) {}
   1.339 +
   1.340 +    /// Destructor.
   1.341 +    ~Circulation() {
   1.342 +      destroyStructures();
   1.343 +    }
   1.344 +
   1.345 +
   1.346 +  private:
   1.347 +
   1.348 +    bool checkBoundMaps() {
   1.349 +      for (ArcIt e(_g);e!=INVALID;++e) {
   1.350 +        if (_tol.less((*_up)[e], (*_lo)[e])) return false;
   1.351 +      }
   1.352 +      return true;
   1.353 +    }
   1.354 +
   1.355 +    void createStructures() {
   1.356 +      _node_num = _el = countNodes(_g);
   1.357 +
   1.358 +      if (!_flow) {
   1.359 +        _flow = Traits::createFlowMap(_g);
   1.360 +        _local_flow = true;
   1.361 +      }
   1.362 +      if (!_level) {
   1.363 +        _level = Traits::createElevator(_g, _node_num);
   1.364 +        _local_level = true;
   1.365 +      }
   1.366 +      if (!_excess) {
   1.367 +        _excess = new ExcessMap(_g);
   1.368 +      }
   1.369 +    }
   1.370 +
   1.371 +    void destroyStructures() {
   1.372 +      if (_local_flow) {
   1.373 +        delete _flow;
   1.374 +      }
   1.375 +      if (_local_level) {
   1.376 +        delete _level;
   1.377 +      }
   1.378 +      if (_excess) {
   1.379 +        delete _excess;
   1.380 +      }
   1.381 +    }
   1.382 +
   1.383 +  public:
   1.384 +
   1.385 +    /// Sets the lower bound map.
   1.386 +
   1.387 +    /// Sets the lower bound map.
   1.388 +    /// \return <tt>(*this)</tt>
   1.389 +    Circulation& lowerMap(const LowerMap& map) {
   1.390 +      _lo = &map;
   1.391 +      return *this;
   1.392 +    }
   1.393 +
   1.394 +    /// Sets the upper bound (capacity) map.
   1.395 +
   1.396 +    /// Sets the upper bound (capacity) map.
   1.397 +    /// \return <tt>(*this)</tt>
   1.398 +    Circulation& upperMap(const UpperMap& map) {
   1.399 +      _up = &map;
   1.400 +      return *this;
   1.401 +    }
   1.402 +
   1.403 +    /// Sets the supply map.
   1.404 +
   1.405 +    /// Sets the supply map.
   1.406 +    /// \return <tt>(*this)</tt>
   1.407 +    Circulation& supplyMap(const SupplyMap& map) {
   1.408 +      _supply = &map;
   1.409 +      return *this;
   1.410 +    }
   1.411 +
   1.412 +    /// \brief Sets the flow map.
   1.413 +    ///
   1.414 +    /// Sets the flow map.
   1.415 +    /// If you don't use this function before calling \ref run() or
   1.416 +    /// \ref init(), an instance will be allocated automatically.
   1.417 +    /// The destructor deallocates this automatically allocated map,
   1.418 +    /// of course.
   1.419 +    /// \return <tt>(*this)</tt>
   1.420 +    Circulation& flowMap(FlowMap& map) {
   1.421 +      if (_local_flow) {
   1.422 +        delete _flow;
   1.423 +        _local_flow = false;
   1.424 +      }
   1.425 +      _flow = &map;
   1.426 +      return *this;
   1.427 +    }
   1.428 +
   1.429 +    /// \brief Sets the elevator used by algorithm.
   1.430 +    ///
   1.431 +    /// Sets the elevator used by algorithm.
   1.432 +    /// If you don't use this function before calling \ref run() or
   1.433 +    /// \ref init(), an instance will be allocated automatically.
   1.434 +    /// The destructor deallocates this automatically allocated elevator,
   1.435 +    /// of course.
   1.436 +    /// \return <tt>(*this)</tt>
   1.437 +    Circulation& elevator(Elevator& elevator) {
   1.438 +      if (_local_level) {
   1.439 +        delete _level;
   1.440 +        _local_level = false;
   1.441 +      }
   1.442 +      _level = &elevator;
   1.443 +      return *this;
   1.444 +    }
   1.445 +
   1.446 +    /// \brief Returns a const reference to the elevator.
