1 /* -*- mode: C++; indent-tabs-mode: nil; -*-
3 * This file is a part of LEMON, a generic C++ optimization library.
5 * Copyright (C) 2003-2008
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 * (Egervary Research Group on Combinatorial Optimization, EGRES).
9 * Permission to use, modify and distribute this software is granted
10 * provided that this copyright notice appears in all copies. For
11 * precise terms see the accompanying LICENSE file.
13 * This software is provided "AS IS" with no warranty of any kind,
14 * express or implied, and with no claim as to its suitability for any
25 #include <lemon/bits/enable_if.h>
26 #include <lemon/bits/traits.h>
29 ///\brief LEMON core utilities.
33 /// \brief Dummy type to make it easier to create invalid iterators.
35 /// Dummy type to make it easier to create invalid iterators.
36 /// See \ref INVALID for the usage.
39 bool operator==(Invalid) { return true; }
40 bool operator!=(Invalid) { return false; }
41 bool operator< (Invalid) { return false; }
44 /// \brief Invalid iterators.
46 /// \ref Invalid is a global type that converts to each iterator
47 /// in such a way that the value of the target iterator will be invalid.
48 #ifdef LEMON_ONLY_TEMPLATES
49 const Invalid INVALID = Invalid();
51 extern const Invalid INVALID;
54 /// \addtogroup gutils
57 ///Creates convenience typedefs for the digraph types and iterators
59 ///This \c \#define creates convenience typedefs for the following types
60 ///of \c Digraph: \c Node, \c NodeIt, \c Arc, \c ArcIt, \c InArcIt,
61 ///\c OutArcIt, \c BoolNodeMap, \c IntNodeMap, \c DoubleNodeMap,
62 ///\c BoolArcMap, \c IntArcMap, \c DoubleArcMap.
64 ///\note If the graph type is a dependent type, ie. the graph type depend
65 ///on a template parameter, then use \c TEMPLATE_DIGRAPH_TYPEDEFS()
67 #define DIGRAPH_TYPEDEFS(Digraph) \
68 typedef Digraph::Node Node; \
69 typedef Digraph::NodeIt NodeIt; \
70 typedef Digraph::Arc Arc; \
71 typedef Digraph::ArcIt ArcIt; \
72 typedef Digraph::InArcIt InArcIt; \
73 typedef Digraph::OutArcIt OutArcIt; \
74 typedef Digraph::NodeMap<bool> BoolNodeMap; \
75 typedef Digraph::NodeMap<int> IntNodeMap; \
76 typedef Digraph::NodeMap<double> DoubleNodeMap; \
77 typedef Digraph::ArcMap<bool> BoolArcMap; \
78 typedef Digraph::ArcMap<int> IntArcMap; \
79 typedef Digraph::ArcMap<double> DoubleArcMap
81 ///Creates convenience typedefs for the digraph types and iterators
83 ///\see DIGRAPH_TYPEDEFS
85 ///\note Use this macro, if the graph type is a dependent type,
86 ///ie. the graph type depend on a template parameter.
87 #define TEMPLATE_DIGRAPH_TYPEDEFS(Digraph) \
88 typedef typename Digraph::Node Node; \
89 typedef typename Digraph::NodeIt NodeIt; \
90 typedef typename Digraph::Arc Arc; \
91 typedef typename Digraph::ArcIt ArcIt; \
92 typedef typename Digraph::InArcIt InArcIt; \
93 typedef typename Digraph::OutArcIt OutArcIt; \
94 typedef typename Digraph::template NodeMap<bool> BoolNodeMap; \
95 typedef typename Digraph::template NodeMap<int> IntNodeMap; \
96 typedef typename Digraph::template NodeMap<double> DoubleNodeMap; \
97 typedef typename Digraph::template ArcMap<bool> BoolArcMap; \
98 typedef typename Digraph::template ArcMap<int> IntArcMap; \
99 typedef typename Digraph::template ArcMap<double> DoubleArcMap
101 ///Creates convenience typedefs for the graph types and iterators
103 ///This \c \#define creates the same convenience typedefs as defined
104 ///by \ref DIGRAPH_TYPEDEFS(Graph) and six more, namely it creates
105 ///\c Edge, \c EdgeIt, \c IncEdgeIt, \c BoolEdgeMap, \c IntEdgeMap,
108 ///\note If the graph type is a dependent type, ie. the graph type depend
109 ///on a template parameter, then use \c TEMPLATE_DIGRAPH_TYPEDEFS()
111 #define GRAPH_TYPEDEFS(Graph) \
112 DIGRAPH_TYPEDEFS(Graph); \
113 typedef Graph::Edge Edge; \
114 typedef Graph::EdgeIt EdgeIt; \
115 typedef Graph::IncEdgeIt IncEdgeIt; \
116 typedef Graph::EdgeMap<bool> BoolEdgeMap; \
117 typedef Graph::EdgeMap<int> IntEdgeMap; \
118 typedef Graph::EdgeMap<double> DoubleEdgeMap
120 ///Creates convenience typedefs for the graph types and iterators
122 ///\see GRAPH_TYPEDEFS
124 ///\note Use this macro, if the graph type is a dependent type,
125 ///ie. the graph type depend on a template parameter.
126 #define TEMPLATE_GRAPH_TYPEDEFS(Graph) \
127 TEMPLATE_DIGRAPH_TYPEDEFS(Graph); \
128 typedef typename Graph::Edge Edge; \
129 typedef typename Graph::EdgeIt EdgeIt; \
130 typedef typename Graph::IncEdgeIt IncEdgeIt; \
131 typedef typename Graph::template EdgeMap<bool> BoolEdgeMap; \
132 typedef typename Graph::template EdgeMap<int> IntEdgeMap; \
133 typedef typename Graph::template EdgeMap<double> DoubleEdgeMap
135 /// \brief Function to count the items in the graph.
137 /// This function counts the items (nodes, arcs etc) in the graph.
138 /// The complexity of the function is O(n) because
139 /// it iterates on all of the items.
140 template <typename Graph, typename Item>
141 inline int countItems(const Graph& g) {
142 typedef typename ItemSetTraits<Graph, Item>::ItemIt ItemIt;
144 for (ItemIt it(g); it != INVALID; ++it) {
152 namespace _core_bits {
154 template <typename Graph, typename Enable = void>
155 struct CountNodesSelector {
156 static int count(const Graph &g) {
157 return countItems<Graph, typename Graph::Node>(g);
161 template <typename Graph>
162 struct CountNodesSelector<
164 enable_if<typename Graph::NodeNumTag, void>::type>
166 static int count(const Graph &g) {
172 /// \brief Function to count the nodes in the graph.
174 /// This function counts the nodes in the graph.
