lemon/gomory_hu.h
changeset 535 d59dcc933e59
parent 533 e72bacfea6b7
child 573 aa1804409f29
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/lemon/gomory_hu.h	Wed Mar 04 14:09:45 2009 +0000
     1.3 @@ -0,0 +1,551 @@
     1.4 +/* -*- C++ -*-
     1.5 + *
     1.6 + * This file is a part of LEMON, a generic C++ optimization library
     1.7 + *
     1.8 + * Copyright (C) 2003-2008
     1.9 + * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
    1.10 + * (Egervary Research Group on Combinatorial Optimization, EGRES).
    1.11 + *
    1.12 + * Permission to use, modify and distribute this software is granted
    1.13 + * provided that this copyright notice appears in all copies. For
    1.14 + * precise terms see the accompanying LICENSE file.
    1.15 + *
    1.16 + * This software is provided "AS IS" with no warranty of any kind,
    1.17 + * express or implied, and with no claim as to its suitability for any
    1.18 + * purpose.
    1.19 + *
    1.20 + */
    1.21 +
    1.22 +#ifndef LEMON_GOMORY_HU_TREE_H
    1.23 +#define LEMON_GOMORY_HU_TREE_H
    1.24 +
    1.25 +#include <limits>
    1.26 +
    1.27 +#include <lemon/core.h>
    1.28 +#include <lemon/preflow.h>
    1.29 +#include <lemon/concept_check.h>
    1.30 +#include <lemon/concepts/maps.h>
    1.31 +
    1.32 +/// \ingroup min_cut
    1.33 +/// \file 
    1.34 +/// \brief Gomory-Hu cut tree in graphs.
    1.35 +
    1.36 +namespace lemon {
    1.37 +
    1.38 +  /// \ingroup min_cut
    1.39 +  ///
    1.40 +  /// \brief Gomory-Hu cut tree algorithm
    1.41 +  ///
    1.42 +  /// The Gomory-Hu tree is a tree on the node set of a given graph, but it
    1.43 +  /// may contain edges which are not in the original graph. It has the
    1.44 +  /// property that the minimum capacity edge of the path between two nodes 
    1.45 +  /// in this tree has the same weight as the minimum cut in the graph
    1.46 +  /// between these nodes. Moreover the components obtained by removing
    1.47 +  /// this edge from the tree determine the corresponding minimum cut.
    1.48 +  ///
    1.49 +  /// Therefore once this tree is computed, the minimum cut between any pair
    1.50 +  /// of nodes can easily be obtained.
    1.51 +  /// 
    1.52 +  /// The algorithm calculates \e n-1 distinct minimum cuts (currently with
    1.53 +  /// the \ref Preflow algorithm), therefore the algorithm has
    1.54 +  /// \f$(O(n^3\sqrt{e})\f$ overall time complexity. It calculates a
    1.55 +  /// rooted Gomory-Hu tree, its structure and the weights can be obtained
    1.56 +  /// by \c predNode(), \c predValue() and \c rootDist().
    1.57 +  /// 
    1.58 +  /// The members \c minCutMap() and \c minCutValue() calculate
    1.59 +  /// the minimum cut and the minimum cut value between any two nodes
    1.60 +  /// in the graph. You can also list (iterate on) the nodes and the
    1.61 +  /// edges of the cuts using \c MinCutNodeIt and \c MinCutEdgeIt.
    1.62 +  ///
    1.63 +  /// \tparam GR The type of the undirected graph the algorithm runs on.
    1.64 +  /// \tparam CAP The type of the edge map describing the edge capacities.
    1.65 +  /// It is \ref concepts::Graph::EdgeMap "GR::EdgeMap<int>" by default.
