1 /* -*- mode: C++; indent-tabs-mode: nil; -*-
3 * This file is a part of LEMON, a generic C++ optimization library.
5 * Copyright (C) 2003-2011
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 * (Egervary Research Group on Combinatorial Optimization, EGRES).
9 * Permission to use, modify and distribute this software is granted
10 * provided that this copyright notice appears in all copies. For
11 * precise terms see the accompanying LICENSE file.
13 * This software is provided "AS IS" with no warranty of any kind,
14 * express or implied, and with no claim as to its suitability for any
19 #ifndef LEMON_ADAPTORS_H
20 #define LEMON_ADAPTORS_H
22 /// \ingroup graph_adaptors
24 /// \brief Adaptor classes for digraphs and graphs
26 /// This file contains several useful adaptors for digraphs and graphs.
28 #include <lemon/core.h>
29 #include <lemon/maps.h>
30 #include <lemon/bits/variant.h>
32 #include <lemon/bits/graph_adaptor_extender.h>
33 #include <lemon/bits/map_extender.h>
34 #include <lemon/tolerance.h>
41 #define LEMON_SCOPE_FIX(OUTER, NESTED) OUTER::NESTED
43 #define LEMON_SCOPE_FIX(OUTER, NESTED) typename OUTER::template NESTED
46 template<typename DGR>
47 class DigraphAdaptorBase {
50 typedef DigraphAdaptorBase Adaptor;
54 DigraphAdaptorBase() : _digraph(0) { }
55 void initialize(DGR& digraph) { _digraph = &digraph; }
58 DigraphAdaptorBase(DGR& digraph) : _digraph(&digraph) { }
60 typedef typename DGR::Node Node;
61 typedef typename DGR::Arc Arc;
63 void first(Node& i) const { _digraph->first(i); }
64 void first(Arc& i) const { _digraph->first(i); }
65 void firstIn(Arc& i, const Node& n) const { _digraph->firstIn(i, n); }
66 void firstOut(Arc& i, const Node& n ) const { _digraph->firstOut(i, n); }
68 void next(Node& i) const { _digraph->next(i); }
69 void next(Arc& i) const { _digraph->next(i); }
70 void nextIn(Arc& i) const { _digraph->nextIn(i); }
71 void nextOut(Arc& i) const { _digraph->nextOut(i); }
73 Node source(const Arc& a) const { return _digraph->source(a); }
74 Node target(const Arc& a) const { return _digraph->target(a); }
76 typedef NodeNumTagIndicator<DGR> NodeNumTag;
77 int nodeNum() const { return _digraph->nodeNum(); }
79 typedef ArcNumTagIndicator<DGR> ArcNumTag;
80 int arcNum() const { return _digraph->arcNum(); }
82 typedef FindArcTagIndicator<DGR> FindArcTag;
83 Arc findArc(const Node& u, const Node& v, const Arc& prev = INVALID) const {
84 return _digraph->findArc(u, v, prev);
87 Node addNode() { return _digraph->addNode(); }
88 Arc addArc(const Node& u, const Node& v) { return _digraph->addArc(u, v); }
90 void erase(const Node& n) { _digraph->erase(n); }
91 void erase(const Arc& a) { _digraph->erase(a); }
93 void clear() { _digraph->clear(); }
95 int id(const Node& n) const { return _digraph->id(n); }
96 int id(const Arc& a) const { return _digraph->id(a); }
98 Node nodeFromId(int ix) const { return _digraph->nodeFromId(ix); }
99 Arc arcFromId(int ix) const { return _digraph->arcFromId(ix); }
101 int maxNodeId() const { return _digraph->maxNodeId(); }
102 int maxArcId() const { return _digraph->maxArcId(); }
104 typedef typename ItemSetTraits<DGR, Node>::ItemNotifier NodeNotifier;
105 NodeNotifier& notifier(Node) const { return _digraph->notifier(Node()); }
107 typedef typename ItemSetTraits<DGR, Arc>::ItemNotifier ArcNotifier;
108 ArcNotifier& notifier(Arc) const { return _digraph->notifier(Arc()); }
110 template <typename V>
111 class NodeMap : public DGR::template NodeMap<V> {
112 typedef typename DGR::template NodeMap<V> Parent;
115 explicit NodeMap(const Adaptor& adaptor)
116 : Parent(*adaptor._digraph) {}
117 NodeMap(const Adaptor& adaptor, const V& value)
118 : Parent(*adaptor._digraph, value) { }
121 NodeMap& operator=(const NodeMap& cmap) {
122 return operator=<NodeMap>(cmap);
125 template <typename CMap>
126 NodeMap& operator=(const CMap& cmap) {
127 Parent::operator=(cmap);
133 template <typename V>
134 class ArcMap : public DGR::template ArcMap<V> {
135 typedef typename DGR::template ArcMap<V> Parent;
138 explicit ArcMap(const DigraphAdaptorBase<DGR>& adaptor)
139 : Parent(*adaptor._digraph) {}
140 ArcMap(const DigraphAdaptorBase<DGR>& adaptor, const V& value)
141 : Parent(*adaptor._digraph, value) {}
144 ArcMap& operator=(const ArcMap& cmap) {
145 return operator=<ArcMap>(cmap);
148 template <typename CMap>
149 ArcMap& operator=(const CMap& cmap) {
150 Parent::operator=(cmap);
158 template<typename GR>
159 class GraphAdaptorBase {
166 GraphAdaptorBase() : _graph(0) {}
168 void initialize(GR& graph) { _graph = &graph; }
171 GraphAdaptorBase(GR& graph) : _graph(&graph) {}
173 typedef typename GR::Node Node;
174 typedef typename GR::Arc Arc;
175 typedef typename GR::Edge Edge;
177 void first(Node& i) const { _graph->first(i); }
178 void first(Arc& i) const { _graph->first(i); }
179 void first(Edge& i) const { _graph->first(i); }
180 void firstIn(Arc& i, const Node& n) const { _graph->firstIn(i, n); }
181 void firstOut(Arc& i, const Node& n ) const { _graph->firstOut(i, n); }
182 void firstInc(Edge &i, bool &d, const Node &n) const {
183 _graph->firstInc(i, d, n);
186 void next(Node& i) const { _graph->next(i); }
187 void next(Arc& i) const { _graph->next(i); }
188 void next(Edge& i) const { _graph->next(i); }
189 void nextIn(Arc& i) const { _graph->nextIn(i); }
190 void nextOut(Arc& i) const { _graph->nextOut(i); }
191 void nextInc(Edge &i, bool &d) const { _graph->nextInc(i, d); }
193 Node u(const Edge& e) const { return _graph->u(e); }
194 Node v(const Edge& e) const { return _graph->v(e); }
196 Node source(const Arc& a) const { return _graph->source(a); }
197 Node target(const Arc& a) const { return _graph->target(a); }
199 typedef NodeNumTagIndicator<Graph> NodeNumTag;
200 int nodeNum() const { return _graph->nodeNum(); }
202 typedef ArcNumTagIndicator<Graph> ArcNumTag;
203 int arcNum() const { return _graph->arcNum(); }
205 typedef EdgeNumTagIndicator<Graph> EdgeNumTag;
206 int edgeNum() const { return _graph->edgeNum(); }
208 typedef FindArcTagIndicator<Graph> FindArcTag;
209 Arc findArc(const Node& u, const Node& v,
210 const Arc& prev = INVALID) const {
211 return _graph->findArc(u, v, prev);
214 typedef FindEdgeTagIndicator<Graph> FindEdgeTag;
215 Edge findEdge(const Node& u, const Node& v,
216 const Edge& prev = INVALID) const {
217 return _graph->findEdge(u, v, prev);
220 Node addNode() { return _graph->addNode(); }
221 Edge addEdge(const Node& u, const Node& v) { return _graph->addEdge(u, v); }
223 void erase(const Node& i) { _graph->erase(i); }
224 void erase(const Edge& i) { _graph->erase(i); }
226 void clear() { _graph->clear(); }
228 bool direction(const Arc& a) const { return _graph->direction(a); }
229 Arc direct(const Edge& e, bool d) const { return _graph->direct(e, d); }
231 int id(const Node& v) const { return _graph->id(v); }
232 int id(const Arc& a) const { return _graph->id(a); }
233 int id(const Edge& e) const { return _graph->id(e); }
235 Node nodeFromId(int ix) const { return _graph->nodeFromId(ix); }
236 Arc arcFromId(int ix) const { return _graph->arcFromId(ix); }
237 Edge edgeFromId(int ix) const { return _graph->edgeFromId(ix); }
239 int maxNodeId() const { return _graph->maxNodeId(); }
240 int maxArcId() const { return _graph->maxArcId(); }
241 int maxEdgeId() const { return _graph->maxEdgeId(); }
243 typedef typename ItemSetTraits<GR, Node>::ItemNotifier NodeNotifier;
244 NodeNotifier& notifier(Node) const { return _graph->notifier(Node()); }
246 typedef typename ItemSetTraits<GR, Arc>::ItemNotifier ArcNotifier;
247 ArcNotifier& notifier(Arc) const { return _graph->notifier(Arc()); }
249 typedef typename ItemSetTraits<GR, Edge>::ItemNotifier EdgeNotifier;
250 EdgeNotifier& notifier(Edge) const { return _graph->notifier(Edge()); }
252 template <typename V>
253 class NodeMap : public GR::template NodeMap<V> {
254 typedef typename GR::template NodeMap<V> Parent;
257 explicit NodeMap(const GraphAdaptorBase<GR>& adapter)
258 : Parent(*adapter._graph) {}
259 NodeMap(const GraphAdaptorBase<GR>& adapter, const V& value)
260 : Parent(*adapter._graph, value) {}
263 NodeMap& operator=(const NodeMap& cmap) {
264 return operator=<NodeMap>(cmap);
267 template <typename CMap>
268 NodeMap& operator=(const CMap& cmap) {
269 Parent::operator=(cmap);
275 template <typename V>
276 class ArcMap : public GR::template ArcMap<V> {
277 typedef typename GR::template ArcMap<V> Parent;
280 explicit ArcMap(const GraphAdaptorBase<GR>& adapter)
281 : Parent(*adapter._graph) {}
282 ArcMap(const GraphAdaptorBase<GR>& adapter, const V& value)
283 : Parent(*adapter._graph, value) {}
286 ArcMap& operator=(const ArcMap& cmap) {
287 return operator=<ArcMap>(cmap);
290 template <typename CMap>
291 ArcMap& operator=(const CMap& cmap) {
292 Parent::operator=(cmap);
297 template <typename V>
298 class EdgeMap : public GR::template EdgeMap<V> {
299 typedef typename GR::template EdgeMap<V> Parent;
302 explicit EdgeMap(const GraphAdaptorBase<GR>& adapter)
303 : Parent(*adapter._graph) {}
304 EdgeMap(const GraphAdaptorBase<GR>& adapter, const V& value)
305 : Parent(*adapter._graph, value) {}
308 EdgeMap& operator=(const EdgeMap& cmap) {
309 return operator=<EdgeMap>(cmap);
312 template <typename CMap>
313 EdgeMap& operator=(const CMap& cmap) {
314 Parent::operator=(cmap);
321 template <typename DGR>
322 class ReverseDigraphBase : public DigraphAdaptorBase<DGR> {
323 typedef DigraphAdaptorBase<DGR> Parent;
327 ReverseDigraphBase() : Parent() { }
329 typedef typename Parent::Node Node;
330 typedef typename Parent::Arc Arc;
332 void firstIn(Arc& a, const Node& n) const { Parent::firstOut(a, n); }
333 void firstOut(Arc& a, const Node& n ) const { Parent::firstIn(a, n); }
335 void nextIn(Arc& a) const { Parent::nextOut(a); }
336 void nextOut(Arc& a) const { Parent::nextIn(a); }
338 Node source(const Arc& a) const { return Parent::target(a); }
339 Node target(const Arc& a) const { return Parent::source(a); }
341 Arc addArc(const Node& u, const Node& v) { return Parent::addArc(v, u); }
343 typedef FindArcTagIndicator<DGR> FindArcTag;
344 Arc findArc(const Node& u, const Node& v,
345 const Arc& prev = INVALID) const {
346 return Parent::findArc(v, u, prev);
351 /// \ingroup graph_adaptors
353 /// \brief Adaptor class for reversing the orientation of the arcs in
356 /// ReverseDigraph can be used for reversing the arcs in a digraph.
357 /// It conforms to the \ref concepts::Digraph "Digraph" concept.
359 /// The adapted digraph can also be modified through this adaptor
360 /// by adding or removing nodes or arcs, unless the \c GR template
361 /// parameter is set to be \c const.
363 /// \tparam DGR The type of the adapted digraph.
364 /// It must conform to the \ref concepts::Digraph "Digraph" concept.
365 /// It can also be specified to be \c const.
367 /// \note The \c Node and \c Arc types of this adaptor and the adapted
368 /// digraph are convertible to each other.
369 template<typename DGR>
371 class ReverseDigraph {
373 class ReverseDigraph :
374 public DigraphAdaptorExtender<ReverseDigraphBase<DGR> > {
376 typedef DigraphAdaptorExtender<ReverseDigraphBase<DGR> > Parent;
378 /// The type of the adapted digraph.
384 /// \brief Constructor
386 /// Creates a reverse digraph adaptor for the given digraph.
387 explicit ReverseDigraph(DGR& digraph) {
388 Parent::initialize(digraph);
392 /// \brief Returns a read-only ReverseDigraph adaptor
394 /// This function just returns a read-only \ref ReverseDigraph adaptor.
