lemon/dijkstra.h
author Peter Kovacs <kpeter@inf.elte.hu>
Sun, 30 Nov 2008 19:17:51 +0100
changeset 405 6b9057cdcd8b
parent 313 64f8f7cc6168
child 408 69f33ef03334
permissions -rw-r--r--
Doc improvements for Bfs, Dfs, Dijkstra (#185)

- More precise references to overloaded member functions.
- Hide the doc of the traits class parameters.
- Better doc for named groups.
- More precise doc for the case of multiple sources in Dfs.
     1 /* -*- mode: C++; indent-tabs-mode: nil; -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library.
     4  *
     5  * Copyright (C) 2003-2008
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_DIJKSTRA_H
    20 #define LEMON_DIJKSTRA_H
    21 
    22 ///\ingroup shortest_path
    23 ///\file
    24 ///\brief Dijkstra algorithm.
    25 
    26 #include <limits>
    27 #include <lemon/list_graph.h>
    28 #include <lemon/bin_heap.h>
    29 #include <lemon/bits/path_dump.h>
    30 #include <lemon/core.h>
    31 #include <lemon/error.h>
    32 #include <lemon/maps.h>
    33 #include <lemon/path.h>
    34 
    35 namespace lemon {
    36 
    37   /// \brief Default operation traits for the Dijkstra algorithm class.
    38   ///
    39   /// This operation traits class defines all computational operations and
    40   /// constants which are used in the Dijkstra algorithm.
    41   template <typename Value>
    42   struct DijkstraDefaultOperationTraits {
    43     /// \brief Gives back the zero value of the type.
    44     static Value zero() {
    45       return static_cast<Value>(0);
    46     }
    47     /// \brief Gives back the sum of the given two elements.
    48     static Value plus(const Value& left, const Value& right) {
    49       return left + right;
    50     }
    51     /// \brief Gives back true only if the first value is less than the second.
    52     static bool less(const Value& left, const Value& right) {
    53       return left < right;
    54     }
    55   };
    56 
    57   /// \brief Widest path operation traits for the Dijkstra algorithm class.
    58   ///
    59   /// This operation traits class defines all computational operations and
    60   /// constants which are used in the Dijkstra algorithm for widest path
    61   /// computation.
    62   ///
    63   /// \see DijkstraDefaultOperationTraits
    64   template <typename Value>
    65   struct DijkstraWidestPathOperationTraits {
    66     /// \brief Gives back the maximum value of the type.
    67     static Value zero() {
    68       return std::numeric_limits<Value>::max();
    69     }
    70     /// \brief Gives back the minimum of the given two elements.
    71     static Value plus(const Value& left, const Value& right) {
    72       return std::min(left, right);
    73     }
    74     /// \brief Gives back true only if the first value is less than the second.
    75     static bool less(const Value& left, const Value& right) {
    76       return left < right;
    77     }
    78   };
    79 
    80   ///Default traits class of Dijkstra class.
    81 
    82   ///Default traits class of Dijkstra class.
    83   ///\tparam GR The type of the digraph.
    84   ///\tparam LM The type of the length map.
    85   template<class GR, class LM>
    86   struct DijkstraDefaultTraits
    87   {
    88     ///The type of the digraph the algorithm runs on.
    89     typedef GR Digraph;
    90 
    91     ///The type of the map that stores the arc lengths.
    92 
    93     ///The type of the map that stores the arc lengths.
    94     ///It must meet the \ref concepts::ReadMap "ReadMap" concept.
    95     typedef LM LengthMap;
    96     ///The type of the length of the arcs.
    97     typedef typename LM::Value Value;
    98 
    99     /// Operation traits for Dijkstra algorithm.
   100 
   101     /// This class defines the operations that are used in the algorithm.
   102     /// \see DijkstraDefaultOperationTraits
   103     typedef DijkstraDefaultOperationTraits<Value> OperationTraits;
   104 
   105     /// The cross reference type used by the heap.
   106 
   107     /// The cross reference type used by the heap.
   108     /// Usually it is \c Digraph::NodeMap<int>.
   109     typedef typename Digraph::template NodeMap<int> HeapCrossRef;
   110     ///Instantiates a \ref HeapCrossRef.
   111 
   112     ///This function instantiates a \ref HeapCrossRef.
   113     /// \param g is the digraph, to which we would like to define the
   114     /// \ref HeapCrossRef.
   115     static HeapCrossRef *createHeapCrossRef(const Digraph &g)
   116     {
   117       return new HeapCrossRef(g);
   118     }
   119 
   120     ///The heap type used by the Dijkstra algorithm.
   121 
   122     ///The heap type used by the Dijkstra algorithm.
   123     ///
   124     ///\sa BinHeap
   125     ///\sa Dijkstra
   126     typedef BinHeap<typename LM::Value, HeapCrossRef, std::less<Value> > Heap;
   127     ///Instantiates a \ref Heap.
   128 
   129     ///This function instantiates a \ref Heap.
   130     static Heap *createHeap(HeapCrossRef& r)
   131     {
   132       return new Heap(r);
   133     }
   134 
   135     ///\brief The type of the map that stores the predecessor
   136     ///arcs of the shortest paths.
   137     ///
   138     ///The type of the map that stores the predecessor
   139     ///arcs of the shortest paths.
   140     ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
   141     typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap;
   142     ///Instantiates a PredMap.
   143 
   144     ///This function instantiates a PredMap.
   145     ///\param g is the digraph, to which we would like to define the
   146     ///PredMap.
   147     static PredMap *createPredMap(const Digraph &g)
   148     {
   149       return new PredMap(g);
   150     }
   151 
   152     ///The type of the map that indicates which nodes are processed.
   153 
   154     ///The type of the map that indicates which nodes are processed.
   155     ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
   156     ///By default it is a NullMap.
   157     typedef NullMap<typename Digraph::Node,bool> ProcessedMap;
   158     ///Instantiates a ProcessedMap.
   159 
   160     ///This function instantiates a ProcessedMap.
   161     ///\param g is the digraph, to which
   162     ///we would like to define the ProcessedMap
   163 #ifdef DOXYGEN
   164     static ProcessedMap *createProcessedMap(const Digraph &g)
   165 #else
   166     static ProcessedMap *createProcessedMap(const Digraph &)
   167 #endif
   168     {
   169       return new ProcessedMap();
   170     }
   171 
   172     ///The type of the map that stores the distances of the nodes.
   173 
   174     ///The type of the map that stores the distances of the nodes.