   1.447 +    ///
   1.448 +    /// Returns a const reference to the elevator.
   1.449 +    ///
   1.450 +    /// \pre Either \ref run() or \ref init() must be called before
   1.451 +    /// using this function.
   1.452 +    const Elevator& elevator() const {
   1.453 +      return *_level;
   1.454 +    }
   1.455 +
   1.456 +    /// \brief Sets the tolerance used by algorithm.
   1.457 +    ///
   1.458 +    /// Sets the tolerance used by algorithm.
   1.459 +    Circulation& tolerance(const Tolerance& tolerance) const {
   1.460 +      _tol = tolerance;
   1.461 +      return *this;
   1.462 +    }
   1.463 +
   1.464 +    /// \brief Returns a const reference to the tolerance.
   1.465 +    ///
   1.466 +    /// Returns a const reference to the tolerance.
   1.467 +    const Tolerance& tolerance() const {
   1.468 +      return tolerance;
   1.469 +    }
   1.470 +
   1.471 +    /// \name Execution Control
   1.472 +    /// The simplest way to execute the algorithm is to call \ref run().\n
   1.473 +    /// If you need more control on the initial solution or the execution,
   1.474 +    /// first you have to call one of the \ref init() functions, then
   1.475 +    /// the \ref start() function.
   1.476 +
   1.477 +    ///@{
   1.478 +
   1.479 +    /// Initializes the internal data structures.
   1.480 +
   1.481 +    /// Initializes the internal data structures and sets all flow values
   1.482 +    /// to the lower bound.
   1.483 +    void init()
   1.484 +    {
   1.485 +      LEMON_DEBUG(checkBoundMaps(),
   1.486 +        "Upper bounds must be greater or equal to the lower bounds");
   1.487 +
   1.488 +      createStructures();
   1.489 +
   1.490 +      for(NodeIt n(_g);n!=INVALID;++n) {
   1.491 +        (*_excess)[n] = (*_supply)[n];
   1.492 +      }
   1.493 +
   1.494 +      for (ArcIt e(_g);e!=INVALID;++e) {
   1.495 +        _flow->set(e, (*_lo)[e]);
   1.496 +        (*_excess)[_g.target(e)] += (*_flow)[e];
   1.497 +        (*_excess)[_g.source(e)] -= (*_flow)[e];
   1.498 +      }
   1.499 +
   1.500 +      // global relabeling tested, but in general case it provides
   1.501 +      // worse performance for random digraphs
   1.502 +      _level->initStart();
   1.503 +      for(NodeIt n(_g);n!=INVALID;++n)
   1.504 +        _level->initAddItem(n);
   1.505 +      _level->initFinish();
   1.506 +      for(NodeIt n(_g);n!=INVALID;++n)
   1.507 +        if(_tol.positive((*_excess)[n]))
   1.508 +          _level->activate(n);
   1.509 +    }
   1.510 +
   1.511 +    /// Initializes the internal data structures using a greedy approach.
   1.512 +
   1.513 +    /// Initializes the internal data structures using a greedy approach
   1.514 +    /// to construct the initial solution.