395 /// \ingroup graph_adaptors
396 /// \relates ReverseDigraph
397 template<typename DGR>
398 ReverseDigraph<const DGR> reverseDigraph(const DGR& digraph) {
399 return ReverseDigraph<const DGR>(digraph);
403 template <typename DGR, typename NF, typename AF, bool ch = true>
404 class SubDigraphBase : public DigraphAdaptorBase<DGR> {
405 typedef DigraphAdaptorBase<DGR> Parent;
408 typedef NF NodeFilterMap;
409 typedef AF ArcFilterMap;
411 typedef SubDigraphBase Adaptor;
416 : Parent(), _node_filter(0), _arc_filter(0) { }
418 void initialize(DGR& digraph, NF& node_filter, AF& arc_filter) {
419 Parent::initialize(digraph);
420 _node_filter = &node_filter;
421 _arc_filter = &arc_filter;
426 typedef typename Parent::Node Node;
427 typedef typename Parent::Arc Arc;
429 void first(Node& i) const {
431 while (i != INVALID && !(*_node_filter)[i]) Parent::next(i);
434 void first(Arc& i) const {
436 while (i != INVALID && (!(*_arc_filter)[i]
437 || !(*_node_filter)[Parent::source(i)]
438 || !(*_node_filter)[Parent::target(i)]))
442 void firstIn(Arc& i, const Node& n) const {
443 Parent::firstIn(i, n);
444 while (i != INVALID && (!(*_arc_filter)[i]
445 || !(*_node_filter)[Parent::source(i)]))
449 void firstOut(Arc& i, const Node& n) const {
450 Parent::firstOut(i, n);
451 while (i != INVALID && (!(*_arc_filter)[i]
452 || !(*_node_filter)[Parent::target(i)]))
456 void next(Node& i) const {
458 while (i != INVALID && !(*_node_filter)[i]) Parent::next(i);
461 void next(Arc& i) const {
463 while (i != INVALID && (!(*_arc_filter)[i]
464 || !(*_node_filter)[Parent::source(i)]
465 || !(*_node_filter)[Parent::target(i)]))
469 void nextIn(Arc& i) const {
471 while (i != INVALID && (!(*_arc_filter)[i]
472 || !(*_node_filter)[Parent::source(i)]))
476 void nextOut(Arc& i) const {
478 while (i != INVALID && (!(*_arc_filter)[i]
479 || !(*_node_filter)[Parent::target(i)]))
483 void status(const Node& n, bool v) const { _node_filter->set(n, v); }
484 void status(const Arc& a, bool v) const { _arc_filter->set(a, v); }
486 bool status(const Node& n) const { return (*_node_filter)[n]; }
487 bool status(const Arc& a) const { return (*_arc_filter)[a]; }
489 typedef False NodeNumTag;
490 typedef False ArcNumTag;
492 typedef FindArcTagIndicator<DGR> FindArcTag;
493 Arc findArc(const Node& source, const Node& target,
494 const Arc& prev = INVALID) const {
495 if (!(*_node_filter)[source] || !(*_node_filter)[target]) {
498 Arc arc = Parent::findArc(source, target, prev);
499 while (arc != INVALID && !(*_arc_filter)[arc]) {
500 arc = Parent::findArc(source, target, arc);
507 template <typename V>
509 : public SubMapExtender<SubDigraphBase<DGR, NF, AF, ch>,
510 LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, NodeMap<V>)> {
511 typedef SubMapExtender<SubDigraphBase<DGR, NF, AF, ch>,
512 LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, NodeMap<V>)> Parent;
517 NodeMap(const SubDigraphBase<DGR, NF, AF, ch>& adaptor)
519 NodeMap(const SubDigraphBase<DGR, NF, AF, ch>& adaptor, const V& value)
520 : Parent(adaptor, value) {}
523 NodeMap& operator=(const NodeMap& cmap) {
524 return operator=<NodeMap>(cmap);
527 template <typename CMap>
528 NodeMap& operator=(const CMap& cmap) {
529 Parent::operator=(cmap);
534 template <typename V>
536 : public SubMapExtender<SubDigraphBase<DGR, NF, AF, ch>,
537 LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, ArcMap<V>)> {
538 typedef SubMapExtender<SubDigraphBase<DGR, NF, AF, ch>,
539 LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, ArcMap<V>)> Parent;
544 ArcMap(const SubDigraphBase<DGR, NF, AF, ch>& adaptor)
546 ArcMap(const SubDigraphBase<DGR, NF, AF, ch>& adaptor, const V& value)
547 : Parent(adaptor, value) {}
550 ArcMap& operator=(const ArcMap& cmap) {
551 return operator=<ArcMap>(cmap);
554 template <typename CMap>
555 ArcMap& operator=(const CMap& cmap) {
556 Parent::operator=(cmap);
563 template <typename DGR, typename NF, typename AF>
564 class SubDigraphBase<DGR, NF, AF, false>
565 : public DigraphAdaptorBase<DGR> {
566 typedef DigraphAdaptorBase<DGR> Parent;
569 typedef NF NodeFilterMap;
570 typedef AF ArcFilterMap;
572 typedef SubDigraphBase Adaptor;
577 : Parent(), _node_filter(0), _arc_filter(0) { }
579 void initialize(DGR& digraph, NF& node_filter, AF& arc_filter) {
580 Parent::initialize(digraph);
581 _node_filter = &node_filter;
582 _arc_filter = &arc_filter;
587 typedef typename Parent::Node Node;
588 typedef typename Parent::Arc Arc;
590 void first(Node& i) const {
592 while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i);
595 void first(Arc& i) const {
597 while (i!=INVALID && !(*_arc_filter)[i]) Parent::next(i);
600 void firstIn(Arc& i, const Node& n) const {
601 Parent::firstIn(i, n);
602 while (i!=INVALID && !(*_arc_filter)[i]) Parent::nextIn(i);
605 void firstOut(Arc& i, const Node& n) const {
606 Parent::firstOut(i, n);
607 while (i!=INVALID && !(*_arc_filter)[i]) Parent::nextOut(i);
610 void next(Node& i) const {
612 while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i);
614 void next(Arc& i) const {
616 while (i!=INVALID && !(*_arc_filter)[i]) Parent::next(i);
618 void nextIn(Arc& i) const {
620 while (i!=INVALID && !(*_arc_filter)[i]) Parent::nextIn(i);
623 void nextOut(Arc& i) const {
625 while (i!=INVALID && !(*_arc_filter)[i]) Parent::nextOut(i);
628 void status(const Node& n, bool v) const { _node_filter->set(n, v); }
629 void status(const Arc& a, bool v) const { _arc_filter->set(a, v); }
631 bool status(const Node& n) const { return (*_node_filter)[n]; }
632 bool status(const Arc& a) const { return (*_arc_filter)[a]; }
634 typedef False NodeNumTag;
635 typedef False ArcNumTag;
637 typedef FindArcTagIndicator<DGR> FindArcTag;
638 Arc findArc(const Node& source, const Node& target,
639 const Arc& prev = INVALID) const {
640 if (!(*_node_filter)[source] || !(*_node_filter)[target]) {
643 Arc arc = Parent::findArc(source, target, prev);
644 while (arc != INVALID && !(*_arc_filter)[arc]) {
645 arc = Parent::findArc(source, target, arc);
650 template <typename V>
652 : public SubMapExtender<SubDigraphBase<DGR, NF, AF, false>,
653 LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, NodeMap<V>)> {
654 typedef SubMapExtender<SubDigraphBase<DGR, NF, AF, false>,
655 LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, NodeMap<V>)> Parent;
660 NodeMap(const SubDigraphBase<DGR, NF, AF, false>& adaptor)
662 NodeMap(const SubDigraphBase<DGR, NF, AF, false>& adaptor, const V& value)
663 : Parent(adaptor, value) {}
666 NodeMap& operator=(const NodeMap& cmap) {
667 return operator=<NodeMap>(cmap);
670 template <typename CMap>
671 NodeMap& operator=(const CMap& cmap) {
672 Parent::operator=(cmap);
677 template <typename V>
679 : public SubMapExtender<SubDigraphBase<DGR, NF, AF, false>,
680 LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, ArcMap<V>)> {
681 typedef SubMapExtender<SubDigraphBase<DGR, NF, AF, false>,
682 LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, ArcMap<V>)> Parent;
687 ArcMap(const SubDigraphBase<DGR, NF, AF, false>& adaptor)
689 ArcMap(const SubDigraphBase<DGR, NF, AF, false>& adaptor, const V& value)
690 : Parent(adaptor, value) {}
693 ArcMap& operator=(const ArcMap& cmap) {
694 return operator=<ArcMap>(cmap);
697 template <typename CMap>
698 ArcMap& operator=(const CMap& cmap) {
699 Parent::operator=(cmap);
706 /// \ingroup graph_adaptors
708 /// \brief Adaptor class for hiding nodes and arcs in a digraph
710 /// SubDigraph can be used for hiding nodes and arcs in a digraph.
711 /// A \c bool node map and a \c bool arc map must be specified, which
712 /// define the filters for nodes and arcs.
713 /// Only the nodes and arcs with \c true filter value are
714 /// shown in the subdigraph. The arcs that are incident to hidden
715 /// nodes are also filtered out.
716 /// This adaptor conforms to the \ref concepts::Digraph "Digraph" concept.
718 /// The adapted digraph can also be modified through this adaptor
719 /// by adding or removing nodes or arcs, unless the \c GR template
720 /// parameter is set to be \c const.
722 /// \tparam DGR The type of the adapted digraph.
723 /// It must conform to the \ref concepts::Digraph "Digraph" concept.
724 /// It can also be specified to be \c const.
725 /// \tparam NF The type of the node filter map.
726 /// It must be a \c bool (or convertible) node map of the
727 /// adapted digraph. The default type is
728 /// \ref concepts::Digraph::NodeMap "DGR::NodeMap<bool>".
729 /// \tparam AF The type of the arc filter map.
730 /// It must be \c bool (or convertible) arc map of the
731 /// adapted digraph. The default type is
732 /// \ref concepts::Digraph::ArcMap "DGR::ArcMap<bool>".
734 /// \note The \c Node and \c Arc types of this adaptor and the adapted
735 /// digraph are convertible to each other.
740 template<typename DGR, typename NF, typename AF>
743 template<typename DGR,
744 typename NF = typename DGR::template NodeMap<bool>,
745 typename AF = typename DGR::template ArcMap<bool> >
747 public DigraphAdaptorExtender<SubDigraphBase<DGR, NF, AF, true> > {
750 /// The type of the adapted digraph.
752 /// The type of the node filter map.
753 typedef NF NodeFilterMap;
754 /// The type of the arc filter map.
755 typedef AF ArcFilterMap;
757 typedef DigraphAdaptorExtender<SubDigraphBase<DGR, NF, AF, true> >
760 typedef typename Parent::Node Node;
761 typedef typename Parent::Arc Arc;
767 /// \brief Constructor
769 /// Creates a subdigraph for the given digraph with the
770 /// given node and arc filter maps.
771 SubDigraph(DGR& digraph, NF& node_filter, AF& arc_filter) {
772 Parent::initialize(digraph, node_filter, arc_filter);
775 /// \brief Sets the status of the given node
777 /// This function sets the status of the given node.
778 /// It is done by simply setting the assigned value of \c n
779 /// to \c v in the node filter map.
780 void status(const Node& n, bool v) const { Parent::status(n, v); }
782 /// \brief Sets the status of the given arc
784 /// This function sets the status of the given arc.
785 /// It is done by simply setting the assigned value of \c a
786 /// to \c v in the arc filter map.
787 void status(const Arc& a, bool v) const { Parent::status(a, v); }
789 /// \brief Returns the status of the given node
791 /// This function returns the status of the given node.
792 /// It is \c true if the given node is enabled (i.e. not hidden).
793 bool status(const Node& n) const { return Parent::status(n); }
795 /// \brief Returns the status of the given arc
797 /// This function returns the status of the given arc.
798 /// It is \c true if the given arc is enabled (i.e. not hidden).
799 bool status(const Arc& a) const { return Parent::status(a); }
801 /// \brief Disables the given node
803 /// This function disables the given node in the subdigraph,
804 /// so the iteration jumps over it.
805 /// It is the same as \ref status() "status(n, false)".
806 void disable(const Node& n) const { Parent::status(n, false); }
808 /// \brief Disables the given arc
810 /// This function disables the given arc in the subdigraph,
811 /// so the iteration jumps over it.
812 /// It is the same as \ref status() "status(a, false)".
813 void disable(const Arc& a) const { Parent::status(a, false); }
815 /// \brief Enables the given node
817 /// This function enables the given node in the subdigraph.
818 /// It is the same as \ref status() "status(n, true)".
819 void enable(const Node& n) const { Parent::status(n, true); }
821 /// \brief Enables the given arc
823 /// This function enables the given arc in the subdigraph.
824 /// It is the same as \ref status() "status(a, true)".
825 void enable(const Arc& a) const { Parent::status(a, true); }
829 /// \brief Returns a read-only SubDigraph adaptor
831 /// This function just returns a read-only \ref SubDigraph adaptor.
