lemon/unionfind.h
changeset 106 9ba2d265e191
child 209 765619b7cbb2
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/lemon/unionfind.h	Thu Mar 20 23:06:35 2008 +0000
     1.3 @@ -0,0 +1,1796 @@
     1.4 +/* -*- C++ -*-
     1.5 + *
     1.6 + * This file is a part of LEMON, a generic C++ optimization library
     1.7 + *
     1.8 + * Copyright (C) 2003-2008
     1.9 + * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
    1.10 + * (Egervary Research Group on Combinatorial Optimization, EGRES).
    1.11 + *
    1.12 + * Permission to use, modify and distribute this software is granted
    1.13 + * provided that this copyright notice appears in all copies. For
    1.14 + * precise terms see the accompanying LICENSE file.
    1.15 + *
    1.16 + * This software is provided "AS IS" with no warranty of any kind,
    1.17 + * express or implied, and with no claim as to its suitability for any
    1.18 + * purpose.
    1.19 + *
    1.20 + */
    1.21 +
    1.22 +#ifndef LEMON_UNION_FIND_H
    1.23 +#define LEMON_UNION_FIND_H
    1.24 +
    1.25 +//!\ingroup auxdat
    1.26 +//!\file
    1.27 +//!\brief Union-Find data structures.
    1.28 +//!
    1.29 +
    1.30 +#include <vector>
    1.31 +#include <list>
    1.32 +#include <utility>
    1.33 +#include <algorithm>
    1.34 +#include <functional>
    1.35 +
    1.36 +#include <lemon/bits/invalid.h>
    1.37 +
    1.38 +namespace lemon {
    1.39 +
    1.40 +  /// \ingroup auxdat
    1.41 +  ///
    1.42 +  /// \brief A \e Union-Find data structure implementation
    1.43 +  ///
    1.44 +  /// The class implements the \e Union-Find data structure. 
    1.45 +  /// The union operation uses rank heuristic, while
    1.46 +  /// the find operation uses path compression.
    1.47 +  /// This is a very simple but efficient implementation, providing 
    1.48 +  /// only four methods: join (union), find, insert and size.
    1.49 +  /// For more features see the \ref UnionFindEnum class.
    1.50 +  ///
    1.51 +  /// It is primarily used in Kruskal algorithm for finding minimal
    1.52 +  /// cost spanning tree in a graph.
    1.53 +  /// \sa kruskal()
    1.54 +  ///
    1.55 +  /// \pre You need to add all the elements by the \ref insert()
    1.56 +  /// method.  
    1.57 +  template <typename _ItemIntMap>
    1.58 +  class UnionFind {
    1.59 +  public:
    1.60 +
    1.61 +    typedef _ItemIntMap ItemIntMap;
    1.62 +    typedef typename ItemIntMap::Key Item;
    1.63 +
    1.64 +  private:
    1.65 +    // If the items vector stores negative value for an item then
    1.66 +    // that item is root item and it has -items[it] component size.
    1.67 +    // Else the items[it] contains the index of the parent.
    1.68 +    std::vector<int> items;
    1.69 +    ItemIntMap& index;
    1.70 +
    1.71 +    bool rep(int idx) const {
    1.72 +      return items[idx] < 0;
    1.73 +    }
    1.74 +
    1.75 +    int repIndex(int idx) const {
    1.76 +      int k = idx;
    1.77 +      while (!rep(k)) {
    1.78 +        k = items[k] ;
    1.79 +      }
    1.80 +      while (idx != k) {
    1.81 +        int next = items[idx];
    1.82 +        const_cast<int&>(items[idx]) = k;
    1.83 +        idx = next;
    1.84 +      }
    1.85 +      return k;
    1.86 +    }
    1.87 +
    1.88 +  public:
    1.89 +
    1.90 +    /// \brief Constructor
    1.91 +    ///
    1.92 +    /// Constructor of the UnionFind class. You should give an item to
    1.93 +    /// integer map which will be used from the data structure. If you
    1.94 +    /// modify directly this map that may cause segmentation fault,
    1.95 +    /// invalid data structure, or infinite loop when you use again
    1.96 +    /// the union-find.
    1.97 +    UnionFind(ItemIntMap& m) : index(m) {}
    1.98 +
    1.99 +    /// \brief Returns the index of the element's component.
   1.100 +    ///
   1.101 +    /// The method returns the index of the element's component.
   1.102 +    /// This is an integer between zero and the number of inserted elements.
   1.103 +    ///
   1.104 +    int find(const Item& a) {
   1.105 +      return repIndex(index[a]);
   1.106 +    }
   1.107 +
   1.108 +    /// \brief Clears the union-find data structure
   1.109 +    ///
   1.110 +    /// Erase each item from the data structure.
   1.111 +    void clear() {
   1.112 +      items.clear();
   1.113 +    }
   1.114 +
   1.115 +    /// \brief Inserts a new element into the structure.
   1.116 +    ///
   1.117 +    /// This method inserts a new element into the data structure. 
   1.118 +    ///
   1.119 +    /// The method returns the index of the new component.
   1.120 +    int insert(const Item& a) {
   1.121 +      int n = items.size();
   1.122 +      items.push_back(-1);
   1.123 +      index.set(a,n);
   1.124 +      return n;
   1.125 +    }
   1.126 +
   1.127 +    /// \brief Joining the components of element \e a and element \e b.
   1.128 +    ///
   1.129 +    /// This is the \e union operation of the Union-Find structure. 
   1.130 +    /// Joins the component of element \e a and component of
   1.131 +    /// element \e b. If \e a and \e b are in the same component then
   1.132 +    /// it returns false otherwise it returns true.
   1.133 +    bool join(const Item& a, const Item& b) {
   1.134 +      int ka = repIndex(index[a]);
   1.135 +      int kb = repIndex(index[b]);
   1.136 +
   1.137 +      if ( ka == kb ) 
   1.138 +	return false;
   1.139 +
   1.140 +      if (items[ka] < items[kb]) {
   1.141 +	items[ka] += items[kb];
   1.142 +	items[kb] = ka;
   1.143 +      } else {
   1.144 +	items[kb] += items[ka];
   1.145 +	items[ka] = kb;
   1.146 +      }
   1.147 +      return true;
   1.148 +    }
   1.149 +
   1.150 +    /// \brief Returns the size of the component of element \e a.
   1.151 +    ///
   1.152 +    /// Returns the size of the component of element \e a.
   1.153 +    int size(const Item& a) {
   1.154 +      int k = repIndex(index[a]);
   1.155 +      return - items[k];
   1.156 +    }
   1.157 +
   1.158 +  };
   1.159 +
   1.160 +  /// \ingroup auxdat
   1.161 +  ///
   1.162 +  /// \brief A \e Union-Find data structure implementation which
   1.163 +  /// is able to enumerate the components.
   1.164 +  ///
   1.165 +  /// The class implements a \e Union-Find data structure
   1.166 +  /// which is able to enumerate the components and the items in
   1.167 +  /// a component. If you don't need this feature then perhaps it's
   1.168 +  /// better to use the \ref UnionFind class which is more efficient.
   1.169 +  ///
   1.170 +  /// The union operation uses rank heuristic, while
   1.171 +  /// the find operation uses path compression.
   1.172 +  ///
   1.173 +  /// \pre You need to add all the elements by the \ref insert()
   1.174 +  /// method.
   1.175 +  ///
   1.176 +  template <typename _ItemIntMap>
   1.177 +  class UnionFindEnum {
   1.178 +  public:
   1.179 +    
   1.180 +    typedef _ItemIntMap ItemIntMap;
   1.181 +    typedef typename ItemIntMap::Key Item;
   1.182 +
   1.183 +  private:
   1.184 +    
   1.185 +    ItemIntMap& index;
   1.186 +
   1.187 +    // If the parent stores negative value for an item then that item
   1.188 +    // is root item and it has ~(items[it].parent) component id.  Else
   1.189 +    // the items[it].parent contains the index of the parent.
   1.190 +    //
   1.191 +    // The \c next and \c prev provides the double-linked
   1.192 +    // cyclic list of one component's items.
