1 /* -*- mode: C++; indent-tabs-mode: nil; -*-
3 * This file is a part of LEMON, a generic C++ optimization library.
5 * Copyright (C) 2003-2009
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 * (Egervary Research Group on Combinatorial Optimization, EGRES).
9 * Permission to use, modify and distribute this software is granted
10 * provided that this copyright notice appears in all copies. For
11 * precise terms see the accompanying LICENSE file.
13 * This software is provided "AS IS" with no warranty of any kind,
14 * express or implied, and with no claim as to its suitability for any
19 #ifndef LEMON_ADAPTORS_H
20 #define LEMON_ADAPTORS_H
22 /// \ingroup graph_adaptors
24 /// \brief Adaptor classes for digraphs and graphs
26 /// This file contains several useful adaptors for digraphs and graphs.
28 #include <lemon/core.h>
29 #include <lemon/maps.h>
30 #include <lemon/bits/variant.h>
32 #include <lemon/bits/graph_adaptor_extender.h>
33 #include <lemon/bits/map_extender.h>
34 #include <lemon/tolerance.h>
41 #define LEMON_SCOPE_FIX(OUTER, NESTED) OUTER::NESTED
43 #define LEMON_SCOPE_FIX(OUTER, NESTED) typename OUTER::template NESTED
46 template<typename DGR>
47 class DigraphAdaptorBase {
50 typedef DigraphAdaptorBase Adaptor;
54 DigraphAdaptorBase() : _digraph(0) { }
55 void initialize(DGR& digraph) { _digraph = &digraph; }
58 DigraphAdaptorBase(DGR& digraph) : _digraph(&digraph) { }
60 typedef typename DGR::Node Node;
61 typedef typename DGR::Arc Arc;
63 void first(Node& i) const { _digraph->first(i); }
64 void first(Arc& i) const { _digraph->first(i); }
65 void firstIn(Arc& i, const Node& n) const { _digraph->firstIn(i, n); }
66 void firstOut(Arc& i, const Node& n ) const { _digraph->firstOut(i, n); }
68 void next(Node& i) const { _digraph->next(i); }
69 void next(Arc& i) const { _digraph->next(i); }
70 void nextIn(Arc& i) const { _digraph->nextIn(i); }
71 void nextOut(Arc& i) const { _digraph->nextOut(i); }
73 Node source(const Arc& a) const { return _digraph->source(a); }
74 Node target(const Arc& a) const { return _digraph->target(a); }
76 typedef NodeNumTagIndicator<DGR> NodeNumTag;
77 int nodeNum() const { return _digraph->nodeNum(); }
79 typedef ArcNumTagIndicator<DGR> ArcNumTag;
80 int arcNum() const { return _digraph->arcNum(); }
82 typedef FindArcTagIndicator<DGR> FindArcTag;
83 Arc findArc(const Node& u, const Node& v, const Arc& prev = INVALID) const {
84 return _digraph->findArc(u, v, prev);
87 Node addNode() { return _digraph->addNode(); }
88 Arc addArc(const Node& u, const Node& v) { return _digraph->addArc(u, v); }
90 void erase(const Node& n) { _digraph->erase(n); }
91 void erase(const Arc& a) { _digraph->erase(a); }
93 void clear() { _digraph->clear(); }
95 int id(const Node& n) const { return _digraph->id(n); }
96 int id(const Arc& a) const { return _digraph->id(a); }
98 Node nodeFromId(int ix) const { return _digraph->nodeFromId(ix); }
99 Arc arcFromId(int ix) const { return _digraph->arcFromId(ix); }
101 int maxNodeId() const { return _digraph->maxNodeId(); }
102 int maxArcId() const { return _digraph->maxArcId(); }
104 typedef typename ItemSetTraits<DGR, Node>::ItemNotifier NodeNotifier;
105 NodeNotifier& notifier(Node) const { return _digraph->notifier(Node()); }
107 typedef typename ItemSetTraits<DGR, Arc>::ItemNotifier ArcNotifier;
108 ArcNotifier& notifier(Arc) const { return _digraph->notifier(Arc()); }
110 template <typename V>
111 class NodeMap : public DGR::template NodeMap<V> {
114 typedef typename DGR::template NodeMap<V> Parent;
116 explicit NodeMap(const Adaptor& adaptor)
117 : Parent(*adaptor._digraph) {}
119 NodeMap(const Adaptor& adaptor, const V& value)
120 : Parent(*adaptor._digraph, value) { }
123 NodeMap& operator=(const NodeMap& cmap) {
124 return operator=<NodeMap>(cmap);
127 template <typename CMap>