175 /// The complexity of the function is O(n) but for some
176 /// graph structures it is specialized to run in O(1).
178 /// If the graph contains a \e nodeNum() member function and a
179 /// \e NodeNumTag tag then this function calls directly the member
180 /// function to query the cardinality of the node set.
181 template <typename Graph>
182 inline int countNodes(const Graph& g) {
183 return _core_bits::CountNodesSelector<Graph>::count(g);
188 namespace _core_bits {
190 template <typename Graph, typename Enable = void>
191 struct CountArcsSelector {
192 static int count(const Graph &g) {
193 return countItems<Graph, typename Graph::Arc>(g);
197 template <typename Graph>
198 struct CountArcsSelector<
200 typename enable_if<typename Graph::ArcNumTag, void>::type>
202 static int count(const Graph &g) {
208 /// \brief Function to count the arcs in the graph.
210 /// This function counts the arcs in the graph.
211 /// The complexity of the function is O(e) but for some
212 /// graph structures it is specialized to run in O(1).
214 /// If the graph contains a \e arcNum() member function and a
215 /// \e EdgeNumTag tag then this function calls directly the member
216 /// function to query the cardinality of the arc set.
217 template <typename Graph>
218 inline int countArcs(const Graph& g) {
219 return _core_bits::CountArcsSelector<Graph>::count(g);
223 namespace _core_bits {
225 template <typename Graph, typename Enable = void>
226 struct CountEdgesSelector {
227 static int count(const Graph &g) {
228 return countItems<Graph, typename Graph::Edge>(g);
232 template <typename Graph>
233 struct CountEdgesSelector<
235 typename enable_if<typename Graph::EdgeNumTag, void>::type>
237 static int count(const Graph &g) {
243 /// \brief Function to count the edges in the graph.
245 /// This function counts the edges in the graph.
246 /// The complexity of the function is O(m) but for some
247 /// graph structures it is specialized to run in O(1).
249 /// If the graph contains a \e edgeNum() member function and a
250 /// \e EdgeNumTag tag then this function calls directly the member
251 /// function to query the cardinality of the edge set.
252 template <typename Graph>
253 inline int countEdges(const Graph& g) {
254 return _core_bits::CountEdgesSelector<Graph>::count(g);
259 template <typename Graph, typename DegIt>
260 inline int countNodeDegree(const Graph& _g, const typename Graph::Node& _n) {
262 for (DegIt it(_g, _n); it != INVALID; ++it) {
268 /// \brief Function to count the number of the out-arcs from node \c n.
270 /// This function counts the number of the out-arcs from node \c n
272 template <typename Graph>
273 inline int countOutArcs(const Graph& _g, const typename Graph::Node& _n) {
274 return countNodeDegree<Graph, typename Graph::OutArcIt>(_g, _n);
277 /// \brief Function to count the number of the in-arcs to node \c n.
279 /// This function counts the number of the in-arcs to node \c n
281 template <typename Graph>
282 inline int countInArcs(const Graph& _g, const typename Graph::Node& _n) {
283 return countNodeDegree<Graph, typename Graph::InArcIt>(_g, _n);
286 /// \brief Function to count the number of the inc-edges to node \c n.
288 /// This function counts the number of the inc-edges to node \c n
290 template <typename Graph>
291 inline int countIncEdges(const Graph& _g, const typename Graph::Node& _n) {
292 return countNodeDegree<Graph, typename Graph::IncEdgeIt>(_g, _n);
295 namespace _core_bits {
297 template <typename Digraph, typename Item, typename RefMap>
300 virtual void copy(const Digraph& from, const RefMap& refMap) = 0;
302 virtual ~MapCopyBase() {}
305 template <typename Digraph, typename Item, typename RefMap,
306 typename ToMap, typename FromMap>
307 class MapCopy : public MapCopyBase<Digraph, Item, RefMap> {
310 MapCopy(ToMap& tmap, const FromMap& map)
311 : _tmap(tmap), _map(map) {}
313 virtual void copy(const Digraph& digraph, const RefMap& refMap) {
314 typedef typename ItemSetTraits<Digraph, Item>::ItemIt ItemIt;
315 for (ItemIt it(digraph); it != INVALID; ++it) {
316 _tmap.set(refMap[it], _map[it]);
325 template <typename Digraph, typename Item, typename RefMap, typename It>
326 class ItemCopy : public MapCopyBase<Digraph, Item, RefMap> {
329 ItemCopy(It& it, const Item& item) : _it(it), _item(item) {}
331 virtual void copy(const Digraph&, const RefMap& refMap) {
340 template <typename Digraph, typename Item, typename RefMap, typename Ref>
341 class RefCopy : public MapCopyBase<Digraph, Item, RefMap> {
344 RefCopy(Ref& map) : _map(map) {}
346 virtual void copy(const Digraph& digraph, const RefMap& refMap) {
347 typedef typename ItemSetTraits<Digraph, Item>::ItemIt ItemIt;
348 for (ItemIt it(digraph); it != INVALID; ++it) {
349 _map.set(it, refMap[it]);
357 template <typename Digraph, typename Item, typename RefMap,
359 class CrossRefCopy : public MapCopyBase<Digraph, Item, RefMap> {
362 CrossRefCopy(CrossRef& cmap) : _cmap(cmap) {}
364 virtual void copy(const Digraph& digraph, const RefMap& refMap) {
365 typedef typename ItemSetTraits<Digraph, Item>::ItemIt ItemIt;
366 for (ItemIt it(digraph); it != INVALID; ++it) {
367 _cmap.set(refMap[it], it);
375 template <typename Digraph, typename Enable = void>
376 struct DigraphCopySelector {
377 template <typename From, typename NodeRefMap, typename ArcRefMap>
378 static void copy(Digraph &to, const From& from,
379 NodeRefMap& nodeRefMap, ArcRefMap& arcRefMap) {
380 for (typename From::NodeIt it(from); it != INVALID; ++it) {
381 nodeRefMap[it] = to.addNode();
383 for (typename From::ArcIt it(from); it != INVALID; ++it) {
384 arcRefMap[it] = to.addArc(nodeRefMap[from.source(it)],
385 nodeRefMap[from.target(it)]);
390 template <typename Digraph>
391 struct DigraphCopySelector<
393 typename enable_if<typename Digraph::BuildTag, void>::type>
395 template <typename From, typename NodeRefMap, typename ArcRefMap>
396 static void copy(Digraph &to, const From& from,
397 NodeRefMap& nodeRefMap, ArcRefMap& arcRefMap) {
398 to.build(from, nodeRefMap, arcRefMap);
402 template <typename Graph, typename Enable = void>
403 struct GraphCopySelector {
404 template <typename From, typename NodeRefMap, typename EdgeRefMap>
405 static void copy(Graph &to, const From& from,
406 NodeRefMap& nodeRefMap, EdgeRefMap& edgeRefMap) {
407 for (typename From::NodeIt it(from); it != INVALID; ++it) {
408 nodeRefMap[it] = to.addNode();
410 for (typename From::EdgeIt it(from); it != INVALID; ++it) {
411 edgeRefMap[it] = to.addEdge(nodeRefMap[from.u(it)],
412 nodeRefMap[from.v(it)]);
417 template <typename Graph>
418 struct GraphCopySelector<
420 typename enable_if<typename Graph::BuildTag, void>::type>
422 template <typename From, typename NodeRefMap, typename EdgeRefMap>
423 static void copy(Graph &to, const From& from,
424 NodeRefMap& nodeRefMap, EdgeRefMap& edgeRefMap) {
425 to.build(from, nodeRefMap, edgeRefMap);
431 /// \brief Class to copy a digraph.