   1.193 +    struct ItemT {
   1.194 +      int parent;
   1.195 +      Item item;
   1.196 +
   1.197 +      int next, prev;
   1.198 +    };
   1.199 +
   1.200 +    std::vector<ItemT> items;
   1.201 +    int firstFreeItem;
   1.202 +
   1.203 +    struct ClassT {
   1.204 +      int size;
   1.205 +      int firstItem;
   1.206 +      int next, prev;
   1.207 +    };
   1.208 +    
   1.209 +    std::vector<ClassT> classes;
   1.210 +    int firstClass, firstFreeClass;
   1.211 +
   1.212 +    int newClass() {
   1.213 +      if (firstFreeClass == -1) {
   1.214 +	int cdx = classes.size();
   1.215 +	classes.push_back(ClassT());
   1.216 +	return cdx;
   1.217 +      } else {
   1.218 +	int cdx = firstFreeClass;
   1.219 +	firstFreeClass = classes[firstFreeClass].next;
   1.220 +	return cdx;
   1.221 +      }
   1.222 +    }
   1.223 +
   1.224 +    int newItem() {
   1.225 +      if (firstFreeItem == -1) {
   1.226 +	int idx = items.size();
   1.227 +	items.push_back(ItemT());
   1.228 +	return idx;
   1.229 +      } else {
   1.230 +	int idx = firstFreeItem;
   1.231 +	firstFreeItem = items[firstFreeItem].next;
   1.232 +	return idx;
   1.233 +      }
   1.234 +    }
   1.235 +
   1.236 +
   1.237 +    bool rep(int idx) const {
   1.238 +      return items[idx].parent < 0;
   1.239 +    }
   1.240 +
   1.241 +    int repIndex(int idx) const {
   1.242 +      int k = idx;
   1.243 +      while (!rep(k)) {
   1.244 +        k = items[k].parent;
   1.245 +      }
   1.246 +      while (idx != k) {
   1.247 +        int next = items[idx].parent;
   1.248 +        const_cast<int&>(items[idx].parent) = k;
   1.249 +        idx = next;
   1.250 +      }
   1.251 +      return k;
   1.252 +    }
   1.253 +
   1.254 +    int classIndex(int idx) const {
   1.255 +      return ~(items[repIndex(idx)].parent);
   1.256 +    }
   1.257 +
   1.258 +    void singletonItem(int idx) {
   1.259 +      items[idx].next = idx;
   1.260 +      items[idx].prev = idx;
   1.261 +    }
   1.262 +
   1.263 +    void laceItem(int idx, int rdx) {
   1.264 +      items[idx].prev = rdx;
   1.265 +      items[idx].next = items[rdx].next;
   1.266 +      items[items[rdx].next].prev = idx;
   1.267 +      items[rdx].next = idx;
   1.268 +    }
   1.269 +
   1.270 +    void unlaceItem(int idx) {
   1.271 +      items[items[idx].prev].next = items[idx].next;
   1.272 +      items[items[idx].next].prev = items[idx].prev;
   1.273 +      
   1.274 +      items[idx].next = firstFreeItem;
   1.275 +      firstFreeItem = idx;
   1.276 +    }
   1.277 +
   1.278 +    void spliceItems(int ak, int bk) {
   1.279 +      items[items[ak].prev].next = bk;
   1.280 +      items[items[bk].prev].next = ak;
   1.281 +      int tmp = items[ak].prev;
   1.282 +      items[ak].prev = items[bk].prev;
   1.283 +      items[bk].prev = tmp;
   1.284 +        
   1.285 +    }
   1.286 +
   1.287 +    void laceClass(int cls) {
   1.288 +      if (firstClass != -1) {
   1.289 +        classes[firstClass].prev = cls;
   1.290 +      }
   1.291 +      classes[cls].next = firstClass;
   1.292 +      classes[cls].prev = -1;
   1.293 +      firstClass = cls;
   1.294 +    } 
   1.295 +
   1.296 +    void unlaceClass(int cls) {
   1.297 +      if (classes[cls].prev != -1) {
   1.298 +        classes[classes[cls].prev].next = classes[cls].next;
   1.299 +      } else {
   1.300 +        firstClass = classes[cls].next;
   1.301 +      }
   1.302 +      if (classes[cls].next != -1) {
   1.303 +        classes[classes[cls].next].prev = classes[cls].prev;
   1.304 +      }
   1.305 +      
   1.306 +      classes[cls].next = firstFreeClass;
   1.307 +      firstFreeClass = cls;
   1.308 +    } 
   1.309 +
   1.310 +  public:
   1.311 +
   1.312 +    UnionFindEnum(ItemIntMap& _index) 
   1.313 +      : index(_index), items(), firstFreeItem(-1), 
   1.314 +	firstClass(-1), firstFreeClass(-1) {}
   1.315 +    
   1.316 +    /// \brief Inserts the given element into a new component.
   1.317 +    ///
   1.318 +    /// This method creates a new component consisting only of the
   1.319 +    /// given element.
   1.320 +    ///
   1.321 +    int insert(const Item& item) {
   1.322 +      int idx = newItem();
   1.323 +
   1.324 +      index.set(item, idx);
   1.325 +
   1.326 +      singletonItem(idx);
   1.327 +      items[idx].item = item;
   1.328 +
   1.329 +      int cdx = newClass();
   1.330 +
   1.331 +      items[idx].parent = ~cdx;
   1.332 +
   1.333 +      laceClass(cdx);
   1.334 +      classes[cdx].size = 1;
   1.335 +      classes[cdx].firstItem = idx;
   1.336 +
   1.337 +      firstClass = cdx;
   1.338 +      
   1.339 +      return cdx;
   1.340 +    }
   1.341 +
   1.342 +    /// \brief Inserts the given element into the component of the others.
   1.343 +    ///
   1.344 +    /// This methods inserts the element \e a into the component of the
   1.345 +    /// element \e comp. 
   1.346 +    void insert(const Item& item, int cls) {
   1.347 +      int rdx = classes[cls].firstItem;
   1.348 +      int idx = newItem();
   1.349 +
   1.350 +      index.set(item, idx);
   1.351 +
   1.352 +      laceItem(idx, rdx);
   1.353 +
   1.354 +      items[idx].item = item;
   1.355 +      items[idx].parent = rdx;
   1.356 +
   1.357 +      ++classes[~(items[rdx].parent)].size;
   1.358 +    }
   1.359 +
   1.360 +    /// \brief Clears the union-find data structure
   1.361 +    ///
   1.362 +    /// Erase each item from the data structure.
   1.363 +    void clear() {
   1.364 +      items.clear();
   1.365 +      firstClass = -1;
   1.366 +      firstFreeItem = -1;
   1.367 +    }
   1.368 +
   1.369 +    /// \brief Finds the component of the given element.
   1.370 +    ///
   1.371 +    /// The method returns the component id of the given element.
   1.372 +    int find(const Item &item) const {
   1.373 +      return ~(items[repIndex(index[item])].parent);
   1.374 +    }
   1.375 +
   1.376 +    /// \brief Joining the component of element \e a and element \e b.
   1.377 +    ///
   1.378 +    /// This is the \e union operation of the Union-Find structure. 
   1.379 +    /// Joins the component of element \e a and component of
   1.380 +    /// element \e b. If \e a and \e b are in the same component then
   1.381 +    /// returns -1 else returns the remaining class.
   1.382 +    int join(const Item& a, const Item& b) {
   1.383 +
   1.384 +      int ak = repIndex(index[a]);
   1.385 +      int bk = repIndex(index[b]);
   1.386 +
   1.387 +      if (ak == bk) {
   1.388 +	return -1;
   1.389 +      }
   1.390 +
   1.391 +      int acx = ~(items[ak].parent);
   1.392 +      int bcx = ~(items[bk].parent);
   1.393 +
   1.394 +      int rcx;
   1.395 +
   1.396 +      if (classes[acx].size > classes[bcx].size) {
   1.397 +	classes[acx].size += classes[bcx].size;
   1.398 +	items[bk].parent = ak;
   1.399 +        unlaceClass(bcx);
   1.400 +	rcx = acx;
   1.401 +      } else {
   1.402 +	classes[bcx].size += classes[acx].size;
   1.403 +	items[ak].parent = bk;
   1.404 +        unlaceClass(acx);
   1.405 +	rcx = bcx;
   1.406 +      }
   1.407 +      spliceItems(ak, bk);
   1.408 +
   1.409 +      return rcx;
   1.410 +    }
   1.411 +
   1.412 +    /// \brief Returns the size of the class.
   1.413 +    ///
   1.414 +    /// Returns the size of the class.
   1.415 +    int size(int cls) const {
   1.416 +      return classes[cls].size;
   1.417 +    }
   1.418 +
   1.419 +    /// \brief Splits up the component. 
   1.420 +    ///
   1.421 +    /// Splitting the component into singleton components (component
   1.422 +    /// of size one).
   1.423 +    void split(int cls) {
   1.424 +      int fdx = classes[cls].firstItem;
   1.425 +      int idx = items[fdx].next;
   1.426 +      while (idx != fdx) {
   1.427 +        int next = items[idx].next;
   1.428 +
   1.429 +	singletonItem(idx);
   1.430 +
   1.431 +	int cdx = newClass();        
   1.432 +        items[idx].parent = ~cdx;
   1.433 +
   1.434 +	laceClass(cdx);
   1.435 +	classes[cdx].size = 1;
   1.436 +	classes[cdx].firstItem = idx;
   1.437 +        
   1.438 +        idx = next;
   1.439 +      }
   1.440 +
   1.441 +      items[idx].prev = idx;
   1.442 +      items[idx].next = idx;
   1.443 +
   1.444 +      classes[~(items[idx].parent)].size = 1;
   1.445 +      
   1.446 +    }
   1.447 +
   1.448 +    /// \brief Removes the given element from the structure.
   1.449 +    ///
   1.450 +    /// Removes the element from its component and if the component becomes
   1.451 +    /// empty then removes that component from the component list.
   1.452 +    ///
   1.453 +    /// \warning It is an error to remove an element which is not in
   1.454 +    /// the structure.
   1.455 +    /// \warning This running time of this operation is proportional to the
   1.456 +    /// number of the items in this class.
   1.457 +    void erase(const Item& item) {
   1.458 +      int idx = index[item];
   1.459 +      int fdx = items[idx].next;
   1.460 +
   1.461 +      int cdx = classIndex(idx);
   1.462 +      if (idx == fdx) {
   1.463 +	unlaceClass(cdx);
   1.464 +	items[idx].next = firstFreeItem;
   1.465 +	firstFreeItem = idx;
   1.466 +	return;
   1.467 +      } else {
   1.468 +	classes[cdx].firstItem = fdx;
   1.469 +	--classes[cdx].size;
   1.470 +	items[fdx].parent = ~cdx;
   1.471 +
   1.472 +	unlaceItem(idx);
   1.473 +	idx = items[fdx].next;
   1.474 +	while (idx != fdx) {
   1.475 +	  items[idx].parent = fdx;
   1.476 +	  idx = items[idx].next;
   1.477 +	}
   1.478 +          
   1.479 +      }
   1.480 +
   1.481 +    }
   1.482 +
   1.483 +    /// \brief Gives back a representant item of the component.
