lemon/hao_orlin.h
author Peter Kovacs <kpeter@inf.elte.hu>
Tue, 24 Mar 2009 00:18:25 +0100
changeset 596 8c3112a66878
parent 412 7030149efed2
child 550 c5fd2d996909
permissions -rw-r--r--
Use XTI implementation instead of ATI in NetworkSimplex (#234)

XTI (eXtended Threaded Index) is an imporved version of the widely
known ATI (Augmented Threaded Index) method for storing and updating
the spanning tree structure in Network Simplex algorithms.

In the ATI data structure three indices are stored for each node:
predecessor, thread and depth. In the XTI data structure depth is
replaced by the number of successors and the last successor
(according to the thread index).
     1 /* -*- mode: C++; indent-tabs-mode: nil; -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library.
     4  *
     5  * Copyright (C) 2003-2009
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_HAO_ORLIN_H
    20 #define LEMON_HAO_ORLIN_H
    21 
    22 #include <vector>
    23 #include <list>
    24 #include <limits>
    25 
    26 #include <lemon/maps.h>
    27 #include <lemon/core.h>
    28 #include <lemon/tolerance.h>
    29 
    30 /// \file
    31 /// \ingroup min_cut
    32 /// \brief Implementation of the Hao-Orlin algorithm.
    33 ///
    34 /// Implementation of the Hao-Orlin algorithm class for testing network
    35 /// reliability.
    36 
    37 namespace lemon {
    38 
    39   /// \ingroup min_cut
    40   ///
    41   /// \brief %Hao-Orlin algorithm to find a minimum cut in directed graphs.
    42   ///
    43   /// Hao-Orlin calculates a minimum cut in a directed graph
    44   /// \f$D=(V,A)\f$. It takes a fixed node \f$ source \in V \f$ and
    45   /// consists of two phases: in the first phase it determines a
    46   /// minimum cut with \f$ source \f$ on the source-side (i.e. a set
    47   /// \f$ X\subsetneq V \f$ with \f$ source \in X \f$ and minimal
    48   /// out-degree) and in the second phase it determines a minimum cut
    49   /// with \f$ source \f$ on the sink-side (i.e. a set
    50   /// \f$ X\subsetneq V \f$ with \f$ source \notin X \f$ and minimal
    51   /// out-degree). Obviously, the smaller of these two cuts will be a
    52   /// minimum cut of \f$ D \f$. The algorithm is a modified
    53   /// push-relabel preflow algorithm and our implementation calculates
    54   /// the minimum cut in \f$ O(n^2\sqrt{m}) \f$ time (we use the
    55   /// highest-label rule), or in \f$O(nm)\f$ for unit capacities. The
    56   /// purpose of such algorithm is testing network reliability. For an
    57   /// undirected graph you can run just the first phase of the
    58   /// algorithm or you can use the algorithm of Nagamochi and Ibaraki
    59   /// which solves the undirected problem in
    60   /// \f$ O(nm + n^2 \log(n)) \f$ time: it is implemented in the
    61   /// NagamochiIbaraki algorithm class.
    62   ///
    63   /// \param _Digraph is the graph type of the algorithm.
    64   /// \param _CapacityMap is an edge map of capacities which should
    65   /// be any numreric type. The default type is _Digraph::ArcMap<int>.
    66   /// \param _Tolerance is the handler of the inexact computation. The
    67   /// default type for this is Tolerance<CapacityMap::Value>.
    68 #ifdef DOXYGEN
    69   template <typename _Digraph, typename _CapacityMap, typename _Tolerance>
    70 #else
    71   template <typename _Digraph,
    72             typename _CapacityMap = typename _Digraph::template ArcMap<int>,
    73             typename _Tolerance = Tolerance<typename _CapacityMap::Value> >
    74 #endif
    75   class HaoOrlin {
    76   private:
    77 
    78     typedef _Digraph Digraph;
    79     typedef _CapacityMap CapacityMap;
    80     typedef _Tolerance Tolerance;
    81 
    82     typedef typename CapacityMap::Value Value;
    83 
    84     TEMPLATE_GRAPH_TYPEDEFS(Digraph);
    85 
    86     const Digraph& _graph;
    87     const CapacityMap* _capacity;
    88 
    89     typedef typename Digraph::template ArcMap<Value> FlowMap;
    90     FlowMap* _flow;
    91 
    92     Node _source;
    93 
    94     int _node_num;
    95 
    96     // Bucketing structure
    97     std::vector<Node> _first, _last;
    98     typename Digraph::template NodeMap<Node>* _next;
    99     typename Digraph::template NodeMap<Node>* _prev;
   100     typename Digraph::template NodeMap<bool>* _active;
   101     typename Digraph::template NodeMap<int>* _bucket;
   102 
   103     std::vector<bool> _dormant;
   104 
   105     std::list<std::list<int> > _sets;
   106     std::list<int>::iterator _highest;
   107 
   108     typedef typename Digraph::template NodeMap<Value> ExcessMap;
   109     ExcessMap* _excess;
   110 
   111     typedef typename Digraph::template NodeMap<bool> SourceSetMap;
   112     SourceSetMap* _source_set;
   113 
   114     Value _min_cut;
   115 
   116     typedef typename Digraph::template NodeMap<bool> MinCutMap;
   117     MinCutMap* _min_cut_map;
   118 
   119     Tolerance _tolerance;
   120 
   121   public:
   122 
   123     /// \brief Constructor
   124     ///
   125     /// Constructor of the algorithm class.