   175     ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
   176     typedef typename Digraph::template NodeMap<typename LM::Value> DistMap;
   177     ///Instantiates a DistMap.
   178 
   179     ///This function instantiates a DistMap.
   180     ///\param g is the digraph, to which we would like to define
   181     ///the DistMap
   182     static DistMap *createDistMap(const Digraph &g)
   183     {
   184       return new DistMap(g);
   185     }
   186   };
   187 
   188   ///%Dijkstra algorithm class.
   189 
   190   /// \ingroup shortest_path
   191   ///This class provides an efficient implementation of the %Dijkstra algorithm.
   192   ///
   193   ///The arc lengths are passed to the algorithm using a
   194   ///\ref concepts::ReadMap "ReadMap",
   195   ///so it is easy to change it to any kind of length.
   196   ///The type of the length is determined by the
   197   ///\ref concepts::ReadMap::Value "Value" of the length map.
   198   ///It is also possible to change the underlying priority heap.
   199   ///
   200   ///There is also a \ref dijkstra() "function-type interface" for the
   201   ///%Dijkstra algorithm, which is convenient in the simplier cases and
   202   ///it can be used easier.
   203   ///
   204   ///\tparam GR The type of the digraph the algorithm runs on.
   205   ///The default type is \ref ListDigraph.
   206   ///\tparam LM A \ref concepts::ReadMap "readable" arc map that specifies
   207   ///the lengths of the arcs.
   208   ///It is read once for each arc, so the map may involve in
   209   ///relatively time consuming process to compute the arc lengths if
   210   ///it is necessary. The default map type is \ref
   211   ///concepts::Digraph::ArcMap "GR::ArcMap<int>".
   212 #ifdef DOXYGEN
   213   template <typename GR, typename LM, typename TR>
   214 #else
   215   template <typename GR=ListDigraph,
   216             typename LM=typename GR::template ArcMap<int>,
   217             typename TR=DijkstraDefaultTraits<GR,LM> >
   218 #endif
   219   class Dijkstra {
   220   public:
   221 
   222     ///The type of the digraph the algorithm runs on.
   223     typedef typename TR::Digraph Digraph;
   224 
   225     ///The type of the length of the arcs.
   226     typedef typename TR::LengthMap::Value Value;
   227     ///The type of the map that stores the arc lengths.
   228     typedef typename TR::LengthMap LengthMap;
   229     ///\brief The type of the map that stores the predecessor arcs of the
   230     ///shortest paths.
   231     typedef typename TR::PredMap PredMap;
   232     ///The type of the map that stores the distances of the nodes.
   233     typedef typename TR::DistMap DistMap;
   234     ///The type of the map that indicates which nodes are processed.
   235     typedef typename TR::ProcessedMap ProcessedMap;
   236     ///The type of the paths.
   237     typedef PredMapPath<Digraph, PredMap> Path;
   238     ///The cross reference type used for the current heap.
   239     typedef typename TR::HeapCrossRef HeapCrossRef;
   240     ///The heap type used by the algorithm.
   241     typedef typename TR::Heap Heap;
   242     ///The operation traits class.
   243     typedef typename TR::OperationTraits OperationTraits;
   244 
   245     ///The \ref DijkstraDefaultTraits "traits class" of the algorithm.
   246     typedef TR Traits;
   247 
   248   private:
   249 
   250     typedef typename Digraph::Node Node;
   251     typedef typename Digraph::NodeIt NodeIt;
   252     typedef typename Digraph::Arc Arc;
   253     typedef typename Digraph::OutArcIt OutArcIt;
   254 
   255     //Pointer to the underlying digraph.
   256     const Digraph *G;
   257     //Pointer to the length map.
   258     const LengthMap *length;
   259     //Pointer to the map of predecessors arcs.
   260     PredMap *_pred;
   261     //Indicates if _pred is locally allocated (true) or not.
   262     bool local_pred;
   263     //Pointer to the map of distances.
   264     DistMap *_dist;
   265     //Indicates if _dist is locally allocated (true) or not.
   266     bool local_dist;
   267     //Pointer to the map of processed status of the nodes.
   268     ProcessedMap *_processed;
   269     //Indicates if _processed is locally allocated (true) or not.
   270     bool local_processed;
   271     //Pointer to the heap cross references.
   272     HeapCrossRef *_heap_cross_ref;
   273     //Indicates if _heap_cross_ref is locally allocated (true) or not.
   274     bool local_heap_cross_ref;
   275     //Pointer to the heap.
   276     Heap *_heap;
   277     //Indicates if _heap is locally allocated (true) or not.
   278     bool local_heap;
   279 
   280     //Creates the maps if necessary.
   281     void create_maps()
   282     {
   283       if(!_pred) {
   284         local_pred = true;
   285         _pred = Traits::createPredMap(*G);
   286       }
   287       if(!_dist) {
   288         local_dist = true;
   289         _dist = Traits::createDistMap(*G);
   290       }
   291       if(!_processed) {
   292         local_processed = true;
   293         _processed = Traits::createProcessedMap(*G);
   294       }
   295       if (!_heap_cross_ref) {
   296         local_heap_cross_ref = true;
   297         _heap_cross_ref = Traits::createHeapCrossRef(*G);
   298       }
   299       if (!_heap) {
   300         local_heap = true;
   301         _heap = Traits::createHeap(*_heap_cross_ref);
   302       }
   303     }
   304 
   305   public:
   306 
   307     typedef Dijkstra Create;
   308 
   309     ///\name Named template parameters
   310 
   311     ///@{
   312 
   313     template <class T>
   314     struct SetPredMapTraits : public Traits {
   315       typedef T PredMap;
   316       static PredMap *createPredMap(const Digraph &)
   317       {
   318         LEMON_ASSERT(false, "PredMap is not initialized");
   319         return 0; // ignore warnings
   320       }
   321     };
   322     ///\brief \ref named-templ-param "Named parameter" for setting
   323     ///PredMap type.
   324     ///
   325     ///\ref named-templ-param "Named parameter" for setting
   326     ///PredMap type.
   327     ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
   328     template <class T>
   329     struct SetPredMap
   330       : public Dijkstra< Digraph, LengthMap, SetPredMapTraits<T> > {
   331       typedef Dijkstra< Digraph, LengthMap, SetPredMapTraits<T> > Create;
   332     };
   333 
   334     template <class T>
   335     struct SetDistMapTraits : public Traits {
   336       typedef T DistMap;
   337       static DistMap *createDistMap(const Digraph &)
   338       {
   339         LEMON_ASSERT(false, "DistMap is not initialized");
   340         return 0; // ignore warnings
   341       }
   342     };
   343     ///\brief \ref named-templ-param "Named parameter" for setting
   344     ///DistMap type.
