lemon/maps.h
author Alpar Juttner <alpar@cs.elte.hu>
Sun, 30 Mar 2008 22:16:35 +0100
changeset 119 82a2639a05bb
parent 82 bce6c8f93d10
child 123 8899d1891a3c
permissions -rw-r--r--
Port time and counter utilities from svn -r3482
The mingw support has been removed
     1 /* -*- C++ -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library
     4  *
     5  * Copyright (C) 2003-2008
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_MAPS_H
    20 #define LEMON_MAPS_H
    21 
    22 #include <iterator>
    23 #include <functional>
    24 #include <vector>
    25 
    26 #include <lemon/bits/utility.h>
    27 #include <lemon/bits/traits.h>
    28 
    29 ///\file
    30 ///\ingroup maps
    31 ///\brief Miscellaneous property maps
    32 
    33 #include <map>
    34 
    35 namespace lemon {
    36 
    37   /// \addtogroup maps
    38   /// @{
    39 
    40   /// Base class of maps.
    41 
    42   /// Base class of maps. It provides the necessary type definitions
    43   /// required by the map %concepts.
    44   template<typename K, typename V>
    45   class MapBase {
    46   public:
    47     /// \biref The key type of the map.
    48     typedef K Key;
    49     /// \brief The value type of the map.
    50     /// (The type of objects associated with the keys).
    51     typedef V Value;
    52   };
    53 
    54 
    55   /// Null map. (a.k.a. DoNothingMap)
    56 
    57   /// This map can be used if you have to provide a map only for
    58   /// its type definitions, or if you have to provide a writable map,
    59   /// but data written to it is not required (i.e. it will be sent to
    60   /// <tt>/dev/null</tt>).
    61   /// It conforms the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
    62   ///
    63   /// \sa ConstMap
    64   template<typename K, typename V>
    65   class NullMap : public MapBase<K, V> {
    66   public:
    67     typedef MapBase<K, V> Parent;
    68     typedef typename Parent::Key Key;
    69     typedef typename Parent::Value Value;
    70 
    71     /// Gives back a default constructed element.
    72     Value operator[](const Key&) const { return Value(); }
    73     /// Absorbs the value.
    74     void set(const Key&, const Value&) {}
    75   };
    76 
    77   /// Returns a \ref NullMap class
    78 
    79   /// This function just returns a \ref NullMap class.
    80   /// \relates NullMap
    81   template <typename K, typename V>
    82   NullMap<K, V> nullMap() {
    83     return NullMap<K, V>();
    84   }
    85 
    86 
    87   /// Constant map.
    88 
    89   /// This \ref concepts::ReadMap "readable map" assigns a specified
    90   /// value to each key.
    91   ///
    92   /// In other aspects it is equivalent to \ref NullMap.
    93   /// So it conforms the \ref concepts::ReadWriteMap "ReadWriteMap"
    94   /// concept, but it absorbs the data written to it.
    95   ///
    96   /// The simplest way of using this map is through the constMap()
    97   /// function.
    98   ///
    99   /// \sa NullMap
   100   /// \sa IdentityMap
   101   template<typename K, typename V>
   102   class ConstMap : public MapBase<K, V> {
   103   private:
   104     V _value;
   105   public:
   106     typedef MapBase<K, V> Parent;
   107     typedef typename Parent::Key Key;
   108     typedef typename Parent::Value Value;
   109 
   110     /// Default constructor
   111 
   112     /// Default constructor.
   113     /// The value of the map will be default constructed.
   114     ConstMap() {}
   115 
   116     /// Constructor with specified initial value
   117 
   118     /// Constructor with specified initial value.
   119     /// \param v is the initial value of the map.
   120     ConstMap(const Value &v) : _value(v) {}
   121 
   122     /// Gives back the specified value.
   123     Value operator[](const Key&) const { return _value; }
   124 
   125     /// Absorbs the value.
   126     void set(const Key&, const Value&) {}
   127 
   128     /// Sets the value that is assigned to each key.
   129     void setAll(const Value &v) {
   130       _value = v;
   131     }
   132 
   133     template<typename V1>
   134     ConstMap(const ConstMap<K, V1> &, const Value &v) : _value(v) {}
   135   };
   136 
   137   /// Returns a \ref ConstMap class
   138 
   139   /// This function just returns a \ref ConstMap class.
   140   /// \relates ConstMap
   141   template<typename K, typename V>
   142   inline ConstMap<K, V> constMap(const V &v) {
   143     return ConstMap<K, V>(v);
   144   }
   145 
   146 
   147   template<typename T, T v>
   148   struct Const {};
   149 
   150   /// Constant map with inlined constant value.
   151 
   152   /// This \ref concepts::ReadMap "readable map" assigns a specified
   153   /// value to each key.
   154   ///
   155   /// In other aspects it is equivalent to \ref NullMap.
   156   /// So it conforms the \ref concepts::ReadWriteMap "ReadWriteMap"
   157   /// concept, but it absorbs the data written to it.
   158   ///
   159   /// The simplest way of using this map is through the constMap()
   160   /// function.
   161   ///
   162   /// \sa NullMap
   163   /// \sa IdentityMap
   164   template<typename K, typename V, V v>
   165   class ConstMap<K, Const<V, v> > : public MapBase<K, V> {
   166   public:
   167     typedef MapBase<K, V> Parent;
   168     typedef typename Parent::Key Key;
   169     typedef typename Parent::Value Value;
   170 
   171     /// Constructor.
   172     ConstMap() {}
   173 
   174     /// Gives back the specified value.
   175     Value operator[](const Key&) const { return v; }
   176 
   177     /// Absorbs the value.
   178     void set(const Key&, const Value&) {}
   179   };
   180 
   181   /// Returns a \ref ConstMap class with inlined constant value
   182 
   183   /// This function just returns a \ref ConstMap class with inlined
   184   /// constant value.
   185   /// \relates ConstMap
   186   template<typename K, typename V, V v>
   187   inline ConstMap<K, Const<V, v> > constMap() {
   188     return ConstMap<K, Const<V, v> >();
   189   }
   190 
   191 
   192   /// Identity map.
   193 
   194   /// This \ref concepts::ReadMap "read-only map" gives back the given
   195   /// key as value without any modification.
   196   ///
   197   /// \sa ConstMap
   198   template <typename T>
   199   class IdentityMap : public MapBase<T, T> {
   200   public:
   201     typedef MapBase<T, T> Parent;
   202     typedef typename Parent::Key Key;
   203     typedef typename Parent::Value Value;
   204 
   205     /// Gives back the given value without any modification.
   206     Value operator[](const Key &k) const {
   207       return k;
   208     }
   209   };
   210 
   211   /// Returns an \ref IdentityMap class
   212 
   213   /// This function just returns an \ref IdentityMap class.
   214   /// \relates IdentityMap
   215   template<typename T>
   216   inline IdentityMap<T> identityMap() {
   217     return IdentityMap<T>();
   218   }
   219 
   220 
   221   /// \brief Map for storing values for integer keys from the range
   222   /// <tt>[0..size-1]</tt>.
   223   ///
   224   /// This map is essentially a wrapper for \c std::vector. It assigns
   225   /// values to integer keys from the range <tt>[0..size-1]</tt>.
   226   /// It can be used with some data structures, for example
   227   /// \ref UnionFind, \ref BinHeap, when the used items are small
   228   /// integers. This map conforms the \ref concepts::ReferenceMap
   229   /// "ReferenceMap" concept.
   230   ///
   231   /// The simplest way of using this map is through the rangeMap()
   232   /// function.
   233   template <typename V>
   234   class RangeMap : public MapBase<int, V> {
   235     template <typename V1>
   236     friend class RangeMap;
   237   private:
   238 
   239     typedef std::vector<V> Vector;
   240     Vector _vector;
   241 
   242   public:
   243 
   244     typedef MapBase<int, V> Parent;
   245     /// Key type
   246     typedef typename Parent::Key Key;
   247     /// Value type
   248     typedef typename Parent::Value Value;
   249     /// Reference type
   250     typedef typename Vector::reference Reference;
   251     /// Const reference type
   252     typedef typename Vector::const_reference ConstReference;
   253 
   254     typedef True ReferenceMapTag;
   255 
   256   public:
   257 
   258     /// Constructor with specified default value.
   259     RangeMap(int size = 0, const Value &value = Value())
   260       : _vector(size, value) {}
   261 
   262     /// Constructs the map from an appropriate \c std::vector.