433 /// Class to copy a digraph to another digraph (duplicate a digraph). The
434 /// simplest way of using it is through the \c copyDigraph() function.
436 /// This class not just make a copy of a graph, but it can create
437 /// references and cross references between the nodes and arcs of
438 /// the two graphs, it can copy maps for use with the newly created
439 /// graph and copy nodes and arcs.
441 /// To make a copy from a graph, first an instance of DigraphCopy
442 /// should be created, then the data belongs to the graph should
443 /// assigned to copy. In the end, the \c run() member should be
446 /// The next code copies a graph with several data:
448 /// DigraphCopy<NewGraph, OrigGraph> dc(new_graph, orig_graph);
449 /// // create a reference for the nodes
450 /// OrigGraph::NodeMap<NewGraph::Node> nr(orig_graph);
452 /// // create a cross reference (inverse) for the arcs
453 /// NewGraph::ArcMap<OrigGraph::Arc> acr(new_graph);
454 /// dc.arcCrossRef(acr);
455 /// // copy an arc map
456 /// OrigGraph::ArcMap<double> oamap(orig_graph);
457 /// NewGraph::ArcMap<double> namap(new_graph);
458 /// dc.arcMap(namap, oamap);
460 /// OrigGraph::Node on;
461 /// NewGraph::Node nn;
463 /// // Executions of copy
466 template <typename To, typename From>
470 typedef typename From::Node Node;
471 typedef typename From::NodeIt NodeIt;
472 typedef typename From::Arc Arc;
473 typedef typename From::ArcIt ArcIt;
475 typedef typename To::Node TNode;
476 typedef typename To::Arc TArc;
478 typedef typename From::template NodeMap<TNode> NodeRefMap;
479 typedef typename From::template ArcMap<TArc> ArcRefMap;
485 /// \brief Constructor for the DigraphCopy.
487 /// It copies the content of the \c _from digraph into the
489 DigraphCopy(To& to, const From& from)
490 : _from(from), _to(to) {}
492 /// \brief Destructor of the DigraphCopy
494 /// Destructor of the DigraphCopy
496 for (int i = 0; i < int(_node_maps.size()); ++i) {
497 delete _node_maps[i];
499 for (int i = 0; i < int(_arc_maps.size()); ++i) {
505 /// \brief Copies the node references into the given map.
507 /// Copies the node references into the given map. The parameter
508 /// should be a map, which key type is the Node type of the source
509 /// graph, while the value type is the Node type of the
510 /// destination graph.
511 template <typename NodeRef>
512 DigraphCopy& nodeRef(NodeRef& map) {
513 _node_maps.push_back(new _core_bits::RefCopy<From, Node,
514 NodeRefMap, NodeRef>(map));
518 /// \brief Copies the node cross references into the given map.
520 /// Copies the node cross references (reverse references) into
521 /// the given map. The parameter should be a map, which key type
522 /// is the Node type of the destination graph, while the value type is
523 /// the Node type of the source graph.
524 template <typename NodeCrossRef>
525 DigraphCopy& nodeCrossRef(NodeCrossRef& map) {
526 _node_maps.push_back(new _core_bits::CrossRefCopy<From, Node,
527 NodeRefMap, NodeCrossRef>(map));
531 /// \brief Make copy of the given map.
533 /// Makes copy of the given map for the newly created digraph.
534 /// The new map's key type is the destination graph's node type,
535 /// and the copied map's key type is the source graph's node type.
536 template <typename ToMap, typename FromMap>
537 DigraphCopy& nodeMap(ToMap& tmap, const FromMap& map) {
538 _node_maps.push_back(new _core_bits::MapCopy<From, Node,
539 NodeRefMap, ToMap, FromMap>(tmap, map));
543 /// \brief Make a copy of the given node.
545 /// Make a copy of the given node.
546 DigraphCopy& node(TNode& tnode, const Node& snode) {
547 _node_maps.push_back(new _core_bits::ItemCopy<From, Node,
548 NodeRefMap, TNode>(tnode, snode));
552 /// \brief Copies the arc references into the given map.
554 /// Copies the arc references into the given map.
555 template <typename ArcRef>
556 DigraphCopy& arcRef(ArcRef& map) {
557 _arc_maps.push_back(new _core_bits::RefCopy<From, Arc,
558 ArcRefMap, ArcRef>(map));
562 /// \brief Copies the arc cross references into the given map.
564 /// Copies the arc cross references (reverse references) into
566 template <typename ArcCrossRef>
567 DigraphCopy& arcCrossRef(ArcCrossRef& map) {
568 _arc_maps.push_back(new _core_bits::CrossRefCopy<From, Arc,
569 ArcRefMap, ArcCrossRef>(map));
573 /// \brief Make copy of the given map.
575 /// Makes copy of the given map for the newly created digraph.
576 /// The new map's key type is the to digraph's arc type,
577 /// and the copied map's key type is the from digraph's arc
579 template <typename ToMap, typename FromMap>
580 DigraphCopy& arcMap(ToMap& tmap, const FromMap& map) {
581 _arc_maps.push_back(new _core_bits::MapCopy<From, Arc,
582 ArcRefMap, ToMap, FromMap>(tmap, map));
586 /// \brief Make a copy of the given arc.
588 /// Make a copy of the given arc.
589 DigraphCopy& arc(TArc& tarc, const Arc& sarc) {
590 _arc_maps.push_back(new _core_bits::ItemCopy<From, Arc,
591 ArcRefMap, TArc>(tarc, sarc));
595 /// \brief Executes the copies.
597 /// Executes the copies.
