Rename StoreBoolMap to LoggerBoolMap (ticket #34).
3 * This file is a part of LEMON, a generic C++ optimization library
5 * Copyright (C) 2003-2008
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 * (Egervary Research Group on Combinatorial Optimization, EGRES).
9 * Permission to use, modify and distribute this software is granted
10 * provided that this copyright notice appears in all copies. For
11 * precise terms see the accompanying LICENSE file.
13 * This software is provided "AS IS" with no warranty of any kind,
14 * express or implied, and with no claim as to its suitability for any
19 #ifndef LEMON_DIJKSTRA_H
20 #define LEMON_DIJKSTRA_H
22 ///\ingroup shortest_path
24 ///\brief Dijkstra algorithm.
27 #include <lemon/list_digraph.h>
28 #include <lemon/bin_heap.h>
29 #include <lemon/bits/path_dump.h>
30 #include <lemon/bits/invalid.h>
31 #include <lemon/error.h>
32 #include <lemon/maps.h>
37 /// \brief Default OperationTraits for the Dijkstra algorithm class.
39 /// It defines all computational operations and constants which are
40 /// used in the Dijkstra algorithm.
41 template <typename Value>
42 struct DijkstraDefaultOperationTraits {
43 /// \brief Gives back the zero value of the type.
45 return static_cast<Value>(0);
47 /// \brief Gives back the sum of the given two elements.
48 static Value plus(const Value& left, const Value& right) {
51 /// \brief Gives back true only if the first value less than the second.
52 static bool less(const Value& left, const Value& right) {
57 /// \brief Widest path OperationTraits for the Dijkstra algorithm class.
59 /// It defines all computational operations and constants which are
60 /// used in the Dijkstra algorithm for widest path computation.
61 template <typename Value>
62 struct DijkstraWidestPathOperationTraits {
63 /// \brief Gives back the maximum value of the type.
65 return std::numeric_limits<Value>::max();
67 /// \brief Gives back the minimum of the given two elements.
68 static Value plus(const Value& left, const Value& right) {
69 return std::min(left, right);
71 /// \brief Gives back true only if the first value less than the second.
72 static bool less(const Value& left, const Value& right) {
77 ///Default traits class of Dijkstra class.
79 ///Default traits class of Dijkstra class.
80 ///\tparam GR Digraph type.
81 ///\tparam LM Type of length map.
82 template<class GR, class LM>
83 struct DijkstraDefaultTraits
85 ///The digraph type the algorithm runs on.
87 ///The type of the map that stores the arc lengths.
89 ///The type of the map that stores the arc lengths.
90 ///It must meet the \ref concepts::ReadMap "ReadMap" concept.
92 //The type of the length of the arcs.
93 typedef typename LM::Value Value;
94 /// Operation traits for Dijkstra algorithm.
96 /// It defines the used operation by the algorithm.
97 /// \see DijkstraDefaultOperationTraits
98 typedef DijkstraDefaultOperationTraits<Value> OperationTraits;
99 /// The cross reference type used by heap.
102 /// The cross reference type used by heap.
103 /// Usually it is \c Digraph::NodeMap<int>.
104 typedef typename Digraph::template NodeMap<int> HeapCrossRef;
105 ///Instantiates a HeapCrossRef.
107 ///This function instantiates a \c HeapCrossRef.
108 /// \param G is the digraph, to which we would like to define the
110 static HeapCrossRef *createHeapCrossRef(const GR &G)
112 return new HeapCrossRef(G);
115 ///The heap type used by Dijkstra algorithm.
117 ///The heap type used by Dijkstra algorithm.
121 typedef BinHeap<typename LM::Value, HeapCrossRef, std::less<Value> > Heap;
123 static Heap *createHeap(HeapCrossRef& R)
128 ///\brief The type of the map that stores the last
129 ///arcs of the shortest paths.
131 ///The type of the map that stores the last
132 ///arcs of the shortest paths.
133 ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
135 typedef typename Digraph::template NodeMap<typename GR::Arc> PredMap;
136 ///Instantiates a PredMap.
138 ///This function instantiates a \c PredMap.
139 ///\param G is the digraph, to which we would like to define the PredMap.
140 ///\todo The digraph alone may be insufficient for the initialization
141 static PredMap *createPredMap(const GR &G)
143 return new PredMap(G);
146 ///The type of the map that stores whether a nodes is processed.
148 ///The type of the map that stores whether a nodes is processed.
149 ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
150 ///By default it is a NullMap.