   345     ///
   346     ///\ref named-templ-param "Named parameter" for setting
   347     ///DistMap type.
   348     ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
   349     template <class T>
   350     struct SetDistMap
   351       : public Dijkstra< Digraph, LengthMap, SetDistMapTraits<T> > {
   352       typedef Dijkstra< Digraph, LengthMap, SetDistMapTraits<T> > Create;
   353     };
   354 
   355     template <class T>
   356     struct SetProcessedMapTraits : public Traits {
   357       typedef T ProcessedMap;
   358       static ProcessedMap *createProcessedMap(const Digraph &)
   359       {
   360         LEMON_ASSERT(false, "ProcessedMap is not initialized");
   361         return 0; // ignore warnings
   362       }
   363     };
   364     ///\brief \ref named-templ-param "Named parameter" for setting
   365     ///ProcessedMap type.
   366     ///
   367     ///\ref named-templ-param "Named parameter" for setting
   368     ///ProcessedMap type.
   369     ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
   370     template <class T>
   371     struct SetProcessedMap
   372       : public Dijkstra< Digraph, LengthMap, SetProcessedMapTraits<T> > {
   373       typedef Dijkstra< Digraph, LengthMap, SetProcessedMapTraits<T> > Create;
   374     };
   375 
   376     struct SetStandardProcessedMapTraits : public Traits {
   377       typedef typename Digraph::template NodeMap<bool> ProcessedMap;
   378       static ProcessedMap *createProcessedMap(const Digraph &g)
   379       {
   380         return new ProcessedMap(g);
   381       }
   382     };
   383     ///\brief \ref named-templ-param "Named parameter" for setting
   384     ///ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>.
   385     ///
   386     ///\ref named-templ-param "Named parameter" for setting
   387     ///ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>.
   388     ///If you don't set it explicitly, it will be automatically allocated.
   389     struct SetStandardProcessedMap
   390       : public Dijkstra< Digraph, LengthMap, SetStandardProcessedMapTraits > {
   391       typedef Dijkstra< Digraph, LengthMap, SetStandardProcessedMapTraits >
   392       Create;
   393     };
   394 
   395     template <class H, class CR>
   396     struct SetHeapTraits : public Traits {
   397       typedef CR HeapCrossRef;
   398       typedef H Heap;
   399       static HeapCrossRef *createHeapCrossRef(const Digraph &) {
   400         LEMON_ASSERT(false, "HeapCrossRef is not initialized");
   401         return 0; // ignore warnings
   402       }
   403       static Heap *createHeap(HeapCrossRef &)
   404       {
   405         LEMON_ASSERT(false, "Heap is not initialized");
   406         return 0; // ignore warnings
   407       }
   408     };
   409     ///\brief \ref named-templ-param "Named parameter" for setting
   410     ///heap and cross reference types
   411     ///
   412     ///\ref named-templ-param "Named parameter" for setting heap and cross
   413     ///reference types. If this named parameter is used, then external
   414     ///heap and cross reference objects must be passed to the algorithm
   415     ///using the \ref heap() function before calling \ref run(Node) "run()"
   416     ///or \ref init().
   417     ///\sa SetStandardHeap
   418     template <class H, class CR = typename Digraph::template NodeMap<int> >
   419     struct SetHeap
   420       : public Dijkstra< Digraph, LengthMap, SetHeapTraits<H, CR> > {
   421       typedef Dijkstra< Digraph, LengthMap, SetHeapTraits<H, CR> > Create;
   422     };
   423 
   424     template <class H, class CR>
   425     struct SetStandardHeapTraits : public Traits {
   426       typedef CR HeapCrossRef;
   427       typedef H Heap;
   428       static HeapCrossRef *createHeapCrossRef(const Digraph &G) {
   429         return new HeapCrossRef(G);
   430       }
   431       static Heap *createHeap(HeapCrossRef &R)
   432       {
   433         return new Heap(R);
   434       }
   435     };
   436     ///\brief \ref named-templ-param "Named parameter" for setting
   437     ///heap and cross reference types with automatic allocation
   438     ///
   439     ///\ref named-templ-param "Named parameter" for setting heap and cross
   440     ///reference types with automatic allocation.
   441     ///They should have standard constructor interfaces to be able to
   442     ///automatically created by the algorithm (i.e. the digraph should be
   443     ///passed to the constructor of the cross reference and the cross
   444     ///reference should be passed to the constructor of the heap).
   445     ///However external heap and cross reference objects could also be
   446     ///passed to the algorithm using the \ref heap() function before
   447     ///calling \ref run(Node) "run()" or \ref init().
   448     ///\sa SetHeap
   449     template <class H, class CR = typename Digraph::template NodeMap<int> >
   450     struct SetStandardHeap
   451       : public Dijkstra< Digraph, LengthMap, SetStandardHeapTraits<H, CR> > {
   452       typedef Dijkstra< Digraph, LengthMap, SetStandardHeapTraits<H, CR> >
   453       Create;
   454     };
   455 
   456     template <class T>
   457     struct SetOperationTraitsTraits : public Traits {
   458       typedef T OperationTraits;
   459     };
   460 
   461     /// \brief \ref named-templ-param "Named parameter" for setting
   462     ///\c OperationTraits type
   463     ///
   464     ///\ref named-templ-param "Named parameter" for setting
   465     ///\ref OperationTraits type.
   466     template <class T>
   467     struct SetOperationTraits
   468       : public Dijkstra<Digraph, LengthMap, SetOperationTraitsTraits<T> > {
   469       typedef Dijkstra<Digraph, LengthMap, SetOperationTraitsTraits<T> >
   470       Create;
   471     };
   472 
   473     ///@}
   474 
   475   protected:
   476 
   477     Dijkstra() {}
   478 
   479   public:
   480 
   481     ///Constructor.
   482 
   483     ///Constructor.
   484     ///\param _g The digraph the algorithm runs on.
   485     ///\param _length The length map used by the algorithm.
   486     Dijkstra(const Digraph& _g, const LengthMap& _length) :
   487       G(&_g), length(&_length),
   488       _pred(NULL), local_pred(false),
   489       _dist(NULL), local_dist(false),
   490       _processed(NULL), local_processed(false),
   491       _heap_cross_ref(NULL), local_heap_cross_ref(false),
   492       _heap(NULL), local_heap(false)
   493     { }
   494 
   495     ///Destructor.