599 NodeRefMap nodeRefMap(_from);
600 ArcRefMap arcRefMap(_from);
601 _core_bits::DigraphCopySelector<To>::
602 copy(_to, _from, nodeRefMap, arcRefMap);
603 for (int i = 0; i < int(_node_maps.size()); ++i) {
604 _node_maps[i]->copy(_from, nodeRefMap);
606 for (int i = 0; i < int(_arc_maps.size()); ++i) {
607 _arc_maps[i]->copy(_from, arcRefMap);
617 std::vector<_core_bits::MapCopyBase<From, Node, NodeRefMap>* >
620 std::vector<_core_bits::MapCopyBase<From, Arc, ArcRefMap>* >
625 /// \brief Copy a digraph to another digraph.
627 /// Copy a digraph to another digraph. The complete usage of the
628 /// function is detailed in the DigraphCopy class, but a short
629 /// example shows a basic work:
631 /// copyDigraph(trg, src).nodeRef(nr).arcCrossRef(ecr).run();
634 /// After the copy the \c nr map will contain the mapping from the
635 /// nodes of the \c from digraph to the nodes of the \c to digraph and
636 /// \c ecr will contain the mapping from the arcs of the \c to digraph
637 /// to the arcs of the \c from digraph.
640 template <typename To, typename From>
641 DigraphCopy<To, From> copyDigraph(To& to, const From& from) {
642 return DigraphCopy<To, From>(to, from);
645 /// \brief Class to copy a graph.
647 /// Class to copy a graph to another graph (duplicate a graph). The
648 /// simplest way of using it is through the \c copyGraph() function.
650 /// This class not just make a copy of a graph, but it can create
651 /// references and cross references between the nodes, edges and arcs of
652 /// the two graphs, it can copy maps for use with the newly created
653 /// graph and copy nodes, edges and arcs.
655 /// To make a copy from a graph, first an instance of GraphCopy
656 /// should be created, then the data belongs to the graph should
657 /// assigned to copy. In the end, the \c run() member should be
660 /// The next code copies a graph with several data:
662 /// GraphCopy<NewGraph, OrigGraph> dc(new_graph, orig_graph);
663 /// // create a reference for the nodes
664 /// OrigGraph::NodeMap<NewGraph::Node> nr(orig_graph);
666 /// // create a cross reference (inverse) for the edges
667 /// NewGraph::EdgeMap<OrigGraph::Arc> ecr(new_graph);
668 /// dc.edgeCrossRef(ecr);
669 /// // copy an arc map
670 /// OrigGraph::ArcMap<double> oamap(orig_graph);
671 /// NewGraph::ArcMap<double> namap(new_graph);
672 /// dc.arcMap(namap, oamap);
674 /// OrigGraph::Node on;
675 /// NewGraph::Node nn;
677 /// // Executions of copy
680 template <typename To, typename From>
684 typedef typename From::Node Node;
685 typedef typename From::NodeIt NodeIt;
686 typedef typename From::Arc Arc;
687 typedef typename From::ArcIt ArcIt;
688 typedef typename From::Edge Edge;
689 typedef typename From::EdgeIt EdgeIt;
691 typedef typename To::Node TNode;
692 typedef typename To::Arc TArc;
693 typedef typename To::Edge TEdge;
695 typedef typename From::template NodeMap<TNode> NodeRefMap;
696 typedef typename From::template EdgeMap<TEdge> EdgeRefMap;
699 ArcRefMap(const To& to, const From& from,
700 const EdgeRefMap& edge_ref, const NodeRefMap& node_ref)
701 : _to(to), _from(from),
702 _edge_ref(edge_ref), _node_ref(node_ref) {}
704 typedef typename From::Arc Key;
705 typedef typename To::Arc Value;
707 Value operator[](const Key& key) const {
708 bool forward = _from.u(key) != _from.v(key) ?
709 _node_ref[_from.source(key)] ==
710 _to.source(_to.direct(_edge_ref[key], true)) :
711 _from.direction(key);
712 return _to.direct(_edge_ref[key], forward);
717 const EdgeRefMap& _edge_ref;
718 const NodeRefMap& _node_ref;
725 /// \brief Constructor for the GraphCopy.
727 /// It copies the content of the \c _from graph into the
729 GraphCopy(To& to, const From& from)
730 : _from(from), _to(to) {}
732 /// \brief Destructor of the GraphCopy
734 /// Destructor of the GraphCopy
736 for (int i = 0; i < int(_node_maps.size()); ++i) {
737 delete _node_maps[i];
739 for (int i = 0; i < int(_arc_maps.size()); ++i) {
742 for (int i = 0; i < int(_edge_maps.size()); ++i) {
743 delete _edge_maps[i];
748 /// \brief Copies the node references into the given map.
750 /// Copies the node references into the given map.
751 template <typename NodeRef>
752 GraphCopy& nodeRef(NodeRef& map) {
753 _node_maps.push_back(new _core_bits::RefCopy<From, Node,
754 NodeRefMap, NodeRef>(map));
758 /// \brief Copies the node cross references into the given map.
760 /// Copies the node cross references (reverse references) into
762 template <typename NodeCrossRef>
763 GraphCopy& nodeCrossRef(NodeCrossRef& map) {
764 _node_maps.push_back(new _core_bits::CrossRefCopy<From, Node,
765 NodeRefMap, NodeCrossRef>(map));
769 /// \brief Make copy of the given map.
771 /// Makes copy of the given map for the newly created graph.
772 /// The new map's key type is the to graph's node type,
773 /// and the copied map's key type is the from graph's node
775 template <typename ToMap, typename FromMap>
776 GraphCopy& nodeMap(ToMap& tmap, const FromMap& map) {
777 _node_maps.push_back(new _core_bits::MapCopy<From, Node,
778 NodeRefMap, ToMap, FromMap>(tmap, map));
782 /// \brief Make a copy of the given node.
784 /// Make a copy of the given node.
785 GraphCopy& node(TNode& tnode, const Node& snode) {
786 _node_maps.push_back(new _core_bits::ItemCopy<From, Node,
787 NodeRefMap, TNode>(tnode, snode));
791 /// \brief Copies the arc references into the given map.
793 /// Copies the arc references into the given map.
794 template <typename ArcRef>
795 GraphCopy& arcRef(ArcRef& map) {
796 _arc_maps.push_back(new _core_bits::RefCopy<From, Arc,
797 ArcRefMap, ArcRef>(map));
801 /// \brief Copies the arc cross references into the given map.
803 /// Copies the arc cross references (reverse references) into
805 template <typename ArcCrossRef>
806 GraphCopy& arcCrossRef(ArcCrossRef& map) {
807 _arc_maps.push_back(new _core_bits::CrossRefCopy<From, Arc,
808 ArcRefMap, ArcCrossRef>(map));
812 /// \brief Make copy of the given map.
814 /// Makes copy of the given map for the newly created graph.