832 /// \ingroup graph_adaptors
833 /// \relates SubDigraph
834 template<typename DGR, typename NF, typename AF>
835 SubDigraph<const DGR, NF, AF>
836 subDigraph(const DGR& digraph,
837 NF& node_filter, AF& arc_filter) {
838 return SubDigraph<const DGR, NF, AF>
839 (digraph, node_filter, arc_filter);
842 template<typename DGR, typename NF, typename AF>
843 SubDigraph<const DGR, const NF, AF>
844 subDigraph(const DGR& digraph,
845 const NF& node_filter, AF& arc_filter) {
846 return SubDigraph<const DGR, const NF, AF>
847 (digraph, node_filter, arc_filter);
850 template<typename DGR, typename NF, typename AF>
851 SubDigraph<const DGR, NF, const AF>
852 subDigraph(const DGR& digraph,
853 NF& node_filter, const AF& arc_filter) {
854 return SubDigraph<const DGR, NF, const AF>
855 (digraph, node_filter, arc_filter);
858 template<typename DGR, typename NF, typename AF>
859 SubDigraph<const DGR, const NF, const AF>
860 subDigraph(const DGR& digraph,
861 const NF& node_filter, const AF& arc_filter) {
862 return SubDigraph<const DGR, const NF, const AF>
863 (digraph, node_filter, arc_filter);
867 template <typename GR, typename NF, typename EF, bool ch = true>
868 class SubGraphBase : public GraphAdaptorBase<GR> {
869 typedef GraphAdaptorBase<GR> Parent;
872 typedef NF NodeFilterMap;
873 typedef EF EdgeFilterMap;
875 typedef SubGraphBase Adaptor;
882 : Parent(), _node_filter(0), _edge_filter(0) { }
884 void initialize(GR& graph, NF& node_filter, EF& edge_filter) {
885 Parent::initialize(graph);
886 _node_filter = &node_filter;
887 _edge_filter = &edge_filter;
892 typedef typename Parent::Node Node;
893 typedef typename Parent::Arc Arc;
894 typedef typename Parent::Edge Edge;
896 void first(Node& i) const {
898 while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i);
901 void first(Arc& i) const {
903 while (i!=INVALID && (!(*_edge_filter)[i]
904 || !(*_node_filter)[Parent::source(i)]
905 || !(*_node_filter)[Parent::target(i)]))
909 void first(Edge& i) const {
911 while (i!=INVALID && (!(*_edge_filter)[i]
912 || !(*_node_filter)[Parent::u(i)]
913 || !(*_node_filter)[Parent::v(i)]))
917 void firstIn(Arc& i, const Node& n) const {
918 Parent::firstIn(i, n);
919 while (i!=INVALID && (!(*_edge_filter)[i]
920 || !(*_node_filter)[Parent::source(i)]))
924 void firstOut(Arc& i, const Node& n) const {
925 Parent::firstOut(i, n);
926 while (i!=INVALID && (!(*_edge_filter)[i]
927 || !(*_node_filter)[Parent::target(i)]))
931 void firstInc(Edge& i, bool& d, const Node& n) const {
932 Parent::firstInc(i, d, n);
933 while (i!=INVALID && (!(*_edge_filter)[i]
934 || !(*_node_filter)[Parent::u(i)]
935 || !(*_node_filter)[Parent::v(i)]))
936 Parent::nextInc(i, d);
939 void next(Node& i) const {
941 while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i);
944 void next(Arc& i) const {
946 while (i!=INVALID && (!(*_edge_filter)[i]
947 || !(*_node_filter)[Parent::source(i)]
948 || !(*_node_filter)[Parent::target(i)]))
952 void next(Edge& i) const {
954 while (i!=INVALID && (!(*_edge_filter)[i]
955 || !(*_node_filter)[Parent::u(i)]
956 || !(*_node_filter)[Parent::v(i)]))
960 void nextIn(Arc& i) const {
962 while (i!=INVALID && (!(*_edge_filter)[i]
963 || !(*_node_filter)[Parent::source(i)]))
967 void nextOut(Arc& i) const {
969 while (i!=INVALID && (!(*_edge_filter)[i]
970 || !(*_node_filter)[Parent::target(i)]))
974 void nextInc(Edge& i, bool& d) const {
975 Parent::nextInc(i, d);
976 while (i!=INVALID && (!(*_edge_filter)[i]
977 || !(*_node_filter)[Parent::u(i)]
978 || !(*_node_filter)[Parent::v(i)]))
979 Parent::nextInc(i, d);
982 void status(const Node& n, bool v) const { _node_filter->set(n, v); }
983 void status(const Edge& e, bool v) const { _edge_filter->set(e, v); }
985 bool status(const Node& n) const { return (*_node_filter)[n]; }
986 bool status(const Edge& e) const { return (*_edge_filter)[e]; }
988 typedef False NodeNumTag;
989 typedef False ArcNumTag;
990 typedef False EdgeNumTag;
992 typedef FindArcTagIndicator<Graph> FindArcTag;
993 Arc findArc(const Node& u, const Node& v,
994 const Arc& prev = INVALID) const {
995 if (!(*_node_filter)[u] || !(*_node_filter)[v]) {
998 Arc arc = Parent::findArc(u, v, prev);
999 while (arc != INVALID && !(*_edge_filter)[arc]) {
1000 arc = Parent::findArc(u, v, arc);
1005 typedef FindEdgeTagIndicator<Graph> FindEdgeTag;
1006 Edge findEdge(const Node& u, const Node& v,
1007 const Edge& prev = INVALID) const {
1008 if (!(*_node_filter)[u] || !(*_node_filter)[v]) {
1011 Edge edge = Parent::findEdge(u, v, prev);
1012 while (edge != INVALID && !(*_edge_filter)[edge]) {
1013 edge = Parent::findEdge(u, v, edge);
1018 template <typename V>
1020 : public SubMapExtender<SubGraphBase<GR, NF, EF, ch>,
1021 LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, NodeMap<V>)> {
1022 typedef SubMapExtender<SubGraphBase<GR, NF, EF, ch>,
1023 LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, NodeMap<V>)> Parent;
1028 NodeMap(const SubGraphBase<GR, NF, EF, ch>& adaptor)
1029 : Parent(adaptor) {}
1030 NodeMap(const SubGraphBase<GR, NF, EF, ch>& adaptor, const V& value)
1031 : Parent(adaptor, value) {}
1034 NodeMap& operator=(const NodeMap& cmap) {
1035 return operator=<NodeMap>(cmap);
1038 template <typename CMap>
1039 NodeMap& operator=(const CMap& cmap) {
1040 Parent::operator=(cmap);
1045 template <typename V>
1047 : public SubMapExtender<SubGraphBase<GR, NF, EF, ch>,
1048 LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, ArcMap<V>)> {
1049 typedef SubMapExtender<SubGraphBase<GR, NF, EF, ch>,
1050 LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, ArcMap<V>)> Parent;
1055 ArcMap(const SubGraphBase<GR, NF, EF, ch>& adaptor)
1056 : Parent(adaptor) {}
1057 ArcMap(const SubGraphBase<GR, NF, EF, ch>& adaptor, const V& value)
1058 : Parent(adaptor, value) {}
1061 ArcMap& operator=(const ArcMap& cmap) {
1062 return operator=<ArcMap>(cmap);
1065 template <typename CMap>
1066 ArcMap& operator=(const CMap& cmap) {
1067 Parent::operator=(cmap);
1072 template <typename V>
1074 : public SubMapExtender<SubGraphBase<GR, NF, EF, ch>,
1075 LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, EdgeMap<V>)> {
1076 typedef SubMapExtender<SubGraphBase<GR, NF, EF, ch>,
1077 LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, EdgeMap<V>)> Parent;
1082 EdgeMap(const SubGraphBase<GR, NF, EF, ch>& adaptor)
1083 : Parent(adaptor) {}
1085 EdgeMap(const SubGraphBase<GR, NF, EF, ch>& adaptor, const V& value)
1086 : Parent(adaptor, value) {}
1089 EdgeMap& operator=(const EdgeMap& cmap) {
1090 return operator=<EdgeMap>(cmap);
1093 template <typename CMap>
1094 EdgeMap& operator=(const CMap& cmap) {
1095 Parent::operator=(cmap);
1102 template <typename GR, typename NF, typename EF>
1103 class SubGraphBase<GR, NF, EF, false>
1104 : public GraphAdaptorBase<GR> {
1105 typedef GraphAdaptorBase<GR> Parent;
1108 typedef NF NodeFilterMap;
1109 typedef EF EdgeFilterMap;
1111 typedef SubGraphBase Adaptor;
1116 : Parent(), _node_filter(0), _edge_filter(0) { }
1118 void initialize(GR& graph, NF& node_filter, EF& edge_filter) {
1119 Parent::initialize(graph);
1120 _node_filter = &node_filter;
1121 _edge_filter = &edge_filter;
1126 typedef typename Parent::Node Node;
1127 typedef typename Parent::Arc Arc;
1128 typedef typename Parent::Edge Edge;
1130 void first(Node& i) const {
1132 while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i);
1135 void first(Arc& i) const {
1137 while (i!=INVALID && !(*_edge_filter)[i]) Parent::next(i);
1140 void first(Edge& i) const {
1142 while (i!=INVALID && !(*_edge_filter)[i]) Parent::next(i);
1145 void firstIn(Arc& i, const Node& n) const {
1146 Parent::firstIn(i, n);
1147 while (i!=INVALID && !(*_edge_filter)[i]) Parent::nextIn(i);
1150 void firstOut(Arc& i, const Node& n) const {
1151 Parent::firstOut(i, n);
1152 while (i!=INVALID && !(*_edge_filter)[i]) Parent::nextOut(i);
1155 void firstInc(Edge& i, bool& d, const Node& n) const {
1156 Parent::firstInc(i, d, n);
1157 while (i!=INVALID && !(*_edge_filter)[i]) Parent::nextInc(i, d);
1160 void next(Node& i) const {
1162 while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i);
1164 void next(Arc& i) const {
1166 while (i!=INVALID && !(*_edge_filter)[i]) Parent::next(i);
1168 void next(Edge& i) const {
1170 while (i!=INVALID && !(*_edge_filter)[i]) Parent::next(i);
1172 void nextIn(Arc& i) const {
1174 while (i!=INVALID && !(*_edge_filter)[i]) Parent::nextIn(i);
1177 void nextOut(Arc& i) const {
1179 while (i!=INVALID && !(*_edge_filter)[i]) Parent::nextOut(i);
1181 void nextInc(Edge& i, bool& d) const {
1182 Parent::nextInc(i, d);
1183 while (i!=INVALID && !(*_edge_filter)[i]) Parent::nextInc(i, d);
1186 void status(const Node& n, bool v) const { _node_filter->set(n, v); }
1187 void status(const Edge& e, bool v) const { _edge_filter->set(e, v); }
1189 bool status(const Node& n) const { return (*_node_filter)[n]; }
1190 bool status(const Edge& e) const { return (*_edge_filter)[e]; }
1192 typedef False NodeNumTag;
1193 typedef False ArcNumTag;
1194 typedef False EdgeNumTag;
1196 typedef FindArcTagIndicator<Graph> FindArcTag;
1197 Arc findArc(const Node& u, const Node& v,
1198 const Arc& prev = INVALID) const {
1199 Arc arc = Parent::findArc(u, v, prev);
1200 while (arc != INVALID && !(*_edge_filter)[arc]) {
1201 arc = Parent::findArc(u, v, arc);
1206 typedef FindEdgeTagIndicator<Graph> FindEdgeTag;
1207 Edge findEdge(const Node& u, const Node& v,
1208 const Edge& prev = INVALID) const {
1209 Edge edge = Parent::findEdge(u, v, prev);
1210 while (edge != INVALID && !(*_edge_filter)[edge]) {
1211 edge = Parent::findEdge(u, v, edge);
1216 template <typename V>
1218 : public SubMapExtender<SubGraphBase<GR, NF, EF, false>,
1219 LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, NodeMap<V>)> {
1220 typedef SubMapExtender<SubGraphBase<GR, NF, EF, false>,
1221 LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, NodeMap<V>)> Parent;
1226 NodeMap(const SubGraphBase<GR, NF, EF, false>& adaptor)
1227 : Parent(adaptor) {}
1228 NodeMap(const SubGraphBase<GR, NF, EF, false>& adaptor, const V& value)
1229 : Parent(adaptor, value) {}
1232 NodeMap& operator=(const NodeMap& cmap) {
1233 return operator=<NodeMap>(cmap);
1236 template <typename CMap>
1237 NodeMap& operator=(const CMap& cmap) {
1238 Parent::operator=(cmap);
1243 template <typename V>
1245 : public SubMapExtender<SubGraphBase<GR, NF, EF, false>,
1246 LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, ArcMap<V>)> {
1247 typedef SubMapExtender<SubGraphBase<GR, NF, EF, false>,
1248 LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, ArcMap<V>)> Parent;
1253 ArcMap(const SubGraphBase<GR, NF, EF, false>& adaptor)
1254 : Parent(adaptor) {}
1255 ArcMap(const SubGraphBase<GR, NF, EF, false>& adaptor, const V& value)
1256 : Parent(adaptor, value) {}
1259 ArcMap& operator=(const ArcMap& cmap) {
1260 return operator=<ArcMap>(cmap);
1263 template <typename CMap>
1264 ArcMap& operator=(const CMap& cmap) {
1265 Parent::operator=(cmap);
1270 template <typename V>
1272 : public SubMapExtender<SubGraphBase<GR, NF, EF, false>,
1273 LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, EdgeMap<V>)> {
1274 typedef SubMapExtender<SubGraphBase<GR, NF, EF, false>,
1275 LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, EdgeMap<V>)> Parent;
1280 EdgeMap(const SubGraphBase<GR, NF, EF, false>& adaptor)
1281 : Parent(adaptor) {}
1283 EdgeMap(const SubGraphBase<GR, NF, EF, false>& adaptor, const V& value)
1284 : Parent(adaptor, value) {}
1287 EdgeMap& operator=(const EdgeMap& cmap) {
1288 return operator=<EdgeMap>(cmap);
1291 template <typename CMap>
1292 EdgeMap& operator=(const CMap& cmap) {
1293 Parent::operator=(cmap);
1300 /// \ingroup graph_adaptors
1302 /// \brief Adaptor class for hiding nodes and edges in an undirected
1305 /// SubGraph can be used for hiding nodes and edges in a graph.
1306 /// A \c bool node map and a \c bool edge map must be specified, which
1307 /// define the filters for nodes and edges.
1308 /// Only the nodes and edges with \c true filter value are
1309 /// shown in the subgraph. The edges that are incident to hidden
1310 /// nodes are also filtered out.
1311 /// This adaptor conforms to the \ref concepts::Graph "Graph" concept.
1313 /// The adapted graph can also be modified through this adaptor
1314 /// by adding or removing nodes or edges, unless the \c GR template
1315 /// parameter is set to be \c const.
1317 /// \tparam GR The type of the adapted graph.
1318 /// It must conform to the \ref concepts::Graph "Graph" concept.
1319 /// It can also be specified to be \c const.
1320 /// \tparam NF The type of the node filter map.
1321 /// It must be a \c bool (or convertible) node map of the
1322 /// adapted graph. The default type is
1323 /// \ref concepts::Graph::NodeMap "GR::NodeMap<bool>".
1324 /// \tparam EF The type of the edge filter map.