   126     HaoOrlin(const Digraph& graph, const CapacityMap& capacity,
   127              const Tolerance& tolerance = Tolerance()) :
   128       _graph(graph), _capacity(&capacity), _flow(0), _source(),
   129       _node_num(), _first(), _last(), _next(0), _prev(0),
   130       _active(0), _bucket(0), _dormant(), _sets(), _highest(),
   131       _excess(0), _source_set(0), _min_cut(), _min_cut_map(0),
   132       _tolerance(tolerance) {}
   133 
   134     ~HaoOrlin() {
   135       if (_min_cut_map) {
   136         delete _min_cut_map;
   137       }
   138       if (_source_set) {
   139         delete _source_set;
   140       }
   141       if (_excess) {
   142         delete _excess;
   143       }
   144       if (_next) {
   145         delete _next;
   146       }
   147       if (_prev) {
   148         delete _prev;
   149       }
   150       if (_active) {
   151         delete _active;
   152       }
   153       if (_bucket) {
   154         delete _bucket;
   155       }
   156       if (_flow) {
   157         delete _flow;
   158       }
   159     }
   160 
   161   private:
   162 
   163     void activate(const Node& i) {
   164       _active->set(i, true);
   165 
   166       int bucket = (*_bucket)[i];
   167 
   168       if ((*_prev)[i] == INVALID || (*_active)[(*_prev)[i]]) return;
   169       //unlace
   170       _next->set((*_prev)[i], (*_next)[i]);
   171       if ((*_next)[i] != INVALID) {
   172         _prev->set((*_next)[i], (*_prev)[i]);
   173       } else {
   174         _last[bucket] = (*_prev)[i];
   175       }
   176       //lace
   177       _next->set(i, _first[bucket]);
   178       _prev->set(_first[bucket], i);
   179       _prev->set(i, INVALID);
   180       _first[bucket] = i;
   181     }
   182 
   183     void deactivate(const Node& i) {
   184       _active->set(i, false);
   185       int bucket = (*_bucket)[i];
   186 
   187       if ((*_next)[i] == INVALID || !(*_active)[(*_next)[i]]) return;
   188 
   189       //unlace
   190       _prev->set((*_next)[i], (*_prev)[i]);
   191       if ((*_prev)[i] != INVALID) {
   192         _next->set((*_prev)[i], (*_next)[i]);
   193       } else {
   194         _first[bucket] = (*_next)[i];
   195       }
   196       //lace
   197       _prev->set(i, _last[bucket]);
   198       _next->set(_last[bucket], i);
   199       _next->set(i, INVALID);
   200       _last[bucket] = i;
   201     }
   202 
   203     void addItem(const Node& i, int bucket) {
   204       (*_bucket)[i] = bucket;
   205       if (_last[bucket] != INVALID) {
   206         _prev->set(i, _last[bucket]);
   207         _next->set(_last[bucket], i);
   208         _next->set(i, INVALID);
   209         _last[bucket] = i;
   210       } else {
   211         _prev->set(i, INVALID);
   212         _first[bucket] = i;
   213         _next->set(i, INVALID);
   214         _last[bucket] = i;
   215       }
   216     }
   217 
   218     void findMinCutOut() {
   219 
   220       for (NodeIt n(_graph); n != INVALID; ++n) {
   221         _excess->set(n, 0);
   222       }
   223 
   224       for (ArcIt a(_graph); a != INVALID; ++a) {
   225         _flow->set(a, 0);
   226       }
   227 
   228       int bucket_num = 0;
   229       std::vector<Node> queue(_node_num);
   230       int qfirst = 0, qlast = 0, qsep = 0;
   231 
   232       {
   233         typename Digraph::template NodeMap<bool> reached(_graph, false);
   234 
   235         reached.set(_source, true);
   236         bool first_set = true;
   237 
   238         for (NodeIt t(_graph); t != INVALID; ++t) {
   239           if (reached[t]) continue;
   240           _sets.push_front(std::list<int>());
   241 
   242           queue[qlast++] = t;
   243           reached.set(t, true);
   244 
   245           while (qfirst != qlast) {
   246             if (qsep == qfirst) {
   247               ++bucket_num;
   248               _sets.front().push_front(bucket_num);
   249               _dormant[bucket_num] = !first_set;
   250               _first[bucket_num] = _last[bucket_num] = INVALID;
   251               qsep = qlast;
   252             }
   253 
   254             Node n = queue[qfirst++];
   255             addItem(n, bucket_num);
   256 
   257             for (InArcIt a(_graph, n); a != INVALID; ++a) {
   258               Node u = _graph.source(a);
   259               if (!reached[u] && _tolerance.positive((*_capacity)[a])) {
   260                 reached.set(u, true);
   261                 queue[qlast++] = u;
   262               }