151 ///\todo If it is set to a real map,
152 ///Dijkstra::processed() should read this.
153 ///\todo named parameter to set this type, function to read and write.
154 typedef NullMap<typename Digraph::Node,bool> ProcessedMap;
155 ///Instantiates a ProcessedMap.
157 ///This function instantiates a \c ProcessedMap.
158 ///\param g is the digraph, to which
159 ///we would like to define the \c ProcessedMap
161 static ProcessedMap *createProcessedMap(const GR &g)
163 static ProcessedMap *createProcessedMap(const GR &)
166 return new ProcessedMap();
168 ///The type of the map that stores the dists of the nodes.
170 ///The type of the map that stores the dists of the nodes.
171 ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
173 typedef typename Digraph::template NodeMap<typename LM::Value> DistMap;
174 ///Instantiates a DistMap.
176 ///This function instantiates a \ref DistMap.
177 ///\param G is the digraph, to which we would like to define the \ref DistMap
178 static DistMap *createDistMap(const GR &G)
180 return new DistMap(G);
184 ///%Dijkstra algorithm class.
186 /// \ingroup shortest_path
187 ///This class provides an efficient implementation of %Dijkstra algorithm.
188 ///The arc lengths are passed to the algorithm using a
189 ///\ref concepts::ReadMap "ReadMap",
190 ///so it is easy to change it to any kind of length.
192 ///The type of the length is determined by the
193 ///\ref concepts::ReadMap::Value "Value" of the length map.
195 ///It is also possible to change the underlying priority heap.
197 ///\tparam GR The digraph type the algorithm runs on. The default value
198 ///is \ref ListDigraph. The value of GR is not used directly by
199 ///Dijkstra, it is only passed to \ref DijkstraDefaultTraits.
200 ///\tparam LM This read-only ArcMap determines the lengths of the
201 ///arcs. It is read once for each arc, so the map may involve in
202 ///relatively time consuming process to compute the arc length if
203 ///it is necessary. The default map type is \ref
204 ///concepts::Digraph::ArcMap "Digraph::ArcMap<int>". The value
205 ///of LM is not used directly by Dijkstra, it is only passed to \ref
206 ///DijkstraDefaultTraits.
207 ///\tparam TR Traits class to set
208 ///various data types used by the algorithm. The default traits
209 ///class is \ref DijkstraDefaultTraits
210 ///"DijkstraDefaultTraits<GR,LM>". See \ref
211 ///DijkstraDefaultTraits for the documentation of a Dijkstra traits
215 template <typename GR, typename LM, typename TR>
217 template <typename GR=ListDigraph,
218 typename LM=typename GR::template ArcMap<int>,
219 typename TR=DijkstraDefaultTraits<GR,LM> >
224 * \brief \ref Exception for uninitialized parameters.
226 * This error represents problems in the initialization
227 * of the parameters of the algorithms.
229 class UninitializedParameter : public lemon::UninitializedParameter {
231 virtual const char* what() const throw() {
232 return "lemon::Dijkstra::UninitializedParameter";
237 ///The type of the underlying digraph.
238 typedef typename TR::Digraph Digraph;
240 typedef typename Digraph::Node Node;
242 typedef typename Digraph::NodeIt NodeIt;
244 typedef typename Digraph::Arc Arc;
246 typedef typename Digraph::OutArcIt OutArcIt;
248 ///The type of the length of the arcs.
249 typedef typename TR::LengthMap::Value Value;
250 ///The type of the map that stores the arc lengths.
251 typedef typename TR::LengthMap LengthMap;
252 ///\brief The type of the map that stores the last
253 ///arcs of the shortest paths.
254 typedef typename TR::PredMap PredMap;
255 ///The type of the map indicating if a node is processed.
256 typedef typename TR::ProcessedMap ProcessedMap;
257 ///The type of the map that stores the dists of the nodes.
258 typedef typename TR::DistMap DistMap;
259 ///The cross reference type used for the current heap.
260 typedef typename TR::HeapCrossRef HeapCrossRef;
261 ///The heap type used by the dijkstra algorithm.
262 typedef typename TR::Heap Heap;
263 ///The operation traits.
264 typedef typename TR::OperationTraits OperationTraits;
266 /// Pointer to the underlying digraph.
268 /// Pointer to the length map
269 const LengthMap *length;
270 ///Pointer to the map of predecessors arcs.
272 ///Indicates if \ref _pred is locally allocated (\c true) or not.
274 ///Pointer to the map of distances.
276 ///Indicates if \ref _dist is locally allocated (\c true) or not.