    1.66 +#ifdef DOXYGEN
    1.67 +  template <typename GR,
    1.68 +	    typename CAP>
    1.69 +#else
    1.70 +  template <typename GR,
    1.71 +	    typename CAP = typename GR::template EdgeMap<int> >
    1.72 +#endif
    1.73 +  class GomoryHu {
    1.74 +  public:
    1.75 +
    1.76 +    /// The graph type
    1.77 +    typedef GR Graph;
    1.78 +    /// The type of the edge capacity map
    1.79 +    typedef CAP Capacity;
    1.80 +    /// The value type of capacities
    1.81 +    typedef typename Capacity::Value Value;
    1.82 +    
    1.83 +  private:
    1.84 +
    1.85 +    TEMPLATE_GRAPH_TYPEDEFS(Graph);
    1.86 +
    1.87 +    const Graph& _graph;
    1.88 +    const Capacity& _capacity;
    1.89 +
    1.90 +    Node _root;
    1.91 +    typename Graph::template NodeMap<Node>* _pred;
    1.92 +    typename Graph::template NodeMap<Value>* _weight;
    1.93 +    typename Graph::template NodeMap<int>* _order;
    1.94 +
    1.95 +    void createStructures() {
    1.96 +      if (!_pred) {
    1.97 +	_pred = new typename Graph::template NodeMap<Node>(_graph);
    1.98 +      }
    1.99 +      if (!_weight) {
   1.100 +	_weight = new typename Graph::template NodeMap<Value>(_graph);
   1.101 +      }
   1.102 +      if (!_order) {
   1.103 +	_order = new typename Graph::template NodeMap<int>(_graph);
   1.104 +      }
   1.105 +    }
   1.106 +
   1.107 +    void destroyStructures() {
   1.108 +      if (_pred) {
   1.109 +	delete _pred;
   1.110 +      }
   1.111 +      if (_weight) {
   1.112 +	delete _weight;
   1.113 +      }
   1.114 +      if (_order) {
   1.115 +	delete _order;
   1.116 +      }
   1.117 +    }
   1.118 +  
   1.119 +  public:
   1.120 +
   1.121 +    /// \brief Constructor
   1.122 +    ///
   1.123 +    /// Constructor
   1.124 +    /// \param graph The undirected graph the algorithm runs on.
   1.125 +    /// \param capacity The edge capacity map.
   1.126 +    GomoryHu(const Graph& graph, const Capacity& capacity) 
   1.127 +      : _graph(graph), _capacity(capacity),
   1.128 +	_pred(0), _weight(0), _order(0) 
   1.129 +    {
   1.130 +      checkConcept<concepts::ReadMap<Edge, Value>, Capacity>();
   1.131 +    }
   1.132 +
   1.133 +
   1.134 +    /// \brief Destructor
   1.135 +    ///
   1.136 +    /// Destructor
   1.137 +    ~GomoryHu() {
   1.138 +      destroyStructures();
   1.139 +    }
   1.140 +
   1.141 +  private:
   1.142 +  
   1.143 +    // Initialize the internal data structures
   1.144 +    void init() {
   1.145 +      createStructures();
   1.146 +
   1.147 +      _root = NodeIt(_graph);
   1.148 +      for (NodeIt n(_graph); n != INVALID; ++n) {
   1.149 +	_pred->set(n, _root);
   1.150 +	_order->set(n, -1);
   1.151 +      }
   1.152 +      _pred->set(_root, INVALID);
   1.153 +      _weight->set(_root, std::numeric_limits<Value>::max()); 
   1.154 +    }
   1.155 +
   1.156 +
   1.157 +    // Start the algorithm
   1.158 +    void start() {
   1.159 +      Preflow<Graph, Capacity> fa(_graph, _capacity, _root, INVALID);
   1.160 +
   1.161 +      for (NodeIt n(_graph); n != INVALID; ++n) {
   1.162 +	if (n == _root) continue;
   1.163 +
   1.164 +	Node pn = (*_pred)[n];
   1.165 +	fa.source(n);
   1.166 +	fa.target(pn);
   1.167 +
   1.168 +	fa.runMinCut();
   1.169 +
   1.170 +	_weight->set(n, fa.flowValue());
   1.171 +
   1.172 +	for (NodeIt nn(_graph); nn != INVALID; ++nn) {
   1.173 +	  if (nn != n && fa.minCut(nn) && (*_pred)[nn] == pn) {
   1.174 +	    _pred->set(nn, n);
   1.175 +	  }
   1.176 +	}
   1.177 +	if ((*_pred)[pn] != INVALID && fa.minCut((*_pred)[pn])) {
   1.178 +	  _pred->set(n, (*_pred)[pn]);
   1.179 +	  _pred->set(pn, n);
   1.180 +	  _weight->set(n, (*_weight)[pn]);
   1.181 +	  _weight->set(pn, fa.flowValue());	
   1.182 +	}
   1.183 +      }
   1.184 +
   1.185 +      _order->set(_root, 0);
   1.186 +      int index = 1;
   1.187 +
   1.188 +      for (NodeIt n(_graph); n != INVALID; ++n) {
   1.189 +	std::vector<Node> st;
   1.190 +	Node nn = n;
   1.191 +	while ((*_order)[nn] == -1) {
   1.192 +	  st.push_back(nn);
   1.193 +	  nn = (*_pred)[nn];
   1.194 +	}
   1.195 +	while (!st.empty()) {
   1.196 +	  _order->set(st.back(), index++);
   1.197 +	  st.pop_back();
   1.198 +	}
   1.199 +      }
   1.200 +    }
   1.201 +
   1.202 +  public:
   1.203 +
   1.204 +    ///\name Execution Control
   1.205 + 
   1.206 +    ///@{
   1.207 +
   1.208 +    /// \brief Run the Gomory-Hu algorithm.