   263             }
   264           }
   265           first_set = false;
   266         }
   267 
   268         ++bucket_num;
   269         _bucket->set(_source, 0);
   270         _dormant[0] = true;
   271       }
   272       _source_set->set(_source, true);
   273 
   274       Node target = _last[_sets.back().back()];
   275       {
   276         for (OutArcIt a(_graph, _source); a != INVALID; ++a) {
   277           if (_tolerance.positive((*_capacity)[a])) {
   278             Node u = _graph.target(a);
   279             _flow->set(a, (*_capacity)[a]);
   280             _excess->set(u, (*_excess)[u] + (*_capacity)[a]);
   281             if (!(*_active)[u] && u != _source) {
   282               activate(u);
   283             }
   284           }
   285         }
   286 
   287         if ((*_active)[target]) {
   288           deactivate(target);
   289         }
   290 
   291         _highest = _sets.back().begin();
   292         while (_highest != _sets.back().end() &&
   293                !(*_active)[_first[*_highest]]) {
   294           ++_highest;
   295         }
   296       }
   297 
   298       while (true) {
   299         while (_highest != _sets.back().end()) {
   300           Node n = _first[*_highest];
   301           Value excess = (*_excess)[n];
   302           int next_bucket = _node_num;
   303 
   304           int under_bucket;
   305           if (++std::list<int>::iterator(_highest) == _sets.back().end()) {
   306             under_bucket = -1;
   307           } else {
   308             under_bucket = *(++std::list<int>::iterator(_highest));
   309           }
   310 
   311           for (OutArcIt a(_graph, n); a != INVALID; ++a) {
   312             Node v = _graph.target(a);
   313             if (_dormant[(*_bucket)[v]]) continue;
   314             Value rem = (*_capacity)[a] - (*_flow)[a];
   315             if (!_tolerance.positive(rem)) continue;
   316             if ((*_bucket)[v] == under_bucket) {
   317               if (!(*_active)[v] && v != target) {
   318                 activate(v);
   319               }
   320               if (!_tolerance.less(rem, excess)) {
   321                 _flow->set(a, (*_flow)[a] + excess);
   322                 _excess->set(v, (*_excess)[v] + excess);
   323                 excess = 0;
   324                 goto no_more_push;
   325               } else {
   326                 excess -= rem;
   327                 _excess->set(v, (*_excess)[v] + rem);
   328                 _flow->set(a, (*_capacity)[a]);
   329               }
   330             } else if (next_bucket > (*_bucket)[v]) {
   331               next_bucket = (*_bucket)[v];
   332             }
   333           }
   334 
   335           for (InArcIt a(_graph, n); a != INVALID; ++a) {
   336             Node v = _graph.source(a);
   337             if (_dormant[(*_bucket)[v]]) continue;
   338             Value rem = (*_flow)[a];
   339             if (!_tolerance.positive(rem)) continue;
   340             if ((*_bucket)[v] == under_bucket) {
   341               if (!(*_active)[v] && v != target) {
   342                 activate(v);
   343               }
   344               if (!_tolerance.less(rem, excess)) {
   345                 _flow->set(a, (*_flow)[a] - excess);
   346                 _excess->set(v, (*_excess)[v] + excess);
   347                 excess = 0;
   348                 goto no_more_push;
   349               } else {
   350                 excess -= rem;
   351                 _excess->set(v, (*_excess)[v] + rem);
   352                 _flow->set(a, 0);
   353               }
   354             } else if (next_bucket > (*_bucket)[v]) {
   355               next_bucket = (*_bucket)[v];
   356             }
   357           }
   358 
   359         no_more_push:
   360 
   361           _excess->set(n, excess);
   362 
   363           if (excess != 0) {
   364             if ((*_next)[n] == INVALID) {
   365               typename std::list<std::list<int> >::iterator new_set =
   366                 _sets.insert(--_sets.end(), std::list<int>());
   367               new_set->splice(new_set->end(), _sets.back(),
   368                               _sets.back().begin(), ++_highest);
   369               for (std::list<int>::iterator it = new_set->begin();
   370                    it != new_set->end(); ++it) {
   371                 _dormant[*it] = true;
   372               }
   373               while (_highest != _sets.back().end() &&
   374                      !(*_active)[_first[*_highest]]) {