278 ///Pointer to the map of processed status of the nodes.
279 ProcessedMap *_processed;
280 ///Indicates if \ref _processed is locally allocated (\c true) or not.
281 bool local_processed;
282 ///Pointer to the heap cross references.
283 HeapCrossRef *_heap_cross_ref;
284 ///Indicates if \ref _heap_cross_ref is locally allocated (\c true) or not.
285 bool local_heap_cross_ref;
286 ///Pointer to the heap.
288 ///Indicates if \ref _heap is locally allocated (\c true) or not.
291 ///Creates the maps if necessary.
293 ///\todo Better memory allocation (instead of new).
298 _pred = Traits::createPredMap(*G);
302 _dist = Traits::createDistMap(*G);
305 local_processed = true;
306 _processed = Traits::createProcessedMap(*G);
308 if (!_heap_cross_ref) {
309 local_heap_cross_ref = true;
310 _heap_cross_ref = Traits::createHeapCrossRef(*G);
314 _heap = Traits::createHeap(*_heap_cross_ref);
320 typedef Dijkstra Create;
322 ///\name Named template parameters
327 struct DefPredMapTraits : public Traits {
329 static PredMap *createPredMap(const Digraph &)
331 throw UninitializedParameter();
334 ///\ref named-templ-param "Named parameter" for setting PredMap type
336 ///\ref named-templ-param "Named parameter" for setting PredMap type
340 : public Dijkstra< Digraph, LengthMap, DefPredMapTraits<T> > {
341 typedef Dijkstra< Digraph, LengthMap, DefPredMapTraits<T> > Create;
345 struct DefDistMapTraits : public Traits {
347 static DistMap *createDistMap(const Digraph &)
349 throw UninitializedParameter();
352 ///\ref named-templ-param "Named parameter" for setting DistMap type
354 ///\ref named-templ-param "Named parameter" for setting DistMap type
358 : public Dijkstra< Digraph, LengthMap, DefDistMapTraits<T> > {
359 typedef Dijkstra< Digraph, LengthMap, DefDistMapTraits<T> > Create;
363 struct DefProcessedMapTraits : public Traits {
364 typedef T ProcessedMap;
365 static ProcessedMap *createProcessedMap(const Digraph &G)
367 throw UninitializedParameter();
370 ///\ref named-templ-param "Named parameter" for setting ProcessedMap type
372 ///\ref named-templ-param "Named parameter" for setting ProcessedMap type
375 struct DefProcessedMap
376 : public Dijkstra< Digraph, LengthMap, DefProcessedMapTraits<T> > {
377 typedef Dijkstra< Digraph, LengthMap, DefProcessedMapTraits<T> > Create;
380 struct DefDigraphProcessedMapTraits : public Traits {
381 typedef typename Digraph::template NodeMap<bool> ProcessedMap;
382 static ProcessedMap *createProcessedMap(const Digraph &G)
384 return new ProcessedMap(G);
387 ///\brief \ref named-templ-param "Named parameter"
388 ///for setting the ProcessedMap type to be Digraph::NodeMap<bool>.
390 ///\ref named-templ-param "Named parameter"
391 ///for setting the ProcessedMap type to be Digraph::NodeMap<bool>.
392 ///If you don't set it explicitely, it will be automatically allocated.
394 struct DefProcessedMapToBeDefaultMap
395 : public Dijkstra< Digraph, LengthMap, DefDigraphProcessedMapTraits> {
396 typedef Dijkstra< Digraph, LengthMap, DefDigraphProcessedMapTraits> Create;
399 template <class H, class CR>
400 struct DefHeapTraits : public Traits {
401 typedef CR HeapCrossRef;
403 static HeapCrossRef *createHeapCrossRef(const Digraph &) {
404 throw UninitializedParameter();
406 static Heap *createHeap(HeapCrossRef &)
408 throw UninitializedParameter();
411 ///\brief \ref named-templ-param "Named parameter" for setting
412 ///heap and cross reference type
414 ///\ref named-templ-param "Named parameter" for setting heap and cross
417 template <class H, class CR = typename Digraph::template NodeMap<int> >
419 : public Dijkstra< Digraph, LengthMap, DefHeapTraits<H, CR> > {
420 typedef Dijkstra< Digraph, LengthMap, DefHeapTraits<H, CR> > Create;
423 template <class H, class CR>
424 struct DefStandardHeapTraits : public Traits {
425 typedef CR HeapCrossRef;
427 static HeapCrossRef *createHeapCrossRef(const Digraph &G) {
428 return new HeapCrossRef(G);
430 static Heap *createHeap(HeapCrossRef &R)
435 ///\brief \ref named-templ-param "Named parameter" for setting
436 ///heap and cross reference type with automatic allocation
438 ///\ref named-templ-param "Named parameter" for setting heap and cross
439 ///reference type. It can allocate the heap and the cross reference
440 ///object if the cross reference's constructor waits for the digraph as
441 ///parameter and the heap's constructor waits for the cross reference.