   263     template <typename V1>
   264     RangeMap(const std::vector<V1>& vector)
   265       : _vector(vector.begin(), vector.end()) {}
   266 
   267     /// Constructs the map from another \ref RangeMap.
   268     template <typename V1>
   269     RangeMap(const RangeMap<V1> &c)
   270       : _vector(c._vector.begin(), c._vector.end()) {}
   271 
   272     /// Returns the size of the map.
   273     int size() {
   274       return _vector.size();
   275     }
   276 
   277     /// Resizes the map.
   278 
   279     /// Resizes the underlying \c std::vector container, so changes the
   280     /// keyset of the map.
   281     /// \param size The new size of the map. The new keyset will be the
   282     /// range <tt>[0..size-1]</tt>.
   283     /// \param value The default value to assign to the new keys.
   284     void resize(int size, const Value &value = Value()) {
   285       _vector.resize(size, value);
   286     }
   287 
   288   private:
   289 
   290     RangeMap& operator=(const RangeMap&);
   291 
   292   public:
   293 
   294     ///\e
   295     Reference operator[](const Key &k) {
   296       return _vector[k];
   297     }
   298 
   299     ///\e
   300     ConstReference operator[](const Key &k) const {
   301       return _vector[k];
   302     }
   303 
   304     ///\e
   305     void set(const Key &k, const Value &v) {
   306       _vector[k] = v;
   307     }
   308   };
   309 
   310   /// Returns a \ref RangeMap class
   311 
   312   /// This function just returns a \ref RangeMap class.
   313   /// \relates RangeMap
   314   template<typename V>
   315   inline RangeMap<V> rangeMap(int size = 0, const V &value = V()) {
   316     return RangeMap<V>(size, value);
   317   }
   318 
   319   /// \brief Returns a \ref RangeMap class created from an appropriate
   320   /// \c std::vector
   321 
   322   /// This function just returns a \ref RangeMap class created from an
   323   /// appropriate \c std::vector.
   324   /// \relates RangeMap
   325   template<typename V>
   326   inline RangeMap<V> rangeMap(const std::vector<V> &vector) {
   327     return RangeMap<V>(vector);
   328   }
   329 
   330 
   331   /// Map type based on \c std::map
   332 
   333   /// This map is essentially a wrapper for \c std::map with addition
   334   /// that you can specify a default value for the keys that are not
   335   /// stored actually. This value can be different from the default
   336   /// contructed value (i.e. \c %Value()).
   337   /// This type conforms the \ref concepts::ReferenceMap "ReferenceMap"
   338   /// concept.
   339   ///
   340   /// This map is useful if a default value should be assigned to most of
   341   /// the keys and different values should be assigned only to a few
   342   /// keys (i.e. the map is "sparse").
   343   /// The name of this type also refers to this important usage.
   344   ///
   345   /// Apart form that this map can be used in many other cases since it
   346   /// is based on \c std::map, which is a general associative container.
   347   /// However keep in mind that it is usually not as efficient as other
   348   /// maps.
   349   ///
   350   /// The simplest way of using this map is through the sparseMap()
   351   /// function.
   352   template <typename K, typename V, typename Compare = std::less<K> >
   353   class SparseMap : public MapBase<K, V> {
   354     template <typename K1, typename V1, typename C1>
   355     friend class SparseMap;
   356   public:
   357 
   358     typedef MapBase<K, V> Parent;
   359     /// Key type
   360     typedef typename Parent::Key Key;
   361     /// Value type
   362     typedef typename Parent::Value Value;
   363     /// Reference type
   364     typedef Value& Reference;
   365     /// Const reference type
   366     typedef const Value& ConstReference;
   367 
   368     typedef True ReferenceMapTag;
   369 
   370   private:
   371 
   372     typedef std::map<K, V, Compare> Map;
   373     Map _map;
   374     Value _value;
   375 
   376   public:
   377 
   378     /// \brief Constructor with specified default value.
   379     SparseMap(const Value &value = Value()) : _value(value) {}
   380     /// \brief Constructs the map from an appropriate \c std::map, and
   381     /// explicitly specifies a default value.
   382     template <typename V1, typename Comp1>
   383     SparseMap(const std::map<Key, V1, Comp1> &map,
   384               const Value &value = Value())
   385       : _map(map.begin(), map.end()), _value(value) {}
   386 
   387     /// \brief Constructs the map from another \ref SparseMap.
   388     template<typename V1, typename Comp1>
   389     SparseMap(const SparseMap<Key, V1, Comp1> &c)
   390       : _map(c._map.begin(), c._map.end()), _value(c._value) {}
   391 
   392   private:
   393 
   394     SparseMap& operator=(const SparseMap&);
   395 
   396   public:
   397 
   398     ///\e
   399     Reference operator[](const Key &k) {
   400       typename Map::iterator it = _map.lower_bound(k);
   401       if (it != _map.end() && !_map.key_comp()(k, it->first))
   402 	return it->second;
   403       else
   404 	return _map.insert(it, std::make_pair(k, _value))->second;
   405     }
   406 
   407     ///\e
   408     ConstReference operator[](const Key &k) const {
   409       typename Map::const_iterator it = _map.find(k);
   410       if (it != _map.end())
   411 	return it->second;
   412       else
   413 	return _value;
   414     }
   415 
   416     ///\e
   417     void set(const Key &k, const Value &v) {
   418       typename Map::iterator it = _map.lower_bound(k);
   419       if (it != _map.end() && !_map.key_comp()(k, it->first))
   420 	it->second = v;
   421       else
   422 	_map.insert(it, std::make_pair(k, v));
   423     }
   424 
   425     ///\e
   426     void setAll(const Value &v) {
   427       _value = v;
   428       _map.clear();
   429     }
   430   };
   431 
   432   /// Returns a \ref SparseMap class
   433 
   434   /// This function just returns a \ref SparseMap class with specified
   435   /// default value.
   436   /// \relates SparseMap
   437   template<typename K, typename V, typename Compare>
   438   inline SparseMap<K, V, Compare> sparseMap(const V& value = V()) {
   439     return SparseMap<K, V, Compare>(value);
   440   }
   441 
   442   template<typename K, typename V>
   443   inline SparseMap<K, V, std::less<K> > sparseMap(const V& value = V()) {
   444     return SparseMap<K, V, std::less<K> >(value);
   445   }
   446 
   447   /// \brief Returns a \ref SparseMap class created from an appropriate
   448   /// \c std::map
   449 
   450   /// This function just returns a \ref SparseMap class created from an
   451   /// appropriate \c std::map.
   452   /// \relates SparseMap
   453   template<typename K, typename V, typename Compare>
   454   inline SparseMap<K, V, Compare>
   455     sparseMap(const std::map<K, V, Compare> &map, const V& value = V())
   456   {
   457     return SparseMap<K, V, Compare>(map, value);
   458   }
   459 
   460   /// @}
   461 
   462   /// \addtogroup map_adaptors
   463   /// @{
   464 
   465   /// Composition of two maps
   466 
   467   /// This \ref concepts::ReadMap "read-only map" returns the
   468   /// composition of two given maps. That is to say, if \c m1 is of
   469   /// type \c M1 and \c m2 is of \c M2, then for
   470   /// \code
   471   ///   ComposeMap<M1, M2> cm(m1,m2);
   472   /// \endcode
   473   /// <tt>cm[x]</tt> will be equal to <tt>m1[m2[x]]</tt>.
   474   ///
   475   /// The \c Key type of the map is inherited from \c M2 and the
   476   /// \c Value type is from \c M1.
   477   /// \c M2::Value must be convertible to \c M1::Key.
   478   ///
   479   /// The simplest way of using this map is through the composeMap()
   480   /// function.
   481   ///
   482   /// \sa CombineMap
   483   ///
   484   /// \todo Check the requirements.
   485   template <typename M1, typename M2>
   486   class ComposeMap : public MapBase<typename M2::Key, typename M1::Value> {
   487     const M1 &_m1;
   488     const M2 &_m2;
   489   public:
   490     typedef MapBase<typename M2::Key, typename M1::Value> Parent;
   491     typedef typename Parent::Key Key;
   492     typedef typename Parent::Value Value;
   493 
   494     /// Constructor
   495     ComposeMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
   496 
   497     /// \e
   498     typename MapTraits<M1>::ConstReturnValue
   499     operator[](const Key &k) const { return _m1[_m2[k]]; }
   500   };
   501 
   502   /// Returns a \ref ComposeMap class
   503 
   504   /// This function just returns a \ref ComposeMap class.
