1 /* -*- mode: C++; indent-tabs-mode: nil; -*-
3 * This file is a part of LEMON, a generic C++ optimization library.
5 * Copyright (C) 2003-2008
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 * (Egervary Research Group on Combinatorial Optimization, EGRES).
9 * Permission to use, modify and distribute this software is granted
10 * provided that this copyright notice appears in all copies. For
11 * precise terms see the accompanying LICENSE file.
13 * This software is provided "AS IS" with no warranty of any kind,
14 * express or implied, and with no claim as to its suitability for any
19 #ifndef LEMON_MAX_MATCHING_H
20 #define LEMON_MAX_MATCHING_H
27 #include <lemon/core.h>
28 #include <lemon/unionfind.h>
29 #include <lemon/bin_heap.h>
30 #include <lemon/maps.h>
34 ///\brief Maximum matching algorithms in general graphs.
40 /// \brief Edmonds' alternating forest maximum matching algorithm.
42 /// This class implements Edmonds' alternating forest matching
43 /// algorithm. The algorithm can be started from an arbitrary initial
44 /// matching (the default is the empty one)
46 /// The dual solution of the problem is a map of the nodes to
47 /// MaxMatching::Status, having values \c EVEN/D, \c ODD/A and \c
48 /// MATCHED/C showing the Gallai-Edmonds decomposition of the
49 /// graph. The nodes in \c EVEN/D induce a graph with
50 /// factor-critical components, the nodes in \c ODD/A form the
51 /// barrier, and the nodes in \c MATCHED/C induce a graph having a
52 /// perfect matching. The number of the factor-critical components
53 /// minus the number of barrier nodes is a lower bound on the
54 /// unmatched nodes, and the matching is optimal if and only if this bound is
55 /// tight. This decomposition can be attained by calling \c
56 /// decomposition() after running the algorithm.
58 /// \param _Graph The graph type the algorithm runs on.
59 template <typename _Graph>
64 typedef typename Graph::template NodeMap<typename Graph::Arc>
67 ///\brief Indicates the Gallai-Edmonds decomposition of the graph.
69 ///Indicates the Gallai-Edmonds decomposition of the graph. The
70 ///nodes with Status \c EVEN/D induce a graph with factor-critical
71 ///components, the nodes in \c ODD/A form the canonical barrier,
72 ///and the nodes in \c MATCHED/C induce a graph having a perfect
75 EVEN = 1, D = 1, MATCHED = 0, C = 0, ODD = -1, A = -1, UNMATCHED = -2
78 typedef typename Graph::template NodeMap<Status> StatusMap;
82 TEMPLATE_GRAPH_TYPEDEFS(Graph);
84 typedef UnionFindEnum<IntNodeMap> BlossomSet;
85 typedef ExtendFindEnum<IntNodeMap> TreeSet;
86 typedef RangeMap<Node> NodeIntMap;
87 typedef MatchingMap EarMap;
88 typedef std::vector<Node> NodeQueue;
91 MatchingMap* _matching;
96 IntNodeMap* _blossom_set_index;
97 BlossomSet* _blossom_set;
98 NodeIntMap* _blossom_rep;
100 IntNodeMap* _tree_set_index;
103 NodeQueue _node_queue;
104 int _process, _postpone, _last;
110 void createStructures() {
111 _node_num = countNodes(_graph);
113 _matching = new MatchingMap(_graph);
116 _status = new StatusMap(_graph);
119 _ear = new EarMap(_graph);
122 _blossom_set_index = new IntNodeMap(_graph);
123 _blossom_set = new BlossomSet(*_blossom_set_index);
126 _blossom_rep = new NodeIntMap(_node_num);
129 _tree_set_index = new IntNodeMap(_graph);
130 _tree_set = new TreeSet(*_tree_set_index);
132 _node_queue.resize(_node_num);
135 void destroyStructures() {
147 delete _blossom_set_index;
153 delete _tree_set_index;
158 void processDense(const Node& n) {
159 _process = _postpone = _last = 0;
160 _node_queue[_last++] = n;
162 while (_process != _last) {
163 Node u = _node_queue[_process++];
164 for (OutArcIt a(_graph, u); a != INVALID; ++a) {
165 Node v = _graph.target(a);
166 if ((*_status)[v] == MATCHED) {
168 } else if ((*_status)[v] == UNMATCHED) {
175 while (_postpone != _last) {
176 Node u = _node_queue[_postpone++];
178 for (OutArcIt a(_graph, u); a != INVALID ; ++a) {
179 Node v = _graph.target(a);
181 if ((*_status)[v] == EVEN) {
182 if (_blossom_set->find(u) != _blossom_set->find(v)) {
187 while (_process != _last) {
188 Node w = _node_queue[_process++];
189 for (OutArcIt b(_graph, w); b != INVALID; ++b) {
190 Node x = _graph.target(b);
191 if ((*_status)[x] == MATCHED) {
193 } else if ((*_status)[x] == UNMATCHED) {
203 void processSparse(const Node& n) {
204 _process = _last = 0;
205 _node_queue[_last++] = n;
206 while (_process != _last) {
207 Node u = _node_queue[_process++];
208 for (OutArcIt a(_graph, u); a != INVALID; ++a) {
209 Node v = _graph.target(a);
211 if ((*_status)[v] == EVEN) {
212 if (_blossom_set->find(u) != _blossom_set->find(v)) {
215 } else if ((*_status)[v] == MATCHED) {
217 } else if ((*_status)[v] == UNMATCHED) {
225 void shrinkOnEdge(const Edge& e) {
229 std::set<Node> left_set, right_set;
231 Node left = (*_blossom_rep)[_blossom_set->find(_graph.u(e))];
232 left_set.insert(left);
234 Node right = (*_blossom_rep)[_blossom_set->find(_graph.v(e))];
235 right_set.insert(right);
238 if ((*_matching)[left] == INVALID) break;
239 left = _graph.target((*_matching)[left]);
240 left = (*_blossom_rep)[_blossom_set->
241 find(_graph.target((*_ear)[left]))];
242 if (right_set.find(left) != right_set.end()) {
246 left_set.insert(left);
248 if ((*_matching)[right] == INVALID) break;
249 right = _graph.target((*_matching)[right]);
250 right = (*_blossom_rep)[_blossom_set->
251 find(_graph.target((*_ear)[right]))];
252 if (left_set.find(right) != left_set.end()) {
256 right_set.insert(right);
259 if (nca == INVALID) {
260 if ((*_matching)[left] == INVALID) {
262 while (left_set.find(nca) == left_set.end()) {
263 nca = _graph.target((*_matching)[nca]);
264 nca =(*_blossom_rep)[_blossom_set->
265 find(_graph.target((*_ear)[nca]))];
269 while (right_set.find(nca) == right_set.end()) {
270 nca = _graph.target((*_matching)[nca]);
271 nca = (*_blossom_rep)[_blossom_set->
272 find(_graph.target((*_ear)[nca]))];
280 Node node = _graph.u(e);
281 Arc arc = _graph.direct(e, true);
282 Node base = (*_blossom_rep)[_blossom_set->find(node)];
284 while (base != nca) {
285 _ear->set(node, arc);
289 n = _graph.target((*_matching)[n]);
291 n = _graph.target(a);
292 _ear->set(n, _graph.oppositeArc(a));
294 node = _graph.target((*_matching)[base]);
295 _tree_set->erase(base);
296 _tree_set->erase(node);
297 _blossom_set->insert(node, _blossom_set->find(base));
298 _status->set(node, EVEN);
299 _node_queue[_last++] = node;
300 arc = _graph.oppositeArc((*_ear)[node]);
301 node = _graph.target((*_ear)[node]);
302 base = (*_blossom_rep)[_blossom_set->find(node)];
303 _blossom_set->join(_graph.target(arc), base);
307 _blossom_rep->set(_blossom_set->find(nca), nca);
311 Node node = _graph.v(e);
312 Arc arc = _graph.direct(e, false);
313 Node base = (*_blossom_rep)[_blossom_set->find(node)];
315 while (base != nca) {
316 _ear->set(node, arc);
320 n = _graph.target((*_matching)[n]);
322 n = _graph.target(a);
323 _ear->set(n, _graph.oppositeArc(a));
325 node = _graph.target((*_matching)[base]);
326 _tree_set->erase(base);
327 _tree_set->erase(node);
328 _blossom_set->insert(node, _blossom_set->find(base));
329 _status->set(node, EVEN);
330 _node_queue[_last++] = node;
331 arc = _graph.oppositeArc((*_ear)[node]);
332 node = _graph.target((*_ear)[node]);
333 base = (*_blossom_rep)[_blossom_set->find(node)];
334 _blossom_set->join(_graph.target(arc), base);
338 _blossom_rep->set(_blossom_set->find(nca), nca);
343 void extendOnArc(const Arc& a) {
344 Node base = _graph.source(a);
345 Node odd = _graph.target(a);
347 _ear->set(odd, _graph.oppositeArc(a));
348 Node even = _graph.target((*_matching)[odd]);
349 _blossom_rep->set(_blossom_set->insert(even), even);
350 _status->set(odd, ODD);
351 _status->set(even, EVEN);
352 int tree = _tree_set->find((*_blossom_rep)[_blossom_set->find(base)]);
353 _tree_set->insert(odd, tree);
354 _tree_set->insert(even, tree);
355 _node_queue[_last++] = even;
359 void augmentOnArc(const Arc& a) {
360 Node even = _graph.source(a);
361 Node odd = _graph.target(a);
363 int tree = _tree_set->find((*_blossom_rep)[_blossom_set->find(even)]);
365 _matching->set(odd, _graph.oppositeArc(a));
366 _status->set(odd, MATCHED);
368 Arc arc = (*_matching)[even];
369 _matching->set(even, a);
371 while (arc != INVALID) {
372 odd = _graph.target(arc);
374 even = _graph.target(arc);
375 _matching->set(odd, arc);
376 arc = (*_matching)[even];
377 _matching->set(even, _graph.oppositeArc((*_matching)[odd]));
380 for (typename TreeSet::ItemIt it(*_tree_set, tree);
381 it != INVALID; ++it) {
382 if ((*_status)[it] == ODD) {
383 _status->set(it, MATCHED);
385 int blossom = _blossom_set->find(it);
386 for (typename BlossomSet::ItemIt jt(*_blossom_set, blossom);
387 jt != INVALID; ++jt) {
388 _status->set(jt, MATCHED);
390 _blossom_set->eraseClass(blossom);
393 _tree_set->eraseClass(tree);
399 /// \brief Constructor
402 MaxMatching(const Graph& graph)
403 : _graph(graph), _matching(0), _status(0), _ear(0),
404 _blossom_set_index(0), _blossom_set(0), _blossom_rep(0),
405 _tree_set_index(0), _tree_set(0) {}
411 /// \name Execution control
412 /// The simplest way to execute the algorithm is to use the
413 /// \c run() member function.
416 /// If you need better control on the execution, you must call
417 /// \ref init(), \ref greedyInit() or \ref matchingInit()
418 /// functions first, then you can start the algorithm with the \ref
419 /// startSparse() or startDense() functions.
423 /// \brief Sets the actual matching to the empty matching.
425 /// Sets the actual matching to the empty matching.
429 for(NodeIt n(_graph); n != INVALID; ++n) {
430 _matching->set(n, INVALID);
431 _status->set(n, UNMATCHED);
435 ///\brief Finds an initial matching in a greedy way
437 ///It finds an initial matching in a greedy way.
440 for (NodeIt n(_graph); n != INVALID; ++n) {
441 _matching->set(n, INVALID);
442 _status->set(n, UNMATCHED);
444 for (NodeIt n(_graph); n != INVALID; ++n) {
445 if ((*_matching)[n] == INVALID) {
446 for (OutArcIt a(_graph, n); a != INVALID ; ++a) {
447 Node v = _graph.target(a);
448 if ((*_matching)[v] == INVALID && v != n) {
449 _matching->set(n, a);
450 _status->set(n, MATCHED);
451 _matching->set(v, _graph.oppositeArc(a));
452 _status->set(v, MATCHED);
461 /// \brief Initialize the matching from a map containing.