   1.484 +    ///
   1.485 +    /// Gives back a representant item of the component.
   1.486 +    Item item(int cls) const {
   1.487 +      return items[classes[cls].firstItem].item;
   1.488 +    }
   1.489 +
   1.490 +    /// \brief Removes the component of the given element from the structure.
   1.491 +    ///
   1.492 +    /// Removes the component of the given element from the structure.
   1.493 +    ///
   1.494 +    /// \warning It is an error to give an element which is not in the
   1.495 +    /// structure.
   1.496 +    void eraseClass(int cls) {
   1.497 +      int fdx = classes[cls].firstItem;
   1.498 +      unlaceClass(cls);
   1.499 +      items[items[fdx].prev].next = firstFreeItem;
   1.500 +      firstFreeItem = fdx;
   1.501 +    }
   1.502 +
   1.503 +    /// \brief Lemon style iterator for the representant items.
   1.504 +    ///
   1.505 +    /// ClassIt is a lemon style iterator for the components. It iterates
   1.506 +    /// on the ids of the classes.
   1.507 +    class ClassIt {
   1.508 +    public:
   1.509 +      /// \brief Constructor of the iterator
   1.510 +      ///
   1.511 +      /// Constructor of the iterator
   1.512 +      ClassIt(const UnionFindEnum& ufe) : unionFind(&ufe) {
   1.513 +        cdx = unionFind->firstClass;
   1.514 +      }
   1.515 +
   1.516 +      /// \brief Constructor to get invalid iterator
   1.517 +      ///
   1.518 +      /// Constructor to get invalid iterator
   1.519 +      ClassIt(Invalid) : unionFind(0), cdx(-1) {}
   1.520 +      
   1.521 +      /// \brief Increment operator
   1.522 +      ///
   1.523 +      /// It steps to the next representant item.
   1.524 +      ClassIt& operator++() {
   1.525 +        cdx = unionFind->classes[cdx].next;
   1.526 +        return *this;
   1.527 +      }
   1.528 +      
   1.529 +      /// \brief Conversion operator
   1.530 +      ///
   1.531 +      /// It converts the iterator to the current representant item.
   1.532 +      operator int() const {
   1.533 +        return cdx;
   1.534 +      }
   1.535 +
   1.536 +      /// \brief Equality operator
   1.537 +      ///
   1.538 +      /// Equality operator
   1.539 +      bool operator==(const ClassIt& i) { 
   1.540 +        return i.cdx == cdx;
   1.541 +      }
   1.542 +
   1.543 +      /// \brief Inequality operator
   1.544 +      ///
   1.545 +      /// Inequality operator
   1.546 +      bool operator!=(const ClassIt& i) { 
   1.547 +        return i.cdx != cdx;
   1.548 +      }
   1.549 +      
   1.550 +    private:
   1.551 +      const UnionFindEnum* unionFind;
   1.552 +      int cdx;
   1.553 +    };
   1.554 +
   1.555 +    /// \brief Lemon style iterator for the items of a component.
   1.556 +    ///
   1.557 +    /// ClassIt is a lemon style iterator for the components. It iterates
   1.558 +    /// on the items of a class. By example if you want to iterate on
   1.559 +    /// each items of each classes then you may write the next code.
   1.560 +    ///\code
   1.561 +    /// for (ClassIt cit(ufe); cit != INVALID; ++cit) {
   1.562 +    ///   std::cout << "Class: ";
   1.563 +    ///   for (ItemIt iit(ufe, cit); iit != INVALID; ++iit) {
   1.564 +    ///     std::cout << toString(iit) << ' ' << std::endl;
   1.565 +    ///   }
   1.566 +    ///   std::cout << std::endl;
   1.567 +    /// }
   1.568 +    ///\endcode
   1.569 +    class ItemIt {
   1.570 +    public:
   1.571 +      /// \brief Constructor of the iterator
   1.572 +      ///
   1.573 +      /// Constructor of the iterator. The iterator iterates
   1.574 +      /// on the class of the \c item.
   1.575 +      ItemIt(const UnionFindEnum& ufe, int cls) : unionFind(&ufe) {
   1.576 +        fdx = idx = unionFind->classes[cls].firstItem;
   1.577 +      }
   1.578 +
   1.579 +      /// \brief Constructor to get invalid iterator
   1.580 +      ///
   1.581 +      /// Constructor to get invalid iterator
   1.582 +      ItemIt(Invalid) : unionFind(0), idx(-1) {}
   1.583 +      
   1.584 +      /// \brief Increment operator
   1.585 +      ///
   1.586 +      /// It steps to the next item in the class.
   1.587 +      ItemIt& operator++() {
   1.588 +        idx = unionFind->items[idx].next;
   1.589 +        if (idx == fdx) idx = -1;
   1.590 +        return *this;
   1.591 +      }
   1.592 +      
   1.593 +      /// \brief Conversion operator
   1.594 +      ///
   1.595 +      /// It converts the iterator to the current item.
   1.596 +      operator const Item&() const {
   1.597 +        return unionFind->items[idx].item;
   1.598 +      }
   1.599 +
   1.600 +      /// \brief Equality operator
   1.601 +      ///
   1.602 +      /// Equality operator
   1.603 +      bool operator==(const ItemIt& i) { 
   1.604 +        return i.idx == idx;
   1.605 +      }
   1.606 +
   1.607 +      /// \brief Inequality operator
   1.608 +      ///
   1.609 +      /// Inequality operator
   1.610 +      bool operator!=(const ItemIt& i) { 
   1.611 +        return i.idx != idx;
   1.612 +      }
   1.613 +      
   1.614 +    private:
   1.615 +      const UnionFindEnum* unionFind;
   1.616 +      int idx, fdx;
   1.617 +    };
   1.618 +
   1.619 +  };
   1.620 +
   1.621 +  /// \ingroup auxdat
   1.622 +  ///
   1.623 +  /// \brief A \e Extend-Find data structure implementation which
   1.624 +  /// is able to enumerate the components.
   1.625 +  ///
   1.626 +  /// The class implements an \e Extend-Find data structure which is
   1.627 +  /// able to enumerate the components and the items in a
   1.628 +  /// component. The data structure is a simplification of the
   1.629 +  /// Union-Find structure, and it does not allow to merge two components.
   1.630 +  ///
   1.631 +  /// \pre You need to add all the elements by the \ref insert()
   1.632 +  /// method.
   1.633 +  template <typename _ItemIntMap>
   1.634 +  class ExtendFindEnum {
   1.635 +  public:
   1.636 +    
   1.637 +    typedef _ItemIntMap ItemIntMap;
   1.638 +    typedef typename ItemIntMap::Key Item;
   1.639 +
   1.640 +  private:
   1.641 +    
   1.642 +    ItemIntMap& index;
   1.643 +
   1.644 +    struct ItemT {
   1.645 +      int cls;
   1.646 +      Item item;
   1.647 +      int next, prev;
   1.648 +    };
   1.649 +
   1.650 +    std::vector<ItemT> items;
   1.651 +    int firstFreeItem;
   1.652 +
   1.653 +    struct ClassT {
   1.654 +      int firstItem;
   1.655 +      int next, prev;
   1.656 +    };
   1.657 +
   1.658 +    std::vector<ClassT> classes;
   1.659 +
   1.660 +    int firstClass, firstFreeClass;
   1.661 +
   1.662 +    int newClass() {
   1.663 +      if (firstFreeClass != -1) {
   1.664 +	int cdx = firstFreeClass;
   1.665 +	firstFreeClass = classes[cdx].next;
   1.666 +	return cdx;
   1.667 +      } else {
   1.668 +	classes.push_back(ClassT());
   1.669 +	return classes.size() - 1;
   1.670 +      }
   1.671 +    }
   1.672 +
   1.673 +    int newItem() {
   1.674 +      if (firstFreeItem != -1) {
   1.675 +	int idx = firstFreeItem;
   1.676 +	firstFreeItem = items[idx].next;
   1.677 +	return idx;
   1.678 +      } else {
   1.679 +	items.push_back(ItemT());
   1.680 +	return items.size() - 1;
   1.681 +      }
   1.682 +    }
   1.683 +
   1.684 +  public:
   1.685 +
   1.686 +    /// \brief Constructor
   1.687 +    ExtendFindEnum(ItemIntMap& _index) 
   1.688 +      : index(_index), items(), firstFreeItem(-1), 
   1.689 +	classes(), firstClass(-1), firstFreeClass(-1) {}
   1.690 +    
   1.691 +    /// \brief Inserts the given element into a new component.
   1.692 +    ///
   1.693 +    /// This method creates a new component consisting only of the
   1.694 +    /// given element.
   1.695 +    int insert(const Item& item) {
   1.696 +      int cdx = newClass();
   1.697 +      classes[cdx].prev = -1;
   1.698 +      classes[cdx].next = firstClass;
   1.699 +      if (firstClass != -1) {
   1.700 +	classes[firstClass].prev = cdx;
   1.701 +      }
   1.702 +      firstClass = cdx;
   1.703 +      
   1.704 +      int idx = newItem();
   1.705 +      items[idx].item = item;
   1.706 +      items[idx].cls = cdx;
   1.707 +      items[idx].prev = idx;
   1.708 +      items[idx].next = idx;
   1.709 +
   1.710 +      classes[cdx].firstItem = idx;
   1.711 +
   1.712 +      index.set(item, idx);
   1.713 +      
   1.714 +      return cdx;
   1.715 +    }
   1.716 +
   1.717 +    /// \brief Inserts the given element into the given component.
   1.718 +    ///
   1.719 +    /// This methods inserts the element \e item a into the \e cls class.