   505   ///
   506   /// If \c m1 and \c m2 are maps and the \c Value type of \c m2 is
   507   /// convertible to the \c Key of \c m1, then <tt>composeMap(m1,m2)[x]</tt>
   508   /// will be equal to <tt>m1[m2[x]]</tt>.
   509   ///
   510   /// \relates ComposeMap
   511   template <typename M1, typename M2>
   512   inline ComposeMap<M1, M2> composeMap(const M1 &m1, const M2 &m2) {
   513     return ComposeMap<M1, M2>(m1, m2);
   514   }
   515 
   516 
   517   /// Combination of two maps using an STL (binary) functor.
   518 
   519   /// This \ref concepts::ReadMap "read-only map" takes two maps and a
   520   /// binary functor and returns the combination of the two given maps
   521   /// using the functor.
   522   /// That is to say, if \c m1 is of type \c M1 and \c m2 is of \c M2
   523   /// and \c f is of \c F, then for
   524   /// \code
   525   ///   CombineMap<M1,M2,F,V> cm(m1,m2,f);
   526   /// \endcode
   527   /// <tt>cm[x]</tt> will be equal to <tt>f(m1[x],m2[x])</tt>.
   528   ///
   529   /// The \c Key type of the map is inherited from \c M1 (\c M1::Key
   530   /// must be convertible to \c M2::Key) and the \c Value type is \c V.
   531   /// \c M2::Value and \c M1::Value must be convertible to the
   532   /// corresponding input parameter of \c F and the return type of \c F
   533   /// must be convertible to \c V.
   534   ///
   535   /// The simplest way of using this map is through the combineMap()
   536   /// function.
   537   ///
   538   /// \sa ComposeMap
   539   ///
   540   /// \todo Check the requirements.
   541   template<typename M1, typename M2, typename F,
   542 	   typename V = typename F::result_type>
   543   class CombineMap : public MapBase<typename M1::Key, V> {
   544     const M1 &_m1;
   545     const M2 &_m2;
   546     F _f;
   547   public:
   548     typedef MapBase<typename M1::Key, V> Parent;
   549     typedef typename Parent::Key Key;
   550     typedef typename Parent::Value Value;
   551 
   552     /// Constructor
   553     CombineMap(const M1 &m1, const M2 &m2, const F &f = F())
   554       : _m1(m1), _m2(m2), _f(f) {}
   555     /// \e
   556     Value operator[](const Key &k) const { return _f(_m1[k],_m2[k]); }
   557   };
   558 
   559   /// Returns a \ref CombineMap class
   560 
   561   /// This function just returns a \ref CombineMap class.
   562   ///
   563   /// For example, if \c m1 and \c m2 are both maps with \c double
   564   /// values, then
   565   /// \code
   566   ///   combineMap(m1,m2,std::plus<double>())
   567   /// \endcode
   568   /// is equivalent to
   569   /// \code
   570   ///   addMap(m1,m2)
   571   /// \endcode
   572   ///
   573   /// This function is specialized for adaptable binary function
   574   /// classes and C++ functions.
   575   ///
   576   /// \relates CombineMap
   577   template<typename M1, typename M2, typename F, typename V>
   578   inline CombineMap<M1, M2, F, V>
   579   combineMap(const M1 &m1, const M2 &m2, const F &f) {
   580     return CombineMap<M1, M2, F, V>(m1,m2,f);
   581   }
   582 
   583   template<typename M1, typename M2, typename F>
   584   inline CombineMap<M1, M2, F, typename F::result_type>
   585   combineMap(const M1 &m1, const M2 &m2, const F &f) {
   586     return combineMap<M1, M2, F, typename F::result_type>(m1,m2,f);
   587   }
   588 
   589   template<typename M1, typename M2, typename K1, typename K2, typename V>
   590   inline CombineMap<M1, M2, V (*)(K1, K2), V>
   591   combineMap(const M1 &m1, const M2 &m2, V (*f)(K1, K2)) {
   592     return combineMap<M1, M2, V (*)(K1, K2), V>(m1,m2,f);
   593   }
   594 
   595 
   596   /// Converts an STL style (unary) functor to a map
   597 
   598   /// This \ref concepts::ReadMap "read-only map" returns the value
   599   /// of a given functor. Actually, it just wraps the functor and
   600   /// provides the \c Key and \c Value typedefs.
   601   ///
   602   /// Template parameters \c K and \c V will become its \c Key and
   603   /// \c Value. In most cases they have to be given explicitly because
   604   /// a functor typically does not provide \c argument_type and
   605   /// \c result_type typedefs.
   606   /// Parameter \c F is the type of the used functor.
   607   ///
   608   /// The simplest way of using this map is through the functorToMap()
   609   /// function.
   610   ///
   611   /// \sa MapToFunctor
   612   template<typename F,
   613 	   typename K = typename F::argument_type,
   614 	   typename V = typename F::result_type>
   615   class FunctorToMap : public MapBase<K, V> {
   616     const F &_f;
   617   public:
   618     typedef MapBase<K, V> Parent;
   619     typedef typename Parent::Key Key;
   620     typedef typename Parent::Value Value;
   621 
   622     /// Constructor
   623     FunctorToMap(const F &f = F()) : _f(f) {}
   624     /// \e
   625     Value operator[](const Key &k) const { return _f(k); }
   626   };
   627 
   628   /// Returns a \ref FunctorToMap class
   629 
   630   /// This function just returns a \ref FunctorToMap class.
   631   ///
   632   /// This function is specialized for adaptable binary function
   633   /// classes and C++ functions.
   634   ///
   635   /// \relates FunctorToMap
   636   template<typename K, typename V, typename F>
   637   inline FunctorToMap<F, K, V> functorToMap(const F &f) {
   638     return FunctorToMap<F, K, V>(f);
   639   }
   640 
   641   template <typename F>
   642   inline FunctorToMap<F, typename F::argument_type, typename F::result_type>
   643     functorToMap(const F &f)
   644   {
   645     return FunctorToMap<F, typename F::argument_type,
   646       typename F::result_type>(f);
   647   }
   648 
   649   template <typename K, typename V>
   650   inline FunctorToMap<V (*)(K), K, V> functorToMap(V (*f)(K)) {
   651     return FunctorToMap<V (*)(K), K, V>(f);
   652   }
   653 
   654 
   655   /// Converts a map to an STL style (unary) functor
   656 
   657   /// This class converts a map to an STL style (unary) functor.
   658   /// That is it provides an <tt>operator()</tt> to read its values.
   659   ///
   660   /// For the sake of convenience it also works as a usual
   661   /// \ref concepts::ReadMap "readable map", i.e. <tt>operator[]</tt>
   662   /// and the \c Key and \c Value typedefs also exist.
   663   ///
   664   /// The simplest way of using this map is through the mapToFunctor()
   665   /// function.
   666   ///
   667   ///\sa FunctorToMap
   668   template <typename M>
   669   class MapToFunctor : public MapBase<typename M::Key, typename M::Value> {
   670     const M &_m;
   671   public:
   672     typedef MapBase<typename M::Key, typename M::Value> Parent;
   673     typedef typename Parent::Key Key;
   674     typedef typename Parent::Value Value;
   675 
   676     typedef typename Parent::Key argument_type;
   677     typedef typename Parent::Value result_type;
   678 
   679     /// Constructor
   680     MapToFunctor(const M &m) : _m(m) {}
   681     /// \e
   682     Value operator()(const Key &k) const { return _m[k]; }
   683     /// \e
   684     Value operator[](const Key &k) const { return _m[k]; }
   685   };
   686 
   687   /// Returns a \ref MapToFunctor class
   688 
   689   /// This function just returns a \ref MapToFunctor class.
   690   /// \relates MapToFunctor
   691   template<typename M>
   692   inline MapToFunctor<M> mapToFunctor(const M &m) {
   693     return MapToFunctor<M>(m);
   694   }
   695 
   696 
   697   /// \brief Map adaptor to convert the \c Value type of a map to
   698   /// another type using the default conversion.
   699 
   700   /// Map adaptor to convert the \c Value type of a \ref concepts::ReadMap
   701   /// "readable map" to another type using the default conversion.