442 template <class H, class CR = typename Digraph::template NodeMap<int> >
443 struct DefStandardHeap
444 : public Dijkstra< Digraph, LengthMap, DefStandardHeapTraits<H, CR> > {
445 typedef Dijkstra< Digraph, LengthMap, DefStandardHeapTraits<H, CR> >
450 struct DefOperationTraitsTraits : public Traits {
451 typedef T OperationTraits;
454 /// \brief \ref named-templ-param "Named parameter" for setting
455 /// OperationTraits type
457 /// \ref named-templ-param "Named parameter" for setting OperationTraits
460 struct DefOperationTraits
461 : public Dijkstra<Digraph, LengthMap, DefOperationTraitsTraits<T> > {
462 typedef Dijkstra<Digraph, LengthMap, DefOperationTraitsTraits<T> >
477 ///\param _G the digraph the algorithm will run on.
478 ///\param _length the length map used by the algorithm.
479 Dijkstra(const Digraph& _G, const LengthMap& _length) :
480 G(&_G), length(&_length),
481 _pred(NULL), local_pred(false),
482 _dist(NULL), local_dist(false),
483 _processed(NULL), local_processed(false),
484 _heap_cross_ref(NULL), local_heap_cross_ref(false),
485 _heap(NULL), local_heap(false)
491 if(local_pred) delete _pred;
492 if(local_dist) delete _dist;
493 if(local_processed) delete _processed;
494 if(local_heap_cross_ref) delete _heap_cross_ref;
495 if(local_heap) delete _heap;
498 ///Sets the length map.
500 ///Sets the length map.
501 ///\return <tt> (*this) </tt>
502 Dijkstra &lengthMap(const LengthMap &m)
508 ///Sets the map storing the predecessor arcs.
510 ///Sets the map storing the predecessor arcs.
511 ///If you don't use this function before calling \ref run(),
512 ///it will allocate one. The destuctor deallocates this
513 ///automatically allocated map, of course.
514 ///\return <tt> (*this) </tt>
515 Dijkstra &predMap(PredMap &m)
525 ///Sets the map storing the distances calculated by the algorithm.
527 ///Sets the map storing the distances calculated by the algorithm.
528 ///If you don't use this function before calling \ref run(),
529 ///it will allocate one. The destuctor deallocates this
530 ///automatically allocated map, of course.
531 ///\return <tt> (*this) </tt>
532 Dijkstra &distMap(DistMap &m)
542 ///Sets the heap and the cross reference used by algorithm.
544 ///Sets the heap and the cross reference used by algorithm.
545 ///If you don't use this function before calling \ref run(),
546 ///it will allocate one. The destuctor deallocates this
547 ///automatically allocated heap and cross reference, of course.
548 ///\return <tt> (*this) </tt>
549 Dijkstra &heap(Heap& hp, HeapCrossRef &cr)
551 if(local_heap_cross_ref) {
552 delete _heap_cross_ref;
553 local_heap_cross_ref=false;
555 _heap_cross_ref = &cr;
565 void finalizeNodeData(Node v,Value dst)
567 _processed->set(v,true);
573 typedef PredMapPath<Digraph, PredMap> Path;
575 ///\name Execution control
576 ///The simplest way to execute the algorithm is to use
577 ///one of the member functions called \c run(...).
579 ///If you need more control on the execution,
580 ///first you must call \ref init(), then you can add several source nodes
581 ///with \ref addSource().
582 ///Finally \ref start() will perform the actual path
587 ///Initializes the internal data structures.
589 ///Initializes the internal data structures.
595 for ( NodeIt u(*G) ; u!=INVALID ; ++u ) {
596 _pred->set(u,INVALID);
597 _processed->set(u,false);
598 _heap_cross_ref->set(u,Heap::PRE_HEAP);
602 ///Adds a new source node.
604 ///Adds a new source node to the priority heap.
606 ///The optional second parameter is the initial distance of the node.