   1.209 +    ///
   1.210 +    /// This function runs the Gomory-Hu algorithm.
   1.211 +    void run() {
   1.212 +      init();
   1.213 +      start();
   1.214 +    }
   1.215 +    
   1.216 +    /// @}
   1.217 +
   1.218 +    ///\name Query Functions
   1.219 +    ///The results of the algorithm can be obtained using these
   1.220 +    ///functions.\n
   1.221 +    ///\ref run() "run()" should be called before using them.\n
   1.222 +    ///See also \ref MinCutNodeIt and \ref MinCutEdgeIt.
   1.223 +
   1.224 +    ///@{
   1.225 +
   1.226 +    /// \brief Return the predecessor node in the Gomory-Hu tree.
   1.227 +    ///
   1.228 +    /// This function returns the predecessor node in the Gomory-Hu tree.
   1.229 +    /// If the node is
   1.230 +    /// the root of the Gomory-Hu tree, then it returns \c INVALID.
   1.231 +    Node predNode(const Node& node) {
   1.232 +      return (*_pred)[node];
   1.233 +    }
   1.234 +
   1.235 +    /// \brief Return the distance from the root node in the Gomory-Hu tree.
   1.236 +    ///
   1.237 +    /// This function returns the distance of \c node from the root node
   1.238 +    /// in the Gomory-Hu tree.
   1.239 +    int rootDist(const Node& node) {
   1.240 +      return (*_order)[node];
   1.241 +    }
   1.242 +
   1.243 +    /// \brief Return the weight of the predecessor edge in the
   1.244 +    /// Gomory-Hu tree.
   1.245 +    ///
   1.246 +    /// This function returns the weight of the predecessor edge in the
   1.247 +    /// Gomory-Hu tree.  If the node is the root, the result is undefined.
   1.248 +    Value predValue(const Node& node) {
   1.249 +      return (*_weight)[node];
   1.250 +    }
   1.251 +
   1.252 +    /// \brief Return the minimum cut value between two nodes
   1.253 +    ///
   1.254 +    /// This function returns the minimum cut value between two nodes. The
   1.255 +    /// algorithm finds the nearest common ancestor in the Gomory-Hu
   1.256 +    /// tree and calculates the minimum weight edge on the paths to
   1.257 +    /// the ancestor.
   1.258 +    Value minCutValue(const Node& s, const Node& t) const {
   1.259 +      Node sn = s, tn = t;
   1.260 +      Value value = std::numeric_limits<Value>::max();
   1.261 +      
   1.262 +      while (sn != tn) {
   1.263 +	if ((*_order)[sn] < (*_order)[tn]) {
   1.264 +	  if ((*_weight)[tn] <= value) value = (*_weight)[tn];
   1.265 +	  tn = (*_pred)[tn];
   1.266 +	} else {
   1.267 +	  if ((*_weight)[sn] <= value) value = (*_weight)[sn];
   1.268 +	  sn = (*_pred)[sn];
   1.269 +	}
   1.270 +      }
   1.271 +      return value;
   1.272 +    }
   1.273 +
   1.274 +    /// \brief Return the minimum cut between two nodes
   1.275 +    ///
   1.276 +    /// This function returns the minimum cut between the nodes \c s and \c t
   1.277 +    /// in the \c cutMap parameter by setting the nodes in the component of
   1.278 +    /// \c s to \c true and the other nodes to \c false.