   702   /// The \c Key type of it is inherited from \c M and the \c Value
   703   /// type is \c V.
   704   /// This type conforms the \ref concepts::ReadMap "ReadMap" concept.
   705   ///
   706   /// The simplest way of using this map is through the convertMap()
   707   /// function.
   708   template <typename M, typename V>
   709   class ConvertMap : public MapBase<typename M::Key, V> {
   710     const M &_m;
   711   public:
   712     typedef MapBase<typename M::Key, V> Parent;
   713     typedef typename Parent::Key Key;
   714     typedef typename Parent::Value Value;
   715 
   716     /// Constructor
   717 
   718     /// Constructor.
   719     /// \param m The underlying map.
   720     ConvertMap(const M &m) : _m(m) {}
   721 
   722     /// \e
   723     Value operator[](const Key &k) const { return _m[k]; }
   724   };
   725 
   726   /// Returns a \ref ConvertMap class
   727 
   728   /// This function just returns a \ref ConvertMap class.
   729   /// \relates ConvertMap
   730   template<typename V, typename M>
   731   inline ConvertMap<M, V> convertMap(const M &map) {
   732     return ConvertMap<M, V>(map);
   733   }
   734 
   735 
   736   /// Applies all map setting operations to two maps
   737 
   738   /// This map has two \ref concepts::WriteMap "writable map" parameters
   739   /// and each write request will be passed to both of them.
   740   /// If \c M1 is also \ref concepts::ReadMap "readable", then the read
   741   /// operations will return the corresponding values of \c M1.
   742   ///
   743   /// The \c Key and \c Value types are inherited from \c M1.
   744   /// The \c Key and \c Value of \c M2 must be convertible from those
   745   /// of \c M1.
   746   ///
   747   /// The simplest way of using this map is through the forkMap()
   748   /// function.
   749   template<typename  M1, typename M2>
   750   class ForkMap : public MapBase<typename M1::Key, typename M1::Value> {
   751     M1 &_m1;
   752     M2 &_m2;
   753   public:
   754     typedef MapBase<typename M1::Key, typename M1::Value> Parent;
   755     typedef typename Parent::Key Key;
   756     typedef typename Parent::Value Value;
   757 
   758     /// Constructor
   759     ForkMap(M1 &m1, M2 &m2) : _m1(m1), _m2(m2) {}
   760     /// Returns the value associated with the given key in the first map.
   761     Value operator[](const Key &k) const { return _m1[k]; }
   762     /// Sets the value associated with the given key in both maps.
   763     void set(const Key &k, const Value &v) { _m1.set(k,v); _m2.set(k,v); }
   764   };
   765 
   766   /// Returns a \ref ForkMap class
   767 
   768   /// This function just returns a \ref ForkMap class.
   769   /// \relates ForkMap
   770   template <typename M1, typename M2>
   771   inline ForkMap<M1,M2> forkMap(M1 &m1, M2 &m2) {
   772     return ForkMap<M1,M2>(m1,m2);
   773   }
   774 
   775 
   776   /// Sum of two maps
   777 
   778   /// This \ref concepts::ReadMap "read-only map" returns the sum
   779   /// of the values of the two given maps.
   780   /// Its \c Key and \c Value types are inherited from \c M1.
   781   /// The \c Key and \c Value of \c M2 must be convertible to those of
   782   /// \c M1.
   783   ///
   784   /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
   785   /// \code
   786   ///   AddMap<M1,M2> am(m1,m2);
   787   /// \endcode
   788   /// <tt>am[x]</tt> will be equal to <tt>m1[x]+m2[x]</tt>.
   789   ///
   790   /// The simplest way of using this map is through the addMap()
   791   /// function.
   792   ///
   793   /// \sa SubMap, MulMap, DivMap
   794   /// \sa ShiftMap, ShiftWriteMap
   795   template<typename M1, typename M2>
   796   class AddMap : public MapBase<typename M1::Key, typename M1::Value> {
   797     const M1 &_m1;
   798     const M2 &_m2;
   799   public:
   800     typedef MapBase<typename M1::Key, typename M1::Value> Parent;
   801     typedef typename Parent::Key Key;
   802     typedef typename Parent::Value Value;
   803 
   804     /// Constructor
   805     AddMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
   806     /// \e
   807     Value operator[](const Key &k) const { return _m1[k]+_m2[k]; }
   808   };
   809 
   810   /// Returns an \ref AddMap class
   811 
   812   /// This function just returns an \ref AddMap class.
   813   ///
   814   /// For example, if \c m1 and \c m2 are both maps with \c double
   815   /// values, then <tt>addMap(m1,m2)[x]</tt> will be equal to
   816   /// <tt>m1[x]+m2[x]</tt>.
   817   ///
   818   /// \relates AddMap
   819   template<typename M1, typename M2>
   820   inline AddMap<M1, M2> addMap(const M1 &m1, const M2 &m2) {
   821     return AddMap<M1, M2>(m1,m2);
   822   }
   823 
   824 
   825   /// Difference of two maps
   826 
   827   /// This \ref concepts::ReadMap "read-only map" returns the difference
   828   /// of the values of the two given maps.
   829   /// Its \c Key and \c Value types are inherited from \c M1.
   830   /// The \c Key and \c Value of \c M2 must be convertible to those of
   831   /// \c M1.
   832   ///
   833   /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
   834   /// \code
   835   ///   SubMap<M1,M2> sm(m1,m2);
   836   /// \endcode
   837   /// <tt>sm[x]</tt> will be equal to <tt>m1[x]-m2[x]</tt>.
   838   ///
   839   /// The simplest way of using this map is through the subMap()
   840   /// function.
   841   ///
   842   /// \sa AddMap, MulMap, DivMap
   843   template<typename M1, typename M2>
   844   class SubMap : public MapBase<typename M1::Key, typename M1::Value> {
   845     const M1 &_m1;
   846     const M2 &_m2;
   847   public:
   848     typedef MapBase<typename M1::Key, typename M1::Value> Parent;
   849     typedef typename Parent::Key Key;
   850     typedef typename Parent::Value Value;
   851 
   852     /// Constructor
   853     SubMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
   854     /// \e
   855     Value operator[](const Key &k) const { return _m1[k]-_m2[k]; }
   856   };
   857 
   858   /// Returns a \ref SubMap class
   859 
   860   /// This function just returns a \ref SubMap class.
   861   ///
   862   /// For example, if \c m1 and \c m2 are both maps with \c double
   863   /// values, then <tt>subMap(m1,m2)[x]</tt> will be equal to
   864   /// <tt>m1[x]-m2[x]</tt>.
   865   ///
   866   /// \relates SubMap
   867   template<typename M1, typename M2>
   868   inline SubMap<M1, M2> subMap(const M1 &m1, const M2 &m2) {
   869     return SubMap<M1, M2>(m1,m2);
   870   }
   871 
   872 
   873   /// Product of two maps
   874 
   875   /// This \ref concepts::ReadMap "read-only map" returns the product
   876   /// of the values of the two given maps.
   877   /// Its \c Key and \c Value types are inherited from \c M1.
   878   /// The \c Key and \c Value of \c M2 must be convertible to those of
   879   /// \c M1.
   880   ///
   881   /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
   882   /// \code
   883   ///   MulMap<M1,M2> mm(m1,m2);
   884   /// \endcode
   885   /// <tt>mm[x]</tt> will be equal to <tt>m1[x]*m2[x]</tt>.
   886   ///
   887   /// The simplest way of using this map is through the mulMap()
   888   /// function.
   889   ///
   890   /// \sa AddMap, SubMap, DivMap
   891   /// \sa ScaleMap, ScaleWriteMap
   892   template<typename M1, typename M2>
   893   class MulMap : public MapBase<typename M1::Key, typename M1::Value> {
   894     const M1 &_m1;
   895     const M2 &_m2;
   896   public:
   897     typedef MapBase<typename M1::Key, typename M1::Value> Parent;
   898     typedef typename Parent::Key Key;
   899     typedef typename Parent::Value Value;
   900 
   901     /// Constructor
   902     MulMap(const M1 &m1,const M2 &m2) : _m1(m1), _m2(m2) {}
   903     /// \e
   904     Value operator[](const Key &k) const { return _m1[k]*_m2[k]; }
   905   };
   906 
   907   /// Returns a \ref MulMap class
   908 
   909   /// This function just returns a \ref MulMap class.