608 ///It checks if the node has already been added to the heap and
609 ///it is pushed to the heap only if either it was not in the heap
610 ///or the shortest path found till then is shorter than \c dst.
611 void addSource(Node s,Value dst=OperationTraits::zero())
613 if(_heap->state(s) != Heap::IN_HEAP) {
615 } else if(OperationTraits::less((*_heap)[s], dst)) {
617 _pred->set(s,INVALID);
621 ///Processes the next node in the priority heap
623 ///Processes the next node in the priority heap.
625 ///\return The processed node.
627 ///\warning The priority heap must not be empty!
628 Node processNextNode()
631 Value oldvalue=_heap->prio();
633 finalizeNodeData(v,oldvalue);
635 for(OutArcIt e(*G,v); e!=INVALID; ++e) {
637 switch(_heap->state(w)) {
639 _heap->push(w,OperationTraits::plus(oldvalue, (*length)[e]));
644 Value newvalue = OperationTraits::plus(oldvalue, (*length)[e]);
645 if ( OperationTraits::less(newvalue, (*_heap)[w]) ) {
646 _heap->decrease(w, newvalue);
651 case Heap::POST_HEAP:
658 ///Next node to be processed.
660 ///Next node to be processed.
662 ///\return The next node to be processed or INVALID if the priority heap
666 return !_heap->empty()?_heap->top():INVALID;
669 ///\brief Returns \c false if there are nodes
670 ///to be processed in the priority heap
672 ///Returns \c false if there are nodes
673 ///to be processed in the priority heap
674 bool emptyQueue() { return _heap->empty(); }
675 ///Returns the number of the nodes to be processed in the priority heap
677 ///Returns the number of the nodes to be processed in the priority heap
679 int queueSize() { return _heap->size(); }
681 ///Executes the algorithm.
683 ///Executes the algorithm.
685 ///\pre init() must be called and at least one node should be added
686 ///with addSource() before using this function.
688 ///This method runs the %Dijkstra algorithm from the root node(s)
691 ///shortest path to each node. The algorithm computes
692 ///- The shortest path tree.
693 ///- The distance of each node from the root(s).
697 while ( !_heap->empty() ) processNextNode();
700 ///Executes the algorithm until \c dest is reached.
702 ///Executes the algorithm until \c dest is reached.
704 ///\pre init() must be called and at least one node should be added
705 ///with addSource() before using this function.
707 ///This method runs the %Dijkstra algorithm from the root node(s)
710 ///shortest path to \c dest. The algorithm computes
711 ///- The shortest path to \c dest.
712 ///- The distance of \c dest from the root(s).
714 void start(Node dest)
716 while ( !_heap->empty() && _heap->top()!=dest ) processNextNode();
717 if ( !_heap->empty() ) finalizeNodeData(_heap->top(),_heap->prio());
720 ///Executes the algorithm until a condition is met.
722 ///Executes the algorithm until a condition is met.
724 ///\pre init() must be called and at least one node should be added
725 ///with addSource() before using this function.
727 ///\param nm must be a bool (or convertible) node map. The algorithm
728 ///will stop when it reaches a node \c v with <tt>nm[v]</tt> true.
730 ///\return The reached node \c v with <tt>nm[v]</tt> true or
731 ///\c INVALID if no such node was found.
732 template<class NodeBoolMap>
733 Node start(const NodeBoolMap &nm)
735 while ( !_heap->empty() && !nm[_heap->top()] ) processNextNode();
736 if ( _heap->empty() ) return INVALID;
737 finalizeNodeData(_heap->top(),_heap->prio());
741 ///Runs %Dijkstra algorithm from node \c s.
743 ///This method runs the %Dijkstra algorithm from a root node \c s
746 ///shortest path to each node. The algorithm computes
747 ///- The shortest path tree.
748 ///- The distance of each node from the root.
750 ///\note d.run(s) is just a shortcut of the following code.
762 ///Finds the shortest path between \c s and \c t.
764 ///Finds the shortest path between \c s and \c t.
766 ///\return The length of the shortest s---t path if there exists one,
768 ///\note Apart from the return value, d.run(s) is
769 ///just a shortcut of the following code.
775 Value run(Node s,Node t) {
779 return (*_pred)[t]==INVALID?OperationTraits::zero():(*_dist)[t];
784 ///\name Query Functions
785 ///The result of the %Dijkstra algorithm can be obtained using these
787 ///Before the use of these functions,
788 ///either run() or start() must be called.
792 ///Gives back the shortest path.
794 ///Gives back the shortest path.
795 ///\pre The \c t should be reachable from the source.