   1.279 +    ///
   1.280 +    /// For higher level interfaces, see MinCutNodeIt and MinCutEdgeIt.
   1.281 +    template <typename CutMap>
   1.282 +    Value minCutMap(const Node& s, ///< The base node.
   1.283 +                    const Node& t,
   1.284 +                    ///< The node you want to separate from node \c s.
   1.285 +                    CutMap& cutMap
   1.286 +                    ///< The cut will be returned in this map.
   1.287 +                    /// It must be a \c bool (or convertible) 
   1.288 +                    /// \ref concepts::ReadWriteMap "ReadWriteMap"
   1.289 +                    /// on the graph nodes.
   1.290 +                    ) const {
   1.291 +      Node sn = s, tn = t;
   1.292 +      bool s_root=false;
   1.293 +      Node rn = INVALID;
   1.294 +      Value value = std::numeric_limits<Value>::max();
   1.295 +      
   1.296 +      while (sn != tn) {
   1.297 +	if ((*_order)[sn] < (*_order)[tn]) {
   1.298 +	  if ((*_weight)[tn] <= value) {
   1.299 +	    rn = tn;
   1.300 +            s_root = false;
   1.301 +	    value = (*_weight)[tn];
   1.302 +	  }
   1.303 +	  tn = (*_pred)[tn];
   1.304 +	} else {
   1.305 +	  if ((*_weight)[sn] <= value) {
   1.306 +	    rn = sn;
   1.307 +            s_root = true;
   1.308 +	    value = (*_weight)[sn];
   1.309 +	  }
   1.310 +	  sn = (*_pred)[sn];
   1.311 +	}
   1.312 +      }
   1.313 +
   1.314 +      typename Graph::template NodeMap<bool> reached(_graph, false);
   1.315 +      reached.set(_root, true);
   1.316 +      cutMap.set(_root, !s_root);
   1.317 +      reached.set(rn, true);
   1.318 +      cutMap.set(rn, s_root);
   1.319 +
   1.320 +      std::vector<Node> st;
   1.321 +      for (NodeIt n(_graph); n != INVALID; ++n) {
   1.322 +	st.clear();
   1.323 +        Node nn = n;
   1.324 +	while (!reached[nn]) {
   1.325 +	  st.push_back(nn);
   1.326 +	  nn = (*_pred)[nn];
   1.327 +	}
   1.328 +	while (!st.empty()) {
   1.329 +	  cutMap.set(st.back(), cutMap[nn]);
   1.330 +	  st.pop_back();
   1.331 +	}
   1.332 +      }
   1.333 +      
   1.334 +      return value;
   1.335 +    }
   1.336 +
   1.337 +    ///@}
   1.338 +
   1.339 +    friend class MinCutNodeIt;
   1.340 +
   1.341 +    /// Iterate on the nodes of a minimum cut
   1.342 +    
   1.343 +    /// This iterator class lists the nodes of a minimum cut found by
   1.344 +    /// GomoryHu. Before using it, you must allocate a GomoryHu class,
   1.345 +    /// and call its \ref GomoryHu::run() "run()" method.
   1.346 +    ///
   1.347 +    /// This example counts the nodes in the minimum cut separating \c s from
   1.348 +    /// \c t.
   1.349 +    /// \code
   1.350 +    /// GomoruHu<Graph> gom(g, capacities);
   1.351 +    /// gom.run();
   1.352 +    /// int cnt=0;
   1.353 +    /// for(GomoruHu<Graph>::MinCutNodeIt n(gom,s,t); n!=INVALID; ++n) ++cnt;
   1.354 +    /// \endcode
   1.355 +    class MinCutNodeIt
   1.356 +    {
   1.357 +      bool _side;
   1.358 +      typename Graph::NodeIt _node_it;
   1.359 +      typename Graph::template NodeMap<bool> _cut;
   1.360 +    public:
   1.361 +      /// Constructor
   1.362 +
   1.363 +      /// Constructor.
   1.364 +      ///
   1.365 +      MinCutNodeIt(GomoryHu const &gomory,
   1.366 +                   ///< The GomoryHu class. You must call its
   1.367 +                   ///  run() method
   1.368 +                   ///  before initializing this iterator.
   1.369 +                   const Node& s, ///< The base node.
   1.370 +                   const Node& t,
   1.371 +                   ///< The node you want to separate from node \c s.