   1.515 +    void greedyInit()
   1.516 +    {
   1.517 +      LEMON_DEBUG(checkBoundMaps(),
   1.518 +        "Upper bounds must be greater or equal to the lower bounds");
   1.519 +
   1.520 +      createStructures();
   1.521 +
   1.522 +      for(NodeIt n(_g);n!=INVALID;++n) {
   1.523 +        (*_excess)[n] = (*_supply)[n];
   1.524 +      }
   1.525 +
   1.526 +      for (ArcIt e(_g);e!=INVALID;++e) {
   1.527 +        if (!_tol.less(-(*_excess)[_g.target(e)], (*_up)[e])) {
   1.528 +          _flow->set(e, (*_up)[e]);
   1.529 +          (*_excess)[_g.target(e)] += (*_up)[e];
   1.530 +          (*_excess)[_g.source(e)] -= (*_up)[e];
   1.531 +        } else if (_tol.less(-(*_excess)[_g.target(e)], (*_lo)[e])) {
   1.532 +          _flow->set(e, (*_lo)[e]);
   1.533 +          (*_excess)[_g.target(e)] += (*_lo)[e];
   1.534 +          (*_excess)[_g.source(e)] -= (*_lo)[e];
   1.535 +        } else {
   1.536 +          Value fc = -(*_excess)[_g.target(e)];
   1.537 +          _flow->set(e, fc);
   1.538 +          (*_excess)[_g.target(e)] = 0;
   1.539 +          (*_excess)[_g.source(e)] -= fc;
   1.540 +        }
   1.541 +      }
   1.542 +
   1.543 +      _level->initStart();
   1.544 +      for(NodeIt n(_g);n!=INVALID;++n)
   1.545 +        _level->initAddItem(n);
   1.546 +      _level->initFinish();
   1.547 +      for(NodeIt n(_g);n!=INVALID;++n)
   1.548 +        if(_tol.positive((*_excess)[n]))
   1.549 +          _level->activate(n);
   1.550 +    }
   1.551 +
   1.552 +    ///Executes the algorithm
   1.553 +
   1.554 +    ///This function executes the algorithm.
   1.555 +    ///
   1.556 +    ///\return \c true if a feasible circulation is found.
   1.557 +    ///
   1.558 +    ///\sa barrier()
   1.559 +    ///\sa barrierMap()
   1.560 +    bool start()
   1.561 +    {
   1.562 +
   1.563 +      Node act;
   1.564 +      Node bact=INVALID;
   1.565 +      Node last_activated=INVALID;
   1.566 +      while((act=_level->highestActive())!=INVALID) {
   1.567 +        int actlevel=(*_level)[act];
   1.568 +        int mlevel=_node_num;
   1.569 +        Value exc=(*_excess)[act];
   1.570 +
   1.571 +        for(OutArcIt e(_g,act);e!=INVALID; ++e) {
   1.572 +          Node v = _g.target(e);
   1.573 +          Value fc=(*_up)[e]-(*_flow)[e];
   1.574 +          if(!_tol.positive(fc)) continue;
   1.575 +          if((*_level)[v]<actlevel) {
   1.576 +            if(!_tol.less(fc, exc)) {
   1.577 +              _flow->set(e, (*_flow)[e] + exc);
   1.578 +              (*_excess)[v] += exc;
   1.579 +              if(!_level->active(v) && _tol.positive((*_excess)[v]))
   1.580 +                _level->activate(v);
   1.581 +              (*_excess)[act] = 0;
   1.582 +              _level->deactivate(act);
   1.583 +              goto next_l;
   1.584 +            }
   1.585 +            else {
   1.586 +              _flow->set(e, (*_up)[e]);
   1.587 +              (*_excess)[v] += fc;
   1.588 +              if(!_level->active(v) && _tol.positive((*_excess)[v]))
   1.589 +                _level->activate(v);
   1.590 +              exc-=fc;
   1.591 +            }
   1.592 +          }
   1.593 +          else if((*_level)[v]<mlevel) mlevel=(*_level)[v];
   1.594 +        }
   1.595 +        for(InArcIt e(_g,act);e!=INVALID; ++e) {
   1.596 +          Node v = _g.source(e);
   1.597 +          Value fc=(*_flow)[e]-(*_lo)[e];
   1.598 +          if(!_tol.positive(fc)) continue;
   1.599 +          if((*_level)[v]<actlevel) {
   1.600 +            if(!_tol.less(fc, exc)) {
   1.601 +              _flow->set(e, (*_flow)[e] - exc);
   1.602 +              (*_excess)[v] += exc;
   1.603 +              if(!_level->active(v) && _tol.positive((*_excess)[v]))
   1.604 +                _level->activate(v);
   1.605 +              (*_excess)[act] = 0;
   1.606 +              _level->deactivate(act);
   1.607 +              goto next_l;
   1.608 +            }
   1.609 +            else {
   1.610 +              _flow->set(e, (*_lo)[e]);
   1.611 +              (*_excess)[v] += fc;
   1.612 +              if(!_level->active(v) && _tol.positive((*_excess)[v]))
   1.613 +                _level->activate(v);
   1.614 +              exc-=fc;
   1.615 +            }
   1.616 +          }
   1.617 +          else if((*_level)[v]<mlevel) mlevel=(*_level)[v];
   1.618 +        }
   1.619 +
   1.620 +        (*_excess)[act] = exc;
   1.621 +        if(!_tol.positive(exc)) _level->deactivate(act);
   1.622 +        else if(mlevel==_node_num) {
   1.623 +          _level->liftHighestActiveToTop();
   1.624 +          _el = _node_num;
   1.625 +          return false;
   1.626 +        }
   1.627 +        else {
   1.628 +          _level->liftHighestActive(mlevel+1);
   1.629 +          if(_level->onLevel(actlevel)==0) {
   1.630 +            _el = actlevel;
   1.631 +            return false;
   1.632 +          }
   1.633 +        }
   1.634 +      next_l:
   1.635 +        ;
   1.636 +      }
   1.637 +      return true;
   1.638 +    }
   1.639 +
   1.640 +    /// Runs the algorithm.
