1 /* -*- mode: C++; indent-tabs-mode: nil; -*-
3 * This file is a part of LEMON, a generic C++ optimization library.
5 * Copyright (C) 2003-2008
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 * (Egervary Research Group on Combinatorial Optimization, EGRES).
9 * Permission to use, modify and distribute this software is granted
10 * provided that this copyright notice appears in all copies. For
11 * precise terms see the accompanying LICENSE file.
13 * This software is provided "AS IS" with no warranty of any kind,
14 * express or implied, and with no claim as to its suitability for any
19 #ifndef HYPERCUBE_GRAPH_H
20 #define HYPERCUBE_GRAPH_H
23 #include <lemon/core.h>
24 #include <lemon/assert.h>
25 #include <lemon/bits/graph_extender.h>
29 ///\brief HypercubeGraph class.
33 class HypercubeGraphBase {
37 typedef HypercubeGraphBase Graph;
45 HypercubeGraphBase() {}
49 void construct(int dim) {
50 LEMON_ASSERT(dim >= 1, "The number of dimensions must be at least 1.");
53 _edge_num = dim * (1 << dim-1);
58 typedef True NodeNumTag;
59 typedef True EdgeNumTag;
60 typedef True ArcNumTag;
62 int nodeNum() const { return _node_num; }
63 int edgeNum() const { return _edge_num; }
64 int arcNum() const { return 2 * _edge_num; }
66 int maxNodeId() const { return _node_num - 1; }
67 int maxEdgeId() const { return _edge_num - 1; }
68 int maxArcId() const { return 2 * _edge_num - 1; }
70 static Node nodeFromId(int id) { return Node(id); }
71 static Edge edgeFromId(int id) { return Edge(id); }
72 static Arc arcFromId(int id) { return Arc(id); }
74 static int id(Node node) { return node._id; }
75 static int id(Edge edge) { return edge._id; }
76 static int id(Arc arc) { return arc._id; }
78 Node u(Edge edge) const {
79 int base = edge._id & ((1 << _dim-1) - 1);
80 int k = edge._id >> _dim-1;
81 return ((base >> k) << k+1) | (base & ((1 << k) - 1));
84 Node v(Edge edge) const {
85 int base = edge._id & ((1 << _dim-1) - 1);
86 int k = edge._id >> _dim-1;
87 return ((base >> k) << k+1) | (base & ((1 << k) - 1)) | (1 << k);
90 Node source(Arc arc) const {
91 return (arc._id & 1) == 1 ? u(arc) : v(arc);
94 Node target(Arc arc) const {
95 return (arc._id & 1) == 1 ? v(arc) : u(arc);
98 typedef True FindEdgeTag;
99 typedef True FindArcTag;
101 Edge findEdge(Node u, Node v, Edge prev = INVALID) const {
102 if (prev != INVALID) return INVALID;
103 int d = u._id ^ v._id;
105 if (d == 0) return INVALID;
106 for ( ; (d & 1) == 0; d >>= 1) ++k;
107 if (d >> 1 != 0) return INVALID;
108 return (k << _dim-1) | ((u._id >> k+1) << k) | (u._id & ((1 << k) - 1));
111 Arc findArc(Node u, Node v, Arc prev = INVALID) const {
112 Edge edge = findEdge(u, v, prev);
113 if (edge == INVALID) return INVALID;
114 int k = edge._id >> _dim-1;
115 return ((u._id >> k) & 1) == 1 ? edge._id << 1 : (edge._id << 1) | 1;
119 friend class HypercubeGraphBase;
123 Node(int id) : _id(id) {}
126 Node (Invalid) : _id(-1) {}
127 bool operator==(const Node node) const {return _id == node._id;}
128 bool operator!=(const Node node) const {return _id != node._id;}
129 bool operator<(const Node node) const {return _id < node._id;}
133 friend class HypercubeGraphBase;
139 Edge(int id) : _id(id) {}
143 Edge (Invalid) : _id(-1) {}
144 bool operator==(const Edge edge) const {return _id == edge._id;}