   375                 ++_highest;
   376               }
   377             } else if (next_bucket == _node_num) {
   378               _first[(*_bucket)[n]] = (*_next)[n];
   379               _prev->set((*_next)[n], INVALID);
   380 
   381               std::list<std::list<int> >::iterator new_set =
   382                 _sets.insert(--_sets.end(), std::list<int>());
   383 
   384               new_set->push_front(bucket_num);
   385               _bucket->set(n, bucket_num);
   386               _first[bucket_num] = _last[bucket_num] = n;
   387               _next->set(n, INVALID);
   388               _prev->set(n, INVALID);
   389               _dormant[bucket_num] = true;
   390               ++bucket_num;
   391 
   392               while (_highest != _sets.back().end() &&
   393                      !(*_active)[_first[*_highest]]) {
   394                 ++_highest;
   395               }
   396             } else {
   397               _first[*_highest] = (*_next)[n];
   398               _prev->set((*_next)[n], INVALID);
   399 
   400               while (next_bucket != *_highest) {
   401                 --_highest;
   402               }
   403 
   404               if (_highest == _sets.back().begin()) {
   405                 _sets.back().push_front(bucket_num);
   406                 _dormant[bucket_num] = false;
   407                 _first[bucket_num] = _last[bucket_num] = INVALID;
   408                 ++bucket_num;
   409               }
   410               --_highest;
   411 
   412               _bucket->set(n, *_highest);
   413               _next->set(n, _first[*_highest]);
   414               if (_first[*_highest] != INVALID) {
   415                 _prev->set(_first[*_highest], n);
   416               } else {
   417                 _last[*_highest] = n;
   418               }
   419               _first[*_highest] = n;
   420             }
   421           } else {
   422 
   423             deactivate(n);
   424             if (!(*_active)[_first[*_highest]]) {
   425               ++_highest;
   426               if (_highest != _sets.back().end() &&
   427                   !(*_active)[_first[*_highest]]) {
   428                 _highest = _sets.back().end();
   429               }
   430             }
   431           }
   432         }
   433 
   434         if ((*_excess)[target] < _min_cut) {
   435           _min_cut = (*_excess)[target];
   436           for (NodeIt i(_graph); i != INVALID; ++i) {
   437             _min_cut_map->set(i, true);
   438           }
   439           for (std::list<int>::iterator it = _sets.back().begin();
   440                it != _sets.back().end(); ++it) {
   441             Node n = _first[*it];
   442             while (n != INVALID) {
   443               _min_cut_map->set(n, false);
   444               n = (*_next)[n];
   445             }
   446           }
   447         }
   448 
   449         {
   450           Node new_target;
   451           if ((*_prev)[target] != INVALID || (*_next)[target] != INVALID) {
   452             if ((*_next)[target] == INVALID) {
   453               _last[(*_bucket)[target]] = (*_prev)[target];
   454               new_target = (*_prev)[target];
   455             } else {
   456               _prev->set((*_next)[target], (*_prev)[target]);
   457               new_target = (*_next)[target];
   458             }
   459             if ((*_prev)[target] == INVALID) {
   460               _first[(*_bucket)[target]] = (*_next)[target];
   461             } else {
   462               _next->set((*_prev)[target], (*_next)[target]);
   463             }
   464           } else {
   465             _sets.back().pop_back();
   466             if (_sets.back().empty()) {
   467               _sets.pop_back();
   468               if (_sets.empty())
   469                 break;
   470               for (std::list<int>::iterator it = _sets.back().begin();
   471                    it != _sets.back().end(); ++it) {
   472                 _dormant[*it] = false;
   473               }
   474             }
   475             new_target = _last[_sets.back().back()];
   476           }
   477 
   478           _bucket->set(target, 0);
   479 
   480           _source_set->set(target, true);
   481           for (OutArcIt a(_graph, target); a != INVALID; ++a) {
   482             Value rem = (*_capacity)[a] - (*_flow)[a];
   483             if (!_tolerance.positive(rem)) continue;
   484             Node v = _graph.target(a);
   485             if (!(*_active)[v] && !(*_source_set)[v]) {