463 /// Initialize the matching from a \c bool valued \c Edge map. This
464 /// map must have the property that there are no two incident edges
465 /// with true value, ie. it contains a matching.
466 /// \return %True if the map contains a matching.
467 template <typename MatchingMap>
468 bool matchingInit(const MatchingMap& matching) {
471 for (NodeIt n(_graph); n != INVALID; ++n) {
472 _matching->set(n, INVALID);
473 _status->set(n, UNMATCHED);
475 for(EdgeIt e(_graph); e!=INVALID; ++e) {
478 Node u = _graph.u(e);
479 if ((*_matching)[u] != INVALID) return false;
480 _matching->set(u, _graph.direct(e, true));
481 _status->set(u, MATCHED);
483 Node v = _graph.v(e);
484 if ((*_matching)[v] != INVALID) return false;
485 _matching->set(v, _graph.direct(e, false));
486 _status->set(v, MATCHED);
492 /// \brief Starts Edmonds' algorithm
494 /// If runs the original Edmonds' algorithm.
496 for(NodeIt n(_graph); n != INVALID; ++n) {
497 if ((*_status)[n] == UNMATCHED) {
498 (*_blossom_rep)[_blossom_set->insert(n)] = n;
499 _tree_set->insert(n);
500 _status->set(n, EVEN);
506 /// \brief Starts Edmonds' algorithm.
508 /// It runs Edmonds' algorithm with a heuristic of postponing
509 /// shrinks, therefore resulting in a faster algorithm for dense graphs.
511 for(NodeIt n(_graph); n != INVALID; ++n) {
512 if ((*_status)[n] == UNMATCHED) {
513 (*_blossom_rep)[_blossom_set->insert(n)] = n;
514 _tree_set->insert(n);
515 _status->set(n, EVEN);
522 /// \brief Runs Edmonds' algorithm
524 /// Runs Edmonds' algorithm for sparse graphs (<tt>m<2*n</tt>)
525 /// or Edmonds' algorithm with a heuristic of
526 /// postponing shrinks for dense graphs.
528 if (countEdges(_graph) < 2 * countNodes(_graph)) {
539 /// \name Primal solution
540 /// Functions to get the primal solution, ie. the matching.
544 ///\brief Returns the size of the current matching.
546 ///Returns the size of the current matching. After \ref
547 ///run() it returns the size of the maximum matching in the graph.
548 int matchingSize() const {
550 for (NodeIt n(_graph); n != INVALID; ++n) {
551 if ((*_matching)[n] != INVALID) {
558 /// \brief Returns true when the edge is in the matching.
560 /// Returns true when the edge is in the matching.
561 bool matching(const Edge& edge) const {
562 return edge == (*_matching)[_graph.u(edge)];
565 /// \brief Returns the matching edge incident to the given node.
567 /// Returns the matching edge of a \c node in the actual matching or
568 /// INVALID if the \c node is not covered by the actual matching.
569 Arc matching(const Node& n) const {
570 return (*_matching)[n];
573 ///\brief Returns the mate of a node in the actual matching.
575 ///Returns the mate of a \c node in the actual matching or
576 ///INVALID if the \c node is not covered by the actual matching.
577 Node mate(const Node& n) const {
578 return (*_matching)[n] != INVALID ?
579 _graph.target((*_matching)[n]) : INVALID;
584 /// \name Dual solution
585 /// Functions to get the dual solution, ie. the decomposition.
589 /// \brief Returns the class of the node in the Edmonds-Gallai
592 /// Returns the class of the node in the Edmonds-Gallai
594 Status decomposition(const Node& n) const {
595 return (*_status)[n];
598 /// \brief Returns true when the node is in the barrier.
600 /// Returns true when the node is in the barrier.
601 bool barrier(const Node& n) const {
602 return (*_status)[n] == ODD;
609 /// \ingroup matching
611 /// \brief Weighted matching in general graphs
613 /// This class provides an efficient implementation of Edmond's
614 /// maximum weighted matching algorithm. The implementation is based
615 /// on extensive use of priority queues and provides
616 /// \f$O(nm\log(n))\f$ time complexity.
618 /// The maximum weighted matching problem is to find undirected
619 /// edges in the graph with maximum overall weight and no two of
620 /// them shares their ends. The problem can be formulated with the
621 /// following linear program.
622 /// \f[ \sum_{e \in \delta(u)}x_e \le 1 \quad \forall u\in V\f]
623 /** \f[ \sum_{e \in \gamma(B)}x_e \le \frac{\vert B \vert - 1}{2}
624 \quad \forall B\in\mathcal{O}\f] */
625 /// \f[x_e \ge 0\quad \forall e\in E\f]
626 /// \f[\max \sum_{e\in E}x_ew_e\f]
627 /// where \f$\delta(X)\f$ is the set of edges incident to a node in
628 /// \f$X\f$, \f$\gamma(X)\f$ is the set of edges with both ends in
629 /// \f$X\f$ and \f$\mathcal{O}\f$ is the set of odd cardinality
630 /// subsets of the nodes.
632 /// The algorithm calculates an optimal matching and a proof of the
633 /// optimality. The solution of the dual problem can be used to check
634 /// the result of the algorithm. The dual linear problem is the
635 /** \f[ y_u + y_v + \sum_{B \in \mathcal{O}, uv \in \gamma(B)}
636 z_B \ge w_{uv} \quad \forall uv\in E\f] */
637 /// \f[y_u \ge 0 \quad \forall u \in V\f]
638 /// \f[z_B \ge 0 \quad \forall B \in \mathcal{O}\f]
639 /** \f[\min \sum_{u \in V}y_u + \sum_{B \in \mathcal{O}}
640 \frac{\vert B \vert - 1}{2}z_B\f] */
642 /// The algorithm can be executed with \c run() or the \c init() and
643 /// then the \c start() member functions. After it the matching can
644 /// be asked with \c matching() or mate() functions. The dual
645 /// solution can be get with \c nodeValue(), \c blossomNum() and \c
646 /// blossomValue() members and \ref MaxWeightedMatching::BlossomIt
647 /// "BlossomIt" nested class, which is able to iterate on the nodes
648 /// of a blossom. If the value type is integral then the dual
649 /// solution is multiplied by \ref MaxWeightedMatching::dualScale "4".
650 template <typename _Graph,
651 typename _WeightMap = typename _Graph::template EdgeMap<int> >
652 class MaxWeightedMatching {
655 typedef _Graph Graph;
656 typedef _WeightMap WeightMap;
657 typedef typename WeightMap::Value Value;
659 /// \brief Scaling factor for dual solution
661 /// Scaling factor for dual solution, it is equal to 4 or 1
662 /// according to the value type.
663 static const int dualScale =
664 std::numeric_limits<Value>::is_integer ? 4 : 1;
666 typedef typename Graph::template NodeMap<typename Graph::Arc>
671 TEMPLATE_GRAPH_TYPEDEFS(Graph);
673 typedef typename Graph::template NodeMap<Value> NodePotential;
674 typedef std::vector<Node> BlossomNodeList;
676 struct BlossomVariable {
680 BlossomVariable(int _begin, int _end, Value _value)
681 : begin(_begin), end(_end), value(_value) {}
685 typedef std::vector<BlossomVariable> BlossomPotential;
688 const WeightMap& _weight;
690 MatchingMap* _matching;
692 NodePotential* _node_potential;
694 BlossomPotential _blossom_potential;
695 BlossomNodeList _blossom_node_list;
700 typedef RangeMap<int> IntIntMap;
703 EVEN = -1, MATCHED = 0, ODD = 1, UNMATCHED = -2
706 typedef HeapUnionFind<Value, IntNodeMap> BlossomSet;
715 IntNodeMap *_blossom_index;
716 BlossomSet *_blossom_set;
717 RangeMap<BlossomData>* _blossom_data;
719 IntNodeMap *_node_index;
720 IntArcMap *_node_heap_index;
724 NodeData(IntArcMap& node_heap_index)
725 : heap(node_heap_index) {}
729 BinHeap<Value, IntArcMap> heap;
730 std::map<int, Arc> heap_index;
735 RangeMap<NodeData>* _node_data;
737 typedef ExtendFindEnum<IntIntMap> TreeSet;
739 IntIntMap *_tree_set_index;
742 IntNodeMap *_delta1_index;
743 BinHeap<Value, IntNodeMap> *_delta1;
745 IntIntMap *_delta2_index;
746 BinHeap<Value, IntIntMap> *_delta2;
748 IntEdgeMap *_delta3_index;
749 BinHeap<Value, IntEdgeMap> *_delta3;
751 IntIntMap *_delta4_index;
752 BinHeap<Value, IntIntMap> *_delta4;
756 void createStructures() {
757 _node_num = countNodes(_graph);
758 _blossom_num = _node_num * 3 / 2;
761 _matching = new MatchingMap(_graph);
763 if (!_node_potential) {
764 _node_potential = new NodePotential(_graph);
767 _blossom_index = new IntNodeMap(_graph);
768 _blossom_set = new BlossomSet(*_blossom_index);
769 _blossom_data = new RangeMap<BlossomData>(_blossom_num);
773 _node_index = new IntNodeMap(_graph);
774 _node_heap_index = new IntArcMap(_graph);
775 _node_data = new RangeMap<NodeData>(_node_num,
776 NodeData(*_node_heap_index));
780 _tree_set_index = new IntIntMap(_blossom_num);
781 _tree_set = new TreeSet(*_tree_set_index);
784 _delta1_index = new IntNodeMap(_graph);
785 _delta1 = new BinHeap<Value, IntNodeMap>(*_delta1_index);
788 _delta2_index = new IntIntMap(_blossom_num);
789 _delta2 = new BinHeap<Value, IntIntMap>(*_delta2_index);
792 _delta3_index = new IntEdgeMap(_graph);
793 _delta3 = new BinHeap<Value, IntEdgeMap>(*_delta3_index);
796 _delta4_index = new IntIntMap(_blossom_num);
797 _delta4 = new BinHeap<Value, IntIntMap>(*_delta4_index);
801 void destroyStructures() {
802 _node_num = countNodes(_graph);
803 _blossom_num = _node_num * 3 / 2;
808 if (_node_potential) {
809 delete _node_potential;
812 delete _blossom_index;
814 delete _blossom_data;
819 delete _node_heap_index;
824 delete _tree_set_index;
828 delete _delta1_index;
832 delete _delta2_index;
836 delete _delta3_index;
840 delete _delta4_index;
845 void matchedToEven(int blossom, int tree) {
846 if (_delta2->state(blossom) == _delta2->IN_HEAP) {
847 _delta2->erase(blossom);
850 if (!_blossom_set->trivial(blossom)) {
851 (*_blossom_data)[blossom].pot -=
852 2 * (_delta_sum - (*_blossom_data)[blossom].offset);
855 for (typename BlossomSet::ItemIt n(*_blossom_set, blossom);
858 _blossom_set->increase(n, std::numeric_limits<Value>::max());
859 int ni = (*_node_index)[n];
861 (*_node_data)[ni].heap.clear();
862 (*_node_data)[ni].heap_index.clear();
864 (*_node_data)[ni].pot += _delta_sum - (*_blossom_data)[blossom].offset;
866 _delta1->push(n, (*_node_data)[ni].pot);
868 for (InArcIt e(_graph, n); e != INVALID; ++e) {
869 Node v = _graph.source(e);
870 int vb = _blossom_set->find(v);
871 int vi = (*_node_index)[v];
873 Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot -
874 dualScale * _weight[e];
876 if ((*_blossom_data)[vb].status == EVEN) {
877 if (_delta3->state(e) != _delta3->IN_HEAP && blossom != vb) {
878 _delta3->push(e, rw / 2);
880 } else if ((*_blossom_data)[vb].status == UNMATCHED) {
881 if (_delta3->state(e) != _delta3->IN_HEAP) {
882 _delta3->push(e, rw);
885 typename std::map<int, Arc>::iterator it =
886 (*_node_data)[vi].heap_index.find(tree);
888 if (it != (*_node_data)[vi].heap_index.end()) {
889 if ((*_node_data)[vi].heap[it->second] > rw) {