   910   ///
   911   /// For example, if \c m1 and \c m2 are both maps with \c double
   912   /// values, then <tt>mulMap(m1,m2)[x]</tt> will be equal to
   913   /// <tt>m1[x]*m2[x]</tt>.
   914   ///
   915   /// \relates MulMap
   916   template<typename M1, typename M2>
   917   inline MulMap<M1, M2> mulMap(const M1 &m1,const M2 &m2) {
   918     return MulMap<M1, M2>(m1,m2);
   919   }
   920 
   921 
   922   /// Quotient of two maps
   923 
   924   /// This \ref concepts::ReadMap "read-only map" returns the quotient
   925   /// of the values of the two given maps.
   926   /// Its \c Key and \c Value types are inherited from \c M1.
   927   /// The \c Key and \c Value of \c M2 must be convertible to those of
   928   /// \c M1.
   929   ///
   930   /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
   931   /// \code
   932   ///   DivMap<M1,M2> dm(m1,m2);
   933   /// \endcode
   934   /// <tt>dm[x]</tt> will be equal to <tt>m1[x]/m2[x]</tt>.
   935   ///
   936   /// The simplest way of using this map is through the divMap()
   937   /// function.
   938   ///
   939   /// \sa AddMap, SubMap, MulMap
   940   template<typename M1, typename M2>
   941   class DivMap : public MapBase<typename M1::Key, typename M1::Value> {
   942     const M1 &_m1;
   943     const M2 &_m2;
   944   public:
   945     typedef MapBase<typename M1::Key, typename M1::Value> Parent;
   946     typedef typename Parent::Key Key;
   947     typedef typename Parent::Value Value;
   948 
   949     /// Constructor
   950     DivMap(const M1 &m1,const M2 &m2) : _m1(m1), _m2(m2) {}
   951     /// \e
   952     Value operator[](const Key &k) const { return _m1[k]/_m2[k]; }
   953   };
   954 
   955   /// Returns a \ref DivMap class
   956 
   957   /// This function just returns a \ref DivMap class.
   958   ///
   959   /// For example, if \c m1 and \c m2 are both maps with \c double
   960   /// values, then <tt>divMap(m1,m2)[x]</tt> will be equal to
   961   /// <tt>m1[x]/m2[x]</tt>.
   962   ///
   963   /// \relates DivMap
   964   template<typename M1, typename M2>
   965   inline DivMap<M1, M2> divMap(const M1 &m1,const M2 &m2) {
   966     return DivMap<M1, M2>(m1,m2);
   967   }
   968 
   969 
   970   /// Shifts a map with a constant.
   971 
   972   /// This \ref concepts::ReadMap "read-only map" returns the sum of
   973   /// the given map and a constant value (i.e. it shifts the map with
   974   /// the constant). Its \c Key and \c Value are inherited from \c M.
   975   ///
   976   /// Actually,
   977   /// \code
   978   ///   ShiftMap<M> sh(m,v);
   979   /// \endcode
   980   /// is equivalent to
   981   /// \code
   982   ///   ConstMap<M::Key, M::Value> cm(v);
   983   ///   AddMap<M, ConstMap<M::Key, M::Value> > sh(m,cm);
   984   /// \endcode
   985   ///
   986   /// The simplest way of using this map is through the shiftMap()
   987   /// function.
   988   ///
   989   /// \sa ShiftWriteMap
   990   template<typename M, typename C = typename M::Value>
   991   class ShiftMap : public MapBase<typename M::Key, typename M::Value> {
   992     const M &_m;
   993     C _v;
   994   public:
   995     typedef MapBase<typename M::Key, typename M::Value> Parent;
   996     typedef typename Parent::Key Key;
   997     typedef typename Parent::Value Value;
   998 
   999     /// Constructor
  1000 
  1001     /// Constructor.
  1002     /// \param m The undelying map.
  1003     /// \param v The constant value.
  1004     ShiftMap(const M &m, const C &v) : _m(m), _v(v) {}
  1005     /// \e
  1006     Value operator[](const Key &k) const { return _m[k]+_v; }
  1007   };
  1008 
  1009   /// Shifts a map with a constant (read-write version).
  1010 
  1011   /// This \ref concepts::ReadWriteMap "read-write map" returns the sum
  1012   /// of the given map and a constant value (i.e. it shifts the map with
  1013   /// the constant). Its \c Key and \c Value are inherited from \c M.
  1014   /// It makes also possible to write the map.
  1015   ///
  1016   /// The simplest way of using this map is through the shiftWriteMap()
  1017   /// function.
  1018   ///
  1019   /// \sa ShiftMap
  1020   template<typename M, typename C = typename M::Value>
  1021   class ShiftWriteMap : public MapBase<typename M::Key, typename M::Value> {
  1022     M &_m;
  1023     C _v;
  1024   public:
  1025     typedef MapBase<typename M::Key, typename M::Value> Parent;
  1026     typedef typename Parent::Key Key;
  1027     typedef typename Parent::Value Value;
  1028 
  1029     /// Constructor
  1030 
  1031     /// Constructor.
  1032     /// \param m The undelying map.
  1033     /// \param v The constant value.
  1034     ShiftWriteMap(M &m, const C &v) : _m(m), _v(v) {}
  1035     /// \e
  1036     Value operator[](const Key &k) const { return _m[k]+_v; }
  1037     /// \e
  1038     void set(const Key &k, const Value &v) { _m.set(k, v-_v); }
  1039   };
  1040 
  1041   /// Returns a \ref ShiftMap class
  1042 
  1043   /// This function just returns a \ref ShiftMap class.
  1044   ///
  1045   /// For example, if \c m is a map with \c double values and \c v is
  1046   /// \c double, then <tt>shiftMap(m,v)[x]</tt> will be equal to
  1047   /// <tt>m[x]+v</tt>.
  1048   ///
  1049   /// \relates ShiftMap
  1050   template<typename M, typename C>
  1051   inline ShiftMap<M, C> shiftMap(const M &m, const C &v) {
  1052     return ShiftMap<M, C>(m,v);
  1053   }
  1054 
  1055   /// Returns a \ref ShiftWriteMap class
  1056 
  1057   /// This function just returns a \ref ShiftWriteMap class.
  1058   ///
  1059   /// For example, if \c m is a map with \c double values and \c v is
  1060   /// \c double, then <tt>shiftWriteMap(m,v)[x]</tt> will be equal to
  1061   /// <tt>m[x]+v</tt>.
  1062   /// Moreover it makes also possible to write the map.
  1063   ///
  1064   /// \relates ShiftWriteMap
  1065   template<typename M, typename C>
  1066   inline ShiftWriteMap<M, C> shiftWriteMap(M &m, const C &v) {
  1067     return ShiftWriteMap<M, C>(m,v);
  1068   }
  1069 
  1070 
  1071   /// Scales a map with a constant.
  1072 
  1073   /// This \ref concepts::ReadMap "read-only map" returns the value of
  1074   /// the given map multiplied from the left side with a constant value.
  1075   /// Its \c Key and \c Value are inherited from \c M.
  1076   ///
  1077   /// Actually,
  1078   /// \code
  1079   ///   ScaleMap<M> sc(m,v);
  1080   /// \endcode
  1081   /// is equivalent to
  1082   /// \code
  1083   ///   ConstMap<M::Key, M::Value> cm(v);
  1084   ///   MulMap<ConstMap<M::Key, M::Value>, M> sc(cm,m);
  1085   /// \endcode
  1086   ///
  1087   /// The simplest way of using this map is through the scaleMap()
  1088   /// function.
  1089   ///
  1090   /// \sa ScaleWriteMap
  1091   template<typename M, typename C = typename M::Value>
  1092   class ScaleMap : public MapBase<typename M::Key, typename M::Value> {
  1093     const M &_m;
  1094     C _v;
  1095   public:
  1096     typedef MapBase<typename M::Key, typename M::Value> Parent;
  1097     typedef typename Parent::Key Key;
  1098     typedef typename Parent::Value Value;
  1099 
  1100     /// Constructor
  1101 
  1102     /// Constructor.
  1103     /// \param m The undelying map.
  1104     /// \param v The constant value.
  1105     ScaleMap(const M &m, const C &v) : _m(m), _v(v) {}
  1106     /// \e
  1107     Value operator[](const Key &k) const { return _v*_m[k]; }
  1108   };
  1109 
  1110   /// Scales a map with a constant (read-write version).