128 NodeMap& operator=(const CMap& cmap) {
129 Parent::operator=(cmap);
135 template <typename V>
136 class ArcMap : public DGR::template ArcMap<V> {
139 typedef typename DGR::template ArcMap<V> Parent;
141 explicit ArcMap(const DigraphAdaptorBase<DGR>& adaptor)
142 : Parent(*adaptor._digraph) {}
144 ArcMap(const DigraphAdaptorBase<DGR>& adaptor, const V& value)
145 : Parent(*adaptor._digraph, value) {}
148 ArcMap& operator=(const ArcMap& cmap) {
149 return operator=<ArcMap>(cmap);
152 template <typename CMap>
153 ArcMap& operator=(const CMap& cmap) {
154 Parent::operator=(cmap);
162 template<typename GR>
163 class GraphAdaptorBase {
170 GraphAdaptorBase() : _graph(0) {}
172 void initialize(GR& graph) { _graph = &graph; }
175 GraphAdaptorBase(GR& graph) : _graph(&graph) {}
177 typedef typename GR::Node Node;
178 typedef typename GR::Arc Arc;
179 typedef typename GR::Edge Edge;
181 void first(Node& i) const { _graph->first(i); }
182 void first(Arc& i) const { _graph->first(i); }
183 void first(Edge& i) const { _graph->first(i); }
184 void firstIn(Arc& i, const Node& n) const { _graph->firstIn(i, n); }
185 void firstOut(Arc& i, const Node& n ) const { _graph->firstOut(i, n); }
186 void firstInc(Edge &i, bool &d, const Node &n) const {
187 _graph->firstInc(i, d, n);
190 void next(Node& i) const { _graph->next(i); }
191 void next(Arc& i) const { _graph->next(i); }
192 void next(Edge& i) const { _graph->next(i); }
193 void nextIn(Arc& i) const { _graph->nextIn(i); }
194 void nextOut(Arc& i) const { _graph->nextOut(i); }
195 void nextInc(Edge &i, bool &d) const { _graph->nextInc(i, d); }
197 Node u(const Edge& e) const { return _graph->u(e); }
198 Node v(const Edge& e) const { return _graph->v(e); }
200 Node source(const Arc& a) const { return _graph->source(a); }
201 Node target(const Arc& a) const { return _graph->target(a); }
203 typedef NodeNumTagIndicator<Graph> NodeNumTag;
204 int nodeNum() const { return _graph->nodeNum(); }
206 typedef ArcNumTagIndicator<Graph> ArcNumTag;
207 int arcNum() const { return _graph->arcNum(); }
209 typedef EdgeNumTagIndicator<Graph> EdgeNumTag;
210 int edgeNum() const { return _graph->edgeNum(); }
212 typedef FindArcTagIndicator<Graph> FindArcTag;
213 Arc findArc(const Node& u, const Node& v,
214 const Arc& prev = INVALID) const {
215 return _graph->findArc(u, v, prev);
218 typedef FindEdgeTagIndicator<Graph> FindEdgeTag;
219 Edge findEdge(const Node& u, const Node& v,
220 const Edge& prev = INVALID) const {
221 return _graph->findEdge(u, v, prev);
224 Node addNode() { return _graph->addNode(); }
225 Edge addEdge(const Node& u, const Node& v) { return _graph->addEdge(u, v); }
227 void erase(const Node& i) { _graph->erase(i); }
228 void erase(const Edge& i) { _graph->erase(i); }
230 void clear() { _graph->clear(); }
232 bool direction(const Arc& a) const { return _graph->direction(a); }
233 Arc direct(const Edge& e, bool d) const { return _graph->direct(e, d); }
235 int id(const Node& v) const { return _graph->id(v); }
236 int id(const Arc& a) const { return _graph->id(a); }
237 int id(const Edge& e) const { return _graph->id(e); }
239 Node nodeFromId(int ix) const { return _graph->nodeFromId(ix); }
240 Arc arcFromId(int ix) const { return _graph->arcFromId(ix); }
241 Edge edgeFromId(int ix) const { return _graph->edgeFromId(ix); }
243 int maxNodeId() const { return _graph->maxNodeId(); }
244 int maxArcId() const { return _graph->maxArcId(); }
245 int maxEdgeId() const { return _graph->maxEdgeId(); }
247 typedef typename ItemSetTraits<GR, Node>::ItemNotifier NodeNotifier;
248 NodeNotifier& notifier(Node) const { return _graph->notifier(Node()); }
250 typedef typename ItemSetTraits<GR, Arc>::ItemNotifier ArcNotifier;
251 ArcNotifier& notifier(Arc) const { return _graph->notifier(Arc()); }