1325 /// It must be a \c bool (or convertible) edge map of the
1326 /// adapted graph. The default type is
1327 /// \ref concepts::Graph::EdgeMap "GR::EdgeMap<bool>".
1329 /// \note The \c Node, \c Edge and \c Arc types of this adaptor and the
1330 /// adapted graph are convertible to each other.
1332 /// \see FilterNodes
1333 /// \see FilterEdges
1335 template<typename GR, typename NF, typename EF>
1338 template<typename GR,
1339 typename NF = typename GR::template NodeMap<bool>,
1340 typename EF = typename GR::template EdgeMap<bool> >
1342 public GraphAdaptorExtender<SubGraphBase<GR, NF, EF, true> > {
1345 /// The type of the adapted graph.
1347 /// The type of the node filter map.
1348 typedef NF NodeFilterMap;
1349 /// The type of the edge filter map.
1350 typedef EF EdgeFilterMap;
1352 typedef GraphAdaptorExtender<SubGraphBase<GR, NF, EF, true> >
1355 typedef typename Parent::Node Node;
1356 typedef typename Parent::Edge Edge;
1362 /// \brief Constructor
1364 /// Creates a subgraph for the given graph with the given node
1365 /// and edge filter maps.
1366 SubGraph(GR& graph, NF& node_filter, EF& edge_filter) {
1367 initialize(graph, node_filter, edge_filter);
1370 /// \brief Sets the status of the given node
1372 /// This function sets the status of the given node.
1373 /// It is done by simply setting the assigned value of \c n
1374 /// to \c v in the node filter map.
1375 void status(const Node& n, bool v) const { Parent::status(n, v); }
1377 /// \brief Sets the status of the given edge
1379 /// This function sets the status of the given edge.
1380 /// It is done by simply setting the assigned value of \c e
1381 /// to \c v in the edge filter map.
1382 void status(const Edge& e, bool v) const { Parent::status(e, v); }
1384 /// \brief Returns the status of the given node
1386 /// This function returns the status of the given node.
1387 /// It is \c true if the given node is enabled (i.e. not hidden).
1388 bool status(const Node& n) const { return Parent::status(n); }
1390 /// \brief Returns the status of the given edge
1392 /// This function returns the status of the given edge.
1393 /// It is \c true if the given edge is enabled (i.e. not hidden).
1394 bool status(const Edge& e) const { return Parent::status(e); }
1396 /// \brief Disables the given node
1398 /// This function disables the given node in the subdigraph,
1399 /// so the iteration jumps over it.
1400 /// It is the same as \ref status() "status(n, false)".
1401 void disable(const Node& n) const { Parent::status(n, false); }
1403 /// \brief Disables the given edge
1405 /// This function disables the given edge in the subgraph,
1406 /// so the iteration jumps over it.
1407 /// It is the same as \ref status() "status(e, false)".
1408 void disable(const Edge& e) const { Parent::status(e, false); }
1410 /// \brief Enables the given node
1412 /// This function enables the given node in the subdigraph.
1413 /// It is the same as \ref status() "status(n, true)".
1414 void enable(const Node& n) const { Parent::status(n, true); }
1416 /// \brief Enables the given edge
1418 /// This function enables the given edge in the subgraph.
1419 /// It is the same as \ref status() "status(e, true)".
1420 void enable(const Edge& e) const { Parent::status(e, true); }
1424 /// \brief Returns a read-only SubGraph adaptor
1426 /// This function just returns a read-only \ref SubGraph adaptor.
1427 /// \ingroup graph_adaptors
1428 /// \relates SubGraph
1429 template<typename GR, typename NF, typename EF>
1430 SubGraph<const GR, NF, EF>
1431 subGraph(const GR& graph, NF& node_filter, EF& edge_filter) {
1432 return SubGraph<const GR, NF, EF>
1433 (graph, node_filter, edge_filter);
1436 template<typename GR, typename NF, typename EF>
1437 SubGraph<const GR, const NF, EF>
1438 subGraph(const GR& graph, const NF& node_filter, EF& edge_filter) {
1439 return SubGraph<const GR, const NF, EF>
1440 (graph, node_filter, edge_filter);
1443 template<typename GR, typename NF, typename EF>
1444 SubGraph<const GR, NF, const EF>
1445 subGraph(const GR& graph, NF& node_filter, const EF& edge_filter) {
1446 return SubGraph<const GR, NF, const EF>
1447 (graph, node_filter, edge_filter);
1450 template<typename GR, typename NF, typename EF>
1451 SubGraph<const GR, const NF, const EF>
1452 subGraph(const GR& graph, const NF& node_filter, const EF& edge_filter) {
1453 return SubGraph<const GR, const NF, const EF>
1454 (graph, node_filter, edge_filter);
1458 /// \ingroup graph_adaptors
1460 /// \brief Adaptor class for hiding nodes in a digraph or a graph.
1462 /// FilterNodes adaptor can be used for hiding nodes in a digraph or a
1463 /// graph. A \c bool node map must be specified, which defines the filter
1464 /// for the nodes. Only the nodes with \c true filter value and the
1465 /// arcs/edges incident to nodes both with \c true filter value are shown
1466 /// in the subgraph. This adaptor conforms to the \ref concepts::Digraph
1467 /// "Digraph" concept or the \ref concepts::Graph "Graph" concept
1468 /// depending on the \c GR template parameter.
1470 /// The adapted (di)graph can also be modified through this adaptor
1471 /// by adding or removing nodes or arcs/edges, unless the \c GR template
1472 /// parameter is set to be \c const.
1474 /// \tparam GR The type of the adapted digraph or graph.
1475 /// It must conform to the \ref concepts::Digraph "Digraph" concept
1476 /// or the \ref concepts::Graph "Graph" concept.
1477 /// It can also be specified to be \c const.
1478 /// \tparam NF The type of the node filter map.
1479 /// It must be a \c bool (or convertible) node map of the
1480 /// adapted (di)graph. The default type is
1481 /// \ref concepts::Graph::NodeMap "GR::NodeMap<bool>".
1483 /// \note The \c Node and <tt>Arc/Edge</tt> types of this adaptor and the
1484 /// adapted (di)graph are convertible to each other.
1486 template<typename GR, typename NF>
1489 template<typename GR,
1490 typename NF = typename GR::template NodeMap<bool>,
1491 typename Enable = void>
1493 public DigraphAdaptorExtender<
1494 SubDigraphBase<GR, NF, ConstMap<typename GR::Arc, Const<bool, true> >,
1497 typedef DigraphAdaptorExtender<
1498 SubDigraphBase<GR, NF, ConstMap<typename GR::Arc, Const<bool, true> >,
1504 typedef NF NodeFilterMap;
1506 typedef typename Parent::Node Node;
1509 ConstMap<typename Digraph::Arc, Const<bool, true> > const_true_map;
1511 FilterNodes() : const_true_map() {}
1515 /// \brief Constructor
1517 /// Creates a subgraph for the given digraph or graph with the
1518 /// given node filter map.
1519 FilterNodes(GR& graph, NF& node_filter)
1520 : Parent(), const_true_map()
1522 Parent::initialize(graph, node_filter, const_true_map);
1525 /// \brief Sets the status of the given node
1527 /// This function sets the status of the given node.
1528 /// It is done by simply setting the assigned value of \c n
1529 /// to \c v in the node filter map.
1530 void status(const Node& n, bool v) const { Parent::status(n, v); }
1532 /// \brief Returns the status of the given node
1534 /// This function returns the status of the given node.
1535 /// It is \c true if the given node is enabled (i.e. not hidden).
1536 bool status(const Node& n) const { return Parent::status(n); }
1538 /// \brief Disables the given node
1540 /// This function disables the given node, so the iteration
1542 /// It is the same as \ref status() "status(n, false)".
1543 void disable(const Node& n) const { Parent::status(n, false); }
1545 /// \brief Enables the given node
1547 /// This function enables the given node.
1548 /// It is the same as \ref status() "status(n, true)".
1549 void enable(const Node& n) const { Parent::status(n, true); }
1553 template<typename GR, typename NF>
1554 class FilterNodes<GR, NF,
1555 typename enable_if<UndirectedTagIndicator<GR> >::type> :
1556 public GraphAdaptorExtender<
1557 SubGraphBase<GR, NF, ConstMap<typename GR::Edge, Const<bool, true> >,
1560 typedef GraphAdaptorExtender<
1561 SubGraphBase<GR, NF, ConstMap<typename GR::Edge, Const<bool, true> >,
1567 typedef NF NodeFilterMap;
1569 typedef typename Parent::Node Node;
1572 ConstMap<typename GR::Edge, Const<bool, true> > const_true_map;
1574 FilterNodes() : const_true_map() {}
1578 FilterNodes(GR& graph, NodeFilterMap& node_filter) :
1579 Parent(), const_true_map() {
1580 Parent::initialize(graph, node_filter, const_true_map);
1583 void status(const Node& n, bool v) const { Parent::status(n, v); }
1584 bool status(const Node& n) const { return Parent::status(n); }
1585 void disable(const Node& n) const { Parent::status(n, false); }
1586 void enable(const Node& n) const { Parent::status(n, true); }
1591 /// \brief Returns a read-only FilterNodes adaptor
1593 /// This function just returns a read-only \ref FilterNodes adaptor.
1594 /// \ingroup graph_adaptors
1595 /// \relates FilterNodes
1596 template<typename GR, typename NF>
1597 FilterNodes<const GR, NF>
1598 filterNodes(const GR& graph, NF& node_filter) {
1599 return FilterNodes<const GR, NF>(graph, node_filter);
1602 template<typename GR, typename NF>
1603 FilterNodes<const GR, const NF>
1604 filterNodes(const GR& graph, const NF& node_filter) {
1605 return FilterNodes<const GR, const NF>(graph, node_filter);
1608 /// \ingroup graph_adaptors
1610 /// \brief Adaptor class for hiding arcs in a digraph.
1612 /// FilterArcs adaptor can be used for hiding arcs in a digraph.
1613 /// A \c bool arc map must be specified, which defines the filter for
1614 /// the arcs. Only the arcs with \c true filter value are shown in the
1615 /// subdigraph. This adaptor conforms to the \ref concepts::Digraph
1616 /// "Digraph" concept.
1618 /// The adapted digraph can also be modified through this adaptor
1619 /// by adding or removing nodes or arcs, unless the \c GR template
1620 /// parameter is set to be \c const.
1622 /// \tparam DGR The type of the adapted digraph.
1623 /// It must conform to the \ref concepts::Digraph "Digraph" concept.
1624 /// It can also be specified to be \c const.
1625 /// \tparam AF The type of the arc filter map.
1626 /// It must be a \c bool (or convertible) arc map of the
1627 /// adapted digraph. The default type is
1628 /// \ref concepts::Digraph::ArcMap "DGR::ArcMap<bool>".
1630 /// \note The \c Node and \c Arc types of this adaptor and the adapted
1631 /// digraph are convertible to each other.
1633 template<typename DGR,
1637 template<typename DGR,
1638 typename AF = typename DGR::template ArcMap<bool> >
1640 public DigraphAdaptorExtender<
1641 SubDigraphBase<DGR, ConstMap<typename DGR::Node, Const<bool, true> >,
1644 typedef DigraphAdaptorExtender<
1645 SubDigraphBase<DGR, ConstMap<typename DGR::Node, Const<bool, true> >,
1646 AF, false> > Parent;
1650 /// The type of the adapted digraph.
1651 typedef DGR Digraph;
1652 /// The type of the arc filter map.
1653 typedef AF ArcFilterMap;
1655 typedef typename Parent::Arc Arc;
1658 ConstMap<typename DGR::Node, Const<bool, true> > const_true_map;
1660 FilterArcs() : const_true_map() {}
1664 /// \brief Constructor
1666 /// Creates a subdigraph for the given digraph with the given arc
1668 FilterArcs(DGR& digraph, ArcFilterMap& arc_filter)
1669 : Parent(), const_true_map() {
1670 Parent::initialize(digraph, const_true_map, arc_filter);
1673 /// \brief Sets the status of the given arc
1675 /// This function sets the status of the given arc.
1676 /// It is done by simply setting the assigned value of \c a
1677 /// to \c v in the arc filter map.
1678 void status(const Arc& a, bool v) const { Parent::status(a, v); }
1680 /// \brief Returns the status of the given arc
1682 /// This function returns the status of the given arc.
1683 /// It is \c true if the given arc is enabled (i.e. not hidden).
1684 bool status(const Arc& a) const { return Parent::status(a); }
1686 /// \brief Disables the given arc
1688 /// This function disables the given arc in the subdigraph,
1689 /// so the iteration jumps over it.
1690 /// It is the same as \ref status() "status(a, false)".
1691 void disable(const Arc& a) const { Parent::status(a, false); }
1693 /// \brief Enables the given arc
1695 /// This function enables the given arc in the subdigraph.
1696 /// It is the same as \ref status() "status(a, true)".
1697 void enable(const Arc& a) const { Parent::status(a, true); }
1701 /// \brief Returns a read-only FilterArcs adaptor
1703 /// This function just returns a read-only \ref FilterArcs adaptor.
1704 /// \ingroup graph_adaptors
1705 /// \relates FilterArcs
1706 template<typename DGR, typename AF>
1707 FilterArcs<const DGR, AF>
1708 filterArcs(const DGR& digraph, AF& arc_filter) {
1709 return FilterArcs<const DGR, AF>(digraph, arc_filter);
1712 template<typename DGR, typename AF>
1713 FilterArcs<const DGR, const AF>
1714 filterArcs(const DGR& digraph, const AF& arc_filter) {
1715 return FilterArcs<const DGR, const AF>(digraph, arc_filter);
1718 /// \ingroup graph_adaptors
1720 /// \brief Adaptor class for hiding edges in a graph.
1722 /// FilterEdges adaptor can be used for hiding edges in a graph.
1723 /// A \c bool edge map must be specified, which defines the filter for
1724 /// the edges. Only the edges with \c true filter value are shown in the
1725 /// subgraph. This adaptor conforms to the \ref concepts::Graph
1726 /// "Graph" concept.