890 (*_node_data)[vi].heap.replace(it->second, e);
891 (*_node_data)[vi].heap.decrease(e, rw);
895 (*_node_data)[vi].heap.push(e, rw);
896 (*_node_data)[vi].heap_index.insert(std::make_pair(tree, e));
899 if ((*_blossom_set)[v] > (*_node_data)[vi].heap.prio()) {
900 _blossom_set->decrease(v, (*_node_data)[vi].heap.prio());
902 if ((*_blossom_data)[vb].status == MATCHED) {
903 if (_delta2->state(vb) != _delta2->IN_HEAP) {
904 _delta2->push(vb, _blossom_set->classPrio(vb) -
905 (*_blossom_data)[vb].offset);
906 } else if ((*_delta2)[vb] > _blossom_set->classPrio(vb) -
907 (*_blossom_data)[vb].offset){
908 _delta2->decrease(vb, _blossom_set->classPrio(vb) -
909 (*_blossom_data)[vb].offset);
916 (*_blossom_data)[blossom].offset = 0;
919 void matchedToOdd(int blossom) {
920 if (_delta2->state(blossom) == _delta2->IN_HEAP) {
921 _delta2->erase(blossom);
923 (*_blossom_data)[blossom].offset += _delta_sum;
924 if (!_blossom_set->trivial(blossom)) {
925 _delta4->push(blossom, (*_blossom_data)[blossom].pot / 2 +
926 (*_blossom_data)[blossom].offset);
930 void evenToMatched(int blossom, int tree) {
931 if (!_blossom_set->trivial(blossom)) {
932 (*_blossom_data)[blossom].pot += 2 * _delta_sum;
935 for (typename BlossomSet::ItemIt n(*_blossom_set, blossom);
937 int ni = (*_node_index)[n];
938 (*_node_data)[ni].pot -= _delta_sum;
942 for (InArcIt e(_graph, n); e != INVALID; ++e) {
943 Node v = _graph.source(e);
944 int vb = _blossom_set->find(v);
945 int vi = (*_node_index)[v];
947 Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot -
948 dualScale * _weight[e];
951 if (_delta3->state(e) == _delta3->IN_HEAP) {
954 } else if ((*_blossom_data)[vb].status == EVEN) {
956 if (_delta3->state(e) == _delta3->IN_HEAP) {
960 int vt = _tree_set->find(vb);
964 Arc r = _graph.oppositeArc(e);
966 typename std::map<int, Arc>::iterator it =
967 (*_node_data)[ni].heap_index.find(vt);
969 if (it != (*_node_data)[ni].heap_index.end()) {
970 if ((*_node_data)[ni].heap[it->second] > rw) {
971 (*_node_data)[ni].heap.replace(it->second, r);
972 (*_node_data)[ni].heap.decrease(r, rw);
976 (*_node_data)[ni].heap.push(r, rw);
977 (*_node_data)[ni].heap_index.insert(std::make_pair(vt, r));
980 if ((*_blossom_set)[n] > (*_node_data)[ni].heap.prio()) {
981 _blossom_set->decrease(n, (*_node_data)[ni].heap.prio());
983 if (_delta2->state(blossom) != _delta2->IN_HEAP) {
984 _delta2->push(blossom, _blossom_set->classPrio(blossom) -
985 (*_blossom_data)[blossom].offset);
986 } else if ((*_delta2)[blossom] >
987 _blossom_set->classPrio(blossom) -
988 (*_blossom_data)[blossom].offset){
989 _delta2->decrease(blossom, _blossom_set->classPrio(blossom) -
990 (*_blossom_data)[blossom].offset);
995 } else if ((*_blossom_data)[vb].status == UNMATCHED) {
996 if (_delta3->state(e) == _delta3->IN_HEAP) {
1001 typename std::map<int, Arc>::iterator it =
1002 (*_node_data)[vi].heap_index.find(tree);
1004 if (it != (*_node_data)[vi].heap_index.end()) {
1005 (*_node_data)[vi].heap.erase(it->second);
1006 (*_node_data)[vi].heap_index.erase(it);
1007 if ((*_node_data)[vi].heap.empty()) {
1008 _blossom_set->increase(v, std::numeric_limits<Value>::max());
1009 } else if ((*_blossom_set)[v] < (*_node_data)[vi].heap.prio()) {
1010 _blossom_set->increase(v, (*_node_data)[vi].heap.prio());
1013 if ((*_blossom_data)[vb].status == MATCHED) {
1014 if (_blossom_set->classPrio(vb) ==
1015 std::numeric_limits<Value>::max()) {
1017 } else if ((*_delta2)[vb] < _blossom_set->classPrio(vb) -
1018 (*_blossom_data)[vb].offset) {
1019 _delta2->increase(vb, _blossom_set->classPrio(vb) -
1020 (*_blossom_data)[vb].offset);
1029 void oddToMatched(int blossom) {
1030 (*_blossom_data)[blossom].offset -= _delta_sum;
1032 if (_blossom_set->classPrio(blossom) !=
1033 std::numeric_limits<Value>::max()) {
1034 _delta2->push(blossom, _blossom_set->classPrio(blossom) -
1035 (*_blossom_data)[blossom].offset);
1038 if (!_blossom_set->trivial(blossom)) {
1039 _delta4->erase(blossom);
1043 void oddToEven(int blossom, int tree) {
1044 if (!_blossom_set->trivial(blossom)) {
1045 _delta4->erase(blossom);
1046 (*_blossom_data)[blossom].pot -=
1047 2 * (2 * _delta_sum - (*_blossom_data)[blossom].offset);
1050 for (typename BlossomSet::ItemIt n(*_blossom_set, blossom);
1051 n != INVALID; ++n) {
1052 int ni = (*_node_index)[n];
1054 _blossom_set->increase(n, std::numeric_limits<Value>::max());
1056 (*_node_data)[ni].heap.clear();
1057 (*_node_data)[ni].heap_index.clear();
1058 (*_node_data)[ni].pot +=
1059 2 * _delta_sum - (*_blossom_data)[blossom].offset;
1061 _delta1->push(n, (*_node_data)[ni].pot);
1063 for (InArcIt e(_graph, n); e != INVALID; ++e) {
1064 Node v = _graph.source(e);
1065 int vb = _blossom_set->find(v);
1066 int vi = (*_node_index)[v];
1068 Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot -
1069 dualScale * _weight[e];
1071 if ((*_blossom_data)[vb].status == EVEN) {
1072 if (_delta3->state(e) != _delta3->IN_HEAP && blossom != vb) {
1073 _delta3->push(e, rw / 2);
1075 } else if ((*_blossom_data)[vb].status == UNMATCHED) {
1076 if (_delta3->state(e) != _delta3->IN_HEAP) {
1077 _delta3->push(e, rw);
1081 typename std::map<int, Arc>::iterator it =
1082 (*_node_data)[vi].heap_index.find(tree);
1084 if (it != (*_node_data)[vi].heap_index.end()) {
1085 if ((*_node_data)[vi].heap[it->second] > rw) {
1086 (*_node_data)[vi].heap.replace(it->second, e);
1087 (*_node_data)[vi].heap.decrease(e, rw);
1091 (*_node_data)[vi].heap.push(e, rw);
1092 (*_node_data)[vi].heap_index.insert(std::make_pair(tree, e));
1095 if ((*_blossom_set)[v] > (*_node_data)[vi].heap.prio()) {
1096 _blossom_set->decrease(v, (*_node_data)[vi].heap.prio());
1098 if ((*_blossom_data)[vb].status == MATCHED) {
1099 if (_delta2->state(vb) != _delta2->IN_HEAP) {
1100 _delta2->push(vb, _blossom_set->classPrio(vb) -
1101 (*_blossom_data)[vb].offset);
1102 } else if ((*_delta2)[vb] > _blossom_set->classPrio(vb) -
1103 (*_blossom_data)[vb].offset) {
1104 _delta2->decrease(vb, _blossom_set->classPrio(vb) -
1105 (*_blossom_data)[vb].offset);
1112 (*_blossom_data)[blossom].offset = 0;
1116 void matchedToUnmatched(int blossom) {
1117 if (_delta2->state(blossom) == _delta2->IN_HEAP) {
1118 _delta2->erase(blossom);
1121 for (typename BlossomSet::ItemIt n(*_blossom_set, blossom);
1122 n != INVALID; ++n) {
1123 int ni = (*_node_index)[n];
1125 _blossom_set->increase(n, std::numeric_limits<Value>::max());
1127 (*_node_data)[ni].heap.clear();
1128 (*_node_data)[ni].heap_index.clear();
1130 for (OutArcIt e(_graph, n); e != INVALID; ++e) {
1131 Node v = _graph.target(e);
1132 int vb = _blossom_set->find(v);
1133 int vi = (*_node_index)[v];
1135 Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot -
1136 dualScale * _weight[e];
1138 if ((*_blossom_data)[vb].status == EVEN) {
1139 if (_delta3->state(e) != _delta3->IN_HEAP) {
1140 _delta3->push(e, rw);
1147 void unmatchedToMatched(int blossom) {
1148 for (typename BlossomSet::ItemIt n(*_blossom_set, blossom);
1149 n != INVALID; ++n) {
1150 int ni = (*_node_index)[n];
1152 for (InArcIt e(_graph, n); e != INVALID; ++e) {
1153 Node v = _graph.source(e);
1154 int vb = _blossom_set->find(v);
1155 int vi = (*_node_index)[v];
1157 Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot -
1158 dualScale * _weight[e];
1160 if (vb == blossom) {
1161 if (_delta3->state(e) == _delta3->IN_HEAP) {
1164 } else if ((*_blossom_data)[vb].status == EVEN) {
1166 if (_delta3->state(e) == _delta3->IN_HEAP) {
1170 int vt = _tree_set->find(vb);
1172 Arc r = _graph.oppositeArc(e);
1174 typename std::map<int, Arc>::iterator it =
1175 (*_node_data)[ni].heap_index.find(vt);
1177 if (it != (*_node_data)[ni].heap_index.end()) {
1178 if ((*_node_data)[ni].heap[it->second] > rw) {
1179 (*_node_data)[ni].heap.replace(it->second, r);
1180 (*_node_data)[ni].heap.decrease(r, rw);
1184 (*_node_data)[ni].heap.push(r, rw);
1185 (*_node_data)[ni].heap_index.insert(std::make_pair(vt, r));
1188 if ((*_blossom_set)[n] > (*_node_data)[ni].heap.prio()) {
1189 _blossom_set->decrease(n, (*_node_data)[ni].heap.prio());
1191 if (_delta2->state(blossom) != _delta2->IN_HEAP) {
1192 _delta2->push(blossom, _blossom_set->classPrio(blossom) -
1193 (*_blossom_data)[blossom].offset);
1194 } else if ((*_delta2)[blossom] > _blossom_set->classPrio(blossom)-
1195 (*_blossom_data)[blossom].offset){
1196 _delta2->decrease(blossom, _blossom_set->classPrio(blossom) -
1197 (*_blossom_data)[blossom].offset);
1201 } else if ((*_blossom_data)[vb].status == UNMATCHED) {
1202 if (_delta3->state(e) == _delta3->IN_HEAP) {
1210 void alternatePath(int even, int tree) {
1213 evenToMatched(even, tree);
1214 (*_blossom_data)[even].status = MATCHED;
1216 while ((*_blossom_data)[even].pred != INVALID) {
1217 odd = _blossom_set->find(_graph.target((*_blossom_data)[even].pred));
1218 (*_blossom_data)[odd].status = MATCHED;
1220 (*_blossom_data)[odd].next = (*_blossom_data)[odd].pred;
1222 even = _blossom_set->find(_graph.target((*_blossom_data)[odd].pred));
1223 (*_blossom_data)[even].status = MATCHED;
1224 evenToMatched(even, tree);
1225 (*_blossom_data)[even].next =
1226 _graph.oppositeArc((*_blossom_data)[odd].pred);
1231 void destroyTree(int tree) {
1232 for (TreeSet::ItemIt b(*_tree_set, tree); b != INVALID; ++b) {
1233 if ((*_blossom_data)[b].status == EVEN) {
1234 (*_blossom_data)[b].status = MATCHED;
1235 evenToMatched(b, tree);
1236 } else if ((*_blossom_data)[b].status == ODD) {
1237 (*_blossom_data)[b].status = MATCHED;
1241 _tree_set->eraseClass(tree);
1245 void unmatchNode(const Node& node) {
1246 int blossom = _blossom_set->find(node);
1247 int tree = _tree_set->find(blossom);
1249 alternatePath(blossom, tree);
1252 (*_blossom_data)[blossom].status = UNMATCHED;
1253 (*_blossom_data)[blossom].base = node;
1254 matchedToUnmatched(blossom);
1258 void augmentOnEdge(const Edge& edge) {
1260 int left = _blossom_set->find(_graph.u(edge));
1261 int right = _blossom_set->find(_graph.v(edge));
1263 if ((*_blossom_data)[left].status == EVEN) {
1264 int left_tree = _tree_set->find(left);
1265 alternatePath(left, left_tree);
1266 destroyTree(left_tree);
1268 (*_blossom_data)[left].status = MATCHED;
1269 unmatchedToMatched(left);
1272 if ((*_blossom_data)[right].status == EVEN) {
1273 int right_tree = _tree_set->find(right);
1274 alternatePath(right, right_tree);