   486               activate(v);
   487             }
   488             _excess->set(v, (*_excess)[v] + rem);
   489             _flow->set(a, (*_capacity)[a]);
   490           }
   491 
   492           for (InArcIt a(_graph, target); a != INVALID; ++a) {
   493             Value rem = (*_flow)[a];
   494             if (!_tolerance.positive(rem)) continue;
   495             Node v = _graph.source(a);
   496             if (!(*_active)[v] && !(*_source_set)[v]) {
   497               activate(v);
   498             }
   499             _excess->set(v, (*_excess)[v] + rem);
   500             _flow->set(a, 0);
   501           }
   502 
   503           target = new_target;
   504           if ((*_active)[target]) {
   505             deactivate(target);
   506           }
   507 
   508           _highest = _sets.back().begin();
   509           while (_highest != _sets.back().end() &&
   510                  !(*_active)[_first[*_highest]]) {
   511             ++_highest;
   512           }
   513         }
   514       }
   515     }
   516 
   517     void findMinCutIn() {
   518 
   519       for (NodeIt n(_graph); n != INVALID; ++n) {
   520         _excess->set(n, 0);
   521       }
   522 
   523       for (ArcIt a(_graph); a != INVALID; ++a) {
   524         _flow->set(a, 0);
   525       }
   526 
   527       int bucket_num = 0;
   528       std::vector<Node> queue(_node_num);
   529       int qfirst = 0, qlast = 0, qsep = 0;
   530 
   531       {
   532         typename Digraph::template NodeMap<bool> reached(_graph, false);
   533 
   534         reached.set(_source, true);
   535 
   536         bool first_set = true;
   537 
   538         for (NodeIt t(_graph); t != INVALID; ++t) {
   539           if (reached[t]) continue;
   540           _sets.push_front(std::list<int>());
   541 
   542           queue[qlast++] = t;
   543           reached.set(t, true);
   544 
   545           while (qfirst != qlast) {
   546             if (qsep == qfirst) {
   547               ++bucket_num;
   548               _sets.front().push_front(bucket_num);
   549               _dormant[bucket_num] = !first_set;
   550               _first[bucket_num] = _last[bucket_num] = INVALID;
   551               qsep = qlast;
   552             }
   553 
   554             Node n = queue[qfirst++];
   555             addItem(n, bucket_num);
   556 
   557             for (OutArcIt a(_graph, n); a != INVALID; ++a) {
   558               Node u = _graph.target(a);
   559               if (!reached[u] && _tolerance.positive((*_capacity)[a])) {
   560                 reached.set(u, true);
   561                 queue[qlast++] = u;
   562               }
   563             }
   564           }
   565           first_set = false;
   566         }
   567 
   568         ++bucket_num;
   569         _bucket->set(_source, 0);
   570         _dormant[0] = true;
   571       }
   572       _source_set->set(_source, true);
   573 
   574       Node target = _last[_sets.back().back()];
   575       {
   576         for (InArcIt a(_graph, _source); a != INVALID; ++a) {
   577           if (_tolerance.positive((*_capacity)[a])) {
   578             Node u = _graph.source(a);
   579             _flow->set(a, (*_capacity)[a]);
   580             _excess->set(u, (*_excess)[u] + (*_capacity)[a]);
   581             if (!(*_active)[u] && u != _source) {
   582               activate(u);
   583             }
   584           }
   585         }
   586         if ((*_active)[target]) {
   587           deactivate(target);
   588         }
   589 
   590         _highest = _sets.back().begin();
   591         while (_highest != _sets.back().end() &&
   592                !(*_active)[_first[*_highest]]) {
   593           ++_highest;
   594         }
   595       }
   596 
   597 
   598       while (true) {
   599         while (_highest != _sets.back().end()) {
   600           Node n = _first[*_highest];
   601           Value excess = (*_excess)[n];
   602           int next_bucket = _node_num;
   603 
   604           int under_bucket;
   605           if (++std::list<int>::iterator(_highest) == _sets.back().end()) {
   606             under_bucket = -1;
   607           } else {
   608             under_bucket = *(++std::list<int>::iterator(_highest));
   609           }
   610 
   611           for (InArcIt a(_graph, n); a != INVALID; ++a) {
   612             Node v = _graph.source(a);
   613             if (_dormant[(*_bucket)[v]]) continue;
   614             Value rem = (*_capacity)[a] - (*_flow)[a];