   1.720 +    void insert(const Item& item, int cls) {
   1.721 +      int idx = newItem();
   1.722 +      int rdx = classes[cls].firstItem;
   1.723 +      items[idx].item = item;
   1.724 +      items[idx].cls = cls;
   1.725 +
   1.726 +      items[idx].prev = rdx;
   1.727 +      items[idx].next = items[rdx].next;
   1.728 +      items[items[rdx].next].prev = idx;
   1.729 +      items[rdx].next = idx;
   1.730 +
   1.731 +      index.set(item, idx);
   1.732 +    }
   1.733 +
   1.734 +    /// \brief Clears the union-find data structure
   1.735 +    ///
   1.736 +    /// Erase each item from the data structure.
   1.737 +    void clear() {
   1.738 +      items.clear();
   1.739 +      classes.clear;
   1.740 +      firstClass = firstFreeClass = firstFreeItem = -1;
   1.741 +    }
   1.742 +
   1.743 +    /// \brief Gives back the class of the \e item.
   1.744 +    ///
   1.745 +    /// Gives back the class of the \e item.
   1.746 +    int find(const Item &item) const {
   1.747 +      return items[index[item]].cls;
   1.748 +    }
   1.749 +
   1.750 +    /// \brief Gives back a representant item of the component.
   1.751 +    ///
   1.752 +    /// Gives back a representant item of the component.
   1.753 +    Item item(int cls) const {
   1.754 +      return items[classes[cls].firstItem].item;
   1.755 +    }
   1.756 +    
   1.757 +    /// \brief Removes the given element from the structure.
   1.758 +    ///
   1.759 +    /// Removes the element from its component and if the component becomes
   1.760 +    /// empty then removes that component from the component list.
   1.761 +    ///
   1.762 +    /// \warning It is an error to remove an element which is not in
   1.763 +    /// the structure.
   1.764 +    void erase(const Item &item) {
   1.765 +      int idx = index[item];
   1.766 +      int cdx = items[idx].cls;
   1.767 +      
   1.768 +      if (idx == items[idx].next) {
   1.769 +	if (classes[cdx].prev != -1) {
   1.770 +	  classes[classes[cdx].prev].next = classes[cdx].next; 
   1.771 +	} else {
   1.772 +	  firstClass = classes[cdx].next;
   1.773 +	}
   1.774 +	if (classes[cdx].next != -1) {
   1.775 +	  classes[classes[cdx].next].prev = classes[cdx].prev; 
   1.776 +	}
   1.777 +	classes[cdx].next = firstFreeClass;
   1.778 +	firstFreeClass = cdx;
   1.779 +      } else {
   1.780 +	classes[cdx].firstItem = items[idx].next;
   1.781 +	items[items[idx].next].prev = items[idx].prev;
   1.782 +	items[items[idx].prev].next = items[idx].next;
   1.783 +      }
   1.784 +      items[idx].next = firstFreeItem;
   1.785 +      firstFreeItem = idx;
   1.786 +	
   1.787 +    }    
   1.788 +
   1.789 +    
   1.790 +    /// \brief Removes the component of the given element from the structure.
   1.791 +    ///
   1.792 +    /// Removes the component of the given element from the structure.
   1.793 +    ///
   1.794 +    /// \warning It is an error to give an element which is not in the
   1.795 +    /// structure.
   1.796 +    void eraseClass(int cdx) {
   1.797 +      int idx = classes[cdx].firstItem;
   1.798 +      items[items[idx].prev].next = firstFreeItem;
   1.799 +      firstFreeItem = idx;
   1.800 +
   1.801 +      if (classes[cdx].prev != -1) {
   1.802 +	classes[classes[cdx].prev].next = classes[cdx].next; 
   1.803 +      } else {
   1.804 +	firstClass = classes[cdx].next;
   1.805 +      }
   1.806 +      if (classes[cdx].next != -1) {
   1.807 +	classes[classes[cdx].next].prev = classes[cdx].prev; 
   1.808 +      }
   1.809 +      classes[cdx].next = firstFreeClass;
   1.810 +      firstFreeClass = cdx;
   1.811 +    }
   1.812 +
   1.813 +    /// \brief Lemon style iterator for the classes.
   1.814 +    ///
   1.815 +    /// ClassIt is a lemon style iterator for the components. It iterates
   1.816 +    /// on the ids of classes.
   1.817 +    class ClassIt {
   1.818 +    public:
   1.819 +      /// \brief Constructor of the iterator
   1.820 +      ///
   1.821 +      /// Constructor of the iterator
   1.822 +      ClassIt(const ExtendFindEnum& ufe) : extendFind(&ufe) {
   1.823 +        cdx = extendFind->firstClass;
   1.824 +      }
   1.825 +
   1.826 +      /// \brief Constructor to get invalid iterator
   1.827 +      ///
   1.828 +      /// Constructor to get invalid iterator
   1.829 +      ClassIt(Invalid) : extendFind(0), cdx(-1) {}
   1.830 +      
   1.831 +      /// \brief Increment operator
   1.832 +      ///
   1.833 +      /// It steps to the next representant item.
   1.834 +      ClassIt& operator++() {
   1.835 +        cdx = extendFind->classes[cdx].next;
   1.836 +        return *this;
   1.837 +      }
   1.838 +      
   1.839 +      /// \brief Conversion operator
   1.840 +      ///
   1.841 +      /// It converts the iterator to the current class id.
   1.842 +      operator int() const {
   1.843 +        return cdx;
   1.844 +      }
   1.845 +
   1.846 +      /// \brief Equality operator
   1.847 +      ///
   1.848 +      /// Equality operator
   1.849 +      bool operator==(const ClassIt& i) { 
   1.850 +        return i.cdx == cdx;
   1.851 +      }
   1.852 +
   1.853 +      /// \brief Inequality operator
   1.854 +      ///
   1.855 +      /// Inequality operator
   1.856 +      bool operator!=(const ClassIt& i) { 
   1.857 +        return i.cdx != cdx;
   1.858 +      }
   1.859 +      
   1.860 +    private:
   1.861 +      const ExtendFindEnum* extendFind;
   1.862 +      int cdx;
   1.863 +    };
   1.864 +
   1.865 +    /// \brief Lemon style iterator for the items of a component.
   1.866 +    ///
   1.867 +    /// ClassIt is a lemon style iterator for the components. It iterates
   1.868 +    /// on the items of a class. By example if you want to iterate on
   1.869 +    /// each items of each classes then you may write the next code.
   1.870 +    ///\code
   1.871 +    /// for (ClassIt cit(ufe); cit != INVALID; ++cit) {
   1.872 +    ///   std::cout << "Class: ";
   1.873 +    ///   for (ItemIt iit(ufe, cit); iit != INVALID; ++iit) {
   1.874 +    ///     std::cout << toString(iit) << ' ' << std::endl;
   1.875 +    ///   }
   1.876 +    ///   std::cout << std::endl;
   1.877 +    /// }
   1.878 +    ///\endcode
   1.879 +    class ItemIt {
   1.880 +    public:
   1.881 +      /// \brief Constructor of the iterator
   1.882 +      ///
   1.883 +      /// Constructor of the iterator. The iterator iterates
   1.884 +      /// on the class of the \c item.
   1.885 +      ItemIt(const ExtendFindEnum& ufe, int cls) : extendFind(&ufe) {
   1.886 +        fdx = idx = extendFind->classes[cls].firstItem;
   1.887 +      }
   1.888 +
   1.889 +      /// \brief Constructor to get invalid iterator
   1.890 +      ///
   1.891 +      /// Constructor to get invalid iterator
   1.892 +      ItemIt(Invalid) : extendFind(0), idx(-1) {}
   1.893 +      
   1.894 +      /// \brief Increment operator
   1.895 +      ///
   1.896 +      /// It steps to the next item in the class.
   1.897 +      ItemIt& operator++() {
   1.898 +        idx = extendFind->items[idx].next;
   1.899 +	if (fdx == idx) idx = -1;
   1.900 +        return *this;
   1.901 +      }
   1.902 +      
   1.903 +      /// \brief Conversion operator
   1.904 +      ///
   1.905 +      /// It converts the iterator to the current item.
   1.906 +      operator const Item&() const {
   1.907 +        return extendFind->items[idx].item;
   1.908 +      }
   1.909 +
   1.910 +      /// \brief Equality operator
   1.911 +      ///
   1.912 +      /// Equality operator
   1.913 +      bool operator==(const ItemIt& i) { 
   1.914 +        return i.idx == idx;
   1.915 +      }
   1.916 +
   1.917 +      /// \brief Inequality operator
   1.918 +      ///
   1.919 +      /// Inequality operator
   1.920 +      bool operator!=(const ItemIt& i) { 
   1.921 +        return i.idx != idx;
   1.922 +      }
   1.923 +      
   1.924 +    private:
   1.925 +      const ExtendFindEnum* extendFind;
   1.926 +      int idx, fdx;
   1.927 +    };
   1.928 +
   1.929 +  };
   1.930 +
   1.931 +  /// \ingroup auxdat
   1.932 +  ///
   1.933 +  /// \brief A \e Union-Find data structure implementation which
   1.934 +  /// is able to store a priority for each item and retrieve the minimum of
   1.935 +  /// each class.
   1.936 +  ///
   1.937 +  /// A \e Union-Find data structure implementation which is able to
   1.938 +  /// store a priority for each item and retrieve the minimum of each
   1.939 +  /// class. In addition, it supports the joining and splitting the
   1.940 +  /// components. If you don't need this feature then you makes
   1.941 +  /// better to use the \ref UnionFind class which is more efficient.