   496     ~Dijkstra()
   497     {
   498       if(local_pred) delete _pred;
   499       if(local_dist) delete _dist;
   500       if(local_processed) delete _processed;
   501       if(local_heap_cross_ref) delete _heap_cross_ref;
   502       if(local_heap) delete _heap;
   503     }
   504 
   505     ///Sets the length map.
   506 
   507     ///Sets the length map.
   508     ///\return <tt> (*this) </tt>
   509     Dijkstra &lengthMap(const LengthMap &m)
   510     {
   511       length = &m;
   512       return *this;
   513     }
   514 
   515     ///Sets the map that stores the predecessor arcs.
   516 
   517     ///Sets the map that stores the predecessor arcs.
   518     ///If you don't use this function before calling \ref run(Node) "run()"
   519     ///or \ref init(), an instance will be allocated automatically.
   520     ///The destructor deallocates this automatically allocated map,
   521     ///of course.
   522     ///\return <tt> (*this) </tt>
   523     Dijkstra &predMap(PredMap &m)
   524     {
   525       if(local_pred) {
   526         delete _pred;
   527         local_pred=false;
   528       }
   529       _pred = &m;
   530       return *this;
   531     }
   532 
   533     ///Sets the map that indicates which nodes are processed.
   534 
   535     ///Sets the map that indicates which nodes are processed.
   536     ///If you don't use this function before calling \ref run(Node) "run()"
   537     ///or \ref init(), an instance will be allocated automatically.
   538     ///The destructor deallocates this automatically allocated map,
   539     ///of course.
   540     ///\return <tt> (*this) </tt>
   541     Dijkstra &processedMap(ProcessedMap &m)
   542     {
   543       if(local_processed) {
   544         delete _processed;
   545         local_processed=false;
   546       }
   547       _processed = &m;
   548       return *this;
   549     }
   550 
   551     ///Sets the map that stores the distances of the nodes.
   552 
   553     ///Sets the map that stores the distances of the nodes calculated by the
   554     ///algorithm.
   555     ///If you don't use this function before calling \ref run(Node) "run()"
   556     ///or \ref init(), an instance will be allocated automatically.
   557     ///The destructor deallocates this automatically allocated map,
   558     ///of course.
   559     ///\return <tt> (*this) </tt>
   560     Dijkstra &distMap(DistMap &m)
   561     {
   562       if(local_dist) {
   563         delete _dist;
   564         local_dist=false;
   565       }
   566       _dist = &m;
   567       return *this;
   568     }
   569 
   570     ///Sets the heap and the cross reference used by algorithm.
   571 
   572     ///Sets the heap and the cross reference used by algorithm.
   573     ///If you don't use this function before calling \ref run(Node) "run()"
   574     ///or \ref init(), heap and cross reference instances will be
   575     ///allocated automatically.
   576     ///The destructor deallocates these automatically allocated objects,
   577     ///of course.
   578     ///\return <tt> (*this) </tt>
   579     Dijkstra &heap(Heap& hp, HeapCrossRef &cr)
   580     {
   581       if(local_heap_cross_ref) {
   582         delete _heap_cross_ref;
   583         local_heap_cross_ref=false;
   584       }
   585       _heap_cross_ref = &cr;
   586       if(local_heap) {
   587         delete _heap;
   588         local_heap=false;
   589       }
   590       _heap = &hp;
   591       return *this;
   592     }
   593 
   594   private:
   595 
   596     void finalizeNodeData(Node v,Value dst)
   597     {
   598       _processed->set(v,true);
   599       _dist->set(v, dst);
   600     }
   601 
   602   public:
   603 
   604     ///\name Execution Control
   605     ///The simplest way to execute the %Dijkstra algorithm is to use
   606     ///one of the member functions called \ref run(Node) "run()".\n
   607     ///If you need more control on the execution, first you have to call
   608     ///\ref init(), then you can add several source nodes with
   609     ///\ref addSource(). Finally the actual path computation can be
   610     ///performed with one of the \ref start() functions.
   611 
   612     ///@{
   613 
   614     ///\brief Initializes the internal data structures.
   615     ///
   616     ///Initializes the internal data structures.
   617     void init()
   618     {
   619       create_maps();
   620       _heap->clear();
   621       for ( NodeIt u(*G) ; u!=INVALID ; ++u ) {
   622         _pred->set(u,INVALID);
   623         _processed->set(u,false);
   624         _heap_cross_ref->set(u,Heap::PRE_HEAP);
   625       }
   626     }
   627 
   628     ///Adds a new source node.
   629 
   630     ///Adds a new source node to the priority heap.
   631     ///The optional second parameter is the initial distance of the node.
   632     ///
   633     ///The function checks if the node has already been added to the heap and
   634     ///it is pushed to the heap only if either it was not in the heap
   635     ///or the shortest path found till then is shorter than \c dst.
   636     void addSource(Node s,Value dst=OperationTraits::zero())
   637     {
   638       if(_heap->state(s) != Heap::IN_HEAP) {
   639         _heap->push(s,dst);
   640       } else if(OperationTraits::less((*_heap)[s], dst)) {
   641         _heap->set(s,dst);
   642         _pred->set(s,INVALID);
   643       }
   644     }
   645 
   646     ///Processes the next node in the priority heap
   647 
   648     ///Processes the next node in the priority heap.
   649     ///
   650     ///\return The processed node.
   651     ///
   652     ///\warning The priority heap must not be empty.
   653     Node processNextNode()
   654     {
   655       Node v=_heap->top();
   656       Value oldvalue=_heap->prio();
   657       _heap->pop();
   658       finalizeNodeData(v,oldvalue);
   659 
   660       for(OutArcIt e(*G,v); e!=INVALID; ++e) {
   661         Node w=G->target(e);
   662         switch(_heap->state(w)) {
   663         case Heap::PRE_HEAP:
   664           _heap->push(w,OperationTraits::plus(oldvalue, (*length)[e]));
   665           _pred->set(w,e);
   666           break;
   667         case Heap::IN_HEAP:
   668           {
   669             Value newvalue = OperationTraits::plus(oldvalue, (*length)[e]);
   670             if ( OperationTraits::less(newvalue, (*_heap)[w]) ) {
   671               _heap->decrease(w, newvalue);
   672               _pred->set(w,e);
   673             }
   674           }
   675           break;
   676         case Heap::POST_HEAP:
   677           break;
   678         }
   679       }
   680       return v;
   681     }
   682 
   683     ///The next node to be processed.