798 return Path(*G, *_pred, t);
801 ///The distance of a node from the root.
803 ///Returns the distance of a node from the root.
804 ///\pre \ref run() must be called before using this function.
805 ///\warning If node \c v in unreachable from the root the return value
806 ///of this funcion is undefined.
807 Value dist(Node v) const { return (*_dist)[v]; }
809 ///The current distance of a node from the root.
811 ///Returns the current distance of a node from the root.
812 ///It may be decreased in the following processes.
813 ///\pre \c node should be reached but not processed
814 Value currentDist(Node v) const { return (*_heap)[v]; }
816 ///Returns the 'previous arc' of the shortest path tree.
818 ///For a node \c v it returns the 'previous arc' of the shortest path tree,
819 ///i.e. it returns the last arc of a shortest path from the root to \c
820 ///v. It is \ref INVALID
821 ///if \c v is unreachable from the root or if \c v=s. The
822 ///shortest path tree used here is equal to the shortest path tree used in
823 ///\ref predNode(). \pre \ref run() must be called before using
825 Arc predArc(Node v) const { return (*_pred)[v]; }
827 ///Returns the 'previous node' of the shortest path tree.
829 ///For a node \c v it returns the 'previous node' of the shortest path tree,
830 ///i.e. it returns the last but one node from a shortest path from the
831 ///root to \c /v. It is INVALID if \c v is unreachable from the root or if
832 ///\c v=s. The shortest path tree used here is equal to the shortest path
833 ///tree used in \ref predArc(). \pre \ref run() must be called before
834 ///using this function.
835 Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID:
836 G->source((*_pred)[v]); }
838 ///Returns a reference to the NodeMap of distances.
840 ///Returns a reference to the NodeMap of distances. \pre \ref run() must
841 ///be called before using this function.
842 const DistMap &distMap() const { return *_dist;}
844 ///Returns a reference to the shortest path tree map.
846 ///Returns a reference to the NodeMap of the arcs of the
847 ///shortest path tree.
848 ///\pre \ref run() must be called before using this function.
849 const PredMap &predMap() const { return *_pred;}
851 ///Checks if a node is reachable from the root.
853 ///Returns \c true if \c v is reachable from the root.
854 ///\warning The source nodes are inditated as unreached.
855 ///\pre \ref run() must be called before using this function.
857 bool reached(Node v) { return (*_heap_cross_ref)[v] != Heap::PRE_HEAP; }
859 ///Checks if a node is processed.
861 ///Returns \c true if \c v is processed, i.e. the shortest
862 ///path to \c v has already found.
863 ///\pre \ref run() must be called before using this function.
865 bool processed(Node v) { return (*_heap_cross_ref)[v] == Heap::POST_HEAP; }
874 ///Default traits class of Dijkstra function.
876 ///Default traits class of Dijkstra function.
877 ///\tparam GR Digraph type.
878 ///\tparam LM Type of length map.
879 template<class GR, class LM>
880 struct DijkstraWizardDefaultTraits
882 ///The digraph type the algorithm runs on.
884 ///The type of the map that stores the arc lengths.
886 ///The type of the map that stores the arc lengths.
887 ///It must meet the \ref concepts::ReadMap "ReadMap" concept.
888 typedef LM LengthMap;
889 //The type of the length of the arcs.
890 typedef typename LM::Value Value;
891 /// Operation traits for Dijkstra algorithm.
893 /// It defines the used operation by the algorithm.
894 /// \see DijkstraDefaultOperationTraits
895 typedef DijkstraDefaultOperationTraits<Value> OperationTraits;
896 ///The heap type used by Dijkstra algorithm.
898 /// The cross reference type used by heap.
900 /// The cross reference type used by heap.
901 /// Usually it is \c Digraph::NodeMap<int>.
902 typedef typename Digraph::template NodeMap<int> HeapCrossRef;
903 ///Instantiates a HeapCrossRef.
905 ///This function instantiates a \ref HeapCrossRef.
906 /// \param G is the digraph, to which we would like to define the
908 /// \todo The digraph alone may be insufficient for the initialization
909 static HeapCrossRef *createHeapCrossRef(const GR &G)
911 return new HeapCrossRef(G);
914 ///The heap type used by Dijkstra algorithm.
916 ///The heap type used by Dijkstra algorithm.
920 typedef BinHeap<typename LM::Value, typename GR::template NodeMap<int>,
921 std::less<Value> > Heap;
923 static Heap *createHeap(HeapCrossRef& R)
928 ///\brief The type of the map that stores the last
929 ///arcs of the shortest paths.