   1.942 +  ///
   1.943 +  /// The union-find data strcuture based on a (2, 16)-tree with a
   1.944 +  /// tournament minimum selection on the internal nodes. The insert
   1.945 +  /// operation takes O(1), the find, set, decrease and increase takes
   1.946 +  /// O(log(n)), where n is the number of nodes in the current
   1.947 +  /// component.  The complexity of join and split is O(log(n)*k),
   1.948 +  /// where n is the sum of the number of the nodes and k is the
   1.949 +  /// number of joined components or the number of the components
   1.950 +  /// after the split.
   1.951 +  ///
   1.952 +  /// \pre You need to add all the elements by the \ref insert()
   1.953 +  /// method.
   1.954 +  ///
   1.955 +  template <typename _Value, typename _ItemIntMap, 
   1.956 +            typename _Comp = std::less<_Value> >
   1.957 +  class HeapUnionFind {
   1.958 +  public:
   1.959 +    
   1.960 +    typedef _Value Value;
   1.961 +    typedef typename _ItemIntMap::Key Item;
   1.962 +
   1.963 +    typedef _ItemIntMap ItemIntMap;
   1.964 +
   1.965 +    typedef _Comp Comp;
   1.966 +
   1.967 +  private:
   1.968 +
   1.969 +    static const int cmax = 16;
   1.970 +
   1.971 +    ItemIntMap& index;
   1.972 +
   1.973 +    struct ClassNode {
   1.974 +      int parent;
   1.975 +      int depth;
   1.976 +
   1.977 +      int left, right;
   1.978 +      int next, prev;
   1.979 +    };
   1.980 +
   1.981 +    int first_class;
   1.982 +    int first_free_class;
   1.983 +    std::vector<ClassNode> classes;
   1.984 +
   1.985 +    int newClass() {
   1.986 +      if (first_free_class < 0) {
   1.987 +        int id = classes.size();
   1.988 +        classes.push_back(ClassNode());
   1.989 +        return id;
   1.990 +      } else {
   1.991 +        int id = first_free_class;
   1.992 +        first_free_class = classes[id].next;
   1.993 +        return id;
   1.994 +      }
   1.995 +    }
   1.996 +
   1.997 +    void deleteClass(int id) {
   1.998 +      classes[id].next = first_free_class;
   1.999 +      first_free_class = id;
  1.1000 +    }
  1.1001 +
  1.1002 +    struct ItemNode {
  1.1003 +      int parent;
  1.1004 +      Item item;
  1.1005 +      Value prio;
  1.1006 +      int next, prev;
  1.1007 +      int left, right;
  1.1008 +      int size;
  1.1009 +    };
  1.1010 +
  1.1011 +    int first_free_node;
  1.1012 +    std::vector<ItemNode> nodes;
  1.1013 +
  1.1014 +    int newNode() {
  1.1015 +      if (first_free_node < 0) {
  1.1016 +        int id = nodes.size();
  1.1017 +        nodes.push_back(ItemNode());
  1.1018 +        return id;
  1.1019 +      } else {
  1.1020 +        int id = first_free_node;
  1.1021 +        first_free_node = nodes[id].next;
  1.1022 +        return id;
  1.1023 +      }
  1.1024 +    }
  1.1025 +
  1.1026 +    void deleteNode(int id) {
  1.1027 +      nodes[id].next = first_free_node;
  1.1028 +      first_free_node = id;
  1.1029 +    }
  1.1030 +
  1.1031 +    Comp comp;
  1.1032 +
  1.1033 +    int findClass(int id) const {
  1.1034 +      int kd = id;
  1.1035 +      while (kd >= 0) {
  1.1036 +        kd = nodes[kd].parent;
  1.1037 +      }
  1.1038 +      return ~kd;
  1.1039 +    }
  1.1040 +
  1.1041 +    int leftNode(int id) const {
  1.1042 +      int kd = ~(classes[id].parent);
  1.1043 +      for (int i = 0; i < classes[id].depth; ++i) {
  1.1044 +        kd = nodes[kd].left;
  1.1045 +      }
  1.1046 +      return kd;
  1.1047 +    }
  1.1048 +
  1.1049 +    int nextNode(int id) const {
  1.1050 +      int depth = 0;
  1.1051 +      while (id >= 0 && nodes[id].next == -1) {
  1.1052 +        id = nodes[id].parent;
  1.1053 +        ++depth;
  1.1054 +      }
  1.1055 +      if (id < 0) {
  1.1056 +        return -1;
  1.1057 +      }
  1.1058 +      id = nodes[id].next;
  1.1059 +      while (depth--) {
  1.1060 +        id = nodes[id].left;      
  1.1061 +      }
  1.1062 +      return id;
  1.1063 +    }
  1.1064 +
  1.1065 +
  1.1066 +    void setPrio(int id) {
  1.1067 +      int jd = nodes[id].left;
  1.1068 +      nodes[id].prio = nodes[jd].prio;
  1.1069 +      nodes[id].item = nodes[jd].item;
  1.1070 +      jd = nodes[jd].next;
  1.1071 +      while (jd != -1) {
  1.1072 +        if (comp(nodes[jd].prio, nodes[id].prio)) {
  1.1073 +          nodes[id].prio = nodes[jd].prio;
  1.1074 +          nodes[id].item = nodes[jd].item;
  1.1075 +        }
  1.1076 +        jd = nodes[jd].next;
  1.1077 +      }
  1.1078 +    }
  1.1079 +
  1.1080 +    void push(int id, int jd) {
  1.1081 +      nodes[id].size = 1;
  1.1082 +      nodes[id].left = nodes[id].right = jd;
  1.1083 +      nodes[jd].next = nodes[jd].prev = -1;
  1.1084 +      nodes[jd].parent = id;
  1.1085 +    }
  1.1086 +
  1.1087 +    void pushAfter(int id, int jd) {
  1.1088 +      int kd = nodes[id].parent;
  1.1089 +      if (nodes[id].next != -1) {
  1.1090 +        nodes[nodes[id].next].prev = jd;
  1.1091 +        if (kd >= 0) {
  1.1092 +          nodes[kd].size += 1;
  1.1093 +        }
  1.1094 +      } else {
  1.1095 +        if (kd >= 0) {
  1.1096 +          nodes[kd].right = jd;
  1.1097 +          nodes[kd].size += 1;
  1.1098 +        }
  1.1099 +      }
  1.1100 +      nodes[jd].next = nodes[id].next;
  1.1101 +      nodes[jd].prev = id;
  1.1102 +      nodes[id].next = jd;
  1.1103 +      nodes[jd].parent = kd;
  1.1104 +    }
  1.1105 +
  1.1106 +    void pushRight(int id, int jd) {
  1.1107 +      nodes[id].size += 1;
  1.1108 +      nodes[jd].prev = nodes[id].right;
  1.1109 +      nodes[jd].next = -1;
  1.1110 +      nodes[nodes[id].right].next = jd;
  1.1111 +      nodes[id].right = jd;
  1.1112 +      nodes[jd].parent = id;
  1.1113 +    }
  1.1114 +
  1.1115 +    void popRight(int id) {
  1.1116 +      nodes[id].size -= 1;
  1.1117 +      int jd = nodes[id].right;
  1.1118 +      nodes[nodes[jd].prev].next = -1;
  1.1119 +      nodes[id].right = nodes[jd].prev;
  1.1120 +    }
  1.1121 +
  1.1122 +    void splice(int id, int jd) {
  1.1123 +      nodes[id].size += nodes[jd].size;
  1.1124 +      nodes[nodes[id].right].next = nodes[jd].left;
  1.1125 +      nodes[nodes[jd].left].prev = nodes[id].right;
  1.1126 +      int kd = nodes[jd].left;
  1.1127 +      while (kd != -1) {
  1.1128 +        nodes[kd].parent = id;
  1.1129 +        kd = nodes[kd].next;
  1.1130 +      }
  1.1131 +      nodes[id].right = nodes[jd].right;
  1.1132 +    }
  1.1133 +
  1.1134 +    void split(int id, int jd) {
  1.1135 +      int kd = nodes[id].parent;
  1.1136 +      nodes[kd].right = nodes[id].prev;
  1.1137 +      nodes[nodes[id].prev].next = -1;
  1.1138 +      
  1.1139 +      nodes[jd].left = id;
  1.1140 +      nodes[id].prev = -1;
  1.1141 +      int num = 0;
  1.1142 +      while (id != -1) {
  1.1143 +        nodes[id].parent = jd;
  1.1144 +        nodes[jd].right = id;
  1.1145 +        id = nodes[id].next;
  1.1146 +        ++num;
  1.1147 +      }      
  1.1148 +      nodes[kd].size -= num;
  1.1149 +      nodes[jd].size = num;
  1.1150 +    }
  1.1151 +
  1.1152 +    void pushLeft(int id, int jd) {
  1.1153 +      nodes[id].size += 1;
  1.1154 +      nodes[jd].next = nodes[id].left;
  1.1155 +      nodes[jd].prev = -1;