   615             if (!_tolerance.positive(rem)) continue;
   616             if ((*_bucket)[v] == under_bucket) {
   617               if (!(*_active)[v] && v != target) {
   618                 activate(v);
   619               }
   620               if (!_tolerance.less(rem, excess)) {
   621                 _flow->set(a, (*_flow)[a] + excess);
   622                 _excess->set(v, (*_excess)[v] + excess);
   623                 excess = 0;
   624                 goto no_more_push;
   625               } else {
   626                 excess -= rem;
   627                 _excess->set(v, (*_excess)[v] + rem);
   628                 _flow->set(a, (*_capacity)[a]);
   629               }
   630             } else if (next_bucket > (*_bucket)[v]) {
   631               next_bucket = (*_bucket)[v];
   632             }
   633           }
   634 
   635           for (OutArcIt a(_graph, n); a != INVALID; ++a) {
   636             Node v = _graph.target(a);
   637             if (_dormant[(*_bucket)[v]]) continue;
   638             Value rem = (*_flow)[a];
   639             if (!_tolerance.positive(rem)) continue;
   640             if ((*_bucket)[v] == under_bucket) {
   641               if (!(*_active)[v] && v != target) {
   642                 activate(v);
   643               }
   644               if (!_tolerance.less(rem, excess)) {
   645                 _flow->set(a, (*_flow)[a] - excess);
   646                 _excess->set(v, (*_excess)[v] + excess);
   647                 excess = 0;
   648                 goto no_more_push;
   649               } else {
   650                 excess -= rem;
   651                 _excess->set(v, (*_excess)[v] + rem);
   652                 _flow->set(a, 0);
   653               }
   654             } else if (next_bucket > (*_bucket)[v]) {
   655               next_bucket = (*_bucket)[v];
   656             }
   657           }
   658 
   659         no_more_push:
   660 
   661           _excess->set(n, excess);
   662 
   663           if (excess != 0) {
   664             if ((*_next)[n] == INVALID) {
   665               typename std::list<std::list<int> >::iterator new_set =
   666                 _sets.insert(--_sets.end(), std::list<int>());
   667               new_set->splice(new_set->end(), _sets.back(),
   668                               _sets.back().begin(), ++_highest);
   669               for (std::list<int>::iterator it = new_set->begin();
   670                    it != new_set->end(); ++it) {
   671                 _dormant[*it] = true;
   672               }
   673               while (_highest != _sets.back().end() &&
   674                      !(*_active)[_first[*_highest]]) {
   675                 ++_highest;
   676               }
   677             } else if (next_bucket == _node_num) {
   678               _first[(*_bucket)[n]] = (*_next)[n];
   679               _prev->set((*_next)[n], INVALID);
   680 
   681               std::list<std::list<int> >::iterator new_set =
   682                 _sets.insert(--_sets.end(), std::list<int>());
   683 
   684               new_set->push_front(bucket_num);
   685               _bucket->set(n, bucket_num);
   686               _first[bucket_num] = _last[bucket_num] = n;
   687               _next->set(n, INVALID);
   688               _prev->set(n, INVALID);
   689               _dormant[bucket_num] = true;
   690               ++bucket_num;
   691 
   692               while (_highest != _sets.back().end() &&
   693                      !(*_active)[_first[*_highest]]) {
   694                 ++_highest;
   695               }
   696             } else {
   697               _first[*_highest] = (*_next)[n];
   698               _prev->set((*_next)[n], INVALID);
   699 
   700               while (next_bucket != *_highest) {
   701                 --_highest;
   702               }
   703               if (_highest == _sets.back().begin()) {
   704                 _sets.back().push_front(bucket_num);
   705                 _dormant[bucket_num] = false;
   706                 _first[bucket_num] = _last[bucket_num] = INVALID;
   707                 ++bucket_num;
   708               }
   709               --_highest;
   710 
   711               _bucket->set(n, *_highest);
   712               _next->set(n, _first[*_highest]);
   713               if (_first[*_highest] != INVALID) {
   714                 _prev->set(_first[*_highest], n);
   715               } else {
   716                 _last[*_highest] = n;
   717               }
   718               _first[*_highest] = n;
   719             }