931 ///The type of the map that stores the last
932 ///arcs of the shortest paths.
933 ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
935 typedef NullMap <typename GR::Node,typename GR::Arc> PredMap;
936 ///Instantiates a PredMap.
938 ///This function instantiates a \ref PredMap.
939 ///\param g is the digraph, to which we would like to define the PredMap.
940 ///\todo The digraph alone may be insufficient for the initialization
942 static PredMap *createPredMap(const GR &g)
944 static PredMap *createPredMap(const GR &)
947 return new PredMap();
949 ///The type of the map that stores whether a nodes is processed.
951 ///The type of the map that stores whether a nodes is processed.
952 ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
953 ///By default it is a NullMap.
954 ///\todo If it is set to a real map,
955 ///Dijkstra::processed() should read this.
956 ///\todo named parameter to set this type, function to read and write.
957 typedef NullMap<typename Digraph::Node,bool> ProcessedMap;
958 ///Instantiates a ProcessedMap.
960 ///This function instantiates a \ref ProcessedMap.
961 ///\param g is the digraph, to which
962 ///we would like to define the \ref ProcessedMap
964 static ProcessedMap *createProcessedMap(const GR &g)
966 static ProcessedMap *createProcessedMap(const GR &)
969 return new ProcessedMap();
971 ///The type of the map that stores the dists of the nodes.
973 ///The type of the map that stores the dists of the nodes.
974 ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
976 typedef NullMap<typename Digraph::Node,typename LM::Value> DistMap;
977 ///Instantiates a DistMap.
979 ///This function instantiates a \ref DistMap.
980 ///\param g is the digraph, to which we would like to define the \ref DistMap
982 static DistMap *createDistMap(const GR &g)
984 static DistMap *createDistMap(const GR &)
987 return new DistMap();
991 /// Default traits used by \ref DijkstraWizard
993 /// To make it easier to use Dijkstra algorithm
994 ///we have created a wizard class.
995 /// This \ref DijkstraWizard class needs default traits,
996 ///as well as the \ref Dijkstra class.
997 /// The \ref DijkstraWizardBase is a class to be the default traits of the
998 /// \ref DijkstraWizard class.
999 /// \todo More named parameters are required...
1000 template<class GR,class LM>
1001 class DijkstraWizardBase : public DijkstraWizardDefaultTraits<GR,LM>
1004 typedef DijkstraWizardDefaultTraits<GR,LM> Base;
1006 /// Type of the nodes in the digraph.
1007 typedef typename Base::Digraph::Node Node;
1009 /// Pointer to the underlying digraph.
1011 /// Pointer to the length map
1013 ///Pointer to the map of predecessors arcs.
1015 ///Pointer to the map of distances.
1017 ///Pointer to the source node.
1023 /// This constructor does not require parameters, therefore it initiates
1024 /// all of the attributes to default values (0, INVALID).
1025 DijkstraWizardBase() : _g(0), _length(0), _pred(0),
1026 _dist(0), _source(INVALID) {}
1030 /// This constructor requires some parameters,
1031 /// listed in the parameters list.
1032 /// Others are initiated to 0.
1033 /// \param g is the initial value of \ref _g
1034 /// \param l is the initial value of \ref _length
1035 /// \param s is the initial value of \ref _source
1036 DijkstraWizardBase(const GR &g,const LM &l, Node s=INVALID) :
1037 _g(reinterpret_cast<void*>(const_cast<GR*>(&g))),
1038 _length(reinterpret_cast<void*>(const_cast<LM*>(&l))),
1039 _pred(0), _dist(0), _source(s) {}
1043 /// A class to make the usage of Dijkstra algorithm easier
1045 /// This class is created to make it easier to use Dijkstra algorithm.
1046 /// It uses the functions and features of the plain \ref Dijkstra,
1047 /// but it is much simpler to use it.
1049 /// Simplicity means that the way to change the types defined
1050 /// in the traits class is based on functions that returns the new class
1051 /// and not on templatable built-in classes.
1052 /// When using the plain \ref Dijkstra
1053 /// the new class with the modified type comes from
1054 /// the original class by using the ::
1055 /// operator. In the case of \ref DijkstraWizard only
1056 /// a function have to be called and it will
1057 /// return the needed class.
1059 /// It does not have own \ref run method. When its \ref run method is called
1060 /// it initiates a plain \ref Dijkstra class, and calls the \ref
1061 /// Dijkstra::run method of it.