815 /// The new map's key type is the to graph's arc type,
816 /// and the copied map's key type is the from graph's arc
818 template <typename ToMap, typename FromMap>
819 GraphCopy& arcMap(ToMap& tmap, const FromMap& map) {
820 _arc_maps.push_back(new _core_bits::MapCopy<From, Arc,
821 ArcRefMap, ToMap, FromMap>(tmap, map));
825 /// \brief Make a copy of the given arc.
827 /// Make a copy of the given arc.
828 GraphCopy& arc(TArc& tarc, const Arc& sarc) {
829 _arc_maps.push_back(new _core_bits::ItemCopy<From, Arc,
830 ArcRefMap, TArc>(tarc, sarc));
834 /// \brief Copies the edge references into the given map.
836 /// Copies the edge references into the given map.
837 template <typename EdgeRef>
838 GraphCopy& edgeRef(EdgeRef& map) {
839 _edge_maps.push_back(new _core_bits::RefCopy<From, Edge,
840 EdgeRefMap, EdgeRef>(map));
844 /// \brief Copies the edge cross references into the given map.
846 /// Copies the edge cross references (reverse
847 /// references) into the given map.
848 template <typename EdgeCrossRef>
849 GraphCopy& edgeCrossRef(EdgeCrossRef& map) {
850 _edge_maps.push_back(new _core_bits::CrossRefCopy<From,
851 Edge, EdgeRefMap, EdgeCrossRef>(map));
855 /// \brief Make copy of the given map.
857 /// Makes copy of the given map for the newly created graph.
858 /// The new map's key type is the to graph's edge type,
859 /// and the copied map's key type is the from graph's edge
861 template <typename ToMap, typename FromMap>
862 GraphCopy& edgeMap(ToMap& tmap, const FromMap& map) {
863 _edge_maps.push_back(new _core_bits::MapCopy<From, Edge,
864 EdgeRefMap, ToMap, FromMap>(tmap, map));
868 /// \brief Make a copy of the given edge.
870 /// Make a copy of the given edge.
871 GraphCopy& edge(TEdge& tedge, const Edge& sedge) {
872 _edge_maps.push_back(new _core_bits::ItemCopy<From, Edge,
873 EdgeRefMap, TEdge>(tedge, sedge));
877 /// \brief Executes the copies.
879 /// Executes the copies.
881 NodeRefMap nodeRefMap(_from);
882 EdgeRefMap edgeRefMap(_from);
883 ArcRefMap arcRefMap(_to, _from, edgeRefMap, nodeRefMap);
884 _core_bits::GraphCopySelector<To>::
885 copy(_to, _from, nodeRefMap, edgeRefMap);
886 for (int i = 0; i < int(_node_maps.size()); ++i) {
887 _node_maps[i]->copy(_from, nodeRefMap);
889 for (int i = 0; i < int(_edge_maps.size()); ++i) {
890 _edge_maps[i]->copy(_from, edgeRefMap);
892 for (int i = 0; i < int(_arc_maps.size()); ++i) {
893 _arc_maps[i]->copy(_from, arcRefMap);
902 std::vector<_core_bits::MapCopyBase<From, Node, NodeRefMap>* >
905 std::vector<_core_bits::MapCopyBase<From, Arc, ArcRefMap>* >
908 std::vector<_core_bits::MapCopyBase<From, Edge, EdgeRefMap>* >
913 /// \brief Copy a graph to another graph.
915 /// Copy a graph to another graph. The complete usage of the
916 /// function is detailed in the GraphCopy class, but a short
917 /// example shows a basic work:
919 /// copyGraph(trg, src).nodeRef(nr).arcCrossRef(ecr).run();
922 /// After the copy the \c nr map will contain the mapping from the
923 /// nodes of the \c from graph to the nodes of the \c to graph and
924 /// \c ecr will contain the mapping from the arcs of the \c to graph
925 /// to the arcs of the \c from graph.
928 template <typename To, typename From>
930 copyGraph(To& to, const From& from) {
931 return GraphCopy<To, From>(to, from);
934 namespace _core_bits {
936 template <typename Graph, typename Enable = void>
937 struct FindArcSelector {
938 typedef typename Graph::Node Node;
939 typedef typename Graph::Arc Arc;
940 static Arc find(const Graph &g, Node u, Node v, Arc e) {
946 while (e != INVALID && g.target(e) != v) {
953 template <typename Graph>
954 struct FindArcSelector<
956 typename enable_if<typename Graph::FindEdgeTag, void>::type>
958 typedef typename Graph::Node Node;
959 typedef typename Graph::Arc Arc;
960 static Arc find(const Graph &g, Node u, Node v, Arc prev) {
961 return g.findArc(u, v, prev);
966 /// \brief Finds an arc between two nodes of a graph.
968 /// Finds an arc from node \c u to node \c v in graph \c g.
970 /// If \c prev is \ref INVALID (this is the default value), then
971 /// it finds the first arc from \c u to \c v. Otherwise it looks for
972 /// the next arc from \c u to \c v after \c prev.
973 /// \return The found arc or \ref INVALID if there is no such an arc.
975 /// Thus you can iterate through each arc from \c u to \c v as it follows.
977 /// for(Arc e=findArc(g,u,v);e!=INVALID;e=findArc(g,u,v,e)) {
986 template <typename Graph>
987 inline typename Graph::Arc
988 findArc(const Graph &g, typename Graph::Node u, typename Graph::Node v,
989 typename Graph::Arc prev = INVALID) {
990 return _core_bits::FindArcSelector<Graph>::find(g, u, v, prev);
993 /// \brief Iterator for iterating on arcs connected the same nodes.
995 /// Iterator for iterating on arcs connected the same nodes. It is
996 /// higher level interface for the findArc() function. You can
997 /// use it the following way:
999 /// for (ConArcIt<Graph> it(g, src, trg); it != INVALID; ++it) {
1008 template <typename _Graph>
1009 class ConArcIt : public _Graph::Arc {
1012 typedef _Graph Graph;
1013 typedef typename Graph::Arc Parent;
1015 typedef typename Graph::Arc Arc;
1016 typedef typename Graph::Node Node;
1018 /// \brief Constructor.
1020 /// Construct a new ConArcIt iterating on the arcs which
1021 /// connects the \c u and \c v node.
1022 ConArcIt(const Graph& g, Node u, Node v) : _graph(g) {
1023 Parent::operator=(findArc(_graph, u, v));
1026 /// \brief Constructor.
1028 /// Construct a new ConArcIt which continues the iterating from
1030 ConArcIt(const Graph& g, Arc a) : Parent(a), _graph(g) {}
1032 /// \brief Increment operator.
1034 /// It increments the iterator and gives back the next arc.