253 typedef typename ItemSetTraits<GR, Edge>::ItemNotifier EdgeNotifier;
254 EdgeNotifier& notifier(Edge) const { return _graph->notifier(Edge()); }
256 template <typename V>
257 class NodeMap : public GR::template NodeMap<V> {
259 typedef typename GR::template NodeMap<V> Parent;
260 explicit NodeMap(const GraphAdaptorBase<GR>& adapter)
261 : Parent(*adapter._graph) {}
262 NodeMap(const GraphAdaptorBase<GR>& adapter, const V& value)
263 : Parent(*adapter._graph, value) {}
266 NodeMap& operator=(const NodeMap& cmap) {
267 return operator=<NodeMap>(cmap);
270 template <typename CMap>
271 NodeMap& operator=(const CMap& cmap) {
272 Parent::operator=(cmap);
278 template <typename V>
279 class ArcMap : public GR::template ArcMap<V> {
281 typedef typename GR::template ArcMap<V> Parent;
282 explicit ArcMap(const GraphAdaptorBase<GR>& adapter)
283 : Parent(*adapter._graph) {}
284 ArcMap(const GraphAdaptorBase<GR>& adapter, const V& value)
285 : Parent(*adapter._graph, value) {}
288 ArcMap& operator=(const ArcMap& cmap) {
289 return operator=<ArcMap>(cmap);
292 template <typename CMap>
293 ArcMap& operator=(const CMap& cmap) {
294 Parent::operator=(cmap);
299 template <typename V>
300 class EdgeMap : public GR::template EdgeMap<V> {
302 typedef typename GR::template EdgeMap<V> Parent;
303 explicit EdgeMap(const GraphAdaptorBase<GR>& adapter)
304 : Parent(*adapter._graph) {}
305 EdgeMap(const GraphAdaptorBase<GR>& adapter, const V& value)
306 : Parent(*adapter._graph, value) {}
309 EdgeMap& operator=(const EdgeMap& cmap) {
310 return operator=<EdgeMap>(cmap);
313 template <typename CMap>
314 EdgeMap& operator=(const CMap& cmap) {
315 Parent::operator=(cmap);
322 template <typename DGR>
323 class ReverseDigraphBase : public DigraphAdaptorBase<DGR> {
326 typedef DigraphAdaptorBase<DGR> Parent;
328 ReverseDigraphBase() : Parent() { }
330 typedef typename Parent::Node Node;
331 typedef typename Parent::Arc Arc;
333 void firstIn(Arc& a, const Node& n) const { Parent::firstOut(a, n); }
334 void firstOut(Arc& a, const Node& n ) const { Parent::firstIn(a, n); }
336 void nextIn(Arc& a) const { Parent::nextOut(a); }
337 void nextOut(Arc& a) const { Parent::nextIn(a); }
339 Node source(const Arc& a) const { return Parent::target(a); }
340 Node target(const Arc& a) const { return Parent::source(a); }
342 Arc addArc(const Node& u, const Node& v) { return Parent::addArc(v, u); }
344 typedef FindArcTagIndicator<DGR> FindArcTag;
345 Arc findArc(const Node& u, const Node& v,
346 const Arc& prev = INVALID) const {
347 return Parent::findArc(v, u, prev);
352 /// \ingroup graph_adaptors
354 /// \brief Adaptor class for reversing the orientation of the arcs in
357 /// ReverseDigraph can be used for reversing the arcs in a digraph.
358 /// It conforms to the \ref concepts::Digraph "Digraph" concept.
360 /// The adapted digraph can also be modified through this adaptor
361 /// by adding or removing nodes or arcs, unless the \c GR template
362 /// parameter is set to be \c const.
364 /// \tparam DGR The type of the adapted digraph.
365 /// It must conform to the \ref concepts::Digraph "Digraph" concept.
366 /// It can also be specified to be \c const.
368 /// \note The \c Node and \c Arc types of this adaptor and the adapted
369 /// digraph are convertible to each other.
370 template<typename DGR>
372 class ReverseDigraph {
374 class ReverseDigraph :
375 public DigraphAdaptorExtender<ReverseDigraphBase<DGR> > {
378 /// The type of the adapted digraph.
380 typedef DigraphAdaptorExtender<ReverseDigraphBase<DGR> > Parent;
385 /// \brief Constructor
387 /// Creates a reverse digraph adaptor for the given digraph.
388 explicit ReverseDigraph(DGR& digraph) {
389 Parent::initialize(digraph);
393 /// \brief Returns a read-only ReverseDigraph adaptor
395 /// This function just returns a read-only \ref ReverseDigraph adaptor.