  1111 
  1112   /// This \ref concepts::ReadWriteMap "read-write map" returns the value of
  1113   /// the given map multiplied from the left side with a constant value.
  1114   /// Its \c Key and \c Value are inherited from \c M.
  1115   /// It can also be used as write map if the \c / operator is defined
  1116   /// between \c Value and \c C and the given multiplier is not zero.
  1117   ///
  1118   /// The simplest way of using this map is through the scaleWriteMap()
  1119   /// function.
  1120   ///
  1121   /// \sa ScaleMap
  1122   template<typename M, typename C = typename M::Value>
  1123   class ScaleWriteMap : public MapBase<typename M::Key, typename M::Value> {
  1124     M &_m;
  1125     C _v;
  1126   public:
  1127     typedef MapBase<typename M::Key, typename M::Value> Parent;
  1128     typedef typename Parent::Key Key;
  1129     typedef typename Parent::Value Value;
  1130 
  1131     /// Constructor
  1132 
  1133     /// Constructor.
  1134     /// \param m The undelying map.
  1135     /// \param v The constant value.
  1136     ScaleWriteMap(M &m, const C &v) : _m(m), _v(v) {}
  1137     /// \e
  1138     Value operator[](const Key &k) const { return _v*_m[k]; }
  1139     /// \e
  1140     void set(const Key &k, const Value &v) { _m.set(k, v/_v); }
  1141   };
  1142 
  1143   /// Returns a \ref ScaleMap class
  1144 
  1145   /// This function just returns a \ref ScaleMap class.
  1146   ///
  1147   /// For example, if \c m is a map with \c double values and \c v is
  1148   /// \c double, then <tt>scaleMap(m,v)[x]</tt> will be equal to
  1149   /// <tt>v*m[x]</tt>.
  1150   ///
  1151   /// \relates ScaleMap
  1152   template<typename M, typename C>
  1153   inline ScaleMap<M, C> scaleMap(const M &m, const C &v) {
  1154     return ScaleMap<M, C>(m,v);
  1155   }
  1156 
  1157   /// Returns a \ref ScaleWriteMap class
  1158 
  1159   /// This function just returns a \ref ScaleWriteMap class.
  1160   ///
  1161   /// For example, if \c m is a map with \c double values and \c v is
  1162   /// \c double, then <tt>scaleWriteMap(m,v)[x]</tt> will be equal to
  1163   /// <tt>v*m[x]</tt>.
  1164   /// Moreover it makes also possible to write the map.
  1165   ///
  1166   /// \relates ScaleWriteMap
  1167   template<typename M, typename C>
  1168   inline ScaleWriteMap<M, C> scaleWriteMap(M &m, const C &v) {
  1169     return ScaleWriteMap<M, C>(m,v);
  1170   }
  1171 
  1172 
  1173   /// Negative of a map
  1174 
  1175   /// This \ref concepts::ReadMap "read-only map" returns the negative
  1176   /// of the values of the given map (using the unary \c - operator).
  1177   /// Its \c Key and \c Value are inherited from \c M.
  1178   ///
  1179   /// If M::Value is \c int, \c double etc., then
  1180   /// \code
  1181   ///   NegMap<M> neg(m);
  1182   /// \endcode
  1183   /// is equivalent to
  1184   /// \code
  1185   ///   ScaleMap<M> neg(m,-1);
  1186   /// \endcode
  1187   ///
  1188   /// The simplest way of using this map is through the negMap()
  1189   /// function.
  1190   ///
  1191   /// \sa NegWriteMap
  1192   template<typename M>
  1193   class NegMap : public MapBase<typename M::Key, typename M::Value> {
  1194     const M& _m;
  1195   public:
  1196     typedef MapBase<typename M::Key, typename M::Value> Parent;
  1197     typedef typename Parent::Key Key;
  1198     typedef typename Parent::Value Value;
  1199 
  1200     /// Constructor
  1201     NegMap(const M &m) : _m(m) {}
  1202     /// \e
  1203     Value operator[](const Key &k) const { return -_m[k]; }
  1204   };
  1205 
  1206   /// Negative of a map (read-write version)
  1207 
  1208   /// This \ref concepts::ReadWriteMap "read-write map" returns the
  1209   /// negative of the values of the given map (using the unary \c -
  1210   /// operator).
  1211   /// Its \c Key and \c Value are inherited from \c M.
  1212   /// It makes also possible to write the map.
  1213   ///
  1214   /// If M::Value is \c int, \c double etc., then
  1215   /// \code
  1216   ///   NegWriteMap<M> neg(m);
  1217   /// \endcode
  1218   /// is equivalent to
  1219   /// \code
  1220   ///   ScaleWriteMap<M> neg(m,-1);
  1221   /// \endcode
  1222   ///
  1223   /// The simplest way of using this map is through the negWriteMap()
  1224   /// function.
  1225   ///
  1226   /// \sa NegMap
  1227   template<typename M>
  1228   class NegWriteMap : public MapBase<typename M::Key, typename M::Value> {
  1229     M &_m;
  1230   public:
  1231     typedef MapBase<typename M::Key, typename M::Value> Parent;
  1232     typedef typename Parent::Key Key;
  1233     typedef typename Parent::Value Value;
  1234 
  1235     /// Constructor
  1236     NegWriteMap(M &m) : _m(m) {}
  1237     /// \e
  1238     Value operator[](const Key &k) const { return -_m[k]; }
  1239     /// \e
  1240     void set(const Key &k, const Value &v) { _m.set(k, -v); }
  1241   };
  1242 
  1243   /// Returns a \ref NegMap class
  1244 
  1245   /// This function just returns a \ref NegMap class.
  1246   ///
  1247   /// For example, if \c m is a map with \c double values, then
  1248   /// <tt>negMap(m)[x]</tt> will be equal to <tt>-m[x]</tt>.
  1249   ///
  1250   /// \relates NegMap
  1251   template <typename M>
  1252   inline NegMap<M> negMap(const M &m) {
  1253     return NegMap<M>(m);
  1254   }
  1255 
  1256   /// Returns a \ref NegWriteMap class
  1257 
  1258   /// This function just returns a \ref NegWriteMap class.
  1259   ///
  1260   /// For example, if \c m is a map with \c double values, then
  1261   /// <tt>negWriteMap(m)[x]</tt> will be equal to <tt>-m[x]</tt>.
  1262   /// Moreover it makes also possible to write the map.
  1263   ///
  1264   /// \relates NegWriteMap
  1265   template <typename M>
  1266   inline NegWriteMap<M> negWriteMap(M &m) {
  1267     return NegWriteMap<M>(m);
  1268   }
  1269 
  1270 
  1271   /// Absolute value of a map
  1272 
  1273   /// This \ref concepts::ReadMap "read-only map" returns the absolute
  1274   /// value of the values of the given map.
  1275   /// Its \c Key and \c Value are inherited from \c M.
  1276   /// \c Value must be comparable to \c 0 and the unary \c -
  1277   /// operator must be defined for it, of course.
  1278   ///
  1279   /// The simplest way of using this map is through the absMap()
  1280   /// function.
  1281   template<typename M>
  1282   class AbsMap : public MapBase<typename M::Key, typename M::Value> {
  1283     const M &_m;
  1284   public:
  1285     typedef MapBase<typename M::Key, typename M::Value> Parent;
  1286     typedef typename Parent::Key Key;
  1287     typedef typename Parent::Value Value;
  1288 
  1289     /// Constructor
  1290     AbsMap(const M &m) : _m(m) {}
  1291     /// \e
  1292     Value operator[](const Key &k) const {
  1293       Value tmp = _m[k];
  1294       return tmp >= 0 ? tmp : -tmp;
  1295     }
  1296 
  1297   };
  1298 
  1299   /// Returns an \ref AbsMap class
  1300 
  1301   /// This function just returns an \ref AbsMap class.
  1302   ///
  1303   /// For example, if \c m is a map with \c double values, then
  1304   /// <tt>absMap(m)[x]</tt> will be equal to <tt>m[x]</tt> if
  1305   /// it is positive or zero and <tt>-m[x]</tt> if <tt>m[x]</tt> is
  1306   /// negative.