1035 ConArcIt& operator++() {
1036 Parent::operator=(findArc(_graph, _graph.source(*this),
1037 _graph.target(*this), *this));
1041 const Graph& _graph;
1044 namespace _core_bits {
1046 template <typename Graph, typename Enable = void>
1047 struct FindEdgeSelector {
1048 typedef typename Graph::Node Node;
1049 typedef typename Graph::Edge Edge;
1050 static Edge find(const Graph &g, Node u, Node v, Edge e) {
1054 g.firstInc(e, b, u);
1059 while (e != INVALID && (b ? g.v(e) : g.u(e)) != v) {
1064 g.firstInc(e, b, u);
1069 while (e != INVALID && (!b || g.v(e) != v)) {
1077 template <typename Graph>
1078 struct FindEdgeSelector<
1080 typename enable_if<typename Graph::FindEdgeTag, void>::type>
1082 typedef typename Graph::Node Node;
1083 typedef typename Graph::Edge Edge;
1084 static Edge find(const Graph &g, Node u, Node v, Edge prev) {
1085 return g.findEdge(u, v, prev);
1090 /// \brief Finds an edge between two nodes of a graph.
1092 /// Finds an edge from node \c u to node \c v in graph \c g.
1093 /// If the node \c u and node \c v is equal then each loop edge
1094 /// will be enumerated once.
1096 /// If \c prev is \ref INVALID (this is the default value), then
1097 /// it finds the first arc from \c u to \c v. Otherwise it looks for
1098 /// the next arc from \c u to \c v after \c prev.
1099 /// \return The found arc or \ref INVALID if there is no such an arc.
1101 /// Thus you can iterate through each arc from \c u to \c v as it follows.
1103 /// for(Edge e = findEdge(g,u,v); e != INVALID;
1104 /// e = findEdge(g,u,v,e)) {
1111 template <typename Graph>
1112 inline typename Graph::Edge
1113 findEdge(const Graph &g, typename Graph::Node u, typename Graph::Node v,
1114 typename Graph::Edge p = INVALID) {
1115 return _core_bits::FindEdgeSelector<Graph>::find(g, u, v, p);
1118 /// \brief Iterator for iterating on edges connected the same nodes.
1120 /// Iterator for iterating on edges connected the same nodes. It is
1121 /// higher level interface for the findEdge() function. You can
1122 /// use it the following way:
1124 /// for (ConEdgeIt<Graph> it(g, src, trg); it != INVALID; ++it) {
1130 template <typename _Graph>
1131 class ConEdgeIt : public _Graph::Edge {
1134 typedef _Graph Graph;
1135 typedef typename Graph::Edge Parent;
1137 typedef typename Graph::Edge Edge;
1138 typedef typename Graph::Node Node;
1140 /// \brief Constructor.
1142 /// Construct a new ConEdgeIt iterating on the edges which
1143 /// connects the \c u and \c v node.
1144 ConEdgeIt(const Graph& g, Node u, Node v) : _graph(g) {
1145 Parent::operator=(findEdge(_graph, u, v));
1148 /// \brief Constructor.
1150 /// Construct a new ConEdgeIt which continues the iterating from
1152 ConEdgeIt(const Graph& g, Edge e) : Parent(e), _graph(g) {}
1154 /// \brief Increment operator.
1156 /// It increments the iterator and gives back the next edge.
1157 ConEdgeIt& operator++() {
1158 Parent::operator=(findEdge(_graph, _graph.u(*this),
1159 _graph.v(*this), *this));
1163 const Graph& _graph;
1167 ///Dynamic arc look up between given endpoints.
1169 ///Using this class, you can find an arc in a digraph from a given
1170 ///source to a given target in amortized time <em>O(log d)</em>,
1171 ///where <em>d</em> is the out-degree of the source node.
1173 ///It is possible to find \e all parallel arcs between two nodes with
1174 ///the \c findFirst() and \c findNext() members.
1176 ///See the \ref ArcLookUp and \ref AllArcLookUp classes if your
1177 ///digraph is not changed so frequently.
1179 ///This class uses a self-adjusting binary search tree, Sleator's
1180 ///and Tarjan's Splay tree for guarantee the logarithmic amortized
1181 ///time bound for arc lookups. This class also guarantees the
1182 ///optimal time bound in a constant factor for any distribution of
1185 ///\tparam G The type of the underlying digraph.
1191 : protected ItemSetTraits<G, typename G::Arc>::ItemNotifier::ObserverBase
1194 typedef typename ItemSetTraits<G, typename G::Arc>
1195 ::ItemNotifier::ObserverBase Parent;
1197 TEMPLATE_DIGRAPH_TYPEDEFS(G);
1202 class AutoNodeMap : public ItemSetTraits<G, Node>::template Map<Arc>::Type {
1205 typedef typename ItemSetTraits<G, Node>::template Map<Arc>::Type Parent;
1207 AutoNodeMap(const G& digraph) : Parent(digraph, INVALID) {}
1209 virtual void add(const Node& node) {
1211 Parent::set(node, INVALID);
1214 virtual void add(const std::vector<Node>& nodes) {
1216 for (int i = 0; i < int(nodes.size()); ++i) {
1217 Parent::set(nodes[i], INVALID);
1221 virtual void build() {
1224 typename Parent::Notifier* nf = Parent::notifier();
1225 for (nf->first(it); it != INVALID; nf->next(it)) {
1226 Parent::set(it, INVALID);
1233 typename Digraph::template ArcMap<Arc> _parent;
1234 typename Digraph::template ArcMap<Arc> _left;
1235 typename Digraph::template ArcMap<Arc> _right;
1240 ArcLess(const Digraph &_g) : g(_g) {}
1241 bool operator()(Arc a,Arc b) const
1243 return g.target(a)<g.target(b);
1253 ///It builds up the search database.