396 /// \ingroup graph_adaptors
397 /// \relates ReverseDigraph
398 template<typename DGR>
399 ReverseDigraph<const DGR> reverseDigraph(const DGR& digraph) {
400 return ReverseDigraph<const DGR>(digraph);
404 template <typename DGR, typename NF, typename AF, bool ch = true>
405 class SubDigraphBase : public DigraphAdaptorBase<DGR> {
408 typedef NF NodeFilterMap;
409 typedef AF ArcFilterMap;
411 typedef SubDigraphBase Adaptor;
412 typedef DigraphAdaptorBase<DGR> Parent;
417 : Parent(), _node_filter(0), _arc_filter(0) { }
419 void initialize(DGR& digraph, NF& node_filter, AF& arc_filter) {
420 Parent::initialize(digraph);
421 _node_filter = &node_filter;
422 _arc_filter = &arc_filter;
427 typedef typename Parent::Node Node;
428 typedef typename Parent::Arc Arc;
430 void first(Node& i) const {
432 while (i != INVALID && !(*_node_filter)[i]) Parent::next(i);
435 void first(Arc& i) const {
437 while (i != INVALID && (!(*_arc_filter)[i]
438 || !(*_node_filter)[Parent::source(i)]
439 || !(*_node_filter)[Parent::target(i)]))
443 void firstIn(Arc& i, const Node& n) const {
444 Parent::firstIn(i, n);
445 while (i != INVALID && (!(*_arc_filter)[i]
446 || !(*_node_filter)[Parent::source(i)]))
450 void firstOut(Arc& i, const Node& n) const {
451 Parent::firstOut(i, n);
452 while (i != INVALID && (!(*_arc_filter)[i]
453 || !(*_node_filter)[Parent::target(i)]))
457 void next(Node& i) const {
459 while (i != INVALID && !(*_node_filter)[i]) Parent::next(i);
462 void next(Arc& i) const {
464 while (i != INVALID && (!(*_arc_filter)[i]
465 || !(*_node_filter)[Parent::source(i)]
466 || !(*_node_filter)[Parent::target(i)]))
470 void nextIn(Arc& i) const {
472 while (i != INVALID && (!(*_arc_filter)[i]
473 || !(*_node_filter)[Parent::source(i)]))
477 void nextOut(Arc& i) const {
479 while (i != INVALID && (!(*_arc_filter)[i]
480 || !(*_node_filter)[Parent::target(i)]))
484 void status(const Node& n, bool v) const { _node_filter->set(n, v); }
485 void status(const Arc& a, bool v) const { _arc_filter->set(a, v); }
487 bool status(const Node& n) const { return (*_node_filter)[n]; }
488 bool status(const Arc& a) const { return (*_arc_filter)[a]; }
490 typedef False NodeNumTag;
491 typedef False ArcNumTag;
493 typedef FindArcTagIndicator<DGR> FindArcTag;
494 Arc findArc(const Node& source, const Node& target,
495 const Arc& prev = INVALID) const {
496 if (!(*_node_filter)[source] || !(*_node_filter)[target]) {
499 Arc arc = Parent::findArc(source, target, prev);
500 while (arc != INVALID && !(*_arc_filter)[arc]) {
501 arc = Parent::findArc(source, target, arc);
508 template <typename V>
510 : public SubMapExtender<SubDigraphBase<DGR, NF, AF, ch>,
511 LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, NodeMap<V>)> {
514 typedef SubMapExtender<SubDigraphBase<DGR, NF, AF, ch>,
515 LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, NodeMap<V>)> Parent;
517 NodeMap(const SubDigraphBase<DGR, NF, AF, ch>& adaptor)
519 NodeMap(const SubDigraphBase<DGR, NF, AF, ch>& adaptor, const V& value)
520 : Parent(adaptor, value) {}
523 NodeMap& operator=(const NodeMap& cmap) {
524 return operator=<NodeMap>(cmap);
527 template <typename CMap>
528 NodeMap& operator=(const CMap& cmap) {
529 Parent::operator=(cmap);
534 template <typename V>
536 : public SubMapExtender<SubDigraphBase<DGR, NF, AF, ch>,
537 LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, ArcMap<V>)> {
540 typedef SubMapExtender<SubDigraphBase<DGR, NF, AF, ch>,
541 LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, ArcMap<V>)> Parent;
543 ArcMap(const SubDigraphBase<DGR, NF, AF, ch>& adaptor)
545 ArcMap(const SubDigraphBase<DGR, NF, AF, ch>& adaptor, const V& value)
546 : Parent(adaptor, value) {}
549 ArcMap& operator=(const ArcMap& cmap) {
550 return operator=<ArcMap>(cmap);
553 template <typename CMap>
554 ArcMap& operator=(const CMap& cmap) {
555 Parent::operator=(cmap);
562 template <typename DGR, typename NF, typename AF>
563 class SubDigraphBase<DGR, NF, AF, false>
564 : public DigraphAdaptorBase<DGR> {
567 typedef NF NodeFilterMap;
568 typedef AF ArcFilterMap;
570 typedef SubDigraphBase Adaptor;
571 typedef DigraphAdaptorBase<Digraph> Parent;
576 : Parent(), _node_filter(0), _arc_filter(0) { }
578 void initialize(DGR& digraph, NF& node_filter, AF& arc_filter) {
579 Parent::initialize(digraph);
580 _node_filter = &node_filter;