1275 destroyTree(right_tree);
1277 (*_blossom_data)[right].status = MATCHED;
1278 unmatchedToMatched(right);
1281 (*_blossom_data)[left].next = _graph.direct(edge, true);
1282 (*_blossom_data)[right].next = _graph.direct(edge, false);
1285 void extendOnArc(const Arc& arc) {
1286 int base = _blossom_set->find(_graph.target(arc));
1287 int tree = _tree_set->find(base);
1289 int odd = _blossom_set->find(_graph.source(arc));
1290 _tree_set->insert(odd, tree);
1291 (*_blossom_data)[odd].status = ODD;
1293 (*_blossom_data)[odd].pred = arc;
1295 int even = _blossom_set->find(_graph.target((*_blossom_data)[odd].next));
1296 (*_blossom_data)[even].pred = (*_blossom_data)[even].next;
1297 _tree_set->insert(even, tree);
1298 (*_blossom_data)[even].status = EVEN;
1299 matchedToEven(even, tree);
1302 void shrinkOnEdge(const Edge& edge, int tree) {
1304 std::vector<int> left_path, right_path;
1307 std::set<int> left_set, right_set;
1308 int left = _blossom_set->find(_graph.u(edge));
1309 left_path.push_back(left);
1310 left_set.insert(left);
1312 int right = _blossom_set->find(_graph.v(edge));
1313 right_path.push_back(right);
1314 right_set.insert(right);
1318 if ((*_blossom_data)[left].pred == INVALID) break;
1321 _blossom_set->find(_graph.target((*_blossom_data)[left].pred));
1322 left_path.push_back(left);
1324 _blossom_set->find(_graph.target((*_blossom_data)[left].pred));
1325 left_path.push_back(left);
1327 left_set.insert(left);
1329 if (right_set.find(left) != right_set.end()) {
1334 if ((*_blossom_data)[right].pred == INVALID) break;
1337 _blossom_set->find(_graph.target((*_blossom_data)[right].pred));
1338 right_path.push_back(right);
1340 _blossom_set->find(_graph.target((*_blossom_data)[right].pred));
1341 right_path.push_back(right);
1343 right_set.insert(right);
1345 if (left_set.find(right) != left_set.end()) {
1353 if ((*_blossom_data)[left].pred == INVALID) {
1355 while (left_set.find(nca) == left_set.end()) {
1357 _blossom_set->find(_graph.target((*_blossom_data)[nca].pred));
1358 right_path.push_back(nca);
1360 _blossom_set->find(_graph.target((*_blossom_data)[nca].pred));
1361 right_path.push_back(nca);
1365 while (right_set.find(nca) == right_set.end()) {
1367 _blossom_set->find(_graph.target((*_blossom_data)[nca].pred));
1368 left_path.push_back(nca);
1370 _blossom_set->find(_graph.target((*_blossom_data)[nca].pred));
1371 left_path.push_back(nca);
1377 std::vector<int> subblossoms;
1380 prev = _graph.direct(edge, true);
1381 for (int i = 0; left_path[i] != nca; i += 2) {
1382 subblossoms.push_back(left_path[i]);
1383 (*_blossom_data)[left_path[i]].next = prev;
1384 _tree_set->erase(left_path[i]);
1386 subblossoms.push_back(left_path[i + 1]);
1387 (*_blossom_data)[left_path[i + 1]].status = EVEN;
1388 oddToEven(left_path[i + 1], tree);
1389 _tree_set->erase(left_path[i + 1]);
1390 prev = _graph.oppositeArc((*_blossom_data)[left_path[i + 1]].pred);
1394 while (right_path[k] != nca) ++k;
1396 subblossoms.push_back(nca);
1397 (*_blossom_data)[nca].next = prev;
1399 for (int i = k - 2; i >= 0; i -= 2) {
1400 subblossoms.push_back(right_path[i + 1]);
1401 (*_blossom_data)[right_path[i + 1]].status = EVEN;
1402 oddToEven(right_path[i + 1], tree);
1403 _tree_set->erase(right_path[i + 1]);
1405 (*_blossom_data)[right_path[i + 1]].next =
1406 (*_blossom_data)[right_path[i + 1]].pred;
1408 subblossoms.push_back(right_path[i]);
1409 _tree_set->erase(right_path[i]);
1413 _blossom_set->join(subblossoms.begin(), subblossoms.end());
1415 for (int i = 0; i < int(subblossoms.size()); ++i) {
1416 if (!_blossom_set->trivial(subblossoms[i])) {
1417 (*_blossom_data)[subblossoms[i]].pot += 2 * _delta_sum;
1419 (*_blossom_data)[subblossoms[i]].status = MATCHED;
1422 (*_blossom_data)[surface].pot = -2 * _delta_sum;
1423 (*_blossom_data)[surface].offset = 0;
1424 (*_blossom_data)[surface].status = EVEN;
1425 (*_blossom_data)[surface].pred = (*_blossom_data)[nca].pred;
1426 (*_blossom_data)[surface].next = (*_blossom_data)[nca].pred;
1428 _tree_set->insert(surface, tree);
1429 _tree_set->erase(nca);
1432 void splitBlossom(int blossom) {
1433 Arc next = (*_blossom_data)[blossom].next;
1434 Arc pred = (*_blossom_data)[blossom].pred;
1436 int tree = _tree_set->find(blossom);
1438 (*_blossom_data)[blossom].status = MATCHED;
1439 oddToMatched(blossom);
1440 if (_delta2->state(blossom) == _delta2->IN_HEAP) {
1441 _delta2->erase(blossom);
1444 std::vector<int> subblossoms;
1445 _blossom_set->split(blossom, std::back_inserter(subblossoms));
1447 Value offset = (*_blossom_data)[blossom].offset;
1448 int b = _blossom_set->find(_graph.source(pred));
1449 int d = _blossom_set->find(_graph.source(next));
1451 int ib = -1, id = -1;
1452 for (int i = 0; i < int(subblossoms.size()); ++i) {
1453 if (subblossoms[i] == b) ib = i;
1454 if (subblossoms[i] == d) id = i;
1456 (*_blossom_data)[subblossoms[i]].offset = offset;
1457 if (!_blossom_set->trivial(subblossoms[i])) {
1458 (*_blossom_data)[subblossoms[i]].pot -= 2 * offset;
1460 if (_blossom_set->classPrio(subblossoms[i]) !=
1461 std::numeric_limits<Value>::max()) {
1462 _delta2->push(subblossoms[i],
1463 _blossom_set->classPrio(subblossoms[i]) -
1464 (*_blossom_data)[subblossoms[i]].offset);
1468 if (id > ib ? ((id - ib) % 2 == 0) : ((ib - id) % 2 == 1)) {
1469 for (int i = (id + 1) % subblossoms.size();
1470 i != ib; i = (i + 2) % subblossoms.size()) {
1471 int sb = subblossoms[i];
1472 int tb = subblossoms[(i + 1) % subblossoms.size()];
1473 (*_blossom_data)[sb].next =
1474 _graph.oppositeArc((*_blossom_data)[tb].next);
1477 for (int i = ib; i != id; i = (i + 2) % subblossoms.size()) {
1478 int sb = subblossoms[i];
1479 int tb = subblossoms[(i + 1) % subblossoms.size()];
1480 int ub = subblossoms[(i + 2) % subblossoms.size()];
1482 (*_blossom_data)[sb].status = ODD;
1484 _tree_set->insert(sb, tree);
1485 (*_blossom_data)[sb].pred = pred;
1486 (*_blossom_data)[sb].next =
1487 _graph.oppositeArc((*_blossom_data)[tb].next);
1489 pred = (*_blossom_data)[ub].next;
1491 (*_blossom_data)[tb].status = EVEN;
1492 matchedToEven(tb, tree);
1493 _tree_set->insert(tb, tree);
1494 (*_blossom_data)[tb].pred = (*_blossom_data)[tb].next;
1497 (*_blossom_data)[subblossoms[id]].status = ODD;
1498 matchedToOdd(subblossoms[id]);
1499 _tree_set->insert(subblossoms[id], tree);
1500 (*_blossom_data)[subblossoms[id]].next = next;
1501 (*_blossom_data)[subblossoms[id]].pred = pred;
1505 for (int i = (ib + 1) % subblossoms.size();
1506 i != id; i = (i + 2) % subblossoms.size()) {
1507 int sb = subblossoms[i];
1508 int tb = subblossoms[(i + 1) % subblossoms.size()];
1509 (*_blossom_data)[sb].next =
1510 _graph.oppositeArc((*_blossom_data)[tb].next);
1513 for (int i = id; i != ib; i = (i + 2) % subblossoms.size()) {
1514 int sb = subblossoms[i];
1515 int tb = subblossoms[(i + 1) % subblossoms.size()];
1516 int ub = subblossoms[(i + 2) % subblossoms.size()];
1518 (*_blossom_data)[sb].status = ODD;
1520 _tree_set->insert(sb, tree);
1521 (*_blossom_data)[sb].next = next;
1522 (*_blossom_data)[sb].pred =
1523 _graph.oppositeArc((*_blossom_data)[tb].next);
1525 (*_blossom_data)[tb].status = EVEN;
1526 matchedToEven(tb, tree);
1527 _tree_set->insert(tb, tree);
1528 (*_blossom_data)[tb].pred =
1529 (*_blossom_data)[tb].next =
1530 _graph.oppositeArc((*_blossom_data)[ub].next);
1531 next = (*_blossom_data)[ub].next;
1534 (*_blossom_data)[subblossoms[ib]].status = ODD;
1535 matchedToOdd(subblossoms[ib]);
1536 _tree_set->insert(subblossoms[ib], tree);
1537 (*_blossom_data)[subblossoms[ib]].next = next;
1538 (*_blossom_data)[subblossoms[ib]].pred = pred;
1540 _tree_set->erase(blossom);
1543 void extractBlossom(int blossom, const Node& base, const Arc& matching) {
1544 if (_blossom_set->trivial(blossom)) {
1545 int bi = (*_node_index)[base];
1546 Value pot = (*_node_data)[bi].pot;
1548 _matching->set(base, matching);
1549 _blossom_node_list.push_back(base);
1550 _node_potential->set(base, pot);
1553 Value pot = (*_blossom_data)[blossom].pot;
1554 int bn = _blossom_node_list.size();
1556 std::vector<int> subblossoms;
1557 _blossom_set->split(blossom, std::back_inserter(subblossoms));
1558 int b = _blossom_set->find(base);
1560 for (int i = 0; i < int(subblossoms.size()); ++i) {
1561 if (subblossoms[i] == b) { ib = i; break; }
1564 for (int i = 1; i < int(subblossoms.size()); i += 2) {
1565 int sb = subblossoms[(ib + i) % subblossoms.size()];
1566 int tb = subblossoms[(ib + i + 1) % subblossoms.size()];
1568 Arc m = (*_blossom_data)[tb].next;
1569 extractBlossom(sb, _graph.target(m), _graph.oppositeArc(m));
1570 extractBlossom(tb, _graph.source(m), m);
1572 extractBlossom(subblossoms[ib], base, matching);
1574 int en = _blossom_node_list.size();
1576 _blossom_potential.push_back(BlossomVariable(bn, en, pot));
1580 void extractMatching() {
1581 std::vector<int> blossoms;
1582 for (typename BlossomSet::ClassIt c(*_blossom_set); c != INVALID; ++c) {
1583 blossoms.push_back(c);
1586 for (int i = 0; i < int(blossoms.size()); ++i) {
1587 if ((*_blossom_data)[blossoms[i]].status == MATCHED) {
1589 Value offset = (*_blossom_data)[blossoms[i]].offset;
1590 (*_blossom_data)[blossoms[i]].pot += 2 * offset;
1591 for (typename BlossomSet::ItemIt n(*_blossom_set, blossoms[i]);
1592 n != INVALID; ++n) {
1593 (*_node_data)[(*_node_index)[n]].pot -= offset;
1596 Arc matching = (*_blossom_data)[blossoms[i]].next;
1597 Node base = _graph.source(matching);
1598 extractBlossom(blossoms[i], base, matching);
1600 Node base = (*_blossom_data)[blossoms[i]].base;
1601 extractBlossom(blossoms[i], base, INVALID);
1608 /// \brief Constructor
1611 MaxWeightedMatching(const Graph& graph, const WeightMap& weight)
1612 : _graph(graph), _weight(weight), _matching(0),
1613 _node_potential(0), _blossom_potential(), _blossom_node_list(),
1614 _node_num(0), _blossom_num(0),
1616 _blossom_index(0), _blossom_set(0), _blossom_data(0),
1617 _node_index(0), _node_heap_index(0), _node_data(0),
1618 _tree_set_index(0), _tree_set(0),
1620 _delta1_index(0), _delta1(0),
1621 _delta2_index(0), _delta2(0),
1622 _delta3_index(0), _delta3(0),
1623 _delta4_index(0), _delta4(0),
1627 ~MaxWeightedMatching() {
1628 destroyStructures();
1631 /// \name Execution control
1632 /// The simplest way to execute the algorithm is to use the
1633 /// \c run() member function.