   720           } else {
   721 
   722             deactivate(n);
   723             if (!(*_active)[_first[*_highest]]) {
   724               ++_highest;
   725               if (_highest != _sets.back().end() &&
   726                   !(*_active)[_first[*_highest]]) {
   727                 _highest = _sets.back().end();
   728               }
   729             }
   730           }
   731         }
   732 
   733         if ((*_excess)[target] < _min_cut) {
   734           _min_cut = (*_excess)[target];
   735           for (NodeIt i(_graph); i != INVALID; ++i) {
   736             _min_cut_map->set(i, false);
   737           }
   738           for (std::list<int>::iterator it = _sets.back().begin();
   739                it != _sets.back().end(); ++it) {
   740             Node n = _first[*it];
   741             while (n != INVALID) {
   742               _min_cut_map->set(n, true);
   743               n = (*_next)[n];
   744             }
   745           }
   746         }
   747 
   748         {
   749           Node new_target;
   750           if ((*_prev)[target] != INVALID || (*_next)[target] != INVALID) {
   751             if ((*_next)[target] == INVALID) {
   752               _last[(*_bucket)[target]] = (*_prev)[target];
   753               new_target = (*_prev)[target];
   754             } else {
   755               _prev->set((*_next)[target], (*_prev)[target]);
   756               new_target = (*_next)[target];
   757             }
   758             if ((*_prev)[target] == INVALID) {
   759               _first[(*_bucket)[target]] = (*_next)[target];
   760             } else {
   761               _next->set((*_prev)[target], (*_next)[target]);
   762             }
   763           } else {
   764             _sets.back().pop_back();
   765             if (_sets.back().empty()) {
   766               _sets.pop_back();
   767               if (_sets.empty())
   768                 break;
   769               for (std::list<int>::iterator it = _sets.back().begin();
   770                    it != _sets.back().end(); ++it) {
   771                 _dormant[*it] = false;
   772               }
   773             }
   774             new_target = _last[_sets.back().back()];
   775           }
   776 
   777           _bucket->set(target, 0);
   778 
   779           _source_set->set(target, true);
   780           for (InArcIt a(_graph, target); a != INVALID; ++a) {
   781             Value rem = (*_capacity)[a] - (*_flow)[a];
   782             if (!_tolerance.positive(rem)) continue;
   783             Node v = _graph.source(a);
   784             if (!(*_active)[v] && !(*_source_set)[v]) {
   785               activate(v);
   786             }
   787             _excess->set(v, (*_excess)[v] + rem);
   788             _flow->set(a, (*_capacity)[a]);
   789           }
   790 
   791           for (OutArcIt a(_graph, target); a != INVALID; ++a) {
   792             Value rem = (*_flow)[a];
   793             if (!_tolerance.positive(rem)) continue;
   794             Node v = _graph.target(a);
   795             if (!(*_active)[v] && !(*_source_set)[v]) {
   796               activate(v);
   797             }
   798             _excess->set(v, (*_excess)[v] + rem);
   799             _flow->set(a, 0);
   800           }
   801 
   802           target = new_target;
   803           if ((*_active)[target]) {
   804             deactivate(target);
   805           }
   806 
   807           _highest = _sets.back().begin();
   808           while (_highest != _sets.back().end() &&
   809                  !(*_active)[_first[*_highest]]) {
   810             ++_highest;
   811           }
   812         }
   813       }
   814     }
   815 
   816   public:
   817 
   818     /// \name Execution control
   819     /// The simplest way to execute the algorithm is to use
   820     /// one of the member functions called \c run(...).
   821     /// \n
   822     /// If you need more control on the execution,
   823     /// first you must call \ref init(), then the \ref calculateIn() or
   824     /// \ref calculateOut() functions.
   825 
   826     /// @{
   827 
   828     /// \brief Initializes the internal data structures.
   829     ///
   830     /// Initializes the internal data structures. It creates
   831     /// the maps, residual graph adaptors and some bucket structures
   832     /// for the algorithm.
   833     void init() {
   834       init(NodeIt(_graph));
   835     }
   836 
   837     /// \brief Initializes the internal data structures.