   684 
   685     ///Returns the next node to be processed or \c INVALID if the
   686     ///priority heap is empty.
   687     Node nextNode() const
   688     {
   689       return !_heap->empty()?_heap->top():INVALID;
   690     }
   691 
   692     ///Returns \c false if there are nodes to be processed.
   693 
   694     ///Returns \c false if there are nodes to be processed
   695     ///in the priority heap.
   696     bool emptyQueue() const { return _heap->empty(); }
   697 
   698     ///Returns the number of the nodes to be processed.
   699 
   700     ///Returns the number of the nodes to be processed
   701     ///in the priority heap.
   702     int queueSize() const { return _heap->size(); }
   703 
   704     ///Executes the algorithm.
   705 
   706     ///Executes the algorithm.
   707     ///
   708     ///This method runs the %Dijkstra algorithm from the root node(s)
   709     ///in order to compute the shortest path to each node.
   710     ///
   711     ///The algorithm computes
   712     ///- the shortest path tree (forest),
   713     ///- the distance of each node from the root(s).
   714     ///
   715     ///\pre init() must be called and at least one root node should be
   716     ///added with addSource() before using this function.
   717     ///
   718     ///\note <tt>d.start()</tt> is just a shortcut of the following code.
   719     ///\code
   720     ///  while ( !d.emptyQueue() ) {
   721     ///    d.processNextNode();
   722     ///  }
   723     ///\endcode
   724     void start()
   725     {
   726       while ( !emptyQueue() ) processNextNode();
   727     }
   728 
   729     ///Executes the algorithm until the given target node is processed.
   730 
   731     ///Executes the algorithm until the given target node is processed.
   732     ///
   733     ///This method runs the %Dijkstra algorithm from the root node(s)
   734     ///in order to compute the shortest path to \c t.
   735     ///
   736     ///The algorithm computes
   737     ///- the shortest path to \c t,
   738     ///- the distance of \c t from the root(s).
   739     ///
   740     ///\pre init() must be called and at least one root node should be
   741     ///added with addSource() before using this function.
   742     void start(Node t)
   743     {
   744       while ( !_heap->empty() && _heap->top()!=t ) processNextNode();
   745       if ( !_heap->empty() ) {
   746         finalizeNodeData(_heap->top(),_heap->prio());
   747         _heap->pop();
   748       }
   749     }
   750 
   751     ///Executes the algorithm until a condition is met.
   752 
   753     ///Executes the algorithm until a condition is met.
   754     ///
   755     ///This method runs the %Dijkstra algorithm from the root node(s) in
   756     ///order to compute the shortest path to a node \c v with
   757     /// <tt>nm[v]</tt> true, if such a node can be found.
   758     ///
   759     ///\param nm A \c bool (or convertible) node map. The algorithm
   760     ///will stop when it reaches a node \c v with <tt>nm[v]</tt> true.
   761     ///
   762     ///\return The reached node \c v with <tt>nm[v]</tt> true or
   763     ///\c INVALID if no such node was found.
   764     ///
   765     ///\pre init() must be called and at least one root node should be
   766     ///added with addSource() before using this function.
   767     template<class NodeBoolMap>
   768     Node start(const NodeBoolMap &nm)
   769     {
   770       while ( !_heap->empty() && !nm[_heap->top()] ) processNextNode();
   771       if ( _heap->empty() ) return INVALID;
   772       finalizeNodeData(_heap->top(),_heap->prio());
   773       return _heap->top();
   774     }
   775 
   776     ///Runs the algorithm from the given source node.
   777 
   778     ///This method runs the %Dijkstra algorithm from node \c s
   779     ///in order to compute the shortest path to each node.
   780     ///
   781     ///The algorithm computes
   782     ///- the shortest path tree,
   783     ///- the distance of each node from the root.
   784     ///
   785     ///\note <tt>d.run(s)</tt> is just a shortcut of the following code.
   786     ///\code
   787     ///  d.init();
   788     ///  d.addSource(s);
   789     ///  d.start();
   790     ///\endcode
   791     void run(Node s) {
   792       init();
   793       addSource(s);
   794       start();
   795     }
   796 
   797     ///Finds the shortest path between \c s and \c t.
   798 
   799     ///This method runs the %Dijkstra algorithm from node \c s
   800     ///in order to compute the shortest path to node \c t
   801     ///(it stops searching when \c t is processed).
   802     ///
   803     ///\return \c true if \c t is reachable form \c s.
   804     ///
   805     ///\note Apart from the return value, <tt>d.run(s,t)</tt> is just a
   806     ///shortcut of the following code.
   807     ///\code
   808     ///  d.init();
   809     ///  d.addSource(s);
   810     ///  d.start(t);
   811     ///\endcode
   812     bool run(Node s,Node t) {
   813       init();
   814       addSource(s);
   815       start(t);
   816       return (*_heap_cross_ref)[t] == Heap::POST_HEAP;
   817     }
   818 
   819     ///@}
   820 
   821     ///\name Query Functions
   822     ///The results of the %Dijkstra algorithm can be obtained using these
   823     ///functions.\n
   824     ///Either \ref run(Node) "run()" or \ref start() should be called
   825     ///before using them.
   826 
   827     ///@{
   828 
   829     ///The shortest path to a node.
   830 
   831     ///Returns the shortest path to a node.
   832     ///
   833     ///\warning \c t should be reached from the root(s).
   834     ///
   835     ///\pre Either \ref run(Node) "run()" or \ref init()
   836     ///must be called before using this function.
   837     Path path(Node t) const { return Path(*G, *_pred, t); }
   838 
   839     ///The distance of a node from the root(s).
   840 
   841     ///Returns the distance of a node from the root(s).
   842     ///
   843     ///\warning If node \c v is not reached from the root(s), then
   844     ///the return value of this function is undefined.
   845     ///
   846     ///\pre Either \ref run(Node) "run()" or \ref init()
   847     ///must be called before using this function.
   848     Value dist(Node v) const { return (*_dist)[v]; }
   849 
   850     ///Returns the 'previous arc' of the shortest path tree for a node.
   851 
   852     ///This function returns the 'previous arc' of the shortest path
   853     ///tree for the node \c v, i.e. it returns the last arc of a
   854     ///shortest path from a root to \c v. It is \c INVALID if \c v
   855     ///is not reached from the root(s) or if \c v is a root.