1063 class DijkstraWizard : public TR
1067 ///The type of the underlying digraph.
1068 typedef typename TR::Digraph Digraph;
1070 typedef typename Digraph::Node Node;
1072 typedef typename Digraph::NodeIt NodeIt;
1074 typedef typename Digraph::Arc Arc;
1076 typedef typename Digraph::OutArcIt OutArcIt;
1078 ///The type of the map that stores the arc lengths.
1079 typedef typename TR::LengthMap LengthMap;
1080 ///The type of the length of the arcs.
1081 typedef typename LengthMap::Value Value;
1082 ///\brief The type of the map that stores the last
1083 ///arcs of the shortest paths.
1084 typedef typename TR::PredMap PredMap;
1085 ///The type of the map that stores the dists of the nodes.
1086 typedef typename TR::DistMap DistMap;
1087 ///The heap type used by the dijkstra algorithm.
1088 typedef typename TR::Heap Heap;
1091 DijkstraWizard() : TR() {}
1093 /// Constructor that requires parameters.
1095 /// Constructor that requires parameters.
1096 /// These parameters will be the default values for the traits class.
1097 DijkstraWizard(const Digraph &g,const LengthMap &l, Node s=INVALID) :
1101 DijkstraWizard(const TR &b) : TR(b) {}
1103 ~DijkstraWizard() {}
1105 ///Runs Dijkstra algorithm from a given node.
1107 ///Runs Dijkstra algorithm from a given node.
1108 ///The node can be given by the \ref source function.
1111 if(Base::_source==INVALID) throw UninitializedParameter();
1112 Dijkstra<Digraph,LengthMap,TR>
1113 dij(*reinterpret_cast<const Digraph*>(Base::_g),
1114 *reinterpret_cast<const LengthMap*>(Base::_length));
1115 if(Base::_pred) dij.predMap(*reinterpret_cast<PredMap*>(Base::_pred));
1116 if(Base::_dist) dij.distMap(*reinterpret_cast<DistMap*>(Base::_dist));
1117 dij.run(Base::_source);
1120 ///Runs Dijkstra algorithm from the given node.
1122 ///Runs Dijkstra algorithm from the given node.
1123 ///\param s is the given source.
1131 struct DefPredMapBase : public Base {
1133 static PredMap *createPredMap(const Digraph &) { return 0; };
1134 DefPredMapBase(const TR &b) : TR(b) {}
1137 ///\brief \ref named-templ-param "Named parameter"
1138 ///function for setting PredMap type
1140 /// \ref named-templ-param "Named parameter"
1141 ///function for setting PredMap type
1144 DijkstraWizard<DefPredMapBase<T> > predMap(const T &t)
1146 Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t));
1147 return DijkstraWizard<DefPredMapBase<T> >(*this);
1151 struct DefDistMapBase : public Base {
1153 static DistMap *createDistMap(const Digraph &) { return 0; };
1154 DefDistMapBase(const TR &b) : TR(b) {}
1157 ///\brief \ref named-templ-param "Named parameter"
1158 ///function for setting DistMap type
1160 /// \ref named-templ-param "Named parameter"
1161 ///function for setting DistMap type
1164 DijkstraWizard<DefDistMapBase<T> > distMap(const T &t)
1166 Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t));
1167 return DijkstraWizard<DefDistMapBase<T> >(*this);
1170 /// Sets the source node, from which the Dijkstra algorithm runs.
1172 /// Sets the source node, from which the Dijkstra algorithm runs.
1173 /// \param s is the source node.
1174 DijkstraWizard<TR> &source(Node s)
1182 ///Function type interface for Dijkstra algorithm.
1184 /// \ingroup shortest_path
1185 ///Function type interface for Dijkstra algorithm.
1187 ///This function also has several
1188 ///\ref named-templ-func-param "named parameters",
1189 ///they are declared as the members of class \ref DijkstraWizard.
1191 ///example shows how to use these parameters.
1193 /// dijkstra(g,length,source).predMap(preds).run();
1195 ///\warning Don't forget to put the \ref DijkstraWizard::run() "run()"
1196 ///to the end of the parameter list.
1197 ///\sa DijkstraWizard
1199 template<class GR, class LM>
1200 DijkstraWizard<DijkstraWizardBase<GR,LM> >
1201 dijkstra(const GR &g,const LM &l,typename GR::Node s=INVALID)
1203 return DijkstraWizard<DijkstraWizardBase<GR,LM> >(g,l,s);
1206 } //END OF NAMESPACE LEMON