  1.1156 +      nodes[nodes[id].left].prev = jd;
  1.1157 +      nodes[id].left = jd;
  1.1158 +      nodes[jd].parent = id;
  1.1159 +    }
  1.1160 +
  1.1161 +    void popLeft(int id) {
  1.1162 +      nodes[id].size -= 1;
  1.1163 +      int jd = nodes[id].left;
  1.1164 +      nodes[nodes[jd].next].prev = -1;
  1.1165 +      nodes[id].left = nodes[jd].next;
  1.1166 +    }
  1.1167 +
  1.1168 +    void repairLeft(int id) {
  1.1169 +      int jd = ~(classes[id].parent);
  1.1170 +      while (nodes[jd].left != -1) {
  1.1171 +	int kd = nodes[jd].left;
  1.1172 +	if (nodes[jd].size == 1) {
  1.1173 +	  if (nodes[jd].parent < 0) {
  1.1174 +	    classes[id].parent = ~kd;
  1.1175 +	    classes[id].depth -= 1;
  1.1176 +	    nodes[kd].parent = ~id;
  1.1177 +	    deleteNode(jd);
  1.1178 +	    jd = kd;
  1.1179 +	  } else {
  1.1180 +	    int pd = nodes[jd].parent;
  1.1181 +	    if (nodes[nodes[jd].next].size < cmax) {
  1.1182 +	      pushLeft(nodes[jd].next, nodes[jd].left);
  1.1183 +	      if (less(nodes[jd].left, nodes[jd].next)) {
  1.1184 +		nodes[nodes[jd].next].prio = nodes[nodes[jd].left].prio;
  1.1185 +		nodes[nodes[jd].next].item = nodes[nodes[jd].left].item;
  1.1186 +	      } 
  1.1187 +	      popLeft(pd);
  1.1188 +	      deleteNode(jd);
  1.1189 +	      jd = pd;
  1.1190 +	    } else {
  1.1191 +	      int ld = nodes[nodes[jd].next].left;
  1.1192 +	      popLeft(nodes[jd].next);
  1.1193 +	      pushRight(jd, ld);
  1.1194 +	      if (less(ld, nodes[jd].left)) {
  1.1195 +		nodes[jd].item = nodes[ld].item;
  1.1196 +		nodes[jd].prio = nodes[jd].prio;
  1.1197 +	      }
  1.1198 +	      if (nodes[nodes[jd].next].item == nodes[ld].item) {
  1.1199 +		setPrio(nodes[jd].next);
  1.1200 +	      }
  1.1201 +	      jd = nodes[jd].left;
  1.1202 +	    }
  1.1203 +	  }
  1.1204 +	} else {
  1.1205 +	  jd = nodes[jd].left;
  1.1206 +	}
  1.1207 +      }
  1.1208 +    }    
  1.1209 +
  1.1210 +    void repairRight(int id) {
  1.1211 +      int jd = ~(classes[id].parent);
  1.1212 +      while (nodes[jd].right != -1) {
  1.1213 +	int kd = nodes[jd].right;
  1.1214 +	if (nodes[jd].size == 1) {
  1.1215 +	  if (nodes[jd].parent < 0) {
  1.1216 +	    classes[id].parent = ~kd;
  1.1217 +	    classes[id].depth -= 1;
  1.1218 +	    nodes[kd].parent = ~id;
  1.1219 +	    deleteNode(jd);
  1.1220 +	    jd = kd;
  1.1221 +	  } else {
  1.1222 +	    int pd = nodes[jd].parent;
  1.1223 +	    if (nodes[nodes[jd].prev].size < cmax) {
  1.1224 +	      pushRight(nodes[jd].prev, nodes[jd].right);
  1.1225 +	      if (less(nodes[jd].right, nodes[jd].prev)) {
  1.1226 +		nodes[nodes[jd].prev].prio = nodes[nodes[jd].right].prio;
  1.1227 +		nodes[nodes[jd].prev].item = nodes[nodes[jd].right].item;
  1.1228 +	      } 
  1.1229 +	      popRight(pd);
  1.1230 +	      deleteNode(jd);
  1.1231 +	      jd = pd;
  1.1232 +	    } else {
  1.1233 +	      int ld = nodes[nodes[jd].prev].right;
  1.1234 +	      popRight(nodes[jd].prev);
  1.1235 +	      pushLeft(jd, ld);
  1.1236 +	      if (less(ld, nodes[jd].right)) {
  1.1237 +		nodes[jd].item = nodes[ld].item;
  1.1238 +		nodes[jd].prio = nodes[jd].prio;
  1.1239 +	      }
  1.1240 +	      if (nodes[nodes[jd].prev].item == nodes[ld].item) {
  1.1241 +		setPrio(nodes[jd].prev);
  1.1242 +	      }
  1.1243 +	      jd = nodes[jd].right;
  1.1244 +	    }
  1.1245 +	  }
  1.1246 +	} else {
  1.1247 +	  jd = nodes[jd].right;
  1.1248 +	}
  1.1249 +      }
  1.1250 +    }
  1.1251 +
  1.1252 +
  1.1253 +    bool less(int id, int jd) const {
  1.1254 +      return comp(nodes[id].prio, nodes[jd].prio);
  1.1255 +    }
  1.1256 +
  1.1257 +    bool equal(int id, int jd) const {
  1.1258 +      return !less(id, jd) && !less(jd, id);
  1.1259 +    }
  1.1260 +
  1.1261 +
  1.1262 +  public:
  1.1263 +
  1.1264 +    /// \brief Returns true when the given class is alive.
  1.1265 +    ///
  1.1266 +    /// Returns true when the given class is alive, ie. the class is
  1.1267 +    /// not nested into other class.
  1.1268 +    bool alive(int cls) const {
  1.1269 +      return classes[cls].parent < 0;
  1.1270 +    }
  1.1271 +
  1.1272 +    /// \brief Returns true when the given class is trivial.
  1.1273 +    ///
  1.1274 +    /// Returns true when the given class is trivial, ie. the class
  1.1275 +    /// contains just one item directly.
  1.1276 +    bool trivial(int cls) const {
  1.1277 +      return classes[cls].left == -1;
  1.1278 +    }
  1.1279 +
  1.1280 +    /// \brief Constructs the union-find.
  1.1281 +    ///
  1.1282 +    /// Constructs the union-find.  
  1.1283 +    /// \brief _index The index map of the union-find. The data
  1.1284 +    /// structure uses internally for store references.
  1.1285 +    HeapUnionFind(ItemIntMap& _index) 
  1.1286 +      : index(_index), first_class(-1), 
  1.1287 +	first_free_class(-1), first_free_node(-1) {}
  1.1288 +
  1.1289 +    /// \brief Insert a new node into a new component.
  1.1290 +    ///
  1.1291 +    /// Insert a new node into a new component.
  1.1292 +    /// \param item The item of the new node.
  1.1293 +    /// \param prio The priority of the new node.
  1.1294 +    /// \return The class id of the one-item-heap.
  1.1295 +    int insert(const Item& item, const Value& prio) {
  1.1296 +      int id = newNode();
  1.1297 +      nodes[id].item = item;
  1.1298 +      nodes[id].prio = prio;
  1.1299 +      nodes[id].size = 0;
  1.1300 +
  1.1301 +      nodes[id].prev = -1;
  1.1302 +      nodes[id].next = -1;
  1.1303 +
  1.1304 +      nodes[id].left = -1;
  1.1305 +      nodes[id].right = -1;
  1.1306 +
  1.1307 +      nodes[id].item = item;
  1.1308 +      index[item] = id;
  1.1309 +      
  1.1310 +      int class_id = newClass();
  1.1311 +      classes[class_id].parent = ~id;
  1.1312 +      classes[class_id].depth = 0;
  1.1313 +
  1.1314 +      classes[class_id].left = -1;
  1.1315 +      classes[class_id].right = -1;
  1.1316 +      
  1.1317 +      if (first_class != -1) {
  1.1318 +        classes[first_class].prev = class_id;
  1.1319 +      }
  1.1320 +      classes[class_id].next = first_class;
  1.1321 +      classes[class_id].prev = -1;
  1.1322 +      first_class = class_id;
  1.1323 +
  1.1324 +      nodes[id].parent = ~class_id;
  1.1325 +      
  1.1326 +      return class_id;
  1.1327 +    }
  1.1328 +
  1.1329 +    /// \brief The class of the item.
  1.1330 +    ///
  1.1331 +    /// \return The alive class id of the item, which is not nested into
  1.1332 +    /// other classes.
  1.1333 +    ///
  1.1334 +    /// The time complexity is O(log(n)).
  1.1335 +    int find(const Item& item) const {
  1.1336 +      return findClass(index[item]);
  1.1337 +    }
  1.1338 +    
  1.1339 +    /// \brief Joins the classes.
  1.1340 +    ///
  1.1341 +    /// The current function joins the given classes. The parameter is
  1.1342 +    /// an STL range which should be contains valid class ids. The
  1.1343 +    /// time complexity is O(log(n)*k) where n is the overall number
  1.1344 +    /// of the joined nodes and k is the number of classes.
  1.1345 +    /// \return The class of the joined classes.
  1.1346 +    /// \pre The range should contain at least two class ids.