  1307   ///
  1308   /// \relates AbsMap
  1309   template<typename M>
  1310   inline AbsMap<M> absMap(const M &m) {
  1311     return AbsMap<M>(m);
  1312   }
  1313 
  1314   /// @}
  1315   
  1316   // Logical maps and map adaptors:
  1317 
  1318   /// \addtogroup maps
  1319   /// @{
  1320 
  1321   /// Constant \c true map.
  1322 
  1323   /// This \ref concepts::ReadMap "read-only map" assigns \c true to
  1324   /// each key.
  1325   ///
  1326   /// Note that
  1327   /// \code
  1328   ///   TrueMap<K> tm;
  1329   /// \endcode
  1330   /// is equivalent to
  1331   /// \code
  1332   ///   ConstMap<K,bool> tm(true);
  1333   /// \endcode
  1334   ///
  1335   /// \sa FalseMap
  1336   /// \sa ConstMap
  1337   template <typename K>
  1338   class TrueMap : public MapBase<K, bool> {
  1339   public:
  1340     typedef MapBase<K, bool> Parent;
  1341     typedef typename Parent::Key Key;
  1342     typedef typename Parent::Value Value;
  1343 
  1344     /// Gives back \c true.
  1345     Value operator[](const Key&) const { return true; }
  1346   };
  1347 
  1348   /// Returns a \ref TrueMap class
  1349 
  1350   /// This function just returns a \ref TrueMap class.
  1351   /// \relates TrueMap
  1352   template<typename K>
  1353   inline TrueMap<K> trueMap() {
  1354     return TrueMap<K>();
  1355   }
  1356 
  1357 
  1358   /// Constant \c false map.
  1359 
  1360   /// This \ref concepts::ReadMap "read-only map" assigns \c false to
  1361   /// each key.
  1362   ///
  1363   /// Note that
  1364   /// \code
  1365   ///   FalseMap<K> fm;
  1366   /// \endcode
  1367   /// is equivalent to
  1368   /// \code
  1369   ///   ConstMap<K,bool> fm(false);
  1370   /// \endcode
  1371   ///
  1372   /// \sa TrueMap
  1373   /// \sa ConstMap
  1374   template <typename K>
  1375   class FalseMap : public MapBase<K, bool> {
  1376   public:
  1377     typedef MapBase<K, bool> Parent;
  1378     typedef typename Parent::Key Key;
  1379     typedef typename Parent::Value Value;
  1380 
  1381     /// Gives back \c false.
  1382     Value operator[](const Key&) const { return false; }
  1383   };
  1384 
  1385   /// Returns a \ref FalseMap class
  1386 
  1387   /// This function just returns a \ref FalseMap class.
  1388   /// \relates FalseMap
  1389   template<typename K>
  1390   inline FalseMap<K> falseMap() {
  1391     return FalseMap<K>();
  1392   }
  1393 
  1394   /// @}
  1395 
  1396   /// \addtogroup map_adaptors
  1397   /// @{
  1398 
  1399   /// Logical 'and' of two maps
  1400 
  1401   /// This \ref concepts::ReadMap "read-only map" returns the logical
  1402   /// 'and' of the values of the two given maps.
  1403   /// Its \c Key type is inherited from \c M1 and its \c Value type is
  1404   /// \c bool. \c M2::Key must be convertible to \c M1::Key.
  1405   ///
  1406   /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
  1407   /// \code
  1408   ///   AndMap<M1,M2> am(m1,m2);
  1409   /// \endcode
  1410   /// <tt>am[x]</tt> will be equal to <tt>m1[x]&&m2[x]</tt>.
  1411   ///
  1412   /// The simplest way of using this map is through the andMap()
  1413   /// function.
  1414   ///
  1415   /// \sa OrMap
  1416   /// \sa NotMap, NotWriteMap
  1417   template<typename M1, typename M2>
  1418   class AndMap : public MapBase<typename M1::Key, bool> {
  1419     const M1 &_m1;
  1420     const M2 &_m2;
  1421   public:
  1422     typedef MapBase<typename M1::Key, bool> Parent;
  1423     typedef typename Parent::Key Key;
  1424     typedef typename Parent::Value Value;
  1425 
  1426     /// Constructor
  1427     AndMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
  1428     /// \e
  1429     Value operator[](const Key &k) const { return _m1[k]&&_m2[k]; }
  1430   };
  1431 
  1432   /// Returns an \ref AndMap class
  1433 
  1434   /// This function just returns an \ref AndMap class.
  1435   ///
  1436   /// For example, if \c m1 and \c m2 are both maps with \c bool values,
  1437   /// then <tt>andMap(m1,m2)[x]</tt> will be equal to
  1438   /// <tt>m1[x]&&m2[x]</tt>.
  1439   ///
  1440   /// \relates AndMap
  1441   template<typename M1, typename M2>
  1442   inline AndMap<M1, M2> andMap(const M1 &m1, const M2 &m2) {
  1443     return AndMap<M1, M2>(m1,m2);
  1444   }
  1445 
  1446 
  1447   /// Logical 'or' of two maps
  1448 
  1449   /// This \ref concepts::ReadMap "read-only map" returns the logical
  1450   /// 'or' of the values of the two given maps.
  1451   /// Its \c Key type is inherited from \c M1 and its \c Value type is
  1452   /// \c bool. \c M2::Key must be convertible to \c M1::Key.
  1453   ///
  1454   /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
  1455   /// \code
  1456   ///   OrMap<M1,M2> om(m1,m2);
  1457   /// \endcode
  1458   /// <tt>om[x]</tt> will be equal to <tt>m1[x]||m2[x]</tt>.
  1459   ///
  1460   /// The simplest way of using this map is through the orMap()
  1461   /// function.
  1462   ///
  1463   /// \sa AndMap
  1464   /// \sa NotMap, NotWriteMap
  1465   template<typename M1, typename M2>
  1466   class OrMap : public MapBase<typename M1::Key, bool> {
  1467     const M1 &_m1;
  1468     const M2 &_m2;
  1469   public:
  1470     typedef MapBase<typename M1::Key, bool> Parent;
  1471     typedef typename Parent::Key Key;
  1472     typedef typename Parent::Value Value;
  1473 
  1474     /// Constructor
  1475     OrMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
  1476     /// \e
  1477     Value operator[](const Key &k) const { return _m1[k]||_m2[k]; }
  1478   };
  1479 
  1480   /// Returns an \ref OrMap class
  1481 
  1482   /// This function just returns an \ref OrMap class.
  1483   ///
  1484   /// For example, if \c m1 and \c m2 are both maps with \c bool values,
  1485   /// then <tt>orMap(m1,m2)[x]</tt> will be equal to
  1486   /// <tt>m1[x]||m2[x]</tt>.
  1487   ///
  1488   /// \relates OrMap
  1489   template<typename M1, typename M2>
  1490   inline OrMap<M1, M2> orMap(const M1 &m1, const M2 &m2) {
  1491     return OrMap<M1, M2>(m1,m2);
  1492   }
  1493 
  1494 
  1495   /// Logical 'not' of a map
  1496 
  1497   /// This \ref concepts::ReadMap "read-only map" returns the logical
  1498   /// negation of the values of the given map.
  1499   /// Its \c Key is inherited from \c M and its \c Value is \c bool.
  1500   ///
  1501   /// The simplest way of using this map is through the notMap()
  1502   /// function.
  1503   ///
  1504   /// \sa NotWriteMap
  1505   template <typename M>
  1506   class NotMap : public MapBase<typename M::Key, bool> {
  1507     const M &_m;
  1508   public:
  1509     typedef MapBase<typename M::Key, bool> Parent;
  1510     typedef typename Parent::Key Key;
  1511     typedef typename Parent::Value Value;
  1512 
  1513     /// Constructor
  1514     NotMap(const M &m) : _m(m) {}
  1515     /// \e
  1516     Value operator[](const Key &k) const { return !_m[k]; }
  1517   };
  1518 
  1519   /// Logical 'not' of a map (read-write version)
  1520 
  1521   /// This \ref concepts::ReadWriteMap "read-write map" returns the
  1522   /// logical negation of the values of the given map.
  1523   /// Its \c Key is inherited from \c M and its \c Value is \c bool.
  1524   /// It makes also possible to write the map. When a value is set,
  1525   /// the opposite value is set to the original map.
  1526   ///
  1527   /// The simplest way of using this map is through the notWriteMap()
  1528   /// function.