1728 /// The adapted graph can also be modified through this adaptor
1729 /// by adding or removing nodes or edges, unless the \c GR template
1730 /// parameter is set to be \c const.
1732 /// \tparam GR The type of the adapted graph.
1733 /// It must conform to the \ref concepts::Graph "Graph" concept.
1734 /// It can also be specified to be \c const.
1735 /// \tparam EF The type of the edge filter map.
1736 /// It must be a \c bool (or convertible) edge map of the
1737 /// adapted graph. The default type is
1738 /// \ref concepts::Graph::EdgeMap "GR::EdgeMap<bool>".
1740 /// \note The \c Node, \c Edge and \c Arc types of this adaptor and the
1741 /// adapted graph are convertible to each other.
1743 template<typename GR,
1747 template<typename GR,
1748 typename EF = typename GR::template EdgeMap<bool> >
1750 public GraphAdaptorExtender<
1751 SubGraphBase<GR, ConstMap<typename GR::Node, Const<bool, true> >,
1754 typedef GraphAdaptorExtender<
1755 SubGraphBase<GR, ConstMap<typename GR::Node, Const<bool, true > >,
1756 EF, false> > Parent;
1760 /// The type of the adapted graph.
1762 /// The type of the edge filter map.
1763 typedef EF EdgeFilterMap;
1765 typedef typename Parent::Edge Edge;
1768 ConstMap<typename GR::Node, Const<bool, true> > const_true_map;
1770 FilterEdges() : const_true_map(true) {
1771 Parent::setNodeFilterMap(const_true_map);
1776 /// \brief Constructor
1778 /// Creates a subgraph for the given graph with the given edge
1780 FilterEdges(GR& graph, EF& edge_filter)
1781 : Parent(), const_true_map() {
1782 Parent::initialize(graph, const_true_map, edge_filter);
1785 /// \brief Sets the status of the given edge
1787 /// This function sets the status of the given edge.
1788 /// It is done by simply setting the assigned value of \c e
1789 /// to \c v in the edge filter map.
1790 void status(const Edge& e, bool v) const { Parent::status(e, v); }
1792 /// \brief Returns the status of the given edge
1794 /// This function returns the status of the given edge.
1795 /// It is \c true if the given edge is enabled (i.e. not hidden).
1796 bool status(const Edge& e) const { return Parent::status(e); }
1798 /// \brief Disables the given edge
1800 /// This function disables the given edge in the subgraph,
1801 /// so the iteration jumps over it.
1802 /// It is the same as \ref status() "status(e, false)".
1803 void disable(const Edge& e) const { Parent::status(e, false); }
1805 /// \brief Enables the given edge
1807 /// This function enables the given edge in the subgraph.
1808 /// It is the same as \ref status() "status(e, true)".
1809 void enable(const Edge& e) const { Parent::status(e, true); }
1813 /// \brief Returns a read-only FilterEdges adaptor
1815 /// This function just returns a read-only \ref FilterEdges adaptor.
1816 /// \ingroup graph_adaptors
1817 /// \relates FilterEdges
1818 template<typename GR, typename EF>
1819 FilterEdges<const GR, EF>
1820 filterEdges(const GR& graph, EF& edge_filter) {
1821 return FilterEdges<const GR, EF>(graph, edge_filter);
1824 template<typename GR, typename EF>
1825 FilterEdges<const GR, const EF>
1826 filterEdges(const GR& graph, const EF& edge_filter) {
1827 return FilterEdges<const GR, const EF>(graph, edge_filter);
1831 template <typename DGR>
1832 class UndirectorBase {
1834 typedef DGR Digraph;
1835 typedef UndirectorBase Adaptor;
1837 typedef True UndirectedTag;
1839 typedef typename Digraph::Arc Edge;
1840 typedef typename Digraph::Node Node;
1843 friend class UndirectorBase;
1848 Arc(const Edge& edge, bool forward)
1849 : _edge(edge), _forward(forward) {}
1854 Arc(Invalid) : _edge(INVALID), _forward(true) {}
1856 operator const Edge&() const { return _edge; }
1858 bool operator==(const Arc &other) const {
1859 return _forward == other._forward && _edge == other._edge;
1861 bool operator!=(const Arc &other) const {
1862 return _forward != other._forward || _edge != other._edge;
1864 bool operator<(const Arc &other) const {
1865 return _forward < other._forward ||
1866 (_forward == other._forward && _edge < other._edge);
1870 void first(Node& n) const {
1874 void next(Node& n) const {
1878 void first(Arc& a) const {
1879 _digraph->first(a._edge);
1883 void next(Arc& a) const {
1887 _digraph->next(a._edge);
1892 void first(Edge& e) const {
1896 void next(Edge& e) const {
1900 void firstOut(Arc& a, const Node& n) const {
1901 _digraph->firstIn(a._edge, n);
1902 if (a._edge != INVALID ) {
1905 _digraph->firstOut(a._edge, n);
1909 void nextOut(Arc &a) const {
1911 Node n = _digraph->target(a._edge);
1912 _digraph->nextIn(a._edge);
1913 if (a._edge == INVALID) {
1914 _digraph->firstOut(a._edge, n);
1919 _digraph->nextOut(a._edge);
1923 void firstIn(Arc &a, const Node &n) const {
1924 _digraph->firstOut(a._edge, n);
1925 if (a._edge != INVALID ) {
1928 _digraph->firstIn(a._edge, n);
1932 void nextIn(Arc &a) const {
1934 Node n = _digraph->source(a._edge);
1935 _digraph->nextOut(a._edge);
1936 if (a._edge == INVALID ) {
1937 _digraph->firstIn(a._edge, n);
1942 _digraph->nextIn(a._edge);
1946 void firstInc(Edge &e, bool &d, const Node &n) const {
1948 _digraph->firstOut(e, n);
1949 if (e != INVALID) return;
1951 _digraph->firstIn(e, n);
1954 void nextInc(Edge &e, bool &d) const {
1956 Node s = _digraph->source(e);
1957 _digraph->nextOut(e);
1958 if (e != INVALID) return;
1960 _digraph->firstIn(e, s);
1962 _digraph->nextIn(e);
1966 Node u(const Edge& e) const {
1967 return _digraph->source(e);
1970 Node v(const Edge& e) const {
1971 return _digraph->target(e);
1974 Node source(const Arc &a) const {
1975 return a._forward ? _digraph->source(a._edge) : _digraph->target(a._edge);
1978 Node target(const Arc &a) const {
1979 return a._forward ? _digraph->target(a._edge) : _digraph->source(a._edge);
1982 static Arc direct(const Edge &e, bool d) {
1986 static bool direction(const Arc &a) { return a._forward; }
1988 Node nodeFromId(int ix) const { return _digraph->nodeFromId(ix); }
1989 Arc arcFromId(int ix) const {
1990 return direct(_digraph->arcFromId(ix >> 1), bool(ix & 1));
1992 Edge edgeFromId(int ix) const { return _digraph->arcFromId(ix); }
1994 int id(const Node &n) const { return _digraph->id(n); }
1995 int id(const Arc &a) const {
1996 return (_digraph->id(a) << 1) | (a._forward ? 1 : 0);
1998 int id(const Edge &e) const { return _digraph->id(e); }
2000 int maxNodeId() const { return _digraph->maxNodeId(); }
2001 int maxArcId() const { return (_digraph->maxArcId() << 1) | 1; }
2002 int maxEdgeId() const { return _digraph->maxArcId(); }
2004 Node addNode() { return _digraph->addNode(); }
2005 Edge addEdge(const Node& u, const Node& v) {
2006 return _digraph->addArc(u, v);
2009 void erase(const Node& i) { _digraph->erase(i); }
2010 void erase(const Edge& i) { _digraph->erase(i); }
2012 void clear() { _digraph->clear(); }
2014 typedef NodeNumTagIndicator<Digraph> NodeNumTag;
2015 int nodeNum() const { return _digraph->nodeNum(); }
2017 typedef ArcNumTagIndicator<Digraph> ArcNumTag;
2018 int arcNum() const { return 2 * _digraph->arcNum(); }
2020 typedef ArcNumTag EdgeNumTag;
2021 int edgeNum() const { return _digraph->arcNum(); }
2023 typedef FindArcTagIndicator<Digraph> FindArcTag;
2024 Arc findArc(Node s, Node t, Arc p = INVALID) const {
2026 Edge arc = _digraph->findArc(s, t);
2027 if (arc != INVALID) return direct(arc, true);
2028 arc = _digraph->findArc(t, s);
2029 if (arc != INVALID) return direct(arc, false);
2030 } else if (direction(p)) {
2031 Edge arc = _digraph->findArc(s, t, p);
2032 if (arc != INVALID) return direct(arc, true);
2033 arc = _digraph->findArc(t, s);
2034 if (arc != INVALID) return direct(arc, false);
2036 Edge arc = _digraph->findArc(t, s, p);
2037 if (arc != INVALID) return direct(arc, false);
2042 typedef FindArcTag FindEdgeTag;
2043 Edge findEdge(Node s, Node t, Edge p = INVALID) const {
2046 Edge arc = _digraph->findArc(s, t);
2047 if (arc != INVALID) return arc;
2048 arc = _digraph->findArc(t, s);
2049 if (arc != INVALID) return arc;
2050 } else if (_digraph->source(p) == s) {
2051 Edge arc = _digraph->findArc(s, t, p);
2052 if (arc != INVALID) return arc;
2053 arc = _digraph->findArc(t, s);
2054 if (arc != INVALID) return arc;
2056 Edge arc = _digraph->findArc(t, s, p);
2057 if (arc != INVALID) return arc;
2060 return _digraph->findArc(s, t, p);
2067 template <typename V>
2071 typedef typename DGR::template ArcMap<V> MapImpl;
2075 typedef typename MapTraits<MapImpl>::ReferenceMapTag ReferenceMapTag;
2079 typedef typename MapTraits<MapImpl>::ConstReturnValue ConstReturnValue;
2080 typedef typename MapTraits<MapImpl>::ReturnValue ReturnValue;
2081 typedef typename MapTraits<MapImpl>::ConstReturnValue ConstReference;
2082 typedef typename MapTraits<MapImpl>::ReturnValue Reference;
2084 ArcMapBase(const UndirectorBase<DGR>& adaptor) :
2085 _forward(*adaptor._digraph), _backward(*adaptor._digraph) {}
2087 ArcMapBase(const UndirectorBase<DGR>& adaptor, const V& value)
2088 : _forward(*adaptor._digraph, value),
2089 _backward(*adaptor._digraph, value) {}
2091 void set(const Arc& a, const V& value) {
2093 _forward.set(a, value);
2095 _backward.set(a, value);
2099 ConstReturnValue operator[](const Arc& a) const {
2103 return _backward[a];
2107 ReturnValue operator[](const Arc& a) {
2111 return _backward[a];
2117 MapImpl _forward, _backward;
2123 template <typename V>
2124 class NodeMap : public DGR::template NodeMap<V> {
2125 typedef typename DGR::template NodeMap<V> Parent;
2130 explicit NodeMap(const UndirectorBase<DGR>& adaptor)
2131 : Parent(*adaptor._digraph) {}
2133 NodeMap(const UndirectorBase<DGR>& adaptor, const V& value)
2134 : Parent(*adaptor._digraph, value) { }
2137 NodeMap& operator=(const NodeMap& cmap) {
2138 return operator=<NodeMap>(cmap);
2141 template <typename CMap>
2142 NodeMap& operator=(const CMap& cmap) {
2143 Parent::operator=(cmap);
2149 template <typename V>
2151 : public SubMapExtender<UndirectorBase<DGR>, ArcMapBase<V> > {
2152 typedef SubMapExtender<UndirectorBase<DGR>, ArcMapBase<V> > Parent;
2157 explicit ArcMap(const UndirectorBase<DGR>& adaptor)
2158 : Parent(adaptor) {}
2160 ArcMap(const UndirectorBase<DGR>& adaptor, const V& value)
2161 : Parent(adaptor, value) {}
2164 ArcMap& operator=(const ArcMap& cmap) {
2165 return operator=<ArcMap>(cmap);
2168 template <typename CMap>
2169 ArcMap& operator=(const CMap& cmap) {
2170 Parent::operator=(cmap);
2175 template <typename V>
2176 class EdgeMap : public Digraph::template ArcMap<V> {
2177 typedef typename Digraph::template ArcMap<V> Parent;
2182 explicit EdgeMap(const UndirectorBase<DGR>& adaptor)
2183 : Parent(*adaptor._digraph) {}
2185 EdgeMap(const UndirectorBase<DGR>& adaptor, const V& value)
2186 : Parent(*adaptor._digraph, value) {}
2189 EdgeMap& operator=(const EdgeMap& cmap) {
2190 return operator=<EdgeMap>(cmap);
2193 template <typename CMap>
2194 EdgeMap& operator=(const CMap& cmap) {
2195 Parent::operator=(cmap);
2201 typedef typename ItemSetTraits<DGR, Node>::ItemNotifier NodeNotifier;
2202 NodeNotifier& notifier(Node) const { return _digraph->notifier(Node()); }
2204 typedef typename ItemSetTraits<DGR, Edge>::ItemNotifier EdgeNotifier;
2205 EdgeNotifier& notifier(Edge) const { return _digraph->notifier(Edge()); }
2207 typedef EdgeNotifier ArcNotifier;
2208 ArcNotifier& notifier(Arc) const { return _digraph->notifier(Edge()); }
2212 UndirectorBase() : _digraph(0) {}
2216 void initialize(DGR& digraph) {
2217 _digraph = &digraph;
2222 /// \ingroup graph_adaptors
2224 /// \brief Adaptor class for viewing a digraph as an undirected graph.
2226 /// Undirector adaptor can be used for viewing a digraph as an undirected
2227 /// graph. All arcs of the underlying digraph are showed in the
2228 /// adaptor as an edge (and also as a pair of arcs, of course).
2229 /// This adaptor conforms to the \ref concepts::Graph "Graph" concept.