145 bool operator!=(const Edge edge) const {return _id != edge._id;}
146 bool operator<(const Edge edge) const {return _id < edge._id;}
150 friend class HypercubeGraphBase;
155 Arc(int id) : _id(id) {}
159 Arc (Invalid) : _id(-1) {}
160 operator Edge() const { return _id != -1 ? Edge(_id >> 1) : INVALID; }
161 bool operator==(const Arc arc) const {return _id == arc._id;}
162 bool operator!=(const Arc arc) const {return _id != arc._id;}
163 bool operator<(const Arc arc) const {return _id < arc._id;}
166 void first(Node& node) const {
167 node._id = _node_num - 1;
170 static void next(Node& node) {
174 void first(Edge& edge) const {
175 edge._id = _edge_num - 1;
178 static void next(Edge& edge) {
182 void first(Arc& arc) const {
183 arc._id = 2 * _edge_num - 1;
186 static void next(Arc& arc) {
190 void firstInc(Edge& edge, bool& dir, const Node& node) const {
191 edge._id = node._id >> 1;
192 dir = (node._id & 1) == 0;
195 void nextInc(Edge& edge, bool& dir) const {
196 Node n = dir ? u(edge) : v(edge);
197 int k = (edge._id >> _dim-1) + 1;
199 edge._id = (k << _dim-1) |
200 ((n._id >> k+1) << k) | (n._id & ((1 << k) - 1));
201 dir = ((n._id >> k) & 1) == 0;
208 void firstOut(Arc& arc, const Node& node) const {
209 arc._id = ((node._id >> 1) << 1) | (~node._id & 1);
212 void nextOut(Arc& arc) const {
213 Node n = (arc._id & 1) == 1 ? u(arc) : v(arc);
214 int k = (arc._id >> _dim) + 1;
216 arc._id = (k << _dim-1) |
217 ((n._id >> k+1) << k) | (n._id & ((1 << k) - 1));
218 arc._id = (arc._id << 1) | (~(n._id >> k) & 1);
224 void firstIn(Arc& arc, const Node& node) const {
225 arc._id = ((node._id >> 1) << 1) | (node._id & 1);
228 void nextIn(Arc& arc) const {
229 Node n = (arc._id & 1) == 1 ? v(arc) : u(arc);
230 int k = (arc._id >> _dim) + 1;
232 arc._id = (k << _dim-1) |
233 ((n._id >> k+1) << k) | (n._id & ((1 << k) - 1));
234 arc._id = (arc._id << 1) | ((n._id >> k) & 1);
240 static bool direction(Arc arc) {
241 return (arc._id & 1) == 1;
244 static Arc direct(Edge edge, bool dir) {
245 return Arc((edge._id << 1) | (dir ? 1 : 0));
248 int dimension() const {
252 bool projection(Node node, int n) const {
253 return static_cast<bool>(node._id & (1 << n));
256 int dimension(Edge edge) const {
257 return edge._id >> _dim-1;
260 int dimension(Arc arc) const {
261 return arc._id >> _dim;
264 int index(Node node) const {
268 Node operator()(int ix) const {
274 int _node_num, _edge_num;
278 typedef GraphExtender<HypercubeGraphBase> ExtendedHypercubeGraphBase;
282 /// \brief Hypercube graph class
284 /// This class implements a special graph type. The nodes of the graph
285 /// are indiced with integers with at most \c dim binary digits.
286 /// Two nodes are connected in the graph if and only if their indices
287 /// differ only on one position in the binary form.
289 /// \note The type of the indices is chosen to \c int for efficiency
290 /// reasons. Thus the maximum dimension of this implementation is 26
291 /// (assuming that the size of \c int is 32 bit).
293 /// This graph type is fully conform to the \ref concepts::Graph
294 /// "Graph" concept, and it also has an important extra feature
295 /// that its maps are real \ref concepts::ReferenceMap
296 /// "reference map"s.