   838     ///
   839     /// Initializes the internal data structures. It creates
   840     /// the maps, residual graph adaptor and some bucket structures
   841     /// for the algorithm. Node \c source  is used as the push-relabel
   842     /// algorithm's source.
   843     void init(const Node& source) {
   844       _source = source;
   845 
   846       _node_num = countNodes(_graph);
   847 
   848       _first.resize(_node_num);
   849       _last.resize(_node_num);
   850 
   851       _dormant.resize(_node_num);
   852 
   853       if (!_flow) {
   854         _flow = new FlowMap(_graph);
   855       }
   856       if (!_next) {
   857         _next = new typename Digraph::template NodeMap<Node>(_graph);
   858       }
   859       if (!_prev) {
   860         _prev = new typename Digraph::template NodeMap<Node>(_graph);
   861       }
   862       if (!_active) {
   863         _active = new typename Digraph::template NodeMap<bool>(_graph);
   864       }
   865       if (!_bucket) {
   866         _bucket = new typename Digraph::template NodeMap<int>(_graph);
   867       }
   868       if (!_excess) {
   869         _excess = new ExcessMap(_graph);
   870       }
   871       if (!_source_set) {
   872         _source_set = new SourceSetMap(_graph);
   873       }
   874       if (!_min_cut_map) {
   875         _min_cut_map = new MinCutMap(_graph);
   876       }
   877 
   878       _min_cut = std::numeric_limits<Value>::max();
   879     }
   880 
   881 
   882     /// \brief Calculates a minimum cut with \f$ source \f$ on the
   883     /// source-side.
   884     ///
   885     /// Calculates a minimum cut with \f$ source \f$ on the
   886     /// source-side (i.e. a set \f$ X\subsetneq V \f$ with
   887     /// \f$ source \in X \f$ and minimal out-degree).
   888     void calculateOut() {
   889       findMinCutOut();
   890     }
   891 
   892     /// \brief Calculates a minimum cut with \f$ source \f$ on the
   893     /// target-side.
   894     ///
   895     /// Calculates a minimum cut with \f$ source \f$ on the
   896     /// target-side (i.e. a set \f$ X\subsetneq V \f$ with
   897     /// \f$ source \in X \f$ and minimal out-degree).
   898     void calculateIn() {
   899       findMinCutIn();
   900     }
   901 
   902 
   903     /// \brief Runs the algorithm.
   904     ///
   905     /// Runs the algorithm. It finds nodes \c source and \c target
   906     /// arbitrarily and then calls \ref init(), \ref calculateOut()
   907     /// and \ref calculateIn().
   908     void run() {
   909       init();
   910       calculateOut();
   911       calculateIn();
   912     }
   913 
   914     /// \brief Runs the algorithm.
   915     ///
   916     /// Runs the algorithm. It uses the given \c source node, finds a
   917     /// proper \c target and then calls the \ref init(), \ref
   918     /// calculateOut() and \ref calculateIn().
   919     void run(const Node& s) {
   920       init(s);
   921       calculateOut();
   922       calculateIn();
   923     }
   924 
   925     /// @}
   926 
   927     /// \name Query Functions
   928     /// The result of the %HaoOrlin algorithm
   929     /// can be obtained using these functions.
   930     /// \n
   931     /// Before using these functions, either \ref run(), \ref
   932     /// calculateOut() or \ref calculateIn() must be called.
   933 
   934     /// @{
   935 
   936     /// \brief Returns the value of the minimum value cut.
   937     ///
   938     /// Returns the value of the minimum value cut.
   939     Value minCutValue() const {
   940       return _min_cut;
   941     }
   942 
   943 
   944     /// \brief Returns a minimum cut.
   945     ///
   946     /// Sets \c nodeMap to the characteristic vector of a minimum
   947     /// value cut: it will give a nonempty set \f$ X\subsetneq V \f$
   948     /// with minimal out-degree (i.e. \c nodeMap will be true exactly
   949     /// for the nodes of \f$ X \f$).  \pre nodeMap should be a
   950     /// bool-valued node-map.
   951     template <typename NodeMap>
   952     Value minCutMap(NodeMap& nodeMap) const {
   953       for (NodeIt it(_graph); it != INVALID; ++it) {
   954         nodeMap.set(it, (*_min_cut_map)[it]);
   955       }
   956       return _min_cut;
   957     }
   958 
   959     /// @}
   960 
   961   }; //class HaoOrlin
   962 
   963 
   964 } //namespace lemon
   965 
   966 #endif //LEMON_HAO_ORLIN_H