  1.1347 +    template <typename Iterator>
  1.1348 +    int join(Iterator begin, Iterator end) {
  1.1349 +      std::vector<int> cs;
  1.1350 +      for (Iterator it = begin; it != end; ++it) {
  1.1351 +        cs.push_back(*it);
  1.1352 +      }
  1.1353 +
  1.1354 +      int class_id = newClass();
  1.1355 +      { // creation union-find
  1.1356 +
  1.1357 +        if (first_class != -1) {
  1.1358 +          classes[first_class].prev = class_id;
  1.1359 +        }
  1.1360 +        classes[class_id].next = first_class;
  1.1361 +        classes[class_id].prev = -1;
  1.1362 +        first_class = class_id;
  1.1363 +
  1.1364 +        classes[class_id].depth = classes[cs[0]].depth;
  1.1365 +        classes[class_id].parent = classes[cs[0]].parent;
  1.1366 +        nodes[~(classes[class_id].parent)].parent = ~class_id;
  1.1367 +
  1.1368 +        int l = cs[0];
  1.1369 +
  1.1370 +        classes[class_id].left = l;
  1.1371 +        classes[class_id].right = l;
  1.1372 +
  1.1373 +        if (classes[l].next != -1) {
  1.1374 +          classes[classes[l].next].prev = classes[l].prev;
  1.1375 +        }
  1.1376 +        classes[classes[l].prev].next = classes[l].next;
  1.1377 +        
  1.1378 +        classes[l].prev = -1;
  1.1379 +        classes[l].next = -1;
  1.1380 +
  1.1381 +        classes[l].depth = leftNode(l);
  1.1382 +        classes[l].parent = class_id;
  1.1383 +        
  1.1384 +      }
  1.1385 +
  1.1386 +      { // merging of heap
  1.1387 +        int l = class_id;
  1.1388 +        for (int ci = 1; ci < int(cs.size()); ++ci) {
  1.1389 +          int r = cs[ci];
  1.1390 +          int rln = leftNode(r);
  1.1391 +          if (classes[l].depth > classes[r].depth) {
  1.1392 +            int id = ~(classes[l].parent);
  1.1393 +            for (int i = classes[r].depth + 1; i < classes[l].depth; ++i) {
  1.1394 +              id = nodes[id].right;
  1.1395 +            }
  1.1396 +            while (id >= 0 && nodes[id].size == cmax) {
  1.1397 +              int new_id = newNode();
  1.1398 +              int right_id = nodes[id].right;
  1.1399 +
  1.1400 +              popRight(id);
  1.1401 +              if (nodes[id].item == nodes[right_id].item) {
  1.1402 +                setPrio(id);
  1.1403 +              }
  1.1404 +              push(new_id, right_id);
  1.1405 +              pushRight(new_id, ~(classes[r].parent));
  1.1406 +              setPrio(new_id);
  1.1407 +
  1.1408 +              id = nodes[id].parent;
  1.1409 +              classes[r].parent = ~new_id;
  1.1410 +            }
  1.1411 +            if (id < 0) {
  1.1412 +              int new_parent = newNode();
  1.1413 +              nodes[new_parent].next = -1;
  1.1414 +              nodes[new_parent].prev = -1;
  1.1415 +              nodes[new_parent].parent = ~l;
  1.1416 +
  1.1417 +              push(new_parent, ~(classes[l].parent));
  1.1418 +              pushRight(new_parent, ~(classes[r].parent));
  1.1419 +              setPrio(new_parent);
  1.1420 +
  1.1421 +              classes[l].parent = ~new_parent;
  1.1422 +              classes[l].depth += 1;
  1.1423 +            } else {
  1.1424 +              pushRight(id, ~(classes[r].parent));
  1.1425 +              while (id >= 0 && less(~(classes[r].parent), id)) {
  1.1426 +                nodes[id].prio = nodes[~(classes[r].parent)].prio;
  1.1427 +                nodes[id].item = nodes[~(classes[r].parent)].item;
  1.1428 +                id = nodes[id].parent;
  1.1429 +              }
  1.1430 +            }
  1.1431 +          } else if (classes[r].depth > classes[l].depth) {
  1.1432 +            int id = ~(classes[r].parent);
  1.1433 +            for (int i = classes[l].depth + 1; i < classes[r].depth; ++i) {
  1.1434 +              id = nodes[id].left;
  1.1435 +            }
  1.1436 +            while (id >= 0 && nodes[id].size == cmax) {
  1.1437 +              int new_id = newNode();
  1.1438 +              int left_id = nodes[id].left;
  1.1439 +
  1.1440 +              popLeft(id);
  1.1441 +              if (nodes[id].prio == nodes[left_id].prio) {
  1.1442 +                setPrio(id);
  1.1443 +              }
  1.1444 +              push(new_id, left_id);
  1.1445 +              pushLeft(new_id, ~(classes[l].parent));
  1.1446 +              setPrio(new_id);
  1.1447 +
  1.1448 +              id = nodes[id].parent;
  1.1449 +              classes[l].parent = ~new_id;
  1.1450 +
  1.1451 +            }
  1.1452 +            if (id < 0) {
  1.1453 +              int new_parent = newNode();
  1.1454 +              nodes[new_parent].next = -1;
  1.1455 +              nodes[new_parent].prev = -1;
  1.1456 +              nodes[new_parent].parent = ~l;
  1.1457 +
  1.1458 +              push(new_parent, ~(classes[r].parent));
  1.1459 +              pushLeft(new_parent, ~(classes[l].parent));
  1.1460 +              setPrio(new_parent);
  1.1461 +              
  1.1462 +              classes[r].parent = ~new_parent;
  1.1463 +              classes[r].depth += 1;
  1.1464 +            } else {
  1.1465 +              pushLeft(id, ~(classes[l].parent));
  1.1466 +              while (id >= 0 && less(~(classes[l].parent), id)) {
  1.1467 +                nodes[id].prio = nodes[~(classes[l].parent)].prio;
  1.1468 +                nodes[id].item = nodes[~(classes[l].parent)].item;
  1.1469 +                id = nodes[id].parent;
  1.1470 +              }
  1.1471 +            }
  1.1472 +            nodes[~(classes[r].parent)].parent = ~l;
  1.1473 +            classes[l].parent = classes[r].parent;
  1.1474 +            classes[l].depth = classes[r].depth;
  1.1475 +          } else {
  1.1476 +            if (classes[l].depth != 0 && 
  1.1477 +                nodes[~(classes[l].parent)].size + 
  1.1478 +                nodes[~(classes[r].parent)].size <= cmax) {
  1.1479 +              splice(~(classes[l].parent), ~(classes[r].parent));
  1.1480 +              deleteNode(~(classes[r].parent));
  1.1481 +              if (less(~(classes[r].parent), ~(classes[l].parent))) {
  1.1482 +                nodes[~(classes[l].parent)].prio = 
  1.1483 +                  nodes[~(classes[r].parent)].prio;
  1.1484 +                nodes[~(classes[l].parent)].item = 
  1.1485 +                  nodes[~(classes[r].parent)].item;
  1.1486 +              }
  1.1487 +            } else {
  1.1488 +              int new_parent = newNode();
  1.1489 +              nodes[new_parent].next = nodes[new_parent].prev = -1;
  1.1490 +              push(new_parent, ~(classes[l].parent));
  1.1491 +              pushRight(new_parent, ~(classes[r].parent));
  1.1492 +              setPrio(new_parent);
  1.1493 +            
  1.1494 +              classes[l].parent = ~new_parent;
  1.1495 +              classes[l].depth += 1;
  1.1496 +              nodes[new_parent].parent = ~l;
  1.1497 +            }
  1.1498 +          }
  1.1499 +          if (classes[r].next != -1) {
  1.1500 +            classes[classes[r].next].prev = classes[r].prev;
  1.1501 +          }
  1.1502 +          classes[classes[r].prev].next = classes[r].next;
  1.1503 +
  1.1504 +          classes[r].prev = classes[l].right;
  1.1505 +          classes[classes[l].right].next = r;
  1.1506 +          classes[l].right = r;
  1.1507 +          classes[r].parent = l;
  1.1508 +
  1.1509 +          classes[r].next = -1;
  1.1510 +          classes[r].depth = rln;
  1.1511 +        }
  1.1512 +      }
  1.1513 +      return class_id;
  1.1514 +    }
  1.1515 +
  1.1516 +    /// \brief Split the class to subclasses.
  1.1517 +    ///
  1.1518 +    /// The current function splits the given class. The join, which
  1.1519 +    /// made the current class, stored a reference to the
  1.1520 +    /// subclasses. The \c splitClass() member restores the classes
  1.1521 +    /// and creates the heaps. The parameter is an STL output iterator
  1.1522 +    /// which will be filled with the subclass ids. The time
  1.1523 +    /// complexity is O(log(n)*k) where n is the overall number of
  1.1524 +    /// nodes in the splitted classes and k is the number of the
  1.1525 +    /// classes.
  1.1526 +    template <typename Iterator>
  1.1527 +    void split(int cls, Iterator out) {
  1.1528 +      std::vector<int> cs;
  1.1529 +      { // splitting union-find
  1.1530 +        int id = cls;
  1.1531 +        int l = classes[id].left;
  1.1532 +
  1.1533 +        classes[l].parent = classes[id].parent;
  1.1534 +        classes[l].depth = classes[id].depth;
  1.1535 +
  1.1536 +        nodes[~(classes[l].parent)].parent = ~l;
  1.1537 +
  1.1538 +        *out++ = l;
  1.1539 +
  1.1540 +        while (l != -1) {
  1.1541 +          cs.push_back(l);
  1.1542 +          l = classes[l].next;
  1.1543 +        }
  1.1544 +
  1.1545 +        classes[classes[id].right].next = first_class;
  1.1546 +        classes[first_class].prev = classes[id].right;
  1.1547 +        first_class = classes[id].left;
  1.1548 +        
  1.1549 +        if (classes[id].next != -1) {
  1.1550 +          classes[classes[id].next].prev = classes[id].prev;
  1.1551 +        }
  1.1552 +        classes[classes[id].prev].next = classes[id].next;
  1.1553 +        
  1.1554 +        deleteClass(id);
  1.1555 +      }
  1.1556 +
  1.1557 +      {
  1.1558 +        for (int i = 1; i < int(cs.size()); ++i) {
  1.1559 +          int l = classes[cs[i]].depth;
  1.1560 +          while (nodes[nodes[l].parent].left == l) {
  1.1561 +            l = nodes[l].parent;
  1.1562 +          }
  1.1563 +          int r = l;    
  1.1564 +          while (nodes[l].parent >= 0) {
  1.1565 +            l = nodes[l].parent;
  1.1566 +            int new_node = newNode();
  1.1567 +
  1.1568 +            nodes[new_node].prev = -1;
  1.1569 +            nodes[new_node].next = -1;
  1.1570 +
  1.1571 +            split(r, new_node);
  1.1572 +            pushAfter(l, new_node);
  1.1573 +            setPrio(l);
  1.1574 +            setPrio(new_node);
  1.1575 +            r = new_node;
  1.1576 +          }
  1.1577 +          classes[cs[i]].parent = ~r;
  1.1578 +          classes[cs[i]].depth = classes[~(nodes[l].parent)].depth;
  1.1579 +          nodes[r].parent = ~cs[i];
  1.1580 +
  1.1581 +          nodes[l].next = -1;
  1.1582 +          nodes[r].prev = -1;
  1.1583 +
  1.1584 +          repairRight(~(nodes[l].parent));
  1.1585 +          repairLeft(cs[i]);
  1.1586 +          
  1.1587 +          *out++ = cs[i];
  1.1588 +        }
  1.1589 +      }
  1.1590 +    }
  1.1591 +
  1.1592 +    /// \brief Gives back the priority of the current item.