   1.372 +                   bool side=true
   1.373 +                   ///< If it is \c true (default) then the iterator lists
   1.374 +                   ///  the nodes of the component containing \c s,
   1.375 +                   ///  otherwise it lists the other component.
   1.376 +                   /// \note As the minimum cut is not always unique,
   1.377 +                   /// \code
   1.378 +                   /// MinCutNodeIt(gomory, s, t, true);
   1.379 +                   /// \endcode
   1.380 +                   /// and
   1.381 +                   /// \code
   1.382 +                   /// MinCutNodeIt(gomory, t, s, false);
   1.383 +                   /// \endcode
   1.384 +                   /// does not necessarily give the same set of nodes.
   1.385 +                   /// However it is ensured that
   1.386 +                   /// \code
   1.387 +                   /// MinCutNodeIt(gomory, s, t, true);
   1.388 +                   /// \endcode
   1.389 +                   /// and
   1.390 +                   /// \code
   1.391 +                   /// MinCutNodeIt(gomory, s, t, false);
   1.392 +                   /// \endcode
   1.393 +                   /// together list each node exactly once.
   1.394 +                   )
   1.395 +        : _side(side), _cut(gomory._graph)
   1.396 +      {
   1.397 +        gomory.minCutMap(s,t,_cut);
   1.398 +        for(_node_it=typename Graph::NodeIt(gomory._graph);
   1.399 +            _node_it!=INVALID && _cut[_node_it]!=_side;
   1.400 +            ++_node_it) {}
   1.401 +      }
   1.402 +      /// Conversion to \c Node
   1.403 +
   1.404 +      /// Conversion to \c Node.
   1.405 +      ///
   1.406 +      operator typename Graph::Node() const
   1.407 +      {
   1.408 +        return _node_it;
   1.409 +      }
   1.410 +      bool operator==(Invalid) { return _node_it==INVALID; }
   1.411 +      bool operator!=(Invalid) { return _node_it!=INVALID; }
   1.412 +      /// Next node
   1.413 +
   1.414 +      /// Next node.
   1.415 +      ///
   1.416 +      MinCutNodeIt &operator++()
   1.417 +      {
   1.418 +        for(++_node_it;_node_it!=INVALID&&_cut[_node_it]!=_side;++_node_it) {}
   1.419 +        return *this;
   1.420 +      }
   1.421 +      /// Postfix incrementation
   1.422 +
   1.423 +      /// Postfix incrementation.
   1.424 +      ///
   1.425 +      /// \warning This incrementation
   1.426 +      /// returns a \c Node, not a \c MinCutNodeIt, as one may
   1.427 +      /// expect.
   1.428 +      typename Graph::Node operator++(int)
   1.429 +      {
   1.430 +        typename Graph::Node n=*this;
   1.431 +        ++(*this);
   1.432 +        return n;
   1.433 +      }
   1.434 +    };
   1.435 +    
   1.436 +    friend class MinCutEdgeIt;
   1.437 +    
   1.438 +    /// Iterate on the edges of a minimum cut
   1.439 +    
   1.440 +    /// This iterator class lists the edges of a minimum cut found by
   1.441 +    /// GomoryHu. Before using it, you must allocate a GomoryHu class,
   1.442 +    /// and call its \ref GomoryHu::run() "run()" method.
   1.443 +    ///
   1.444 +    /// This example computes the value of the minimum cut separating \c s from
   1.445 +    /// \c t.
   1.446 +    /// \code
   1.447 +    /// GomoruHu<Graph> gom(g, capacities);
   1.448 +    /// gom.run();
   1.449 +    /// int value=0;
   1.450 +    /// for(GomoruHu<Graph>::MinCutEdgeIt e(gom,s,t); e!=INVALID; ++e)
   1.451 +    ///   value+=capacities[e];
   1.452 +    /// \endcode
   1.453 +    /// the result will be the same as it is returned by
   1.454 +    /// \ref GomoryHu::minCutValue() "gom.minCutValue(s,t)"
   1.455 +    class MinCutEdgeIt
   1.456 +    {
   1.457 +      bool _side;
   1.458 +      const Graph &_graph;
   1.459 +      typename Graph::NodeIt _node_it;
   1.460 +      typename Graph::OutArcIt _arc_it;
   1.461 +      typename Graph::template NodeMap<bool> _cut;
   1.462 +      void step()
   1.463 +      {
   1.464 +        ++_arc_it;
   1.465 +        while(_node_it!=INVALID && _arc_it==INVALID)
   1.466 +          {
   1.467 +            for(++_node_it;_node_it!=INVALID&&!_cut[_node_it];++_node_it) {}
   1.468 +            if(_node_it!=INVALID)
   1.469 +              _arc_it=typename Graph::OutArcIt(_graph,_node_it);
   1.470 +          }
   1.471 +      }
   1.472 +      
   1.473 +    public:
   1.474 +      MinCutEdgeIt(GomoryHu const &gomory,
   1.475 +                   ///< The GomoryHu class. You must call its
   1.476 +                   ///  run() method
   1.477 +                   ///  before initializing this iterator.