1637 /// \brief Initialize the algorithm
1639 /// Initialize the algorithm
1643 for (ArcIt e(_graph); e != INVALID; ++e) {
1644 _node_heap_index->set(e, BinHeap<Value, IntArcMap>::PRE_HEAP);
1646 for (NodeIt n(_graph); n != INVALID; ++n) {
1647 _delta1_index->set(n, _delta1->PRE_HEAP);
1649 for (EdgeIt e(_graph); e != INVALID; ++e) {
1650 _delta3_index->set(e, _delta3->PRE_HEAP);
1652 for (int i = 0; i < _blossom_num; ++i) {
1653 _delta2_index->set(i, _delta2->PRE_HEAP);
1654 _delta4_index->set(i, _delta4->PRE_HEAP);
1658 for (NodeIt n(_graph); n != INVALID; ++n) {
1660 for (OutArcIt e(_graph, n); e != INVALID; ++e) {
1661 if (_graph.target(e) == n) continue;
1662 if ((dualScale * _weight[e]) / 2 > max) {
1663 max = (dualScale * _weight[e]) / 2;
1666 _node_index->set(n, index);
1667 (*_node_data)[index].pot = max;
1668 _delta1->push(n, max);
1670 _blossom_set->insert(n, std::numeric_limits<Value>::max());
1672 _tree_set->insert(blossom);
1674 (*_blossom_data)[blossom].status = EVEN;
1675 (*_blossom_data)[blossom].pred = INVALID;
1676 (*_blossom_data)[blossom].next = INVALID;
1677 (*_blossom_data)[blossom].pot = 0;
1678 (*_blossom_data)[blossom].offset = 0;
1681 for (EdgeIt e(_graph); e != INVALID; ++e) {
1682 int si = (*_node_index)[_graph.u(e)];
1683 int ti = (*_node_index)[_graph.v(e)];
1684 if (_graph.u(e) != _graph.v(e)) {
1685 _delta3->push(e, ((*_node_data)[si].pot + (*_node_data)[ti].pot -
1686 dualScale * _weight[e]) / 2);
1691 /// \brief Starts the algorithm
1693 /// Starts the algorithm
1699 int unmatched = _node_num;
1700 while (unmatched > 0) {
1701 Value d1 = !_delta1->empty() ?
1702 _delta1->prio() : std::numeric_limits<Value>::max();
1704 Value d2 = !_delta2->empty() ?
1705 _delta2->prio() : std::numeric_limits<Value>::max();
1707 Value d3 = !_delta3->empty() ?
1708 _delta3->prio() : std::numeric_limits<Value>::max();
1710 Value d4 = !_delta4->empty() ?
1711 _delta4->prio() : std::numeric_limits<Value>::max();
1713 _delta_sum = d1; OpType ot = D1;
1714 if (d2 < _delta_sum) { _delta_sum = d2; ot = D2; }
1715 if (d3 < _delta_sum) { _delta_sum = d3; ot = D3; }
1716 if (d4 < _delta_sum) { _delta_sum = d4; ot = D4; }
1722 Node n = _delta1->top();
1729 int blossom = _delta2->top();
1730 Node n = _blossom_set->classTop(blossom);
1731 Arc e = (*_node_data)[(*_node_index)[n]].heap.top();
1737 Edge e = _delta3->top();
1739 int left_blossom = _blossom_set->find(_graph.u(e));
1740 int right_blossom = _blossom_set->find(_graph.v(e));
1742 if (left_blossom == right_blossom) {
1746 if ((*_blossom_data)[left_blossom].status == EVEN) {
1747 left_tree = _tree_set->find(left_blossom);
1753 if ((*_blossom_data)[right_blossom].status == EVEN) {
1754 right_tree = _tree_set->find(right_blossom);
1760 if (left_tree == right_tree) {
1761 shrinkOnEdge(e, left_tree);
1769 splitBlossom(_delta4->top());
1776 /// \brief Runs %MaxWeightedMatching algorithm.
1778 /// This method runs the %MaxWeightedMatching algorithm.
1780 /// \note mwm.run() is just a shortcut of the following code.
1792 /// \name Primal solution
1793 /// Functions to get the primal solution, ie. the matching.
1797 /// \brief Returns the weight of the matching.
1799 /// Returns the weight of the matching.
1800 Value matchingValue() const {
1802 for (NodeIt n(_graph); n != INVALID; ++n) {
1803 if ((*_matching)[n] != INVALID) {
1804 sum += _weight[(*_matching)[n]];
1810 /// \brief Returns the cardinality of the matching.
1812 /// Returns the cardinality of the matching.
1813 int matchingSize() const {
1815 for (NodeIt n(_graph); n != INVALID; ++n) {
1816 if ((*_matching)[n] != INVALID) {
1823 /// \brief Returns true when the edge is in the matching.
1825 /// Returns true when the edge is in the matching.
1826 bool matching(const Edge& edge) const {
1827 return edge == (*_matching)[_graph.u(edge)];
1830 /// \brief Returns the incident matching arc.
1832 /// Returns the incident matching arc from given node. If the
1833 /// node is not matched then it gives back \c INVALID.
1834 Arc matching(const Node& node) const {
1835 return (*_matching)[node];
1838 /// \brief Returns the mate of the node.
1840 /// Returns the adjancent node in a mathcing arc. If the node is
1841 /// not matched then it gives back \c INVALID.
1842 Node mate(const Node& node) const {
1843 return (*_matching)[node] != INVALID ?
1844 _graph.target((*_matching)[node]) : INVALID;
1849 /// \name Dual solution
1850 /// Functions to get the dual solution.
1854 /// \brief Returns the value of the dual solution.
1856 /// Returns the value of the dual solution. It should be equal to
1857 /// the primal value scaled by \ref dualScale "dual scale".
1858 Value dualValue() const {
1860 for (NodeIt n(_graph); n != INVALID; ++n) {
1861 sum += nodeValue(n);
1863 for (int i = 0; i < blossomNum(); ++i) {
1864 sum += blossomValue(i) * (blossomSize(i) / 2);
1869 /// \brief Returns the value of the node.
1871 /// Returns the the value of the node.
1872 Value nodeValue(const Node& n) const {
1873 return (*_node_potential)[n];
1876 /// \brief Returns the number of the blossoms in the basis.
1878 /// Returns the number of the blossoms in the basis.
1880 int blossomNum() const {
1881 return _blossom_potential.size();
1885 /// \brief Returns the number of the nodes in the blossom.
1887 /// Returns the number of the nodes in the blossom.
1888 int blossomSize(int k) const {
1889 return _blossom_potential[k].end - _blossom_potential[k].begin;
1892 /// \brief Returns the value of the blossom.
1894 /// Returns the the value of the blossom.
1896 Value blossomValue(int k) const {
1897 return _blossom_potential[k].value;
1900 /// \brief Iterator for obtaining the nodes of the blossom.
1902 /// Iterator for obtaining the nodes of the blossom. This class
1903 /// provides a common lemon style iterator for listing a
1904 /// subset of the nodes.
1908 /// \brief Constructor.
1910 /// Constructor to get the nodes of the variable.
1911 BlossomIt(const MaxWeightedMatching& algorithm, int variable)
1912 : _algorithm(&algorithm)
1914 _index = _algorithm->_blossom_potential[variable].begin;
1915 _last = _algorithm->_blossom_potential[variable].end;
1918 /// \brief Conversion to node.
1920 /// Conversion to node.
1921 operator Node() const {
1922 return _algorithm->_blossom_node_list[_index];
1925 /// \brief Increment operator.
1927 /// Increment operator.
1928 BlossomIt& operator++() {
1933 /// \brief Validity checking
1935 /// Checks whether the iterator is invalid.
1936 bool operator==(Invalid) const { return _index == _last; }
1938 /// \brief Validity checking
1940 /// Checks whether the iterator is valid.
1941 bool operator!=(Invalid) const { return _index != _last; }
1944 const MaxWeightedMatching* _algorithm;
1953 /// \ingroup matching
1955 /// \brief Weighted perfect matching in general graphs
1957 /// This class provides an efficient implementation of Edmond's
1958 /// maximum weighted perfect matching algorithm. The implementation
1959 /// is based on extensive use of priority queues and provides
1960 /// \f$O(nm\log(n))\f$ time complexity.
1962 /// The maximum weighted matching problem is to find undirected
1963 /// edges in the graph with maximum overall weight and no two of
1964 /// them shares their ends and covers all nodes. The problem can be
1965 /// formulated with the following linear program.
1966 /// \f[ \sum_{e \in \delta(u)}x_e = 1 \quad \forall u\in V\f]
1967 /** \f[ \sum_{e \in \gamma(B)}x_e \le \frac{\vert B \vert - 1}{2}
1968 \quad \forall B\in\mathcal{O}\f] */
1969 /// \f[x_e \ge 0\quad \forall e\in E\f]
1970 /// \f[\max \sum_{e\in E}x_ew_e\f]
1971 /// where \f$\delta(X)\f$ is the set of edges incident to a node in
1972 /// \f$X\f$, \f$\gamma(X)\f$ is the set of edges with both ends in
1973 /// \f$X\f$ and \f$\mathcal{O}\f$ is the set of odd cardinality
1974 /// subsets of the nodes.