   1.641 +
   1.642 +    /// This function runs the algorithm.
   1.643 +    ///
   1.644 +    /// \return \c true if a feasible circulation is found.
   1.645 +    ///
   1.646 +    /// \note Apart from the return value, c.run() is just a shortcut of
   1.647 +    /// the following code.
   1.648 +    /// \code
   1.649 +    ///   c.greedyInit();
   1.650 +    ///   c.start();
   1.651 +    /// \endcode
   1.652 +    bool run() {
   1.653 +      greedyInit();
   1.654 +      return start();
   1.655 +    }
   1.656 +
   1.657 +    /// @}
   1.658 +
   1.659 +    /// \name Query Functions
   1.660 +    /// The results of the circulation algorithm can be obtained using
   1.661 +    /// these functions.\n
   1.662 +    /// Either \ref run() or \ref start() should be called before
   1.663 +    /// using them.
   1.664 +
   1.665 +    ///@{
   1.666 +
   1.667 +    /// \brief Returns the flow value on the given arc.
   1.668 +    ///
   1.669 +    /// Returns the flow value on the given arc.
   1.670 +    ///
   1.671 +    /// \pre Either \ref run() or \ref init() must be called before
   1.672 +    /// using this function.
   1.673 +    Value flow(const Arc& arc) const {
   1.674 +      return (*_flow)[arc];
   1.675 +    }
   1.676 +
   1.677 +    /// \brief Returns a const reference to the flow map.
   1.678 +    ///
   1.679 +    /// Returns a const reference to the arc map storing the found flow.
   1.680 +    ///
   1.681 +    /// \pre Either \ref run() or \ref init() must be called before
   1.682 +    /// using this function.
   1.683 +    const FlowMap& flowMap() const {
   1.684 +      return *_flow;
   1.685 +    }
   1.686 +
   1.687 +    /**
   1.688 +       \brief Returns \c true if the given node is in a barrier.
   1.689 +
   1.690 +       Barrier is a set \e B of nodes for which
   1.691 +
   1.692 +       \f[ \sum_{uv\in A: u\in B} upper(uv) -
   1.693 +           \sum_{uv\in A: v\in B} lower(uv) < \sum_{v\in B} sup(v) \f]
   1.694 +
   1.695 +       holds. The existence of a set with this property prooves that a
   1.696 +       feasible circualtion cannot exist.
   1.697 +
   1.698 +       This function returns \c true if the given node is in the found
   1.699 +       barrier. If a feasible circulation is found, the function
   1.700 +       gives back \c false for every node.
   1.701 +
   1.702 +       \pre Either \ref run() or \ref init() must be called before
   1.703 +       using this function.
   1.704 +
   1.705 +       \sa barrierMap()
   1.706 +       \sa checkBarrier()
   1.707 +    */
   1.708 +    bool barrier(const Node& node) const
   1.709 +    {
   1.710 +      return (*_level)[node] >= _el;
   1.711 +    }
   1.712 +
   1.713 +    /// \brief Gives back a barrier.