2231 /// The adapted digraph can also be modified through this adaptor
2232 /// by adding or removing nodes or edges, unless the \c GR template
2233 /// parameter is set to be \c const.
2235 /// \tparam DGR The type of the adapted digraph.
2236 /// It must conform to the \ref concepts::Digraph "Digraph" concept.
2237 /// It can also be specified to be \c const.
2239 /// \note The \c Node type of this adaptor and the adapted digraph are
2240 /// convertible to each other, moreover the \c Edge type of the adaptor
2241 /// and the \c Arc type of the adapted digraph are also convertible to
2243 /// (Thus the \c Arc type of the adaptor is convertible to the \c Arc type
2244 /// of the adapted digraph.)
2245 template<typename DGR>
2250 public GraphAdaptorExtender<UndirectorBase<DGR> > {
2252 typedef GraphAdaptorExtender<UndirectorBase<DGR> > Parent;
2254 /// The type of the adapted digraph.
2255 typedef DGR Digraph;
2260 /// \brief Constructor
2262 /// Creates an undirected graph from the given digraph.
2263 Undirector(DGR& digraph) {
2264 initialize(digraph);
2267 /// \brief Arc map combined from two original arc maps
2269 /// This map adaptor class adapts two arc maps of the underlying
2270 /// digraph to get an arc map of the undirected graph.
2271 /// Its value type is inherited from the first arc map type (\c FW).
2272 /// \tparam FW The type of the "foward" arc map.
2273 /// \tparam BK The type of the "backward" arc map.
2274 template <typename FW, typename BK>
2275 class CombinedArcMap {
2278 /// The key type of the map
2279 typedef typename Parent::Arc Key;
2280 /// The value type of the map
2281 typedef typename FW::Value Value;
2283 typedef typename MapTraits<FW>::ReferenceMapTag ReferenceMapTag;
2285 typedef typename MapTraits<FW>::ReturnValue ReturnValue;
2286 typedef typename MapTraits<FW>::ConstReturnValue ConstReturnValue;
2287 typedef typename MapTraits<FW>::ReturnValue Reference;
2288 typedef typename MapTraits<FW>::ConstReturnValue ConstReference;
2291 CombinedArcMap(FW& forward, BK& backward)
2292 : _forward(&forward), _backward(&backward) {}
2294 /// Sets the value associated with the given key.
2295 void set(const Key& e, const Value& a) {
2296 if (Parent::direction(e)) {
2297 _forward->set(e, a);
2299 _backward->set(e, a);
2303 /// Returns the value associated with the given key.
2304 ConstReturnValue operator[](const Key& e) const {
2305 if (Parent::direction(e)) {
2306 return (*_forward)[e];
2308 return (*_backward)[e];
2312 /// Returns a reference to the value associated with the given key.
2313 ReturnValue operator[](const Key& e) {
2314 if (Parent::direction(e)) {
2315 return (*_forward)[e];
2317 return (*_backward)[e];
2328 /// \brief Returns a combined arc map
2330 /// This function just returns a combined arc map.
2331 template <typename FW, typename BK>
2332 static CombinedArcMap<FW, BK>
2333 combinedArcMap(FW& forward, BK& backward) {
2334 return CombinedArcMap<FW, BK>(forward, backward);
2337 template <typename FW, typename BK>
2338 static CombinedArcMap<const FW, BK>
2339 combinedArcMap(const FW& forward, BK& backward) {
2340 return CombinedArcMap<const FW, BK>(forward, backward);
2343 template <typename FW, typename BK>
2344 static CombinedArcMap<FW, const BK>
2345 combinedArcMap(FW& forward, const BK& backward) {
2346 return CombinedArcMap<FW, const BK>(forward, backward);
2349 template <typename FW, typename BK>
2350 static CombinedArcMap<const FW, const BK>
2351 combinedArcMap(const FW& forward, const BK& backward) {
2352 return CombinedArcMap<const FW, const BK>(forward, backward);
2357 /// \brief Returns a read-only Undirector adaptor
2359 /// This function just returns a read-only \ref Undirector adaptor.
2360 /// \ingroup graph_adaptors
2361 /// \relates Undirector
2362 template<typename DGR>
2363 Undirector<const DGR> undirector(const DGR& digraph) {
2364 return Undirector<const DGR>(digraph);
2368 template <typename GR, typename DM>
2369 class OrienterBase {
2373 typedef DM DirectionMap;
2375 typedef typename GR::Node Node;
2376 typedef typename GR::Edge Arc;
2378 void reverseArc(const Arc& arc) {
2379 _direction->set(arc, !(*_direction)[arc]);
2382 void first(Node& i) const { _graph->first(i); }
2383 void first(Arc& i) const { _graph->first(i); }
2384 void firstIn(Arc& i, const Node& n) const {
2386 _graph->firstInc(i, d, n);
2387 while (i != INVALID && d == (*_direction)[i]) _graph->nextInc(i, d);
2389 void firstOut(Arc& i, const Node& n ) const {
2391 _graph->firstInc(i, d, n);
2392 while (i != INVALID && d != (*_direction)[i]) _graph->nextInc(i, d);
2395 void next(Node& i) const { _graph->next(i); }
2396 void next(Arc& i) const { _graph->next(i); }
2397 void nextIn(Arc& i) const {
2398 bool d = !(*_direction)[i];
2399 _graph->nextInc(i, d);
2400 while (i != INVALID && d == (*_direction)[i]) _graph->nextInc(i, d);
2402 void nextOut(Arc& i) const {
2403 bool d = (*_direction)[i];
2404 _graph->nextInc(i, d);
2405 while (i != INVALID && d != (*_direction)[i]) _graph->nextInc(i, d);
2408 Node source(const Arc& e) const {
2409 return (*_direction)[e] ? _graph->u(e) : _graph->v(e);
2411 Node target(const Arc& e) const {
2412 return (*_direction)[e] ? _graph->v(e) : _graph->u(e);
2415 typedef NodeNumTagIndicator<Graph> NodeNumTag;
2416 int nodeNum() const { return _graph->nodeNum(); }
2418 typedef EdgeNumTagIndicator<Graph> ArcNumTag;
2419 int arcNum() const { return _graph->edgeNum(); }
2421 typedef FindEdgeTagIndicator<Graph> FindArcTag;
2422 Arc findArc(const Node& u, const Node& v,
2423 const Arc& prev = INVALID) const {
2424 Arc arc = _graph->findEdge(u, v, prev);
2425 while (arc != INVALID && source(arc) != u) {
2426 arc = _graph->findEdge(u, v, arc);
2432 return Node(_graph->addNode());
2435 Arc addArc(const Node& u, const Node& v) {
2436 Arc arc = _graph->addEdge(u, v);
2437 _direction->set(arc, _graph->u(arc) == u);
2441 void erase(const Node& i) { _graph->erase(i); }
2442 void erase(const Arc& i) { _graph->erase(i); }
2444 void clear() { _graph->clear(); }
2446 int id(const Node& v) const { return _graph->id(v); }
2447 int id(const Arc& e) const { return _graph->id(e); }
2449 Node nodeFromId(int idx) const { return _graph->nodeFromId(idx); }
2450 Arc arcFromId(int idx) const { return _graph->edgeFromId(idx); }
2452 int maxNodeId() const { return _graph->maxNodeId(); }
2453 int maxArcId() const { return _graph->maxEdgeId(); }
2455 typedef typename ItemSetTraits<GR, Node>::ItemNotifier NodeNotifier;
2456 NodeNotifier& notifier(Node) const { return _graph->notifier(Node()); }
2458 typedef typename ItemSetTraits<GR, Arc>::ItemNotifier ArcNotifier;
2459 ArcNotifier& notifier(Arc) const { return _graph->notifier(Arc()); }
2461 template <typename V>
2462 class NodeMap : public GR::template NodeMap<V> {
2463 typedef typename GR::template NodeMap<V> Parent;
2467 explicit NodeMap(const OrienterBase<GR, DM>& adapter)
2468 : Parent(*adapter._graph) {}
2470 NodeMap(const OrienterBase<GR, DM>& adapter, const V& value)
2471 : Parent(*adapter._graph, value) {}
2474 NodeMap& operator=(const NodeMap& cmap) {
2475 return operator=<NodeMap>(cmap);
2478 template <typename CMap>
2479 NodeMap& operator=(const CMap& cmap) {
2480 Parent::operator=(cmap);
2486 template <typename V>
2487 class ArcMap : public GR::template EdgeMap<V> {
2488 typedef typename Graph::template EdgeMap<V> Parent;
2492 explicit ArcMap(const OrienterBase<GR, DM>& adapter)
2493 : Parent(*adapter._graph) { }
2495 ArcMap(const OrienterBase<GR, DM>& adapter, const V& value)
2496 : Parent(*adapter._graph, value) { }
2499 ArcMap& operator=(const ArcMap& cmap) {
2500 return operator=<ArcMap>(cmap);
2503 template <typename CMap>
2504 ArcMap& operator=(const CMap& cmap) {
2505 Parent::operator=(cmap);
2516 void initialize(GR& graph, DM& direction) {
2518 _direction = &direction;
2523 /// \ingroup graph_adaptors
2525 /// \brief Adaptor class for orienting the edges of a graph to get a digraph
2527 /// Orienter adaptor can be used for orienting the edges of a graph to
2528 /// get a digraph. A \c bool edge map of the underlying graph must be
2529 /// specified, which define the direction of the arcs in the adaptor.
2530 /// The arcs can be easily reversed by the \c reverseArc() member function
2532 /// This class conforms to the \ref concepts::Digraph "Digraph" concept.
2534 /// The adapted graph can also be modified through this adaptor
2535 /// by adding or removing nodes or arcs, unless the \c GR template
2536 /// parameter is set to be \c const.
2538 /// \tparam GR The type of the adapted graph.
2539 /// It must conform to the \ref concepts::Graph "Graph" concept.
2540 /// It can also be specified to be \c const.
2541 /// \tparam DM The type of the direction map.
2542 /// It must be a \c bool (or convertible) edge map of the
2543 /// adapted graph. The default type is
2544 /// \ref concepts::Graph::EdgeMap "GR::EdgeMap<bool>".
2546 /// \note The \c Node type of this adaptor and the adapted graph are
2547 /// convertible to each other, moreover the \c Arc type of the adaptor
2548 /// and the \c Edge type of the adapted graph are also convertible to
2551 template<typename GR,
2555 template<typename GR,
2556 typename DM = typename GR::template EdgeMap<bool> >
2558 public DigraphAdaptorExtender<OrienterBase<GR, DM> > {
2560 typedef DigraphAdaptorExtender<OrienterBase<GR, DM> > Parent;
2563 /// The type of the adapted graph.
2565 /// The type of the direction edge map.
2566 typedef DM DirectionMap;
2568 typedef typename Parent::Arc Arc;
2575 /// \brief Constructor
2577 /// Constructor of the adaptor.
2578 Orienter(GR& graph, DM& direction) {
2579 Parent::initialize(graph, direction);
2582 /// \brief Reverses the given arc
2584 /// This function reverses the given arc.
2585 /// It is done by simply negate the assigned value of \c a
2586 /// in the direction map.
2587 void reverseArc(const Arc& a) {
2588 Parent::reverseArc(a);
2592 /// \brief Returns a read-only Orienter adaptor
2594 /// This function just returns a read-only \ref Orienter adaptor.
2595 /// \ingroup graph_adaptors
2596 /// \relates Orienter
2597 template<typename GR, typename DM>
2598 Orienter<const GR, DM>
2599 orienter(const GR& graph, DM& direction) {
2600 return Orienter<const GR, DM>(graph, direction);
2603 template<typename GR, typename DM>
2604 Orienter<const GR, const DM>
2605 orienter(const GR& graph, const DM& direction) {
2606 return Orienter<const GR, const DM>(graph, direction);
2609 namespace _adaptor_bits {
2611 template <typename DGR, typename CM, typename FM, typename TL>
2612 class ResForwardFilter {
2615 typedef typename DGR::Arc Key;
2620 const CM* _capacity;
2626 ResForwardFilter(const CM& capacity, const FM& flow,
2627 const TL& tolerance = TL())
2628 : _capacity(&capacity), _flow(&flow), _tolerance(tolerance) { }
2630 bool operator[](const typename DGR::Arc& a) const {
2631 return _tolerance.positive((*_capacity)[a] - (*_flow)[a]);
2635 template<typename DGR,typename CM, typename FM, typename TL>
2636 class ResBackwardFilter {
2639 typedef typename DGR::Arc Key;
2644 const CM* _capacity;
2650 ResBackwardFilter(const CM& capacity, const FM& flow,
2651 const TL& tolerance = TL())
2652 : _capacity(&capacity), _flow(&flow), _tolerance(tolerance) { }
2654 bool operator[](const typename DGR::Arc& a) const {
2655 return _tolerance.positive((*_flow)[a]);
2661 /// \ingroup graph_adaptors
2663 /// \brief Adaptor class for composing the residual digraph for directed
2664 /// flow and circulation problems.
2666 /// ResidualDigraph can be used for composing the \e residual digraph
2667 /// for directed flow and circulation problems. Let \f$ G=(V, A) \f$
2668 /// be a directed graph and let \f$ F \f$ be a number type.
2669 /// Let \f$ flow, cap: A\to F \f$ be functions on the arcs.
2670 /// This adaptor implements a digraph structure with node set \f$ V \f$
2671 /// and arc set \f$ A_{forward}\cup A_{backward} \f$,
2672 /// where \f$ A_{forward}=\{uv : uv\in A, flow(uv)<cap(uv)\} \f$ and
2673 /// \f$ A_{backward}=\{vu : uv\in A, flow(uv)>0\} \f$, i.e. the so
2674 /// called residual digraph.
2675 /// When the union \f$ A_{forward}\cup A_{backward} \f$ is taken,
2676 /// multiplicities are counted, i.e. the adaptor has exactly
2677 /// \f$ |A_{forward}| + |A_{backward}|\f$ arcs (it may have parallel
2679 /// This class conforms to the \ref concepts::Digraph "Digraph" concept.