581 _arc_filter = &arc_filter;
586 typedef typename Parent::Node Node;
587 typedef typename Parent::Arc Arc;
589 void first(Node& i) const {
591 while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i);
594 void first(Arc& i) const {
596 while (i!=INVALID && !(*_arc_filter)[i]) Parent::next(i);
599 void firstIn(Arc& i, const Node& n) const {
600 Parent::firstIn(i, n);
601 while (i!=INVALID && !(*_arc_filter)[i]) Parent::nextIn(i);
604 void firstOut(Arc& i, const Node& n) const {
605 Parent::firstOut(i, n);
606 while (i!=INVALID && !(*_arc_filter)[i]) Parent::nextOut(i);
609 void next(Node& i) const {
611 while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i);
613 void next(Arc& i) const {
615 while (i!=INVALID && !(*_arc_filter)[i]) Parent::next(i);
617 void nextIn(Arc& i) const {
619 while (i!=INVALID && !(*_arc_filter)[i]) Parent::nextIn(i);
622 void nextOut(Arc& i) const {
624 while (i!=INVALID && !(*_arc_filter)[i]) Parent::nextOut(i);
627 void status(const Node& n, bool v) const { _node_filter->set(n, v); }
628 void status(const Arc& a, bool v) const { _arc_filter->set(a, v); }
630 bool status(const Node& n) const { return (*_node_filter)[n]; }
631 bool status(const Arc& a) const { return (*_arc_filter)[a]; }
633 typedef False NodeNumTag;
634 typedef False ArcNumTag;
636 typedef FindArcTagIndicator<DGR> FindArcTag;
637 Arc findArc(const Node& source, const Node& target,
638 const Arc& prev = INVALID) const {
639 if (!(*_node_filter)[source] || !(*_node_filter)[target]) {
642 Arc arc = Parent::findArc(source, target, prev);
643 while (arc != INVALID && !(*_arc_filter)[arc]) {
644 arc = Parent::findArc(source, target, arc);
649 template <typename V>
651 : public SubMapExtender<SubDigraphBase<DGR, NF, AF, false>,
652 LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, NodeMap<V>)> {
655 typedef SubMapExtender<SubDigraphBase<DGR, NF, AF, false>,
656 LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, NodeMap<V>)> Parent;
658 NodeMap(const SubDigraphBase<DGR, NF, AF, false>& adaptor)
660 NodeMap(const SubDigraphBase<DGR, NF, AF, false>& adaptor, const V& value)
661 : Parent(adaptor, value) {}
664 NodeMap& operator=(const NodeMap& cmap) {
665 return operator=<NodeMap>(cmap);
668 template <typename CMap>
669 NodeMap& operator=(const CMap& cmap) {
670 Parent::operator=(cmap);
675 template <typename V>
677 : public SubMapExtender<SubDigraphBase<DGR, NF, AF, false>,
678 LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, ArcMap<V>)> {
681 typedef SubMapExtender<SubDigraphBase<DGR, NF, AF, false>,
682 LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, ArcMap<V>)> Parent;
684 ArcMap(const SubDigraphBase<DGR, NF, AF, false>& adaptor)
686 ArcMap(const SubDigraphBase<DGR, NF, AF, false>& adaptor, const V& value)
687 : Parent(adaptor, value) {}
690 ArcMap& operator=(const ArcMap& cmap) {
691 return operator=<ArcMap>(cmap);
694 template <typename CMap>
695 ArcMap& operator=(const CMap& cmap) {
696 Parent::operator=(cmap);
703 /// \ingroup graph_adaptors
705 /// \brief Adaptor class for hiding nodes and arcs in a digraph
707 /// SubDigraph can be used for hiding nodes and arcs in a digraph.
708 /// A \c bool node map and a \c bool arc map must be specified, which
709 /// define the filters for nodes and arcs.
710 /// Only the nodes and arcs with \c true filter value are
711 /// shown in the subdigraph. The arcs that are incident to hidden
712 /// nodes are also filtered out.
713 /// This adaptor conforms to the \ref concepts::Digraph "Digraph" concept.
715 /// The adapted digraph can also be modified through this adaptor
716 /// by adding or removing nodes or arcs, unless the \c GR template
717 /// parameter is set to be \c const.
719 /// \tparam DGR The type of the adapted digraph.
720 /// It must conform to the \ref concepts::Digraph "Digraph" concept.
721 /// It can also be specified to be \c const.
722 /// \tparam NF The type of the node filter map.
723 /// It must be a \c bool (or convertible) node map of the
724 /// adapted digraph. The default type is
725 /// \ref concepts::Digraph::NodeMap "DGR::NodeMap<bool>".
726 /// \tparam AF The type of the arc filter map.
727 /// It must be \c bool (or convertible) arc map of the
728 /// adapted digraph. The default type is
729 /// \ref concepts::Digraph::ArcMap "DGR::ArcMap<bool>".