1976 /// The algorithm calculates an optimal matching and a proof of the
1977 /// optimality. The solution of the dual problem can be used to check
1978 /// the result of the algorithm. The dual linear problem is the
1979 /** \f[ y_u + y_v + \sum_{B \in \mathcal{O}, uv \in \gamma(B)}z_B \ge
1980 w_{uv} \quad \forall uv\in E\f] */
1981 /// \f[z_B \ge 0 \quad \forall B \in \mathcal{O}\f]
1982 /** \f[\min \sum_{u \in V}y_u + \sum_{B \in \mathcal{O}}
1983 \frac{\vert B \vert - 1}{2}z_B\f] */
1985 /// The algorithm can be executed with \c run() or the \c init() and
1986 /// then the \c start() member functions. After it the matching can
1987 /// be asked with \c matching() or mate() functions. The dual
1988 /// solution can be get with \c nodeValue(), \c blossomNum() and \c
1989 /// blossomValue() members and \ref MaxWeightedMatching::BlossomIt
1990 /// "BlossomIt" nested class which is able to iterate on the nodes
1991 /// of a blossom. If the value type is integral then the dual
1992 /// solution is multiplied by \ref MaxWeightedMatching::dualScale "4".
1993 template <typename _Graph,
1994 typename _WeightMap = typename _Graph::template EdgeMap<int> >
1995 class MaxWeightedPerfectMatching {
1998 typedef _Graph Graph;
1999 typedef _WeightMap WeightMap;
2000 typedef typename WeightMap::Value Value;
2002 /// \brief Scaling factor for dual solution
2004 /// Scaling factor for dual solution, it is equal to 4 or 1
2005 /// according to the value type.
2006 static const int dualScale =
2007 std::numeric_limits<Value>::is_integer ? 4 : 1;
2009 typedef typename Graph::template NodeMap<typename Graph::Arc>
2014 TEMPLATE_GRAPH_TYPEDEFS(Graph);
2016 typedef typename Graph::template NodeMap<Value> NodePotential;
2017 typedef std::vector<Node> BlossomNodeList;
2019 struct BlossomVariable {
2023 BlossomVariable(int _begin, int _end, Value _value)
2024 : begin(_begin), end(_end), value(_value) {}
2028 typedef std::vector<BlossomVariable> BlossomPotential;
2030 const Graph& _graph;
2031 const WeightMap& _weight;
2033 MatchingMap* _matching;
2035 NodePotential* _node_potential;
2037 BlossomPotential _blossom_potential;
2038 BlossomNodeList _blossom_node_list;
2043 typedef RangeMap<int> IntIntMap;
2046 EVEN = -1, MATCHED = 0, ODD = 1
2049 typedef HeapUnionFind<Value, IntNodeMap> BlossomSet;
2050 struct BlossomData {
2057 IntNodeMap *_blossom_index;
2058 BlossomSet *_blossom_set;
2059 RangeMap<BlossomData>* _blossom_data;
2061 IntNodeMap *_node_index;
2062 IntArcMap *_node_heap_index;
2066 NodeData(IntArcMap& node_heap_index)
2067 : heap(node_heap_index) {}
2071 BinHeap<Value, IntArcMap> heap;
2072 std::map<int, Arc> heap_index;
2077 RangeMap<NodeData>* _node_data;
2079 typedef ExtendFindEnum<IntIntMap> TreeSet;
2081 IntIntMap *_tree_set_index;
2084 IntIntMap *_delta2_index;
2085 BinHeap<Value, IntIntMap> *_delta2;
2087 IntEdgeMap *_delta3_index;
2088 BinHeap<Value, IntEdgeMap> *_delta3;
2090 IntIntMap *_delta4_index;
2091 BinHeap<Value, IntIntMap> *_delta4;
2095 void createStructures() {
2096 _node_num = countNodes(_graph);
2097 _blossom_num = _node_num * 3 / 2;
2100 _matching = new MatchingMap(_graph);
2102 if (!_node_potential) {
2103 _node_potential = new NodePotential(_graph);
2105 if (!_blossom_set) {
2106 _blossom_index = new IntNodeMap(_graph);
2107 _blossom_set = new BlossomSet(*_blossom_index);
2108 _blossom_data = new RangeMap<BlossomData>(_blossom_num);
2112 _node_index = new IntNodeMap(_graph);
2113 _node_heap_index = new IntArcMap(_graph);
2114 _node_data = new RangeMap<NodeData>(_node_num,
2115 NodeData(*_node_heap_index));
2119 _tree_set_index = new IntIntMap(_blossom_num);
2120 _tree_set = new TreeSet(*_tree_set_index);
2123 _delta2_index = new IntIntMap(_blossom_num);
2124 _delta2 = new BinHeap<Value, IntIntMap>(*_delta2_index);
2127 _delta3_index = new IntEdgeMap(_graph);
2128 _delta3 = new BinHeap<Value, IntEdgeMap>(*_delta3_index);
2131 _delta4_index = new IntIntMap(_blossom_num);
2132 _delta4 = new BinHeap<Value, IntIntMap>(*_delta4_index);
2136 void destroyStructures() {
2137 _node_num = countNodes(_graph);
2138 _blossom_num = _node_num * 3 / 2;
2143 if (_node_potential) {
2144 delete _node_potential;
2147 delete _blossom_index;
2148 delete _blossom_set;
2149 delete _blossom_data;
2154 delete _node_heap_index;
2159 delete _tree_set_index;
2163 delete _delta2_index;
2167 delete _delta3_index;
2171 delete _delta4_index;
2176 void matchedToEven(int blossom, int tree) {
2177 if (_delta2->state(blossom) == _delta2->IN_HEAP) {
2178 _delta2->erase(blossom);
2181 if (!_blossom_set->trivial(blossom)) {
2182 (*_blossom_data)[blossom].pot -=
2183 2 * (_delta_sum - (*_blossom_data)[blossom].offset);
2186 for (typename BlossomSet::ItemIt n(*_blossom_set, blossom);
2187 n != INVALID; ++n) {
2189 _blossom_set->increase(n, std::numeric_limits<Value>::max());
2190 int ni = (*_node_index)[n];
2192 (*_node_data)[ni].heap.clear();
2193 (*_node_data)[ni].heap_index.clear();
2195 (*_node_data)[ni].pot += _delta_sum - (*_blossom_data)[blossom].offset;
2197 for (InArcIt e(_graph, n); e != INVALID; ++e) {
2198 Node v = _graph.source(e);
2199 int vb = _blossom_set->find(v);
2200 int vi = (*_node_index)[v];
2202 Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot -
2203 dualScale * _weight[e];
2205 if ((*_blossom_data)[vb].status == EVEN) {
2206 if (_delta3->state(e) != _delta3->IN_HEAP && blossom != vb) {
2207 _delta3->push(e, rw / 2);
2210 typename std::map<int, Arc>::iterator it =
2211 (*_node_data)[vi].heap_index.find(tree);
2213 if (it != (*_node_data)[vi].heap_index.end()) {
2214 if ((*_node_data)[vi].heap[it->second] > rw) {
2215 (*_node_data)[vi].heap.replace(it->second, e);
2216 (*_node_data)[vi].heap.decrease(e, rw);
2220 (*_node_data)[vi].heap.push(e, rw);
2221 (*_node_data)[vi].heap_index.insert(std::make_pair(tree, e));
2224 if ((*_blossom_set)[v] > (*_node_data)[vi].heap.prio()) {
2225 _blossom_set->decrease(v, (*_node_data)[vi].heap.prio());
2227 if ((*_blossom_data)[vb].status == MATCHED) {
2228 if (_delta2->state(vb) != _delta2->IN_HEAP) {
2229 _delta2->push(vb, _blossom_set->classPrio(vb) -
2230 (*_blossom_data)[vb].offset);
2231 } else if ((*_delta2)[vb] > _blossom_set->classPrio(vb) -
2232 (*_blossom_data)[vb].offset){
2233 _delta2->decrease(vb, _blossom_set->classPrio(vb) -
2234 (*_blossom_data)[vb].offset);
2241 (*_blossom_data)[blossom].offset = 0;
2244 void matchedToOdd(int blossom) {
2245 if (_delta2->state(blossom) == _delta2->IN_HEAP) {
2246 _delta2->erase(blossom);
2248 (*_blossom_data)[blossom].offset += _delta_sum;
2249 if (!_blossom_set->trivial(blossom)) {
2250 _delta4->push(blossom, (*_blossom_data)[blossom].pot / 2 +
2251 (*_blossom_data)[blossom].offset);
2255 void evenToMatched(int blossom, int tree) {
2256 if (!_blossom_set->trivial(blossom)) {
2257 (*_blossom_data)[blossom].pot += 2 * _delta_sum;
2260 for (typename BlossomSet::ItemIt n(*_blossom_set, blossom);
2261 n != INVALID; ++n) {
2262 int ni = (*_node_index)[n];
2263 (*_node_data)[ni].pot -= _delta_sum;
2265 for (InArcIt e(_graph, n); e != INVALID; ++e) {
2266 Node v = _graph.source(e);
2267 int vb = _blossom_set->find(v);
2268 int vi = (*_node_index)[v];
2270 Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot -
2271 dualScale * _weight[e];
2273 if (vb == blossom) {
2274 if (_delta3->state(e) == _delta3->IN_HEAP) {
2277 } else if ((*_blossom_data)[vb].status == EVEN) {
2279 if (_delta3->state(e) == _delta3->IN_HEAP) {
2283 int vt = _tree_set->find(vb);
2287 Arc r = _graph.oppositeArc(e);
2289 typename std::map<int, Arc>::iterator it =
2290 (*_node_data)[ni].heap_index.find(vt);
2292 if (it != (*_node_data)[ni].heap_index.end()) {
2293 if ((*_node_data)[ni].heap[it->second] > rw) {
2294 (*_node_data)[ni].heap.replace(it->second, r);
2295 (*_node_data)[ni].heap.decrease(r, rw);
2299 (*_node_data)[ni].heap.push(r, rw);
2300 (*_node_data)[ni].heap_index.insert(std::make_pair(vt, r));
2303 if ((*_blossom_set)[n] > (*_node_data)[ni].heap.prio()) {
2304 _blossom_set->decrease(n, (*_node_data)[ni].heap.prio());
2306 if (_delta2->state(blossom) != _delta2->IN_HEAP) {
2307 _delta2->push(blossom, _blossom_set->classPrio(blossom) -
2308 (*_blossom_data)[blossom].offset);
2309 } else if ((*_delta2)[blossom] >
2310 _blossom_set->classPrio(blossom) -
2311 (*_blossom_data)[blossom].offset){
2312 _delta2->decrease(blossom, _blossom_set->classPrio(blossom) -
2313 (*_blossom_data)[blossom].offset);
2319 typename std::map<int, Arc>::iterator it =
2320 (*_node_data)[vi].heap_index.find(tree);
2322 if (it != (*_node_data)[vi].heap_index.end()) {
2323 (*_node_data)[vi].heap.erase(it->second);
2324 (*_node_data)[vi].heap_index.erase(it);
2325 if ((*_node_data)[vi].heap.empty()) {
2326 _blossom_set->increase(v, std::numeric_limits<Value>::max());
2327 } else if ((*_blossom_set)[v] < (*_node_data)[vi].heap.prio()) {
2328 _blossom_set->increase(v, (*_node_data)[vi].heap.prio());
2331 if ((*_blossom_data)[vb].status == MATCHED) {
2332 if (_blossom_set->classPrio(vb) ==
2333 std::numeric_limits<Value>::max()) {
2335 } else if ((*_delta2)[vb] < _blossom_set->classPrio(vb) -
2336 (*_blossom_data)[vb].offset) {
2337 _delta2->increase(vb, _blossom_set->classPrio(vb) -
2338 (*_blossom_data)[vb].offset);
2347 void oddToMatched(int blossom) {
2348 (*_blossom_data)[blossom].offset -= _delta_sum;
2350 if (_blossom_set->classPrio(blossom) !=
2351 std::numeric_limits<Value>::max()) {
2352 _delta2->push(blossom, _blossom_set->classPrio(blossom) -
2353 (*_blossom_data)[blossom].offset);
2356 if (!_blossom_set->trivial(blossom)) {
2357 _delta4->erase(blossom);
2361 void oddToEven(int blossom, int tree) {
2362 if (!_blossom_set->trivial(blossom)) {