2681 /// \tparam DGR The type of the adapted digraph.
2682 /// It must conform to the \ref concepts::Digraph "Digraph" concept.
2683 /// It is implicitly \c const.
2684 /// \tparam CM The type of the capacity map.
2685 /// It must be an arc map of some numerical type, which defines
2686 /// the capacities in the flow problem. It is implicitly \c const.
2687 /// The default type is
2688 /// \ref concepts::Digraph::ArcMap "GR::ArcMap<int>".
2689 /// \tparam FM The type of the flow map.
2690 /// It must be an arc map of some numerical type, which defines
2691 /// the flow values in the flow problem. The default type is \c CM.
2692 /// \tparam TL The tolerance type for handling inexact computation.
2693 /// The default tolerance type depends on the value type of the
2696 /// \note This adaptor is implemented using Undirector and FilterArcs
2699 /// \note The \c Node type of this adaptor and the adapted digraph are
2700 /// convertible to each other, moreover the \c Arc type of the adaptor
2701 /// is convertible to the \c Arc type of the adapted digraph.
2703 template<typename DGR, typename CM, typename FM, typename TL>
2704 class ResidualDigraph
2706 template<typename DGR,
2707 typename CM = typename DGR::template ArcMap<int>,
2709 typename TL = Tolerance<typename CM::Value> >
2710 class ResidualDigraph
2711 : public SubDigraph<
2712 Undirector<const DGR>,
2713 ConstMap<typename DGR::Node, Const<bool, true> >,
2714 typename Undirector<const DGR>::template CombinedArcMap<
2715 _adaptor_bits::ResForwardFilter<const DGR, CM, FM, TL>,
2716 _adaptor_bits::ResBackwardFilter<const DGR, CM, FM, TL> > >
2721 /// The type of the underlying digraph.
2722 typedef DGR Digraph;
2723 /// The type of the capacity map.
2724 typedef CM CapacityMap;
2725 /// The type of the flow map.
2727 /// The tolerance type.
2728 typedef TL Tolerance;
2730 typedef typename CapacityMap::Value Value;
2731 typedef ResidualDigraph Adaptor;
2735 typedef Undirector<const Digraph> Undirected;
2737 typedef ConstMap<typename DGR::Node, Const<bool, true> > NodeFilter;
2739 typedef _adaptor_bits::ResForwardFilter<const DGR, CM,
2740 FM, TL> ForwardFilter;
2742 typedef _adaptor_bits::ResBackwardFilter<const DGR, CM,
2743 FM, TL> BackwardFilter;
2745 typedef typename Undirected::
2746 template CombinedArcMap<ForwardFilter, BackwardFilter> ArcFilter;
2748 typedef SubDigraph<Undirected, NodeFilter, ArcFilter> Parent;
2750 const CapacityMap* _capacity;
2754 NodeFilter _node_filter;
2755 ForwardFilter _forward_filter;
2756 BackwardFilter _backward_filter;
2757 ArcFilter _arc_filter;
2761 /// \brief Constructor
2763 /// Constructor of the residual digraph adaptor. The parameters are the
2764 /// digraph, the capacity map, the flow map, and a tolerance object.
2765 ResidualDigraph(const DGR& digraph, const CM& capacity,
2766 FM& flow, const TL& tolerance = Tolerance())
2767 : Parent(), _capacity(&capacity), _flow(&flow),
2768 _graph(digraph), _node_filter(),
2769 _forward_filter(capacity, flow, tolerance),
2770 _backward_filter(capacity, flow, tolerance),
2771 _arc_filter(_forward_filter, _backward_filter)
2773 Parent::initialize(_graph, _node_filter, _arc_filter);
2776 typedef typename Parent::Arc Arc;
2778 /// \brief Returns the residual capacity of the given arc.
2780 /// Returns the residual capacity of the given arc.
2781 Value residualCapacity(const Arc& a) const {
2782 if (Undirected::direction(a)) {
2783 return (*_capacity)[a] - (*_flow)[a];
2789 /// \brief Augments on the given arc in the residual digraph.
2791 /// Augments on the given arc in the residual digraph. It increases
2792 /// or decreases the flow value on the original arc according to the
2793 /// direction of the residual arc.
2794 void augment(const Arc& a, const Value& v) const {
2795 if (Undirected::direction(a)) {
2796 _flow->set(a, (*_flow)[a] + v);
2798 _flow->set(a, (*_flow)[a] - v);
2802 /// \brief Returns \c true if the given residual arc is a forward arc.
2804 /// Returns \c true if the given residual arc has the same orientation
2805 /// as the original arc, i.e. it is a so called forward arc.
2806 static bool forward(const Arc& a) {
2807 return Undirected::direction(a);
2810 /// \brief Returns \c true if the given residual arc is a backward arc.
2812 /// Returns \c true if the given residual arc has the opposite orientation
2813 /// than the original arc, i.e. it is a so called backward arc.
2814 static bool backward(const Arc& a) {
2815 return !Undirected::direction(a);
2818 /// \brief Returns the forward oriented residual arc.
2820 /// Returns the forward oriented residual arc related to the given
2821 /// arc of the underlying digraph.
2822 static Arc forward(const typename Digraph::Arc& a) {
2823 return Undirected::direct(a, true);
2826 /// \brief Returns the backward oriented residual arc.
2828 /// Returns the backward oriented residual arc related to the given
2829 /// arc of the underlying digraph.
2830 static Arc backward(const typename Digraph::Arc& a) {
2831 return Undirected::direct(a, false);
2834 /// \brief Residual capacity map.
2836 /// This map adaptor class can be used for obtaining the residual
2837 /// capacities as an arc map of the residual digraph.
2838 /// Its value type is inherited from the capacity map.
2839 class ResidualCapacity {
2841 const Adaptor* _adaptor;
2843 /// The key type of the map
2845 /// The value type of the map
2846 typedef typename CapacityMap::Value Value;
2849 ResidualCapacity(const ResidualDigraph<DGR, CM, FM, TL>& adaptor)
2850 : _adaptor(&adaptor) {}
2852 /// Returns the value associated with the given residual arc
2853 Value operator[](const Arc& a) const {
2854 return _adaptor->residualCapacity(a);
2859 /// \brief Returns a residual capacity map
2861 /// This function just returns a residual capacity map.
2862 ResidualCapacity residualCapacity() const {
2863 return ResidualCapacity(*this);
2868 /// \brief Returns a (read-only) Residual adaptor
2870 /// This function just returns a (read-only) \ref ResidualDigraph adaptor.
2871 /// \ingroup graph_adaptors
2872 /// \relates ResidualDigraph
2873 template<typename DGR, typename CM, typename FM>
2874 ResidualDigraph<DGR, CM, FM>
2875 residualDigraph(const DGR& digraph, const CM& capacity_map, FM& flow_map) {
2876 return ResidualDigraph<DGR, CM, FM> (digraph, capacity_map, flow_map);
2880 template <typename DGR>
2881 class SplitNodesBase {
2882 typedef DigraphAdaptorBase<const DGR> Parent;
2886 typedef DGR Digraph;
2887 typedef SplitNodesBase Adaptor;
2889 typedef typename DGR::Node DigraphNode;
2890 typedef typename DGR::Arc DigraphArc;
2897 template <typename T> class NodeMapBase;
2898 template <typename T> class ArcMapBase;
2902 class Node : public DigraphNode {
2903 friend class SplitNodesBase;
2904 template <typename T> friend class NodeMapBase;
2908 Node(DigraphNode node, bool in)
2909 : DigraphNode(node), _in(in) {}
2914 Node(Invalid) : DigraphNode(INVALID), _in(true) {}
2916 bool operator==(const Node& node) const {
2917 return DigraphNode::operator==(node) && _in == node._in;
2920 bool operator!=(const Node& node) const {
2921 return !(*this == node);
2924 bool operator<(const Node& node) const {
2925 return DigraphNode::operator<(node) ||
2926 (DigraphNode::operator==(node) && _in < node._in);
2931 friend class SplitNodesBase;
2932 template <typename T> friend class ArcMapBase;
2934 typedef BiVariant<DigraphArc, DigraphNode> ArcImpl;
2936 explicit Arc(const DigraphArc& arc) : _item(arc) {}
2937 explicit Arc(const DigraphNode& node) : _item(node) {}
2943 Arc(Invalid) : _item(DigraphArc(INVALID)) {}
2945 bool operator==(const Arc& arc) const {
2946 if (_item.firstState()) {
2947 if (arc._item.firstState()) {
2948 return _item.first() == arc._item.first();
2951 if (arc._item.secondState()) {
2952 return _item.second() == arc._item.second();
2958 bool operator!=(const Arc& arc) const {
2959 return !(*this == arc);
2962 bool operator<(const Arc& arc) const {
2963 if (_item.firstState()) {
2964 if (arc._item.firstState()) {
2965 return _item.first() < arc._item.first();
2969 if (arc._item.secondState()) {
2970 return _item.second() < arc._item.second();
2976 operator DigraphArc() const { return _item.first(); }
2977 operator DigraphNode() const { return _item.second(); }
2981 void first(Node& n) const {
2986 void next(Node& n) const {
2995 void first(Arc& e) const {
2996 e._item.setSecond();
2997 _digraph->first(e._item.second());
2998 if (e._item.second() == INVALID) {
3000 _digraph->first(e._item.first());
3004 void next(Arc& e) const {
3005 if (e._item.secondState()) {
3006 _digraph->next(e._item.second());
3007 if (e._item.second() == INVALID) {
3009 _digraph->first(e._item.first());
3012 _digraph->next(e._item.first());
3016 void firstOut(Arc& e, const Node& n) const {
3018 e._item.setSecond(n);
3021 _digraph->firstOut(e._item.first(), n);
3025 void nextOut(Arc& e) const {
3026 if (!e._item.firstState()) {
3027 e._item.setFirst(INVALID);
3029 _digraph->nextOut(e._item.first());
3033 void firstIn(Arc& e, const Node& n) const {
3035 e._item.setSecond(n);
3038 _digraph->firstIn(e._item.first(), n);
3042 void nextIn(Arc& e) const {
3043 if (!e._item.firstState()) {
3044 e._item.setFirst(INVALID);
3046 _digraph->nextIn(e._item.first());
3050 Node source(const Arc& e) const {
3051 if (e._item.firstState()) {
3052 return Node(_digraph->source(e._item.first()), false);
3054 return Node(e._item.second(), true);
3058 Node target(const Arc& e) const {
3059 if (e._item.firstState()) {
3060 return Node(_digraph->target(e._item.first()), true);
3062 return Node(e._item.second(), false);
3066 int id(const Node& n) const {
3067 return (_digraph->id(n) << 1) | (n._in ? 0 : 1);
3069 Node nodeFromId(int ix) const {
3070 return Node(_digraph->nodeFromId(ix >> 1), (ix & 1) == 0);
3072 int maxNodeId() const {
3073 return 2 * _digraph->maxNodeId() + 1;
3076 int id(const Arc& e) const {
3077 if (e._item.firstState()) {
3078 return _digraph->id(e._item.first()) << 1;
3080 return (_digraph->id(e._item.second()) << 1) | 1;
3083 Arc arcFromId(int ix) const {
3084 if ((ix & 1) == 0) {
3085 return Arc(_digraph->arcFromId(ix >> 1));
3087 return Arc(_digraph->nodeFromId(ix >> 1));
3090 int maxArcId() const {
3091 return std::max(_digraph->maxNodeId() << 1,
3092 (_digraph->maxArcId() << 1) | 1);
3095 static bool inNode(const Node& n) {
3099 static bool outNode(const Node& n) {
3103 static bool origArc(const Arc& e) {
3104 return e._item.firstState();
3107 static bool bindArc(const Arc& e) {
3108 return e._item.secondState();
3111 static Node inNode(const DigraphNode& n) {
3112 return Node(n, true);
3115 static Node outNode(const DigraphNode& n) {
3116 return Node(n, false);
3119 static Arc arc(const DigraphNode& n) {
3123 static Arc arc(const DigraphArc& e) {
3127 typedef True NodeNumTag;
3128 int nodeNum() const {
3129 return 2 * countNodes(*_digraph);
3132 typedef True ArcNumTag;
3133 int arcNum() const {
3134 return countArcs(*_digraph) + countNodes(*_digraph);
3137 typedef True FindArcTag;
3138 Arc findArc(const Node& u, const Node& v,
3139 const Arc& prev = INVALID) const {
3140 if (inNode(u) && outNode(v)) {
3141 if (static_cast<const DigraphNode&>(u) ==
3142 static_cast<const DigraphNode&>(v) && prev == INVALID) {
3146 else if (outNode(u) && inNode(v)) {
3147 return Arc(::lemon::findArc(*_digraph, u, v, prev));
3154 template <typename V>
3156 : public MapTraits<typename Parent::template NodeMap<V> > {
3157 typedef typename Parent::template NodeMap<V> NodeImpl;
3161 typedef typename MapTraits<NodeImpl>::ReferenceMapTag ReferenceMapTag;
3162 typedef typename MapTraits<NodeImpl>::ReturnValue ReturnValue;
3163 typedef typename MapTraits<NodeImpl>::ConstReturnValue ConstReturnValue;
3164 typedef typename MapTraits<NodeImpl>::ReturnValue Reference;
3165 typedef typename MapTraits<NodeImpl>::ConstReturnValue ConstReference;
3167 NodeMapBase(const SplitNodesBase<DGR>& adaptor)
3168 : _in_map(*adaptor._digraph), _out_map(*adaptor._digraph) {}
3169 NodeMapBase(const SplitNodesBase<DGR>& adaptor, const V& value)
3170 : _in_map(*adaptor._digraph, value),
3171 _out_map(*adaptor._digraph, value) {}
3173 void set(const Node& key, const V& val) {
3174 if (SplitNodesBase<DGR>::inNode(key)) { _in_map.set(key, val); }
3175 else {_out_map.set(key, val); }
3178 ReturnValue operator[](const Node& key) {
3179 if (SplitNodesBase<DGR>::inNode(key)) { return _in_map[key]; }
3180 else { return _out_map[key]; }
3183 ConstReturnValue operator[](const Node& key) const {
3184 if (Adaptor::inNode(key)) { return _in_map[key]; }
3185 else { return _out_map[key]; }
3189 NodeImpl _in_map, _out_map;
3192 template <typename V>
3194 : public MapTraits<typename Parent::template ArcMap<V> > {
3195 typedef typename Parent::template ArcMap<V> ArcImpl;
3196 typedef typename Parent::template NodeMap<V> NodeImpl;
3200 typedef typename MapTraits<ArcImpl>::ReferenceMapTag ReferenceMapTag;
3201 typedef typename MapTraits<ArcImpl>::ReturnValue ReturnValue;
3202 typedef typename MapTraits<ArcImpl>::ConstReturnValue ConstReturnValue;
3203 typedef typename MapTraits<ArcImpl>::ReturnValue Reference;
3204 typedef typename MapTraits<ArcImpl>::ConstReturnValue ConstReference;
3206 ArcMapBase(const SplitNodesBase<DGR>& adaptor)
3207 : _arc_map(*adaptor._digraph), _node_map(*adaptor._digraph) {}
3208 ArcMapBase(const SplitNodesBase<DGR>& adaptor, const V& value)
3209 : _arc_map(*adaptor._digraph, value),
3210 _node_map(*adaptor._digraph, value) {}
3212 void set(const Arc& key, const V& val) {
3213 if (SplitNodesBase<DGR>::origArc(key)) {
3214 _arc_map.set(static_cast<const DigraphArc&>(key), val);
3216 _node_map.set(static_cast<const DigraphNode&>(key), val);
3220 ReturnValue operator[](const Arc& key) {
3221 if (SplitNodesBase<DGR>::origArc(key)) {
3222 return _arc_map[static_cast<const DigraphArc&>(key)];
3224 return _node_map[static_cast<const DigraphNode&>(key)];
3228 ConstReturnValue operator[](const Arc& key) const {
3229 if (SplitNodesBase<DGR>::origArc(key)) {
3230 return _arc_map[static_cast<const DigraphArc&>(key)];
3232 return _node_map[static_cast<const DigraphNode&>(key)];
3243 template <typename V>
3245 : public SubMapExtender<SplitNodesBase<DGR>, NodeMapBase<V> > {
3246 typedef SubMapExtender<SplitNodesBase<DGR>, NodeMapBase<V> > Parent;
3251 NodeMap(const SplitNodesBase<DGR>& adaptor)
3252 : Parent(adaptor) {}
3254 NodeMap(const SplitNodesBase<DGR>& adaptor, const V& value)
3255 : Parent(adaptor, value) {}
3258 NodeMap& operator=(const NodeMap& cmap) {
3259 return operator=<NodeMap>(cmap);
3262 template <typename CMap>
3263 NodeMap& operator=(const CMap& cmap) {
3264 Parent::operator=(cmap);
3269 template <typename V>
3271 : public SubMapExtender<SplitNodesBase<DGR>, ArcMapBase<V> > {
3272 typedef SubMapExtender<SplitNodesBase<DGR>, ArcMapBase<V> > Parent;
3277 ArcMap(const SplitNodesBase<DGR>& adaptor)
3278 : Parent(adaptor) {}
3280 ArcMap(const SplitNodesBase<DGR>& adaptor, const V& value)
3281 : Parent(adaptor, value) {}
3284 ArcMap& operator=(const ArcMap& cmap) {
3285 return operator=<ArcMap>(cmap);
3288 template <typename CMap>
3289 ArcMap& operator=(const CMap& cmap) {
3290 Parent::operator=(cmap);
3297 SplitNodesBase() : _digraph(0) {}
3301 void initialize(Digraph& digraph) {
3302 _digraph = &digraph;
3307 /// \ingroup graph_adaptors
3309 /// \brief Adaptor class for splitting the nodes of a digraph.