   1.714 +    ///
   1.715 +    /// This function sets \c bar to the characteristic vector of the
   1.716 +    /// found barrier. \c bar should be a \ref concepts::WriteMap "writable"
   1.717 +    /// node map with \c bool (or convertible) value type.
   1.718 +    ///
   1.719 +    /// If a feasible circulation is found, the function gives back an
   1.720 +    /// empty set, so \c bar[v] will be \c false for all nodes \c v.
   1.721 +    ///
   1.722 +    /// \note This function calls \ref barrier() for each node,
   1.723 +    /// so it runs in O(n) time.
   1.724 +    ///
   1.725 +    /// \pre Either \ref run() or \ref init() must be called before
   1.726 +    /// using this function.
   1.727 +    ///
   1.728 +    /// \sa barrier()
   1.729 +    /// \sa checkBarrier()
   1.730 +    template<class BarrierMap>
   1.731 +    void barrierMap(BarrierMap &bar) const
   1.732 +    {
   1.733 +      for(NodeIt n(_g);n!=INVALID;++n)
   1.734 +        bar.set(n, (*_level)[n] >= _el);
   1.735 +    }
   1.736 +
   1.737 +    /// @}
   1.738 +
   1.739 +    /// \name Checker Functions
   1.740 +    /// The feasibility of the results can be checked using
   1.741 +    /// these functions.\n
   1.742 +    /// Either \ref run() or \ref start() should be called before
   1.743 +    /// using them.
   1.744 +
   1.745 +    ///@{
   1.746 +
   1.747 +    ///Check if the found flow is a feasible circulation
   1.748 +
   1.749 +    ///Check if the found flow is a feasible circulation,
   1.750 +    ///
   1.751 +    bool checkFlow() const {
   1.752 +      for(ArcIt e(_g);e!=INVALID;++e)
   1.753 +        if((*_flow)[e]<(*_lo)[e]||(*_flow)[e]>(*_up)[e]) return false;
   1.754 +      for(NodeIt n(_g);n!=INVALID;++n)
   1.755 +        {
   1.756 +          Value dif=-(*_supply)[n];
   1.757 +          for(InArcIt e(_g,n);e!=INVALID;++e) dif-=(*_flow)[e];
   1.758 +          for(OutArcIt e(_g,n);e!=INVALID;++e) dif+=(*_flow)[e];
   1.759 +          if(_tol.negative(dif)) return false;
   1.760 +        }
   1.761 +      return true;
   1.762 +    }
   1.763 +
   1.764 +    ///Check whether or not the last execution provides a barrier
   1.765 +
   1.766 +    ///Check whether or not the last execution provides a barrier.
   1.767 +    ///\sa barrier()
   1.768 +    ///\sa barrierMap()
   1.769 +    bool checkBarrier() const
   1.770 +    {
   1.771 +      Value delta=0;
   1.772 +      Value inf_cap = std::numeric_limits<Value>::has_infinity ?
   1.773 +        std::numeric_limits<Value>::infinity() :
   1.774 +        std::numeric_limits<Value>::max();
   1.775 +      for(NodeIt n(_g);n!=INVALID;++n)
   1.776 +        if(barrier(n))
   1.777 +          delta-=(*_supply)[n];
   1.778 +      for(ArcIt e(_g);e!=INVALID;++e)
   1.779 +        {
   1.780 +          Node s=_g.source(e);
   1.781 +          Node t=_g.target(e);
   1.782 +          if(barrier(s)&&!barrier(t)) {
   1.783 +            if (_tol.less(inf_cap - (*_up)[e], delta)) return false;
   1.784 +            delta+=(*_up)[e];
   1.785 +          }
   1.786 +          else if(barrier(t)&&!barrier(s)) delta-=(*_lo)[e];
   1.787 +        }
   1.788 +      return _tol.negative(delta);
   1.789 +    }
   1.790 +
   1.791 +    /// @}
   1.792 +
   1.793 +  };
   1.794 +
   1.795 +}
   1.796 +
   1.797 +#endif