2363 _delta4->erase(blossom);
2364 (*_blossom_data)[blossom].pot -=
2365 2 * (2 * _delta_sum - (*_blossom_data)[blossom].offset);
2368 for (typename BlossomSet::ItemIt n(*_blossom_set, blossom);
2369 n != INVALID; ++n) {
2370 int ni = (*_node_index)[n];
2372 _blossom_set->increase(n, std::numeric_limits<Value>::max());
2374 (*_node_data)[ni].heap.clear();
2375 (*_node_data)[ni].heap_index.clear();
2376 (*_node_data)[ni].pot +=
2377 2 * _delta_sum - (*_blossom_data)[blossom].offset;
2379 for (InArcIt e(_graph, n); e != INVALID; ++e) {
2380 Node v = _graph.source(e);
2381 int vb = _blossom_set->find(v);
2382 int vi = (*_node_index)[v];
2384 Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot -
2385 dualScale * _weight[e];
2387 if ((*_blossom_data)[vb].status == EVEN) {
2388 if (_delta3->state(e) != _delta3->IN_HEAP && blossom != vb) {
2389 _delta3->push(e, rw / 2);
2393 typename std::map<int, Arc>::iterator it =
2394 (*_node_data)[vi].heap_index.find(tree);
2396 if (it != (*_node_data)[vi].heap_index.end()) {
2397 if ((*_node_data)[vi].heap[it->second] > rw) {
2398 (*_node_data)[vi].heap.replace(it->second, e);
2399 (*_node_data)[vi].heap.decrease(e, rw);
2403 (*_node_data)[vi].heap.push(e, rw);
2404 (*_node_data)[vi].heap_index.insert(std::make_pair(tree, e));
2407 if ((*_blossom_set)[v] > (*_node_data)[vi].heap.prio()) {
2408 _blossom_set->decrease(v, (*_node_data)[vi].heap.prio());
2410 if ((*_blossom_data)[vb].status == MATCHED) {
2411 if (_delta2->state(vb) != _delta2->IN_HEAP) {
2412 _delta2->push(vb, _blossom_set->classPrio(vb) -
2413 (*_blossom_data)[vb].offset);
2414 } else if ((*_delta2)[vb] > _blossom_set->classPrio(vb) -
2415 (*_blossom_data)[vb].offset) {
2416 _delta2->decrease(vb, _blossom_set->classPrio(vb) -
2417 (*_blossom_data)[vb].offset);
2424 (*_blossom_data)[blossom].offset = 0;
2427 void alternatePath(int even, int tree) {
2430 evenToMatched(even, tree);
2431 (*_blossom_data)[even].status = MATCHED;
2433 while ((*_blossom_data)[even].pred != INVALID) {
2434 odd = _blossom_set->find(_graph.target((*_blossom_data)[even].pred));
2435 (*_blossom_data)[odd].status = MATCHED;
2437 (*_blossom_data)[odd].next = (*_blossom_data)[odd].pred;
2439 even = _blossom_set->find(_graph.target((*_blossom_data)[odd].pred));
2440 (*_blossom_data)[even].status = MATCHED;
2441 evenToMatched(even, tree);
2442 (*_blossom_data)[even].next =
2443 _graph.oppositeArc((*_blossom_data)[odd].pred);
2448 void destroyTree(int tree) {
2449 for (TreeSet::ItemIt b(*_tree_set, tree); b != INVALID; ++b) {
2450 if ((*_blossom_data)[b].status == EVEN) {
2451 (*_blossom_data)[b].status = MATCHED;
2452 evenToMatched(b, tree);
2453 } else if ((*_blossom_data)[b].status == ODD) {
2454 (*_blossom_data)[b].status = MATCHED;
2458 _tree_set->eraseClass(tree);
2461 void augmentOnEdge(const Edge& edge) {
2463 int left = _blossom_set->find(_graph.u(edge));
2464 int right = _blossom_set->find(_graph.v(edge));
2466 int left_tree = _tree_set->find(left);
2467 alternatePath(left, left_tree);
2468 destroyTree(left_tree);
2470 int right_tree = _tree_set->find(right);
2471 alternatePath(right, right_tree);
2472 destroyTree(right_tree);
2474 (*_blossom_data)[left].next = _graph.direct(edge, true);
2475 (*_blossom_data)[right].next = _graph.direct(edge, false);
2478 void extendOnArc(const Arc& arc) {
2479 int base = _blossom_set->find(_graph.target(arc));
2480 int tree = _tree_set->find(base);
2482 int odd = _blossom_set->find(_graph.source(arc));
2483 _tree_set->insert(odd, tree);
2484 (*_blossom_data)[odd].status = ODD;
2486 (*_blossom_data)[odd].pred = arc;
2488 int even = _blossom_set->find(_graph.target((*_blossom_data)[odd].next));
2489 (*_blossom_data)[even].pred = (*_blossom_data)[even].next;
2490 _tree_set->insert(even, tree);
2491 (*_blossom_data)[even].status = EVEN;
2492 matchedToEven(even, tree);
2495 void shrinkOnEdge(const Edge& edge, int tree) {
2497 std::vector<int> left_path, right_path;
2500 std::set<int> left_set, right_set;
2501 int left = _blossom_set->find(_graph.u(edge));
2502 left_path.push_back(left);
2503 left_set.insert(left);
2505 int right = _blossom_set->find(_graph.v(edge));
2506 right_path.push_back(right);
2507 right_set.insert(right);
2511 if ((*_blossom_data)[left].pred == INVALID) break;
2514 _blossom_set->find(_graph.target((*_blossom_data)[left].pred));
2515 left_path.push_back(left);
2517 _blossom_set->find(_graph.target((*_blossom_data)[left].pred));
2518 left_path.push_back(left);
2520 left_set.insert(left);
2522 if (right_set.find(left) != right_set.end()) {
2527 if ((*_blossom_data)[right].pred == INVALID) break;
2530 _blossom_set->find(_graph.target((*_blossom_data)[right].pred));
2531 right_path.push_back(right);
2533 _blossom_set->find(_graph.target((*_blossom_data)[right].pred));
2534 right_path.push_back(right);
2536 right_set.insert(right);
2538 if (left_set.find(right) != left_set.end()) {
2546 if ((*_blossom_data)[left].pred == INVALID) {
2548 while (left_set.find(nca) == left_set.end()) {
2550 _blossom_set->find(_graph.target((*_blossom_data)[nca].pred));
2551 right_path.push_back(nca);
2553 _blossom_set->find(_graph.target((*_blossom_data)[nca].pred));
2554 right_path.push_back(nca);
2558 while (right_set.find(nca) == right_set.end()) {
2560 _blossom_set->find(_graph.target((*_blossom_data)[nca].pred));
2561 left_path.push_back(nca);
2563 _blossom_set->find(_graph.target((*_blossom_data)[nca].pred));
2564 left_path.push_back(nca);
2570 std::vector<int> subblossoms;
2573 prev = _graph.direct(edge, true);
2574 for (int i = 0; left_path[i] != nca; i += 2) {
2575 subblossoms.push_back(left_path[i]);
2576 (*_blossom_data)[left_path[i]].next = prev;
2577 _tree_set->erase(left_path[i]);
2579 subblossoms.push_back(left_path[i + 1]);
2580 (*_blossom_data)[left_path[i + 1]].status = EVEN;
2581 oddToEven(left_path[i + 1], tree);
2582 _tree_set->erase(left_path[i + 1]);
2583 prev = _graph.oppositeArc((*_blossom_data)[left_path[i + 1]].pred);
2587 while (right_path[k] != nca) ++k;
2589 subblossoms.push_back(nca);
2590 (*_blossom_data)[nca].next = prev;
2592 for (int i = k - 2; i >= 0; i -= 2) {
2593 subblossoms.push_back(right_path[i + 1]);
2594 (*_blossom_data)[right_path[i + 1]].status = EVEN;
2595 oddToEven(right_path[i + 1], tree);
2596 _tree_set->erase(right_path[i + 1]);
2598 (*_blossom_data)[right_path[i + 1]].next =
2599 (*_blossom_data)[right_path[i + 1]].pred;
2601 subblossoms.push_back(right_path[i]);
2602 _tree_set->erase(right_path[i]);
2606 _blossom_set->join(subblossoms.begin(), subblossoms.end());
2608 for (int i = 0; i < int(subblossoms.size()); ++i) {
2609 if (!_blossom_set->trivial(subblossoms[i])) {
2610 (*_blossom_data)[subblossoms[i]].pot += 2 * _delta_sum;
2612 (*_blossom_data)[subblossoms[i]].status = MATCHED;
2615 (*_blossom_data)[surface].pot = -2 * _delta_sum;
2616 (*_blossom_data)[surface].offset = 0;
2617 (*_blossom_data)[surface].status = EVEN;
2618 (*_blossom_data)[surface].pred = (*_blossom_data)[nca].pred;
2619 (*_blossom_data)[surface].next = (*_blossom_data)[nca].pred;
2621 _tree_set->insert(surface, tree);
2622 _tree_set->erase(nca);
2625 void splitBlossom(int blossom) {
2626 Arc next = (*_blossom_data)[blossom].next;
2627 Arc pred = (*_blossom_data)[blossom].pred;
2629 int tree = _tree_set->find(blossom);
2631 (*_blossom_data)[blossom].status = MATCHED;
2632 oddToMatched(blossom);
2633 if (_delta2->state(blossom) == _delta2->IN_HEAP) {
2634 _delta2->erase(blossom);
2637 std::vector<int> subblossoms;
2638 _blossom_set->split(blossom, std::back_inserter(subblossoms));
2640 Value offset = (*_blossom_data)[blossom].offset;
2641 int b = _blossom_set->find(_graph.source(pred));
2642 int d = _blossom_set->find(_graph.source(next));
2644 int ib = -1, id = -1;
2645 for (int i = 0; i < int(subblossoms.size()); ++i) {
2646 if (subblossoms[i] == b) ib = i;
2647 if (subblossoms[i] == d) id = i;
2649 (*_blossom_data)[subblossoms[i]].offset = offset;
2650 if (!_blossom_set->trivial(subblossoms[i])) {
2651 (*_blossom_data)[subblossoms[i]].pot -= 2 * offset;
2653 if (_blossom_set->classPrio(subblossoms[i]) !=
2654 std::numeric_limits<Value>::max()) {
2655 _delta2->push(subblossoms[i],
2656 _blossom_set->classPrio(subblossoms[i]) -
2657 (*_blossom_data)[subblossoms[i]].offset);
2661 if (id > ib ? ((id - ib) % 2 == 0) : ((ib - id) % 2 == 1)) {
2662 for (int i = (id + 1) % subblossoms.size();
2663 i != ib; i = (i + 2) % subblossoms.size()) {
2664 int sb = subblossoms[i];
2665 int tb = subblossoms[(i + 1) % subblossoms.size()];
2666 (*_blossom_data)[sb].next =
2667 _graph.oppositeArc((*_blossom_data)[tb].next);
2670 for (int i = ib; i != id; i = (i + 2) % subblossoms.size()) {
2671 int sb = subblossoms[i];
2672 int tb = subblossoms[(i + 1) % subblossoms.size()];
2673 int ub = subblossoms[(i + 2) % subblossoms.size()];
2675 (*_blossom_data)[sb].status = ODD;
2677 _tree_set->insert(sb, tree);
2678 (*_blossom_data)[sb].pred = pred;
2679 (*_blossom_data)[sb].next =
2680 _graph.oppositeArc((*_blossom_data)[tb].next);
2682 pred = (*_blossom_data)[ub].next;
2684 (*_blossom_data)[tb].status = EVEN;
2685 matchedToEven(tb, tree);
2686 _tree_set->insert(tb, tree);
2687 (*_blossom_data)[tb].pred = (*_blossom_data)[tb].next;
2690 (*_blossom_data)[subblossoms[id]].status = ODD;
2691 matchedToOdd(subblossoms[id]);
2692 _tree_set->insert(subblossoms[id], tree);
2693 (*_blossom_data)[subblossoms[id]].next = next;
2694 (*_blossom_data)[subblossoms[id]].pred = pred;
2698 for (int i = (ib + 1) % subblossoms.size();
2699 i != id; i = (i + 2) % subblossoms.size()) {
2700 int sb = subblossoms[i];
2701 int tb = subblossoms[(i + 1) % subblossoms.size()];