   1.478 +                   const Node& s,  ///< The base node.
   1.479 +                   const Node& t,
   1.480 +                   ///< The node you want to separate from node \c s.
   1.481 +                   bool side=true
   1.482 +                   ///< If it is \c true (default) then the listed arcs
   1.483 +                   ///  will be oriented from the
   1.484 +                   ///  the nodes of the component containing \c s,
   1.485 +                   ///  otherwise they will be oriented in the opposite
   1.486 +                   ///  direction.
   1.487 +                   )
   1.488 +        : _graph(gomory._graph), _cut(_graph)
   1.489 +      {
   1.490 +        gomory.minCutMap(s,t,_cut);
   1.491 +        if(!side)
   1.492 +          for(typename Graph::NodeIt n(_graph);n!=INVALID;++n)
   1.493 +            _cut[n]=!_cut[n];
   1.494 +
   1.495 +        for(_node_it=typename Graph::NodeIt(_graph);
   1.496 +            _node_it!=INVALID && !_cut[_node_it];
   1.497 +            ++_node_it) {}
   1.498 +        _arc_it = _node_it!=INVALID ?
   1.499 +          typename Graph::OutArcIt(_graph,_node_it) : INVALID;
   1.500 +        while(_node_it!=INVALID && _arc_it == INVALID)
   1.501 +          {
   1.502 +            for(++_node_it; _node_it!=INVALID&&!_cut[_node_it]; ++_node_it) {}
   1.503 +            if(_node_it!=INVALID)
   1.504 +              _arc_it= typename Graph::OutArcIt(_graph,_node_it);
   1.505 +          }
   1.506 +        while(_arc_it!=INVALID && _cut[_graph.target(_arc_it)]) step();
   1.507 +      }
   1.508 +      /// Conversion to \c Arc
   1.509 +
   1.510 +      /// Conversion to \c Arc.
   1.511 +      ///
   1.512 +      operator typename Graph::Arc() const
   1.513 +      {
   1.514 +        return _arc_it;
   1.515 +      }
   1.516 +      /// Conversion to \c Edge
   1.517 +
   1.518 +      /// Conversion to \c Edge.
   1.519 +      ///
   1.520 +      operator typename Graph::Edge() const
   1.521 +      {
   1.522 +        return _arc_it;
   1.523 +      }
   1.524 +      bool operator==(Invalid) { return _node_it==INVALID; }
   1.525 +      bool operator!=(Invalid) { return _node_it!=INVALID; }
   1.526 +      /// Next edge
   1.527 +
   1.528 +      /// Next edge.
   1.529 +      ///
   1.530 +      MinCutEdgeIt &operator++()
   1.531 +      {
   1.532 +        step();
   1.533 +        while(_arc_it!=INVALID && _cut[_graph.target(_arc_it)]) step();
   1.534 +        return *this;
   1.535 +      }
   1.536 +      /// Postfix incrementation
   1.537 +      
   1.538 +      /// Postfix incrementation.
   1.539 +      ///
   1.540 +      /// \warning This incrementation
   1.541 +      /// returns an \c Arc, not a \c MinCutEdgeIt, as one may expect.
   1.542 +      typename Graph::Arc operator++(int)
   1.543 +      {
   1.544 +        typename Graph::Arc e=*this;
   1.545 +        ++(*this);
   1.546 +        return e;
   1.547 +      }
   1.548 +    };
   1.549 +
   1.550 +  };
   1.551 +
   1.552 +}
   1.553 +
   1.554 +#endif