297 class HypercubeGraph : public ExtendedHypercubeGraphBase {
300 typedef ExtendedHypercubeGraphBase Parent;
302 /// \brief Constructs a hypercube graph with \c dim dimensions.
304 /// Constructs a hypercube graph with \c dim dimensions.
305 HypercubeGraph(int dim) { construct(dim); }
307 /// \brief The number of dimensions.
309 /// Gives back the number of dimensions.
310 int dimension() const {
311 return Parent::dimension();
314 /// \brief Returns \c true if the n'th bit of the node is one.
316 /// Returns \c true if the n'th bit of the node is one.
317 bool projection(Node node, int n) const {
318 return Parent::projection(node, n);
321 /// \brief The dimension id of an edge.
323 /// Gives back the dimension id of the given edge.
324 /// It is in the [0..dim-1] range.
325 int dimension(Edge edge) const {
326 return Parent::dimension(edge);
329 /// \brief The dimension id of an arc.
331 /// Gives back the dimension id of the given arc.
332 /// It is in the [0..dim-1] range.
333 int dimension(Arc arc) const {
334 return Parent::dimension(arc);
337 /// \brief The index of a node.
339 /// Gives back the index of the given node.
340 /// The lower bits of the integer describes the node.
341 int index(Node node) const {
342 return Parent::index(node);
345 /// \brief Gives back a node by its index.
347 /// Gives back a node by its index.
348 Node operator()(int ix) const {
349 return Parent::operator()(ix);
352 /// \brief Number of nodes.
353 int nodeNum() const { return Parent::nodeNum(); }
354 /// \brief Number of edges.
355 int edgeNum() const { return Parent::edgeNum(); }
356 /// \brief Number of arcs.
357 int arcNum() const { return Parent::arcNum(); }
359 /// \brief Linear combination map.
361 /// This map makes possible to give back a linear combination
362 /// for each node. It works like the \c std::accumulate function,
363 /// so it accumulates the \c bf binary function with the \c fv first
364 /// value. The map accumulates only on that positions (dimensions)
365 /// where the index of the node is one. The values that have to be
366 /// accumulated should be given by the \c begin and \c end iterators
367 /// and the length of this range should be equal to the dimension
368 /// number of the graph.
371 /// const int DIM = 3;
372 /// HypercubeGraph graph(DIM);
373 /// dim2::Point<double> base[DIM];
374 /// for (int k = 0; k < DIM; ++k) {
375 /// base[k].x = rnd();
376 /// base[k].y = rnd();
378 /// HypercubeGraph::HyperMap<dim2::Point<double> >
379 /// pos(graph, base, base + DIM, dim2::Point<double>(0.0, 0.0));
382 /// \see HypercubeGraph
383 template <typename T, typename BF = std::plus<T> >
387 /// \brief The key type of the map
389 /// \brief The value type of the map
392 /// \brief Constructor for HyperMap.
394 /// Construct a HyperMap for the given graph. The values that have
395 /// to be accumulated should be given by the \c begin and \c end
396 /// iterators and the length of this range should be equal to the
397 /// dimension number of the graph.
399 /// This map accumulates the \c bf binary function with the \c fv
400 /// first value on that positions (dimensions) where the index of
402 template <typename It>
403 HyperMap(const Graph& graph, It begin, It end,
404 T fv = 0, const BF& bf = BF())
405 : _graph(graph), _values(begin, end), _first_value(fv), _bin_func(bf)
407 LEMON_ASSERT(_values.size() == graph.dimension(),
408 "Wrong size of range");
411 /// \brief The partial accumulated value.
413 /// Gives back the partial accumulated value.
414 Value operator[](const Key& k) const {
415 Value val = _first_value;
416 int id = _graph.index(k);
420 val = _bin_func(val, _values[n]);
430 std::vector<T> _values;