   856     ///
   857     ///The shortest path tree used here is equal to the shortest path
   858     ///tree used in \ref predNode().
   859     ///
   860     ///\pre Either \ref run(Node) "run()" or \ref init()
   861     ///must be called before using this function.
   862     Arc predArc(Node v) const { return (*_pred)[v]; }
   863 
   864     ///Returns the 'previous node' of the shortest path tree for a node.
   865 
   866     ///This function returns the 'previous node' of the shortest path
   867     ///tree for the node \c v, i.e. it returns the last but one node
   868     ///from a shortest path from a root to \c v. It is \c INVALID
   869     ///if \c v is not reached from the root(s) or if \c v is a root.
   870     ///
   871     ///The shortest path tree used here is equal to the shortest path
   872     ///tree used in \ref predArc().
   873     ///
   874     ///\pre Either \ref run(Node) "run()" or \ref init()
   875     ///must be called before using this function.
   876     Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID:
   877                                   G->source((*_pred)[v]); }
   878 
   879     ///\brief Returns a const reference to the node map that stores the
   880     ///distances of the nodes.
   881     ///
   882     ///Returns a const reference to the node map that stores the distances
   883     ///of the nodes calculated by the algorithm.
   884     ///
   885     ///\pre Either \ref run(Node) "run()" or \ref init()
   886     ///must be called before using this function.
   887     const DistMap &distMap() const { return *_dist;}
   888 
   889     ///\brief Returns a const reference to the node map that stores the
   890     ///predecessor arcs.
   891     ///
   892     ///Returns a const reference to the node map that stores the predecessor
   893     ///arcs, which form the shortest path tree.
   894     ///
   895     ///\pre Either \ref run(Node) "run()" or \ref init()
   896     ///must be called before using this function.
   897     const PredMap &predMap() const { return *_pred;}
   898 
   899     ///Checks if a node is reached from the root(s).
   900 
   901     ///Returns \c true if \c v is reached from the root(s).
   902     ///
   903     ///\pre Either \ref run(Node) "run()" or \ref init()
   904     ///must be called before using this function.
   905     bool reached(Node v) const { return (*_heap_cross_ref)[v] !=
   906                                         Heap::PRE_HEAP; }
   907 
   908     ///Checks if a node is processed.
   909 
   910     ///Returns \c true if \c v is processed, i.e. the shortest
   911     ///path to \c v has already found.
   912     ///
   913     ///\pre Either \ref run(Node) "run()" or \ref init()
   914     ///must be called before using this function.
   915     bool processed(Node v) const { return (*_heap_cross_ref)[v] ==
   916                                           Heap::POST_HEAP; }
   917 
   918     ///The current distance of a node from the root(s).
   919 
   920     ///Returns the current distance of a node from the root(s).
   921     ///It may be decreased in the following processes.
   922     ///
   923     ///\pre Either \ref run(Node) "run()" or \ref init()
   924     ///must be called before using this function and
   925     ///node \c v must be reached but not necessarily processed.
   926     Value currentDist(Node v) const {
   927       return processed(v) ? (*_dist)[v] : (*_heap)[v];
   928     }
   929 
   930     ///@}
   931   };
   932 
   933 
   934   ///Default traits class of dijkstra() function.
   935 
   936   ///Default traits class of dijkstra() function.
   937   ///\tparam GR The type of the digraph.
   938   ///\tparam LM The type of the length map.
   939   template<class GR, class LM>
   940   struct DijkstraWizardDefaultTraits
   941   {
   942     ///The type of the digraph the algorithm runs on.
   943     typedef GR Digraph;
   944     ///The type of the map that stores the arc lengths.
   945 
   946     ///The type of the map that stores the arc lengths.
   947     ///It must meet the \ref concepts::ReadMap "ReadMap" concept.
   948     typedef LM LengthMap;
   949     ///The type of the length of the arcs.
   950     typedef typename LM::Value Value;
   951 
   952     /// Operation traits for Dijkstra algorithm.
   953 
   954     /// This class defines the operations that are used in the algorithm.
   955     /// \see DijkstraDefaultOperationTraits
   956     typedef DijkstraDefaultOperationTraits<Value> OperationTraits;
   957 
   958     /// The cross reference type used by the heap.
   959 
   960     /// The cross reference type used by the heap.
   961     /// Usually it is \c Digraph::NodeMap<int>.
   962     typedef typename Digraph::template NodeMap<int> HeapCrossRef;
   963     ///Instantiates a \ref HeapCrossRef.
   964 
   965     ///This function instantiates a \ref HeapCrossRef.
   966     /// \param g is the digraph, to which we would like to define the
   967     /// HeapCrossRef.
   968     static HeapCrossRef *createHeapCrossRef(const Digraph &g)
   969     {
   970       return new HeapCrossRef(g);
   971     }
   972 
   973     ///The heap type used by the Dijkstra algorithm.
   974 
   975     ///The heap type used by the Dijkstra algorithm.
   976     ///
   977     ///\sa BinHeap
   978     ///\sa Dijkstra
   979     typedef BinHeap<Value, typename Digraph::template NodeMap<int>,
   980                     std::less<Value> > Heap;
   981 
   982     ///Instantiates a \ref Heap.
   983 
   984     ///This function instantiates a \ref Heap.
   985     /// \param r is the HeapCrossRef which is used.
   986     static Heap *createHeap(HeapCrossRef& r)
   987     {
   988       return new Heap(r);
   989     }
   990 
   991     ///\brief The type of the map that stores the predecessor
   992     ///arcs of the shortest paths.
   993     ///
   994     ///The type of the map that stores the predecessor
   995     ///arcs of the shortest paths.
   996     ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
   997     typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap;
   998     ///Instantiates a PredMap.
   999 
  1000     ///This function instantiates a PredMap.
  1001     ///\param g is the digraph, to which we would like to define the
  1002     ///PredMap.
  1003     static PredMap *createPredMap(const Digraph &g)
  1004     {
  1005       return new PredMap(g);
  1006     }
  1007 
  1008     ///The type of the map that indicates which nodes are processed.
  1009 
  1010     ///The type of the map that indicates which nodes are processed.
  1011     ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
  1012     ///By default it is a NullMap.
  1013     typedef NullMap<typename Digraph::Node,bool> ProcessedMap;
  1014     ///Instantiates a ProcessedMap.
  1015 
  1016     ///This function instantiates a ProcessedMap.
  1017     ///\param g is the digraph, to which
  1018     ///we would like to define the ProcessedMap.