731 /// \note The \c Node and \c Arc types of this adaptor and the adapted
732 /// digraph are convertible to each other.
737 template<typename DGR, typename NF, typename AF>
740 template<typename DGR,
741 typename NF = typename DGR::template NodeMap<bool>,
742 typename AF = typename DGR::template ArcMap<bool> >
744 public DigraphAdaptorExtender<SubDigraphBase<DGR, NF, AF, true> > {
747 /// The type of the adapted digraph.
749 /// The type of the node filter map.
750 typedef NF NodeFilterMap;
751 /// The type of the arc filter map.
752 typedef AF ArcFilterMap;
754 typedef DigraphAdaptorExtender<SubDigraphBase<DGR, NF, AF, true> >
757 typedef typename Parent::Node Node;
758 typedef typename Parent::Arc Arc;
764 /// \brief Constructor
766 /// Creates a subdigraph for the given digraph with the
767 /// given node and arc filter maps.
768 SubDigraph(DGR& digraph, NF& node_filter, AF& arc_filter) {
769 Parent::initialize(digraph, node_filter, arc_filter);
772 /// \brief Sets the status of the given node
774 /// This function sets the status of the given node.
775 /// It is done by simply setting the assigned value of \c n
776 /// to \c v in the node filter map.
777 void status(const Node& n, bool v) const { Parent::status(n, v); }
779 /// \brief Sets the status of the given arc
781 /// This function sets the status of the given arc.
782 /// It is done by simply setting the assigned value of \c a
783 /// to \c v in the arc filter map.
784 void status(const Arc& a, bool v) const { Parent::status(a, v); }
786 /// \brief Returns the status of the given node
788 /// This function returns the status of the given node.
789 /// It is \c true if the given node is enabled (i.e. not hidden).
790 bool status(const Node& n) const { return Parent::status(n); }
792 /// \brief Returns the status of the given arc
794 /// This function returns the status of the given arc.
795 /// It is \c true if the given arc is enabled (i.e. not hidden).
796 bool status(const Arc& a) const { return Parent::status(a); }
798 /// \brief Disables the given node
800 /// This function disables the given node in the subdigraph,
801 /// so the iteration jumps over it.
802 /// It is the same as \ref status() "status(n, false)".
803 void disable(const Node& n) const { Parent::status(n, false); }
805 /// \brief Disables the given arc
807 /// This function disables the given arc in the subdigraph,
808 /// so the iteration jumps over it.
809 /// It is the same as \ref status() "status(a, false)".
810 void disable(const Arc& a) const { Parent::status(a, false); }
812 /// \brief Enables the given node
814 /// This function enables the given node in the subdigraph.
815 /// It is the same as \ref status() "status(n, true)".
816 void enable(const Node& n) const { Parent::status(n, true); }
818 /// \brief Enables the given arc
820 /// This function enables the given arc in the subdigraph.
821 /// It is the same as \ref status() "status(a, true)".
822 void enable(const Arc& a) const { Parent::status(a, true); }
826 /// \brief Returns a read-only SubDigraph adaptor
828 /// This function just returns a read-only \ref SubDigraph adaptor.
829 /// \ingroup graph_adaptors
830 /// \relates SubDigraph
831 template<typename DGR, typename NF, typename AF>
832 SubDigraph<const DGR, NF, AF>
833 subDigraph(const DGR& digraph,
834 NF& node_filter, AF& arc_filter) {
835 return SubDigraph<const DGR, NF, AF>
836 (digraph, node_filter, arc_filter);
839 template<typename DGR, typename NF, typename AF>
840 SubDigraph<const DGR, const NF, AF>
841 subDigraph(const DGR& digraph,
842 const NF& node_filter, AF& arc_filter) {
843 return SubDigraph<const DGR, const NF, AF>
844 (digraph, node_filter, arc_filter);
847 template<typename DGR, typename NF, typename AF>
848 SubDigraph<const DGR, NF, const AF>
849 subDigraph(const DGR& digraph,
850 NF& node_filter, const AF& arc_filter) {
851 return SubDigraph<const DGR, NF, const AF>
852 (digraph, node_filter, arc_filter);
855 template<typename DGR, typename NF, typename AF>
856 SubDigraph<const DGR, const NF, const AF>