1254 DynArcLookUp(const Digraph &g)
1255 : _g(g),_head(g),_parent(g),_left(g),_right(g)
1257 Parent::attach(_g.notifier(typename Digraph::Arc()));
1263 virtual void add(const Arc& arc) {
1267 virtual void add(const std::vector<Arc>& arcs) {
1268 for (int i = 0; i < int(arcs.size()); ++i) {
1273 virtual void erase(const Arc& arc) {
1277 virtual void erase(const std::vector<Arc>& arcs) {
1278 for (int i = 0; i < int(arcs.size()); ++i) {
1283 virtual void build() {
1287 virtual void clear() {
1288 for(NodeIt n(_g);n!=INVALID;++n) {
1289 _head.set(n, INVALID);
1293 void insert(Arc arc) {
1294 Node s = _g.source(arc);
1295 Node t = _g.target(arc);
1296 _left.set(arc, INVALID);
1297 _right.set(arc, INVALID);
1302 _parent.set(arc, INVALID);
1306 if (t < _g.target(e)) {
1307 if (_left[e] == INVALID) {
1309 _parent.set(arc, e);
1316 if (_right[e] == INVALID) {
1318 _parent.set(arc, e);
1328 void remove(Arc arc) {
1329 if (_left[arc] == INVALID) {
1330 if (_right[arc] != INVALID) {
1331 _parent.set(_right[arc], _parent[arc]);
1333 if (_parent[arc] != INVALID) {
1334 if (_left[_parent[arc]] == arc) {
1335 _left.set(_parent[arc], _right[arc]);
1337 _right.set(_parent[arc], _right[arc]);
1340 _head.set(_g.source(arc), _right[arc]);
1342 } else if (_right[arc] == INVALID) {
1343 _parent.set(_left[arc], _parent[arc]);
1344 if (_parent[arc] != INVALID) {
1345 if (_left[_parent[arc]] == arc) {
1346 _left.set(_parent[arc], _left[arc]);
1348 _right.set(_parent[arc], _left[arc]);
1351 _head.set(_g.source(arc), _left[arc]);
1355 if (_right[e] != INVALID) {
1357 while (_right[e] != INVALID) {
1361 _right.set(_parent[e], _left[e]);
1362 if (_left[e] != INVALID) {
1363 _parent.set(_left[e], _parent[e]);
1366 _left.set(e, _left[arc]);
1367 _parent.set(_left[arc], e);
1368 _right.set(e, _right[arc]);
1369 _parent.set(_right[arc], e);
1371 _parent.set(e, _parent[arc]);
1372 if (_parent[arc] != INVALID) {
1373 if (_left[_parent[arc]] == arc) {
1374 _left.set(_parent[arc], e);
1376 _right.set(_parent[arc], e);
1381 _right.set(e, _right[arc]);
1382 _parent.set(_right[arc], e);
1384 if (_parent[arc] != INVALID) {
1385 if (_left[_parent[arc]] == arc) {
1386 _left.set(_parent[arc], e);
1388 _right.set(_parent[arc], e);
1391 _head.set(_g.source(arc), e);
1397 Arc refreshRec(std::vector<Arc> &v,int a,int b)
1402 Arc left = refreshRec(v,a,m-1);
1403 _left.set(me, left);
1404 _parent.set(left, me);
1406 _left.set(me, INVALID);
1409 Arc right = refreshRec(v,m+1,b);
1410 _right.set(me, right);
1411 _parent.set(right, me);
1413 _right.set(me, INVALID);
1419 for(NodeIt n(_g);n!=INVALID;++n) {
1421 for(OutArcIt e(_g,n);e!=INVALID;++e) v.push_back(e);
1423 std::sort(v.begin(),v.end(),ArcLess(_g));
1424 Arc head = refreshRec(v,0,v.size()-1);
1426 _parent.set(head, INVALID);
1428 else _head.set(n, INVALID);
1434 _parent.set(v, _parent[w]);
1436 _left.set(w, _right[v]);
1438 if (_parent[v] != INVALID) {
1439 if (_right[_parent[v]] == w) {
1440 _right.set(_parent[v], v);
1442 _left.set(_parent[v], v);
1445 if (_left[w] != INVALID){
1446 _parent.set(_left[w], w);
1452 _parent.set(v, _parent[w]);
1454 _right.set(w, _left[v]);
1456 if (_parent[v] != INVALID){
1457 if (_left[_parent[v]] == w) {
1458 _left.set(_parent[v], v);
1460 _right.set(_parent[v], v);
1463 if (_right[w] != INVALID){
1464 _parent.set(_right[w], w);
1469 while (_parent[v] != INVALID) {
1470 if (v == _left[_parent[v]]) {
1471 if (_parent[_parent[v]] == INVALID) {
1474 if (_parent[v] == _left[_parent[_parent[v]]]) {
1483 if (_parent[_parent[v]] == INVALID) {
1486 if (_parent[v] == _left[_parent[_parent[v]]]) {
1496 _head[_g.source(v)] = v;
1502 ///Find an arc between two nodes.
1504 ///Find an arc between two nodes in time <em>O(</em>log<em>d)</em>, where
1505 /// <em>d</em> is the number of outgoing arcs of \c s.
1506 ///\param s The source node
1507 ///\param t The target node
1508 ///\return An arc from \c s to \c t if there exists,
1509 ///\ref INVALID otherwise.
1510 Arc operator()(Node s, Node t) const
1514 if (_g.target(a) == t) {
1515 const_cast<DynArcLookUp&>(*this).splay(a);
1517 } else if (t < _g.target(a)) {
1518 if (_left[a] == INVALID) {
1519 const_cast<DynArcLookUp&>(*this).splay(a);
1525 if (_right[a] == INVALID) {
1526 const_cast<DynArcLookUp&>(*this).splay(a);
1535 ///Find the first arc between two nodes.
1537 ///Find the first arc between two nodes in time
1538 /// <em>O(</em>log<em>d)</em>, where <em>d</em> is the number of
1539 /// outgoing arcs of \c s.
1540 ///\param s The source node
1541 ///\param t The target node
1542 ///\return An arc from \c s to \c t if there exists, \ref INVALID
1544 Arc findFirst(Node s, Node t) const
1549 if (_g.target(a) < t) {
1550 if (_right[a] == INVALID) {
1551 const_cast<DynArcLookUp&>(*this).splay(a);
1557 if (_g.target(a) == t) {
1560 if (_left[a] == INVALID) {
1561 const_cast<DynArcLookUp&>(*this).splay(a);
1570 ///Find the next arc between two nodes.
1572 ///Find the next arc between two nodes in time
1573 /// <em>O(</em>log<em>d)</em>, where <em>d</em> is the number of
1574 /// outgoing arcs of \c s.
1575 ///\param s The source node
1576 ///\param t The target node
1577 ///\return An arc from \c s to \c t if there exists, \ref INVALID
1580 ///\note If \c e is not the result of the previous \c findFirst()
1581 ///operation then the amorized time bound can not be guaranteed.
1583 Arc findNext(Node s, Node t, Arc a) const
1585 Arc findNext(Node, Node t, Arc a) const
1588 if (_right[a] != INVALID) {
1590 while (_left[a] != INVALID) {
1593 const_cast<DynArcLookUp&>(*this).splay(a);
1595 while (_parent[a] != INVALID && _right[_parent[a]] == a) {
1598 if (_parent[a] == INVALID) {
1602 const_cast<DynArcLookUp&>(*this).splay(a);
1605 if (_g.target(a) == t) return a;
1606 else return INVALID;
1611 ///Fast arc look up between given endpoints.
1613 ///Using this class, you can find an arc in a digraph from a given
1614 ///source to a given target in time <em>O(log d)</em>,
1615 ///where <em>d</em> is the out-degree of the source node.
1617 ///It is not possible to find \e all parallel arcs between two nodes.