2702 (*_blossom_data)[sb].next =
2703 _graph.oppositeArc((*_blossom_data)[tb].next);
2706 for (int i = id; i != ib; i = (i + 2) % subblossoms.size()) {
2707 int sb = subblossoms[i];
2708 int tb = subblossoms[(i + 1) % subblossoms.size()];
2709 int ub = subblossoms[(i + 2) % subblossoms.size()];
2711 (*_blossom_data)[sb].status = ODD;
2713 _tree_set->insert(sb, tree);
2714 (*_blossom_data)[sb].next = next;
2715 (*_blossom_data)[sb].pred =
2716 _graph.oppositeArc((*_blossom_data)[tb].next);
2718 (*_blossom_data)[tb].status = EVEN;
2719 matchedToEven(tb, tree);
2720 _tree_set->insert(tb, tree);
2721 (*_blossom_data)[tb].pred =
2722 (*_blossom_data)[tb].next =
2723 _graph.oppositeArc((*_blossom_data)[ub].next);
2724 next = (*_blossom_data)[ub].next;
2727 (*_blossom_data)[subblossoms[ib]].status = ODD;
2728 matchedToOdd(subblossoms[ib]);
2729 _tree_set->insert(subblossoms[ib], tree);
2730 (*_blossom_data)[subblossoms[ib]].next = next;
2731 (*_blossom_data)[subblossoms[ib]].pred = pred;
2733 _tree_set->erase(blossom);
2736 void extractBlossom(int blossom, const Node& base, const Arc& matching) {
2737 if (_blossom_set->trivial(blossom)) {
2738 int bi = (*_node_index)[base];
2739 Value pot = (*_node_data)[bi].pot;
2741 _matching->set(base, matching);
2742 _blossom_node_list.push_back(base);
2743 _node_potential->set(base, pot);
2746 Value pot = (*_blossom_data)[blossom].pot;
2747 int bn = _blossom_node_list.size();
2749 std::vector<int> subblossoms;
2750 _blossom_set->split(blossom, std::back_inserter(subblossoms));
2751 int b = _blossom_set->find(base);
2753 for (int i = 0; i < int(subblossoms.size()); ++i) {
2754 if (subblossoms[i] == b) { ib = i; break; }
2757 for (int i = 1; i < int(subblossoms.size()); i += 2) {
2758 int sb = subblossoms[(ib + i) % subblossoms.size()];
2759 int tb = subblossoms[(ib + i + 1) % subblossoms.size()];
2761 Arc m = (*_blossom_data)[tb].next;
2762 extractBlossom(sb, _graph.target(m), _graph.oppositeArc(m));
2763 extractBlossom(tb, _graph.source(m), m);
2765 extractBlossom(subblossoms[ib], base, matching);
2767 int en = _blossom_node_list.size();
2769 _blossom_potential.push_back(BlossomVariable(bn, en, pot));
2773 void extractMatching() {
2774 std::vector<int> blossoms;
2775 for (typename BlossomSet::ClassIt c(*_blossom_set); c != INVALID; ++c) {
2776 blossoms.push_back(c);
2779 for (int i = 0; i < int(blossoms.size()); ++i) {
2781 Value offset = (*_blossom_data)[blossoms[i]].offset;
2782 (*_blossom_data)[blossoms[i]].pot += 2 * offset;
2783 for (typename BlossomSet::ItemIt n(*_blossom_set, blossoms[i]);
2784 n != INVALID; ++n) {
2785 (*_node_data)[(*_node_index)[n]].pot -= offset;
2788 Arc matching = (*_blossom_data)[blossoms[i]].next;
2789 Node base = _graph.source(matching);
2790 extractBlossom(blossoms[i], base, matching);
2796 /// \brief Constructor
2799 MaxWeightedPerfectMatching(const Graph& graph, const WeightMap& weight)
2800 : _graph(graph), _weight(weight), _matching(0),
2801 _node_potential(0), _blossom_potential(), _blossom_node_list(),
2802 _node_num(0), _blossom_num(0),
2804 _blossom_index(0), _blossom_set(0), _blossom_data(0),
2805 _node_index(0), _node_heap_index(0), _node_data(0),
2806 _tree_set_index(0), _tree_set(0),
2808 _delta2_index(0), _delta2(0),
2809 _delta3_index(0), _delta3(0),
2810 _delta4_index(0), _delta4(0),
2814 ~MaxWeightedPerfectMatching() {
2815 destroyStructures();
2818 /// \name Execution control
2819 /// The simplest way to execute the algorithm is to use the
2820 /// \c run() member function.
2824 /// \brief Initialize the algorithm
2826 /// Initialize the algorithm
2830 for (ArcIt e(_graph); e != INVALID; ++e) {
2831 _node_heap_index->set(e, BinHeap<Value, IntArcMap>::PRE_HEAP);
2833 for (EdgeIt e(_graph); e != INVALID; ++e) {
2834 _delta3_index->set(e, _delta3->PRE_HEAP);
2836 for (int i = 0; i < _blossom_num; ++i) {
2837 _delta2_index->set(i, _delta2->PRE_HEAP);
2838 _delta4_index->set(i, _delta4->PRE_HEAP);
2842 for (NodeIt n(_graph); n != INVALID; ++n) {
2843 Value max = - std::numeric_limits<Value>::max();
2844 for (OutArcIt e(_graph, n); e != INVALID; ++e) {
2845 if (_graph.target(e) == n) continue;
2846 if ((dualScale * _weight[e]) / 2 > max) {
2847 max = (dualScale * _weight[e]) / 2;
2850 _node_index->set(n, index);
2851 (*_node_data)[index].pot = max;
2853 _blossom_set->insert(n, std::numeric_limits<Value>::max());
2855 _tree_set->insert(blossom);
2857 (*_blossom_data)[blossom].status = EVEN;
2858 (*_blossom_data)[blossom].pred = INVALID;
2859 (*_blossom_data)[blossom].next = INVALID;
2860 (*_blossom_data)[blossom].pot = 0;
2861 (*_blossom_data)[blossom].offset = 0;
2864 for (EdgeIt e(_graph); e != INVALID; ++e) {
2865 int si = (*_node_index)[_graph.u(e)];
2866 int ti = (*_node_index)[_graph.v(e)];
2867 if (_graph.u(e) != _graph.v(e)) {
2868 _delta3->push(e, ((*_node_data)[si].pot + (*_node_data)[ti].pot -
2869 dualScale * _weight[e]) / 2);
2874 /// \brief Starts the algorithm
2876 /// Starts the algorithm
2882 int unmatched = _node_num;
2883 while (unmatched > 0) {
2884 Value d2 = !_delta2->empty() ?
2885 _delta2->prio() : std::numeric_limits<Value>::max();
2887 Value d3 = !_delta3->empty() ?
2888 _delta3->prio() : std::numeric_limits<Value>::max();
2890 Value d4 = !_delta4->empty() ?
2891 _delta4->prio() : std::numeric_limits<Value>::max();
2893 _delta_sum = d2; OpType ot = D2;
2894 if (d3 < _delta_sum) { _delta_sum = d3; ot = D3; }
2895 if (d4 < _delta_sum) { _delta_sum = d4; ot = D4; }
2897 if (_delta_sum == std::numeric_limits<Value>::max()) {
2904 int blossom = _delta2->top();
2905 Node n = _blossom_set->classTop(blossom);
2906 Arc e = (*_node_data)[(*_node_index)[n]].heap.top();
2912 Edge e = _delta3->top();
2914 int left_blossom = _blossom_set->find(_graph.u(e));
2915 int right_blossom = _blossom_set->find(_graph.v(e));
2917 if (left_blossom == right_blossom) {
2920 int left_tree = _tree_set->find(left_blossom);
2921 int right_tree = _tree_set->find(right_blossom);
2923 if (left_tree == right_tree) {
2924 shrinkOnEdge(e, left_tree);
2932 splitBlossom(_delta4->top());
2940 /// \brief Runs %MaxWeightedPerfectMatching algorithm.
2942 /// This method runs the %MaxWeightedPerfectMatching algorithm.
2944 /// \note mwm.run() is just a shortcut of the following code.
2956 /// \name Primal solution
2957 /// Functions to get the primal solution, ie. the matching.
2961 /// \brief Returns the matching value.
2963 /// Returns the matching value.
2964 Value matchingValue() const {
2966 for (NodeIt n(_graph); n != INVALID; ++n) {
2967 if ((*_matching)[n] != INVALID) {
2968 sum += _weight[(*_matching)[n]];
2974 /// \brief Returns true when the edge is in the matching.
2976 /// Returns true when the edge is in the matching.
2977 bool matching(const Edge& edge) const {
2978 return static_cast<const Edge&>((*_matching)[_graph.u(edge)]) == edge;
2981 /// \brief Returns the incident matching edge.
2983 /// Returns the incident matching arc from given edge.
2984 Arc matching(const Node& node) const {
2985 return (*_matching)[node];
2988 /// \brief Returns the mate of the node.
2990 /// Returns the adjancent node in a mathcing arc.
2991 Node mate(const Node& node) const {
2992 return _graph.target((*_matching)[node]);
2997 /// \name Dual solution
2998 /// Functions to get the dual solution.
3002 /// \brief Returns the value of the dual solution.
3004 /// Returns the value of the dual solution. It should be equal to
3005 /// the primal value scaled by \ref dualScale "dual scale".
3006 Value dualValue() const {
3008 for (NodeIt n(_graph); n != INVALID; ++n) {
3009 sum += nodeValue(n);
3011 for (int i = 0; i < blossomNum(); ++i) {
3012 sum += blossomValue(i) * (blossomSize(i) / 2);
3017 /// \brief Returns the value of the node.
3019 /// Returns the the value of the node.
3020 Value nodeValue(const Node& n) const {
3021 return (*_node_potential)[n];
3024 /// \brief Returns the number of the blossoms in the basis.
3026 /// Returns the number of the blossoms in the basis.
3028 int blossomNum() const {
3029 return _blossom_potential.size();
3033 /// \brief Returns the number of the nodes in the blossom.
3035 /// Returns the number of the nodes in the blossom.
3036 int blossomSize(int k) const {
3037 return _blossom_potential[k].end - _blossom_potential[k].begin;
3040 /// \brief Returns the value of the blossom.
3042 /// Returns the the value of the blossom.
3044 Value blossomValue(int k) const {
3045 return _blossom_potential[k].value;
3048 /// \brief Iterator for obtaining the nodes of the blossom.
3050 /// Iterator for obtaining the nodes of the blossom. This class
3051 /// provides a common lemon style iterator for listing a
3052 /// subset of the nodes.
3056 /// \brief Constructor.
3058 /// Constructor to get the nodes of the variable.
3059 BlossomIt(const MaxWeightedPerfectMatching& algorithm, int variable)
3060 : _algorithm(&algorithm)
3062 _index = _algorithm->_blossom_potential[variable].begin;
3063 _last = _algorithm->_blossom_potential[variable].end;
3066 /// \brief Conversion to node.
3068 /// Conversion to node.
3069 operator Node() const {
3070 return _algorithm->_blossom_node_list[_index];
3073 /// \brief Increment operator.
3075 /// Increment operator.
3076 BlossomIt& operator++() {
3081 /// \brief Validity checking
3083 /// Checks whether the iterator is invalid.
3084 bool operator==(Invalid) const { return _index == _last; }
3086 /// \brief Validity checking
3088 /// Checks whether the iterator is valid.
3089 bool operator!=(Invalid) const { return _index != _last; }
3092 const MaxWeightedPerfectMatching* _algorithm;
3102 } //END OF NAMESPACE LEMON
3104 #endif //LEMON_MAX_MATCHING_H