857 subDigraph(const DGR& digraph,
858 const NF& node_filter, const AF& arc_filter) {
859 return SubDigraph<const DGR, const NF, const AF>
860 (digraph, node_filter, arc_filter);
864 template <typename GR, typename NF, typename EF, bool ch = true>
865 class SubGraphBase : public GraphAdaptorBase<GR> {
868 typedef NF NodeFilterMap;
869 typedef EF EdgeFilterMap;
871 typedef SubGraphBase Adaptor;
872 typedef GraphAdaptorBase<GR> Parent;
879 : Parent(), _node_filter(0), _edge_filter(0) { }
881 void initialize(GR& graph, NF& node_filter, EF& edge_filter) {
882 Parent::initialize(graph);
883 _node_filter = &node_filter;
884 _edge_filter = &edge_filter;
889 typedef typename Parent::Node Node;
890 typedef typename Parent::Arc Arc;
891 typedef typename Parent::Edge Edge;
893 void first(Node& i) const {
895 while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i);
898 void first(Arc& i) const {
900 while (i!=INVALID && (!(*_edge_filter)[i]
901 || !(*_node_filter)[Parent::source(i)]
902 || !(*_node_filter)[Parent::target(i)]))
906 void first(Edge& i) const {
908 while (i!=INVALID && (!(*_edge_filter)[i]
909 || !(*_node_filter)[Parent::u(i)]
910 || !(*_node_filter)[Parent::v(i)]))
914 void firstIn(Arc& i, const Node& n) const {
915 Parent::firstIn(i, n);
916 while (i!=INVALID && (!(*_edge_filter)[i]
917 || !(*_node_filter)[Parent::source(i)]))
921 void firstOut(Arc& i, const Node& n) const {
922 Parent::firstOut(i, n);
923 while (i!=INVALID && (!(*_edge_filter)[i]
924 || !(*_node_filter)[Parent::target(i)]))
928 void firstInc(Edge& i, bool& d, const Node& n) const {
929 Parent::firstInc(i, d, n);
930 while (i!=INVALID && (!(*_edge_filter)[i]
931 || !(*_node_filter)[Parent::u(i)]
932 || !(*_node_filter)[Parent::v(i)]))
933 Parent::nextInc(i, d);
936 void next(Node& i) const {
938 while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i);
941 void next(Arc& i) const {
943 while (i!=INVALID && (!(*_edge_filter)[i]
944 || !(*_node_filter)[Parent::source(i)]
945 || !(*_node_filter)[Parent::target(i)]))
949 void next(Edge& i) const {
951 while (i!=INVALID && (!(*_edge_filter)[i]
952 || !(*_node_filter)[Parent::u(i)]
953 || !(*_node_filter)[Parent::v(i)]))
957 void nextIn(Arc& i) const {
959 while (i!=INVALID && (!(*_edge_filter)[i]
960 || !(*_node_filter)[Parent::source(i)]))
964 void nextOut(Arc& i) const {
966 while (i!=INVALID && (!(*_edge_filter)[i]
967 || !(*_node_filter)[Parent::target(i)]))
971 void nextInc(Edge& i, bool& d) const {
972 Parent::nextInc(i, d);
973 while (i!=INVALID && (!(*_edge_filter)[i]
974 || !(*_node_filter)[Parent::u(i)]
975 || !(*_node_filter)[Parent::v(i)]))
976 Parent::nextInc(i, d);
979 void status(const Node& n, bool v) const { _node_filter->set(n, v); }
980 void status(const Edge& e, bool v) const { _edge_filter->set(e, v); }
982 bool status(const Node& n) const { return (*_node_filter)[n]; }
983 bool status(const Edge& e) const { return (*_edge_filter)[e]; }
985 typedef False NodeNumTag;
986 typedef False ArcNumTag;
987 typedef False EdgeNumTag;
989 typedef FindArcTagIndicator<Graph> FindArcTag;
990 Arc findArc(const Node& u, const Node& v,
991 const Arc& prev = INVALID) const {
992 if (!(*_node_filter)[u] || !(*_node_filter)[v]) {
995 Arc arc = Parent::findArc(u, v, prev);
996 while (arc != INVALID && !(*_edge_filter)[arc]) {
997 arc = Parent::findArc(u, v, arc);
1002 typedef FindEdgeTagIndicator<Graph> FindEdgeTag;
1003 Edge findEdge(const Node& u, const Node& v,
1004 const Edge& prev = INVALID) const {
1005 if (!(*_node_filter)[u] || !(*_node_filter)[v]) {
1008 Edge edge = Parent::findEdge(u, v, prev);
1009 while (edge != INVALID && !(*_edge_filter)[edge]) {
1010 edge = Parent::findEdge(u, v, edge);
1015 template <typename V>
1017 : public SubMapExtender<SubGraphBase<GR, NF, EF, ch>,
1018 LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, NodeMap<V>)> {
1021 typedef SubMapExtender<SubGraphBase<GR, NF, EF, ch>,
1022 LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, NodeMap<V>)> Parent;
1024 NodeMap(const SubGraphBase<GR, NF, EF, ch>& adaptor)
1025 : Parent(adaptor) {}