  1529   ///
  1530   /// \sa NotMap
  1531   template <typename M>
  1532   class NotWriteMap : public MapBase<typename M::Key, bool> {
  1533     M &_m;
  1534   public:
  1535     typedef MapBase<typename M::Key, bool> Parent;
  1536     typedef typename Parent::Key Key;
  1537     typedef typename Parent::Value Value;
  1538 
  1539     /// Constructor
  1540     NotWriteMap(M &m) : _m(m) {}
  1541     /// \e
  1542     Value operator[](const Key &k) const { return !_m[k]; }
  1543     /// \e
  1544     void set(const Key &k, bool v) { _m.set(k, !v); }
  1545   };
  1546 
  1547   /// Returns a \ref NotMap class
  1548 
  1549   /// This function just returns a \ref NotMap class.
  1550   ///
  1551   /// For example, if \c m is a map with \c bool values, then
  1552   /// <tt>notMap(m)[x]</tt> will be equal to <tt>!m[x]</tt>.
  1553   ///
  1554   /// \relates NotMap
  1555   template <typename M>
  1556   inline NotMap<M> notMap(const M &m) {
  1557     return NotMap<M>(m);
  1558   }
  1559 
  1560   /// Returns a \ref NotWriteMap class
  1561 
  1562   /// This function just returns a \ref NotWriteMap class.
  1563   ///
  1564   /// For example, if \c m is a map with \c bool values, then
  1565   /// <tt>notWriteMap(m)[x]</tt> will be equal to <tt>!m[x]</tt>.
  1566   /// Moreover it makes also possible to write the map.
  1567   ///
  1568   /// \relates NotWriteMap
  1569   template <typename M>
  1570   inline NotWriteMap<M> notWriteMap(M &m) {
  1571     return NotWriteMap<M>(m);
  1572   }
  1573 
  1574 
  1575   /// Combination of two maps using the \c == operator
  1576 
  1577   /// This \ref concepts::ReadMap "read-only map" assigns \c true to
  1578   /// the keys for which the corresponding values of the two maps are
  1579   /// equal.
  1580   /// Its \c Key type is inherited from \c M1 and its \c Value type is
  1581   /// \c bool. \c M2::Key must be convertible to \c M1::Key.
  1582   ///
  1583   /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
  1584   /// \code
  1585   ///   EqualMap<M1,M2> em(m1,m2);
  1586   /// \endcode
  1587   /// <tt>em[x]</tt> will be equal to <tt>m1[x]==m2[x]</tt>.
  1588   ///
  1589   /// The simplest way of using this map is through the equalMap()
  1590   /// function.
  1591   ///
  1592   /// \sa LessMap
  1593   template<typename M1, typename M2>
  1594   class EqualMap : public MapBase<typename M1::Key, bool> {
  1595     const M1 &_m1;
  1596     const M2 &_m2;
  1597   public:
  1598     typedef MapBase<typename M1::Key, bool> Parent;
  1599     typedef typename Parent::Key Key;
  1600     typedef typename Parent::Value Value;
  1601 
  1602     /// Constructor
  1603     EqualMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
  1604     /// \e
  1605     Value operator[](const Key &k) const { return _m1[k]==_m2[k]; }
  1606   };
  1607 
  1608   /// Returns an \ref EqualMap class
  1609 
  1610   /// This function just returns an \ref EqualMap class.
  1611   ///
  1612   /// For example, if \c m1 and \c m2 are maps with keys and values of
  1613   /// the same type, then <tt>equalMap(m1,m2)[x]</tt> will be equal to
  1614   /// <tt>m1[x]==m2[x]</tt>.
  1615   ///
  1616   /// \relates EqualMap
  1617   template<typename M1, typename M2>
  1618   inline EqualMap<M1, M2> equalMap(const M1 &m1, const M2 &m2) {
  1619     return EqualMap<M1, M2>(m1,m2);
  1620   }
  1621 
  1622 
  1623   /// Combination of two maps using the \c < operator
  1624 
  1625   /// This \ref concepts::ReadMap "read-only map" assigns \c true to
  1626   /// the keys for which the corresponding value of the first map is
  1627   /// less then the value of the second map.
  1628   /// Its \c Key type is inherited from \c M1 and its \c Value type is
  1629   /// \c bool. \c M2::Key must be convertible to \c M1::Key.
  1630   ///
  1631   /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
  1632   /// \code
  1633   ///   LessMap<M1,M2> lm(m1,m2);
  1634   /// \endcode
  1635   /// <tt>lm[x]</tt> will be equal to <tt>m1[x]<m2[x]</tt>.
  1636   ///
  1637   /// The simplest way of using this map is through the lessMap()
  1638   /// function.
  1639   ///
  1640   /// \sa EqualMap
  1641   template<typename M1, typename M2>
  1642   class LessMap : public MapBase<typename M1::Key, bool> {
  1643     const M1 &_m1;
  1644     const M2 &_m2;
  1645   public:
  1646     typedef MapBase<typename M1::Key, bool> Parent;
  1647     typedef typename Parent::Key Key;
  1648     typedef typename Parent::Value Value;
  1649 
  1650     /// Constructor
  1651     LessMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
  1652     /// \e
  1653     Value operator[](const Key &k) const { return _m1[k]<_m2[k]; }
  1654   };
  1655 
  1656   /// Returns an \ref LessMap class
  1657 
  1658   /// This function just returns an \ref LessMap class.
  1659   ///
  1660   /// For example, if \c m1 and \c m2 are maps with keys and values of
  1661   /// the same type, then <tt>lessMap(m1,m2)[x]</tt> will be equal to
  1662   /// <tt>m1[x]<m2[x]</tt>.
  1663   ///
  1664   /// \relates LessMap
  1665   template<typename M1, typename M2>
  1666   inline LessMap<M1, M2> lessMap(const M1 &m1, const M2 &m2) {
  1667     return LessMap<M1, M2>(m1,m2);
  1668   }
  1669 
  1670   namespace _maps_bits {
  1671 
  1672     template <typename Value>
  1673     struct Identity {
  1674       typedef Value argument_type;
  1675       typedef Value result_type;
  1676       Value operator()(const Value& val) const {
  1677 	return val;
  1678       }
  1679     };
  1680 
  1681     template <typename _Iterator, typename Enable = void>
  1682     struct IteratorTraits {
  1683       typedef typename std::iterator_traits<_Iterator>::value_type Value;
  1684     };
  1685 
  1686     template <typename _Iterator>
  1687     struct IteratorTraits<_Iterator,
  1688       typename exists<typename _Iterator::container_type>::type>
  1689     {
  1690       typedef typename _Iterator::container_type::value_type Value;
  1691     };
  1692 
  1693   }
  1694 
  1695   /// \brief Writable bool map for logging each \c true assigned element
  1696   ///
  1697   /// A \ref concepts::ReadWriteMap "read-write" bool map for logging
  1698   /// each \c true assigned element, i.e it copies subsequently each
  1699   /// keys set to \c true to the given iterator.
  1700   ///
  1701   /// \tparam It the type of the Iterator.
  1702   /// \tparam Ke the type of the map's Key. The default value should
  1703   /// work in most cases.
  1704   ///
  1705   /// \note The container of the iterator must contain enough space
  1706   /// for the elements. (Or it should be an inserter iterator).
  1707   ///
  1708   /// \todo Revise the name of this class and give an example code.
  1709   template <typename It,
  1710 	    typename Ke=typename _maps_bits::IteratorTraits<It>::Value>
  1711   class StoreBoolMap {
  1712   public:
  1713     typedef It Iterator;
  1714 
  1715     typedef Ke Key;
  1716     typedef bool Value;
  1717 
  1718     /// Constructor
  1719     StoreBoolMap(Iterator it)
  1720       : _begin(it), _end(it) {}
  1721 
  1722     /// Gives back the given iterator set for the first key
  1723     Iterator begin() const {
  1724       return _begin;
  1725     }
  1726 
  1727     /// Gives back the the 'after the last' iterator
  1728     Iterator end() const {
  1729       return _end;
  1730     }
  1731 
  1732     /// The set function of the map
  1733     void set(const Key& key, Value value) const {
  1734       if (value) {
  1735 	*_end++ = key;
  1736       }
  1737     }
  1738 
  1739   private:
  1740     Iterator _begin;
  1741     mutable Iterator _end;
  1742   };
  1743 
  1744   /// @}
  1745 }
  1746 
  1747 #endif // LEMON_MAPS_H