3311 /// SplitNodes adaptor can be used for splitting each node into an
3312 /// \e in-node and an \e out-node in a digraph. Formaly, the adaptor
3313 /// replaces each node \f$ u \f$ in the digraph with two nodes,
3314 /// namely node \f$ u_{in} \f$ and node \f$ u_{out} \f$.
3315 /// If there is a \f$ (v, u) \f$ arc in the original digraph, then the
3316 /// new target of the arc will be \f$ u_{in} \f$ and similarly the
3317 /// source of each original \f$ (u, v) \f$ arc will be \f$ u_{out} \f$.
3318 /// The adaptor adds an additional \e bind \e arc from \f$ u_{in} \f$
3319 /// to \f$ u_{out} \f$ for each node \f$ u \f$ of the original digraph.
3321 /// The aim of this class is running an algorithm with respect to node
3322 /// costs or capacities if the algorithm considers only arc costs or
3323 /// capacities directly.
3324 /// In this case you can use \c SplitNodes adaptor, and set the node
3325 /// costs/capacities of the original digraph to the \e bind \e arcs
3328 /// \tparam DGR The type of the adapted digraph.
3329 /// It must conform to the \ref concepts::Digraph "Digraph" concept.
3330 /// It is implicitly \c const.
3332 /// \note The \c Node type of this adaptor is converible to the \c Node
3333 /// type of the adapted digraph.
3334 template <typename DGR>
3339 : public DigraphAdaptorExtender<SplitNodesBase<const DGR> > {
3341 typedef DigraphAdaptorExtender<SplitNodesBase<const DGR> > Parent;
3344 typedef DGR Digraph;
3346 typedef typename DGR::Node DigraphNode;
3347 typedef typename DGR::Arc DigraphArc;
3349 typedef typename Parent::Node Node;
3350 typedef typename Parent::Arc Arc;
3352 /// \brief Constructor
3354 /// Constructor of the adaptor.
3355 SplitNodes(const DGR& g) {
3356 Parent::initialize(g);
3359 /// \brief Returns \c true if the given node is an in-node.
3361 /// Returns \c true if the given node is an in-node.
3362 static bool inNode(const Node& n) {
3363 return Parent::inNode(n);
3366 /// \brief Returns \c true if the given node is an out-node.
3368 /// Returns \c true if the given node is an out-node.
3369 static bool outNode(const Node& n) {
3370 return Parent::outNode(n);
3373 /// \brief Returns \c true if the given arc is an original arc.
3375 /// Returns \c true if the given arc is one of the arcs in the
3376 /// original digraph.
3377 static bool origArc(const Arc& a) {
3378 return Parent::origArc(a);
3381 /// \brief Returns \c true if the given arc is a bind arc.
3383 /// Returns \c true if the given arc is a bind arc, i.e. it connects
3384 /// an in-node and an out-node.
3385 static bool bindArc(const Arc& a) {
3386 return Parent::bindArc(a);
3389 /// \brief Returns the in-node created from the given original node.
3391 /// Returns the in-node created from the given original node.
3392 static Node inNode(const DigraphNode& n) {
3393 return Parent::inNode(n);
3396 /// \brief Returns the out-node created from the given original node.
3398 /// Returns the out-node created from the given original node.
3399 static Node outNode(const DigraphNode& n) {
3400 return Parent::outNode(n);
3403 /// \brief Returns the bind arc that corresponds to the given
3406 /// Returns the bind arc in the adaptor that corresponds to the given
3407 /// original node, i.e. the arc connecting the in-node and out-node
3409 static Arc arc(const DigraphNode& n) {
3410 return Parent::arc(n);
3413 /// \brief Returns the arc that corresponds to the given original arc.
3415 /// Returns the arc in the adaptor that corresponds to the given
3417 static Arc arc(const DigraphArc& a) {
3418 return Parent::arc(a);
3421 /// \brief Node map combined from two original node maps
3423 /// This map adaptor class adapts two node maps of the original digraph
3424 /// to get a node map of the split digraph.
3425 /// Its value type is inherited from the first node map type (\c IN).
3426 /// \tparam IN The type of the node map for the in-nodes.
3427 /// \tparam OUT The type of the node map for the out-nodes.
3428 template <typename IN, typename OUT>
3429 class CombinedNodeMap {
3432 /// The key type of the map
3434 /// The value type of the map
3435 typedef typename IN::Value Value;
3437 typedef typename MapTraits<IN>::ReferenceMapTag ReferenceMapTag;
3438 typedef typename MapTraits<IN>::ReturnValue ReturnValue;
3439 typedef typename MapTraits<IN>::ConstReturnValue ConstReturnValue;
3440 typedef typename MapTraits<IN>::ReturnValue Reference;
3441 typedef typename MapTraits<IN>::ConstReturnValue ConstReference;
3444 CombinedNodeMap(IN& in_map, OUT& out_map)
3445 : _in_map(in_map), _out_map(out_map) {}
3447 /// Returns the value associated with the given key.
3448 Value operator[](const Key& key) const {
3449 if (SplitNodesBase<const DGR>::inNode(key)) {
3450 return _in_map[key];
3452 return _out_map[key];
3456 /// Returns a reference to the value associated with the given key.
3457 Value& operator[](const Key& key) {
3458 if (SplitNodesBase<const DGR>::inNode(key)) {
3459 return _in_map[key];
3461 return _out_map[key];
3465 /// Sets the value associated with the given key.
3466 void set(const Key& key, const Value& value) {
3467 if (SplitNodesBase<const DGR>::inNode(key)) {
3468 _in_map.set(key, value);
3470 _out_map.set(key, value);
3482 /// \brief Returns a combined node map
3484 /// This function just returns a combined node map.
3485 template <typename IN, typename OUT>
3486 static CombinedNodeMap<IN, OUT>
3487 combinedNodeMap(IN& in_map, OUT& out_map) {
3488 return CombinedNodeMap<IN, OUT>(in_map, out_map);
3491 template <typename IN, typename OUT>
3492 static CombinedNodeMap<const IN, OUT>
3493 combinedNodeMap(const IN& in_map, OUT& out_map) {
3494 return CombinedNodeMap<const IN, OUT>(in_map, out_map);
3497 template <typename IN, typename OUT>
3498 static CombinedNodeMap<IN, const OUT>
3499 combinedNodeMap(IN& in_map, const OUT& out_map) {
3500 return CombinedNodeMap<IN, const OUT>(in_map, out_map);
3503 template <typename IN, typename OUT>
3504 static CombinedNodeMap<const IN, const OUT>
3505 combinedNodeMap(const IN& in_map, const OUT& out_map) {
3506 return CombinedNodeMap<const IN, const OUT>(in_map, out_map);
3509 /// \brief Arc map combined from an arc map and a node map of the
3510 /// original digraph.
3512 /// This map adaptor class adapts an arc map and a node map of the
3513 /// original digraph to get an arc map of the split digraph.
3514 /// Its value type is inherited from the original arc map type (\c AM).
3515 /// \tparam AM The type of the arc map.
3516 /// \tparam NM the type of the node map.
3517 template <typename AM, typename NM>
3518 class CombinedArcMap {
3521 /// The key type of the map
3523 /// The value type of the map
3524 typedef typename AM::Value Value;
3526 typedef typename MapTraits<AM>::ReferenceMapTag ReferenceMapTag;
3527 typedef typename MapTraits<AM>::ReturnValue ReturnValue;
3528 typedef typename MapTraits<AM>::ConstReturnValue ConstReturnValue;
3529 typedef typename MapTraits<AM>::ReturnValue Reference;
3530 typedef typename MapTraits<AM>::ConstReturnValue ConstReference;
3533 CombinedArcMap(AM& arc_map, NM& node_map)
3534 : _arc_map(arc_map), _node_map(node_map) {}
3536 /// Returns the value associated with the given key.
3537 Value operator[](const Key& arc) const {
3538 if (SplitNodesBase<const DGR>::origArc(arc)) {
3539 return _arc_map[arc];
3541 return _node_map[arc];
3545 /// Returns a reference to the value associated with the given key.
3546 Value& operator[](const Key& arc) {
3547 if (SplitNodesBase<const DGR>::origArc(arc)) {
3548 return _arc_map[arc];
3550 return _node_map[arc];
3554 /// Sets the value associated with the given key.
3555 void set(const Arc& arc, const Value& val) {
3556 if (SplitNodesBase<const DGR>::origArc(arc)) {
3557 _arc_map.set(arc, val);
3559 _node_map.set(arc, val);
3570 /// \brief Returns a combined arc map
3572 /// This function just returns a combined arc map.
3573 template <typename ArcMap, typename NodeMap>
3574 static CombinedArcMap<ArcMap, NodeMap>
3575 combinedArcMap(ArcMap& arc_map, NodeMap& node_map) {
3576 return CombinedArcMap<ArcMap, NodeMap>(arc_map, node_map);
3579 template <typename ArcMap, typename NodeMap>
3580 static CombinedArcMap<const ArcMap, NodeMap>
3581 combinedArcMap(const ArcMap& arc_map, NodeMap& node_map) {
3582 return CombinedArcMap<const ArcMap, NodeMap>(arc_map, node_map);
3585 template <typename ArcMap, typename NodeMap>
3586 static CombinedArcMap<ArcMap, const NodeMap>
3587 combinedArcMap(ArcMap& arc_map, const NodeMap& node_map) {
3588 return CombinedArcMap<ArcMap, const NodeMap>(arc_map, node_map);
3591 template <typename ArcMap, typename NodeMap>
3592 static CombinedArcMap<const ArcMap, const NodeMap>
3593 combinedArcMap(const ArcMap& arc_map, const NodeMap& node_map) {
3594 return CombinedArcMap<const ArcMap, const NodeMap>(arc_map, node_map);
3599 /// \brief Returns a (read-only) SplitNodes adaptor
3601 /// This function just returns a (read-only) \ref SplitNodes adaptor.
3602 /// \ingroup graph_adaptors
3603 /// \relates SplitNodes
3604 template<typename DGR>
3606 splitNodes(const DGR& digraph) {
3607 return SplitNodes<DGR>(digraph);
3610 #undef LEMON_SCOPE_FIX
3614 #endif //LEMON_ADAPTORS_H