  1.1593 +    ///
  1.1594 +    /// \return Gives back the priority of the current item.
  1.1595 +    const Value& operator[](const Item& item) const {
  1.1596 +      return nodes[index[item]].prio;
  1.1597 +    }
  1.1598 +
  1.1599 +    /// \brief Sets the priority of the current item.
  1.1600 +    ///
  1.1601 +    /// Sets the priority of the current item.
  1.1602 +    void set(const Item& item, const Value& prio) {
  1.1603 +      if (comp(prio, nodes[index[item]].prio)) {
  1.1604 +        decrease(item, prio);
  1.1605 +      } else if (!comp(prio, nodes[index[item]].prio)) {
  1.1606 +        increase(item, prio);
  1.1607 +      }
  1.1608 +    }
  1.1609 +      
  1.1610 +    /// \brief Increase the priority of the current item.
  1.1611 +    ///
  1.1612 +    /// Increase the priority of the current item.
  1.1613 +    void increase(const Item& item, const Value& prio) {
  1.1614 +      int id = index[item];
  1.1615 +      int kd = nodes[id].parent;
  1.1616 +      nodes[id].prio = prio;
  1.1617 +      while (kd >= 0 && nodes[kd].item == item) {
  1.1618 +        setPrio(kd);
  1.1619 +        kd = nodes[kd].parent;
  1.1620 +      }
  1.1621 +    }
  1.1622 +
  1.1623 +    /// \brief Increase the priority of the current item.
  1.1624 +    ///
  1.1625 +    /// Increase the priority of the current item.
  1.1626 +    void decrease(const Item& item, const Value& prio) {
  1.1627 +      int id = index[item];
  1.1628 +      int kd = nodes[id].parent;
  1.1629 +      nodes[id].prio = prio;
  1.1630 +      while (kd >= 0 && less(id, kd)) {
  1.1631 +        nodes[kd].prio = prio;
  1.1632 +        nodes[kd].item = item;
  1.1633 +        kd = nodes[kd].parent;
  1.1634 +      }
  1.1635 +    }
  1.1636 +    
  1.1637 +    /// \brief Gives back the minimum priority of the class.
  1.1638 +    ///
  1.1639 +    /// \return Gives back the minimum priority of the class.
  1.1640 +    const Value& classPrio(int cls) const {
  1.1641 +      return nodes[~(classes[cls].parent)].prio;
  1.1642 +    }
  1.1643 +
  1.1644 +    /// \brief Gives back the minimum priority item of the class.
  1.1645 +    ///
  1.1646 +    /// \return Gives back the minimum priority item of the class.
  1.1647 +    const Item& classTop(int cls) const {
  1.1648 +      return nodes[~(classes[cls].parent)].item;
  1.1649 +    }
  1.1650 +
  1.1651 +    /// \brief Gives back a representant item of the class.
  1.1652 +    /// 
  1.1653 +    /// The representant is indpendent from the priorities of the
  1.1654 +    /// items. 
  1.1655 +    /// \return Gives back a representant item of the class.
  1.1656 +    const Item& classRep(int id) const {
  1.1657 +      int parent = classes[id].parent;
  1.1658 +      return nodes[parent >= 0 ? classes[id].depth : leftNode(id)].item;
  1.1659 +    }
  1.1660 +
  1.1661 +    /// \brief Lemon style iterator for the items of a class.
  1.1662 +    ///
  1.1663 +    /// ClassIt is a lemon style iterator for the components. It iterates
  1.1664 +    /// on the items of a class. By example if you want to iterate on
  1.1665 +    /// each items of each classes then you may write the next code.
  1.1666 +    ///\code
  1.1667 +    /// for (ClassIt cit(huf); cit != INVALID; ++cit) {
  1.1668 +    ///   std::cout << "Class: ";
  1.1669 +    ///   for (ItemIt iit(huf, cit); iit != INVALID; ++iit) {
  1.1670 +    ///     std::cout << toString(iit) << ' ' << std::endl;
  1.1671 +    ///   }
  1.1672 +    ///   std::cout << std::endl;
  1.1673 +    /// }
  1.1674 +    ///\endcode
  1.1675 +    class ItemIt {
  1.1676 +    private:
  1.1677 +
  1.1678 +      const HeapUnionFind* _huf;
  1.1679 +      int _id, _lid;
  1.1680 +      
  1.1681 +    public:
  1.1682 +
  1.1683 +      /// \brief Default constructor 
  1.1684 +      ///
  1.1685 +      /// Default constructor 
  1.1686 +      ItemIt() {}
  1.1687 +
  1.1688 +      ItemIt(const HeapUnionFind& huf, int cls) : _huf(&huf) {
  1.1689 +        int id = cls;
  1.1690 +        int parent = _huf->classes[id].parent;
  1.1691 +        if (parent >= 0) {
  1.1692 +          _id = _huf->classes[id].depth;
  1.1693 +          if (_huf->classes[id].next != -1) {
  1.1694 +            _lid = _huf->classes[_huf->classes[id].next].depth;
  1.1695 +          } else {
  1.1696 +            _lid = -1;
  1.1697 +          }
  1.1698 +        } else {
  1.1699 +          _id = _huf->leftNode(id);
  1.1700 +          _lid = -1;
  1.1701 +        } 
  1.1702 +      }
  1.1703 +      
  1.1704 +      /// \brief Increment operator
  1.1705 +      ///
  1.1706 +      /// It steps to the next item in the class.
  1.1707 +      ItemIt& operator++() {
  1.1708 +        _id = _huf->nextNode(_id);
  1.1709 +        return *this;
  1.1710 +      }
  1.1711 +
  1.1712 +      /// \brief Conversion operator
  1.1713 +      ///
  1.1714 +      /// It converts the iterator to the current item.
  1.1715 +      operator const Item&() const {
  1.1716 +        return _huf->nodes[_id].item;
  1.1717 +      }
  1.1718 +      
  1.1719 +      /// \brief Equality operator
  1.1720 +      ///
  1.1721 +      /// Equality operator
  1.1722 +      bool operator==(const ItemIt& i) { 
  1.1723 +        return i._id == _id;
  1.1724 +      }
  1.1725 +
  1.1726 +      /// \brief Inequality operator
  1.1727 +      ///
  1.1728 +      /// Inequality operator
  1.1729 +      bool operator!=(const ItemIt& i) { 
  1.1730 +        return i._id != _id;
  1.1731 +      }
  1.1732 +
  1.1733 +      /// \brief Equality operator
  1.1734 +      ///
  1.1735 +      /// Equality operator
  1.1736 +      bool operator==(Invalid) { 
  1.1737 +        return _id == _lid;
  1.1738 +      }
  1.1739 +
  1.1740 +      /// \brief Inequality operator
  1.1741 +      ///
  1.1742 +      /// Inequality operator
  1.1743 +      bool operator!=(Invalid) { 
  1.1744 +        return _id != _lid;
  1.1745 +      }
  1.1746 +      
  1.1747 +    };
  1.1748 +
  1.1749 +    /// \brief Class iterator
  1.1750 +    ///
  1.1751 +    /// The iterator stores 
  1.1752 +    class ClassIt {
  1.1753 +    private:
  1.1754 +
  1.1755 +      const HeapUnionFind* _huf;
  1.1756 +      int _id;
  1.1757 +
  1.1758 +    public:
  1.1759 +
  1.1760 +      ClassIt(const HeapUnionFind& huf) 
  1.1761 +        : _huf(&huf), _id(huf.first_class) {}
  1.1762 +
  1.1763 +      ClassIt(const HeapUnionFind& huf, int cls) 
  1.1764 +        : _huf(&huf), _id(huf.classes[cls].left) {}
  1.1765 +
  1.1766 +      ClassIt(Invalid) : _huf(0), _id(-1) {}
  1.1767 +      
  1.1768 +      const ClassIt& operator++() {
  1.1769 +        _id = _huf->classes[_id].next;
  1.1770 +	return *this;
  1.1771 +      }
  1.1772 +
  1.1773 +      /// \brief Equality operator
  1.1774 +      ///
  1.1775 +      /// Equality operator
  1.1776 +      bool operator==(const ClassIt& i) { 
  1.1777 +        return i._id == _id;
  1.1778 +      }
  1.1779 +
  1.1780 +      /// \brief Inequality operator
  1.1781 +      ///
  1.1782 +      /// Inequality operator
  1.1783 +      bool operator!=(const ClassIt& i) { 
  1.1784 +        return i._id != _id;
  1.1785 +      }      
  1.1786 +      
  1.1787 +      operator int() const {
  1.1788 +	return _id;
  1.1789 +      }
  1.1790 +            
  1.1791 +    };
  1.1792 +
  1.1793 +  };
  1.1794 +
  1.1795 +  //! @}
  1.1796 +
  1.1797 +} //namespace lemon
  1.1798 +
  1.1799 +#endif //LEMON_UNION_FIND_H