  1019 #ifdef DOXYGEN
  1020     static ProcessedMap *createProcessedMap(const Digraph &g)
  1021 #else
  1022     static ProcessedMap *createProcessedMap(const Digraph &)
  1023 #endif
  1024     {
  1025       return new ProcessedMap();
  1026     }
  1027 
  1028     ///The type of the map that stores the distances of the nodes.
  1029 
  1030     ///The type of the map that stores the distances of the nodes.
  1031     ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
  1032     typedef typename Digraph::template NodeMap<typename LM::Value> DistMap;
  1033     ///Instantiates a DistMap.
  1034 
  1035     ///This function instantiates a DistMap.
  1036     ///\param g is the digraph, to which we would like to define
  1037     ///the DistMap
  1038     static DistMap *createDistMap(const Digraph &g)
  1039     {
  1040       return new DistMap(g);
  1041     }
  1042 
  1043     ///The type of the shortest paths.
  1044 
  1045     ///The type of the shortest paths.
  1046     ///It must meet the \ref concepts::Path "Path" concept.
  1047     typedef lemon::Path<Digraph> Path;
  1048   };
  1049 
  1050   /// Default traits class used by DijkstraWizard
  1051 
  1052   /// To make it easier to use Dijkstra algorithm
  1053   /// we have created a wizard class.
  1054   /// This \ref DijkstraWizard class needs default traits,
  1055   /// as well as the \ref Dijkstra class.
  1056   /// The \ref DijkstraWizardBase is a class to be the default traits of the
  1057   /// \ref DijkstraWizard class.
  1058   template<class GR,class LM>
  1059   class DijkstraWizardBase : public DijkstraWizardDefaultTraits<GR,LM>
  1060   {
  1061     typedef DijkstraWizardDefaultTraits<GR,LM> Base;
  1062   protected:
  1063     //The type of the nodes in the digraph.
  1064     typedef typename Base::Digraph::Node Node;
  1065 
  1066     //Pointer to the digraph the algorithm runs on.
  1067     void *_g;
  1068     //Pointer to the length map.
  1069     void *_length;
  1070     //Pointer to the map of processed nodes.
  1071     void *_processed;
  1072     //Pointer to the map of predecessors arcs.
  1073     void *_pred;
  1074     //Pointer to the map of distances.
  1075     void *_dist;
  1076     //Pointer to the shortest path to the target node.
  1077     void *_path;
  1078     //Pointer to the distance of the target node.
  1079     void *_di;
  1080 
  1081   public:
  1082     /// Constructor.
  1083 
  1084     /// This constructor does not require parameters, therefore it initiates
  1085     /// all of the attributes to \c 0.
  1086     DijkstraWizardBase() : _g(0), _length(0), _processed(0), _pred(0),
  1087                            _dist(0), _path(0), _di(0) {}
  1088 
  1089     /// Constructor.
  1090 
  1091     /// This constructor requires two parameters,
  1092     /// others are initiated to \c 0.
  1093     /// \param g The digraph the algorithm runs on.
  1094     /// \param l The length map.
  1095     DijkstraWizardBase(const GR &g,const LM &l) :
  1096       _g(reinterpret_cast<void*>(const_cast<GR*>(&g))),
  1097       _length(reinterpret_cast<void*>(const_cast<LM*>(&l))),
  1098       _processed(0), _pred(0), _dist(0), _path(0), _di(0) {}
  1099 
  1100   };
  1101 
  1102   /// Auxiliary class for the function-type interface of Dijkstra algorithm.
  1103 
  1104   /// This auxiliary class is created to implement the
  1105   /// \ref dijkstra() "function-type interface" of \ref Dijkstra algorithm.
  1106   /// It does not have own \ref run(Node) "run()" method, it uses the
  1107   /// functions and features of the plain \ref Dijkstra.
  1108   ///
  1109   /// This class should only be used through the \ref dijkstra() function,
  1110   /// which makes it easier to use the algorithm.
  1111   template<class TR>
  1112   class DijkstraWizard : public TR
  1113   {
  1114     typedef TR Base;
  1115 
  1116     ///The type of the digraph the algorithm runs on.
  1117     typedef typename TR::Digraph Digraph;
  1118 
  1119     typedef typename Digraph::Node Node;
  1120     typedef typename Digraph::NodeIt NodeIt;
  1121     typedef typename Digraph::Arc Arc;
  1122     typedef typename Digraph::OutArcIt OutArcIt;
  1123 
  1124     ///The type of the map that stores the arc lengths.
  1125     typedef typename TR::LengthMap LengthMap;
  1126     ///The type of the length of the arcs.
  1127     typedef typename LengthMap::Value Value;
  1128     ///\brief The type of the map that stores the predecessor
  1129     ///arcs of the shortest paths.
  1130     typedef typename TR::PredMap PredMap;
  1131     ///The type of the map that stores the distances of the nodes.
  1132     typedef typename TR::DistMap DistMap;
  1133     ///The type of the map that indicates which nodes are processed.
  1134     typedef typename TR::ProcessedMap ProcessedMap;
  1135     ///The type of the shortest paths
  1136     typedef typename TR::Path Path;
  1137     ///The heap type used by the dijkstra algorithm.
  1138     typedef typename TR::Heap Heap;
  1139 
  1140   public:
  1141 
  1142     /// Constructor.
  1143     DijkstraWizard() : TR() {}
  1144 
  1145     /// Constructor that requires parameters.
  1146 
  1147     /// Constructor that requires parameters.
  1148     /// These parameters will be the default values for the traits class.
  1149     /// \param g The digraph the algorithm runs on.
  1150     /// \param l The length map.
  1151     DijkstraWizard(const Digraph &g, const LengthMap &l) :
  1152       TR(g,l) {}
  1153 
  1154     ///Copy constructor
  1155     DijkstraWizard(const TR &b) : TR(b) {}
  1156 
  1157     ~DijkstraWizard() {}
  1158 
  1159     ///Runs Dijkstra algorithm from the given source node.
  1160 
  1161     ///This method runs %Dijkstra algorithm from the given source node
  1162     ///in order to compute the shortest path to each node.