1618 ///Use \ref AllArcLookUp for this purpose.
1620 ///\warning This class is static, so you should refresh() (or at least
1621 ///refresh(Node)) this data structure
1622 ///whenever the digraph changes. This is a time consuming (superlinearly
1623 ///proportional (<em>O(m</em>log<em>m)</em>) to the number of arcs).
1625 ///\tparam G The type of the underlying digraph.
1633 TEMPLATE_DIGRAPH_TYPEDEFS(G);
1638 typename Digraph::template NodeMap<Arc> _head;
1639 typename Digraph::template ArcMap<Arc> _left;
1640 typename Digraph::template ArcMap<Arc> _right;
1645 ArcLess(const Digraph &_g) : g(_g) {}
1646 bool operator()(Arc a,Arc b) const
1648 return g.target(a)<g.target(b);
1658 ///It builds up the search database, which remains valid until the digraph
1660 ArcLookUp(const Digraph &g) :_g(g),_head(g),_left(g),_right(g) {refresh();}
1663 Arc refreshRec(std::vector<Arc> &v,int a,int b)
1667 _left[me] = a<m?refreshRec(v,a,m-1):INVALID;
1668 _right[me] = m<b?refreshRec(v,m+1,b):INVALID;
1672 ///Refresh the data structure at a node.
1674 ///Build up the search database of node \c n.
1676 ///It runs in time <em>O(d</em>log<em>d)</em>, where <em>d</em> is
1677 ///the number of the outgoing arcs of \c n.
1678 void refresh(Node n)
1681 for(OutArcIt e(_g,n);e!=INVALID;++e) v.push_back(e);
1683 std::sort(v.begin(),v.end(),ArcLess(_g));
1684 _head[n]=refreshRec(v,0,v.size()-1);
1686 else _head[n]=INVALID;
1688 ///Refresh the full data structure.
1690 ///Build up the full search database. In fact, it simply calls
1691 ///\ref refresh(Node) "refresh(n)" for each node \c n.
1693 ///It runs in time <em>O(m</em>log<em>D)</em>, where <em>m</em> is
1694 ///the number of the arcs of \c n and <em>D</em> is the maximum
1695 ///out-degree of the digraph.
1699 for(NodeIt n(_g);n!=INVALID;++n) refresh(n);
1702 ///Find an arc between two nodes.
1704 ///Find an arc between two nodes in time <em>O(</em>log<em>d)</em>, where
1705 /// <em>d</em> is the number of outgoing arcs of \c s.
1706 ///\param s The source node
1707 ///\param t The target node
1708 ///\return An arc from \c s to \c t if there exists,
1709 ///\ref INVALID otherwise.
1711 ///\warning If you change the digraph, refresh() must be called before using
1712 ///this operator. If you change the outgoing arcs of
1713 ///a single node \c n, then
1714 ///\ref refresh(Node) "refresh(n)" is enough.
1716 Arc operator()(Node s, Node t) const
1720 e!=INVALID&&_g.target(e)!=t;
1721 e = t < _g.target(e)?_left[e]:_right[e]) ;
1727 ///Fast look up of all arcs between given endpoints.
1729 ///This class is the same as \ref ArcLookUp, with the addition
1730 ///that it makes it possible to find all arcs between given endpoints.
1732 ///\warning This class is static, so you should refresh() (or at least
1733 ///refresh(Node)) this data structure
1734 ///whenever the digraph changes. This is a time consuming (superlinearly
1735 ///proportional (<em>O(m</em>log<em>m)</em>) to the number of arcs).
1737 ///\tparam G The type of the underlying digraph.
1742 class AllArcLookUp : public ArcLookUp<G>
1744 using ArcLookUp<G>::_g;
1745 using ArcLookUp<G>::_right;
1746 using ArcLookUp<G>::_left;
1747 using ArcLookUp<G>::_head;
1749 TEMPLATE_DIGRAPH_TYPEDEFS(G);
1752 typename Digraph::template ArcMap<Arc> _next;
1754 Arc refreshNext(Arc head,Arc next=INVALID)
1756 if(head==INVALID) return next;
1758 next=refreshNext(_right[head],next);
1759 // _next[head]=next;
1760 _next[head]=( next!=INVALID && _g.target(next)==_g.target(head))
1762 return refreshNext(_left[head],head);
1768 for(NodeIt n(_g);n!=INVALID;++n) refreshNext(_head[n]);
1776 ///It builds up the search database, which remains valid until the digraph
1778 AllArcLookUp(const Digraph &g) : ArcLookUp<G>(g), _next(g) {refreshNext();}
1780 ///Refresh the data structure at a node.
1782 ///Build up the search database of node \c n.
1784 ///It runs in time <em>O(d</em>log<em>d)</em>, where <em>d</em> is
1785 ///the number of the outgoing arcs of \c n.
1787 void refresh(Node n)
1789 ArcLookUp<G>::refresh(n);
1790 refreshNext(_head[n]);
1793 ///Refresh the full data structure.
1795 ///Build up the full search database. In fact, it simply calls
1796 ///\ref refresh(Node) "refresh(n)" for each node \c n.
1798 ///It runs in time <em>O(m</em>log<em>D)</em>, where <em>m</em> is
1799 ///the number of the arcs of \c n and <em>D</em> is the maximum
1800 ///out-degree of the digraph.
1804 for(NodeIt n(_g);n!=INVALID;++n) refresh(_head[n]);
1807 ///Find an arc between two nodes.
1809 ///Find an arc between two nodes.
1810 ///\param s The source node
1811 ///\param t The target node
1812 ///\param prev The previous arc between \c s and \c t. It it is INVALID or
1813 ///not given, the operator finds the first appropriate arc.
1814 ///\return An arc from \c s to \c t after \c prev or
1815 ///\ref INVALID if there is no more.
1817 ///For example, you can count the number of arcs from \c u to \c v in the
1820 ///AllArcLookUp<ListDigraph> ae(g);
1823 ///for(Arc e=ae(u,v);e!=INVALID;e=ae(u,v,e)) n++;
1826 ///Finding the first arc take <em>O(</em>log<em>d)</em> time, where
1827 /// <em>d</em> is the number of outgoing arcs of \c s. Then, the
1828 ///consecutive arcs are found in constant time.
1830 ///\warning If you change the digraph, refresh() must be called before using
1831 ///this operator. If you change the outgoing arcs of
1832 ///a single node \c n, then
1833 ///\ref refresh(Node) "refresh(n)" is enough.
1836 Arc operator()(Node s, Node t, Arc prev=INVALID) const {}
1838 using ArcLookUp<G>::operator() ;
1839 Arc operator()(Node s, Node t, Arc prev) const
1841 return prev==INVALID?(*this)(s,t):_next[prev];