  1163     void run(Node s)
  1164     {
  1165       Dijkstra<Digraph,LengthMap,TR>
  1166         dijk(*reinterpret_cast<const Digraph*>(Base::_g),
  1167              *reinterpret_cast<const LengthMap*>(Base::_length));
  1168       if (Base::_pred)
  1169         dijk.predMap(*reinterpret_cast<PredMap*>(Base::_pred));
  1170       if (Base::_dist)
  1171         dijk.distMap(*reinterpret_cast<DistMap*>(Base::_dist));
  1172       if (Base::_processed)
  1173         dijk.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed));
  1174       dijk.run(s);
  1175     }
  1176 
  1177     ///Finds the shortest path between \c s and \c t.
  1178 
  1179     ///This method runs the %Dijkstra algorithm from node \c s
  1180     ///in order to compute the shortest path to node \c t
  1181     ///(it stops searching when \c t is processed).
  1182     ///
  1183     ///\return \c true if \c t is reachable form \c s.
  1184     bool run(Node s, Node t)
  1185     {
  1186       Dijkstra<Digraph,LengthMap,TR>
  1187         dijk(*reinterpret_cast<const Digraph*>(Base::_g),
  1188              *reinterpret_cast<const LengthMap*>(Base::_length));
  1189       if (Base::_pred)
  1190         dijk.predMap(*reinterpret_cast<PredMap*>(Base::_pred));
  1191       if (Base::_dist)
  1192         dijk.distMap(*reinterpret_cast<DistMap*>(Base::_dist));
  1193       if (Base::_processed)
  1194         dijk.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed));
  1195       dijk.run(s,t);
  1196       if (Base::_path)
  1197         *reinterpret_cast<Path*>(Base::_path) = dijk.path(t);
  1198       if (Base::_di)
  1199         *reinterpret_cast<Value*>(Base::_di) = dijk.dist(t);
  1200       return dijk.reached(t);
  1201     }
  1202 
  1203     template<class T>
  1204     struct SetPredMapBase : public Base {
  1205       typedef T PredMap;
  1206       static PredMap *createPredMap(const Digraph &) { return 0; };
  1207       SetPredMapBase(const TR &b) : TR(b) {}
  1208     };
  1209     ///\brief \ref named-func-param "Named parameter"
  1210     ///for setting PredMap object.
  1211     ///
  1212     ///\ref named-func-param "Named parameter"
  1213     ///for setting PredMap object.
  1214     template<class T>
  1215     DijkstraWizard<SetPredMapBase<T> > predMap(const T &t)
  1216     {
  1217       Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t));
  1218       return DijkstraWizard<SetPredMapBase<T> >(*this);
  1219     }
  1220 
  1221     template<class T>
  1222     struct SetDistMapBase : public Base {
  1223       typedef T DistMap;
  1224       static DistMap *createDistMap(const Digraph &) { return 0; };
  1225       SetDistMapBase(const TR &b) : TR(b) {}
  1226     };
  1227     ///\brief \ref named-func-param "Named parameter"
  1228     ///for setting DistMap object.
  1229     ///
  1230     ///\ref named-func-param "Named parameter"
  1231     ///for setting DistMap object.
  1232     template<class T>
  1233     DijkstraWizard<SetDistMapBase<T> > distMap(const T &t)
  1234     {
  1235       Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t));
  1236       return DijkstraWizard<SetDistMapBase<T> >(*this);
  1237     }
  1238 
  1239     template<class T>
  1240     struct SetProcessedMapBase : public Base {
  1241       typedef T ProcessedMap;
  1242       static ProcessedMap *createProcessedMap(const Digraph &) { return 0; };
  1243       SetProcessedMapBase(const TR &b) : TR(b) {}
  1244     };
  1245     ///\brief \ref named-func-param "Named parameter"
  1246     ///for setting ProcessedMap object.
  1247     ///
  1248     /// \ref named-func-param "Named parameter"
  1249     ///for setting ProcessedMap object.
  1250     template<class T>
  1251     DijkstraWizard<SetProcessedMapBase<T> > processedMap(const T &t)
  1252     {
  1253       Base::_processed=reinterpret_cast<void*>(const_cast<T*>(&t));
  1254       return DijkstraWizard<SetProcessedMapBase<T> >(*this);
  1255     }
  1256 
  1257     template<class T>
  1258     struct SetPathBase : public Base {
  1259       typedef T Path;
  1260       SetPathBase(const TR &b) : TR(b) {}
  1261     };
  1262     ///\brief \ref named-func-param "Named parameter"
  1263     ///for getting the shortest path to the target node.
  1264     ///
  1265     ///\ref named-func-param "Named parameter"
  1266     ///for getting the shortest path to the target node.
  1267     template<class T>
  1268     DijkstraWizard<SetPathBase<T> > path(const T &t)
  1269     {
  1270       Base::_path=reinterpret_cast<void*>(const_cast<T*>(&t));
  1271       return DijkstraWizard<SetPathBase<T> >(*this);
  1272     }
  1273 
  1274     ///\brief \ref named-func-param "Named parameter"
  1275     ///for getting the distance of the target node.
  1276     ///
  1277     ///\ref named-func-param "Named parameter"
  1278     ///for getting the distance of the target node.
  1279     DijkstraWizard dist(const Value &d)
  1280     {
  1281       Base::_di=reinterpret_cast<void*>(const_cast<Value*>(&d));
  1282       return *this;
  1283     }
  1284 
  1285   };
  1286 
  1287   ///Function-type interface for Dijkstra algorithm.
  1288 
  1289   /// \ingroup shortest_path
  1290   ///Function-type interface for Dijkstra algorithm.
  1291   ///
  1292   ///This function also has several \ref named-func-param "named parameters",
  1293   ///they are declared as the members of class \ref DijkstraWizard.
  1294   ///The following examples show how to use these parameters.
  1295   ///\code
  1296   ///  // Compute shortest path from node s to each node
  1297   ///  dijkstra(g,length).predMap(preds).distMap(dists).run(s);
  1298   ///
  1299   ///  // Compute shortest path from s to t
  1300   ///  bool reached = dijkstra(g,length).path(p).dist(d).run(s,t);
  1301   ///\endcode
  1302   ///\warning Don't forget to put the \ref DijkstraWizard::run(Node) "run()"
  1303   ///to the end of the parameter list.
  1304   ///\sa DijkstraWizard
  1305   ///\sa Dijkstra
  1306   template<class GR, class LM>
  1307   DijkstraWizard<DijkstraWizardBase<GR,LM> >
  1308   dijkstra(const GR &digraph, const LM &length)
  1309   {
  1310     return DijkstraWizard<DijkstraWizardBase<GR,LM> >(digraph,length);
  1311   }
  1312 
  1313 } //END OF NAMESPACE LEMON
  1314 
  1315 #endif