1026 NodeMap(const SubGraphBase<GR, NF, EF, ch>& adaptor, const V& value)
1027 : Parent(adaptor, value) {}
1030 NodeMap& operator=(const NodeMap& cmap) {
1031 return operator=<NodeMap>(cmap);
1034 template <typename CMap>
1035 NodeMap& operator=(const CMap& cmap) {
1036 Parent::operator=(cmap);
1041 template <typename V>
1043 : public SubMapExtender<SubGraphBase<GR, NF, EF, ch>,
1044 LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, ArcMap<V>)> {
1047 typedef SubMapExtender<SubGraphBase<GR, NF, EF, ch>,
1048 LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, ArcMap<V>)> Parent;
1050 ArcMap(const SubGraphBase<GR, NF, EF, ch>& adaptor)
1051 : Parent(adaptor) {}
1052 ArcMap(const SubGraphBase<GR, NF, EF, ch>& adaptor, const V& value)
1053 : Parent(adaptor, value) {}
1056 ArcMap& operator=(const ArcMap& cmap) {
1057 return operator=<ArcMap>(cmap);
1060 template <typename CMap>
1061 ArcMap& operator=(const CMap& cmap) {
1062 Parent::operator=(cmap);
1067 template <typename V>
1069 : public SubMapExtender<SubGraphBase<GR, NF, EF, ch>,
1070 LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, EdgeMap<V>)> {
1073 typedef SubMapExtender<SubGraphBase<GR, NF, EF, ch>,
1074 LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, EdgeMap<V>)> Parent;
1076 EdgeMap(const SubGraphBase<GR, NF, EF, ch>& adaptor)
1077 : Parent(adaptor) {}
1079 EdgeMap(const SubGraphBase<GR, NF, EF, ch>& adaptor, const V& value)
1080 : Parent(adaptor, value) {}
1083 EdgeMap& operator=(const EdgeMap& cmap) {
1084 return operator=<EdgeMap>(cmap);
1087 template <typename CMap>
1088 EdgeMap& operator=(const CMap& cmap) {
1089 Parent::operator=(cmap);
1096 template <typename GR, typename NF, typename EF>
1097 class SubGraphBase<GR, NF, EF, false>
1098 : public GraphAdaptorBase<GR> {
1101 typedef NF NodeFilterMap;
1102 typedef EF EdgeFilterMap;
1104 typedef SubGraphBase Adaptor;
1105 typedef GraphAdaptorBase<GR> Parent;
1110 : Parent(), _node_filter(0), _edge_filter(0) { }
1112 void initialize(GR& graph, NF& node_filter, EF& edge_filter) {
1113 Parent::initialize(graph);
1114 _node_filter = &node_filter;
1115 _edge_filter = &edge_filter;
1120 typedef typename Parent::Node Node;
1121 typedef typename Parent::Arc Arc;
1122 typedef typename Parent::Edge Edge;
1124 void first(Node& i) const {
1126 while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i);
1129 void first(Arc& i) const {
1131 while (i!=INVALID && !(*_edge_filter)[i]) Parent::next(i);
1134 void first(Edge& i) const {
1136 while (i!=INVALID && !(*_edge_filter)[i]) Parent::next(i);
1139 void firstIn(Arc& i, const Node& n) const {
1140 Parent::firstIn(i, n);
1141 while (i!=INVALID && !(*_edge_filter)[i]) Parent::nextIn(i);
1144 void firstOut(Arc& i, const Node& n) const {
1145 Parent::firstOut(i, n);
1146 while (i!=INVALID && !(*_edge_filter)[i]) Parent::nextOut(i);
1149 void firstInc(Edge& i, bool& d, const Node& n) const {
1150 Parent::firstInc(i, d, n);
1151 while (i!=INVALID && !(*_edge_filter)[i]) Parent::nextInc(i, d);
1154 void next(Node& i) const {
1156 while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i);
1158 void next(Arc& i) const {
1160 while (i!=INVALID && !(*_edge_filter)[i]) Parent::next(i);
1162 void next(Edge& i) const {
1164 while (i!=INVALID && !(*_edge_filter)[i]) Parent::next(i);
1166 void nextIn(Arc& i) const {
1168 while (i!=INVALID && !(*_edge_filter)[i]) Parent::nextIn(i);
1171 void nextOut(Arc& i) const {
1173 while (i!=INVALID && !(*_edge_filter)[i]) Parent::nextOut(i);
1175 void nextInc(Edge& i, bool& d) const {
1176 Parent::nextInc(i, d);
1177 while (i!=INVALID && !(*_edge_filter)[i]) Parent::nextInc(i, d);
1180 void status(const Node& n, bool v) const { _node_filter->set(n, v); }
1181 void status(const Edge& e, bool v) const { _edge_filter->set(e, v); }
1183 bool status(const Node& n) const { return (*_node_filter)[n]; }
1184 bool status(const Edge& e) const { return (*_edge_filter)[e]; }
1186 typedef False NodeNumTag;
1187 typedef False ArcNumTag;
1188 typedef False EdgeNumTag;
1190 typedef FindArcTagIndicator<Graph> FindArcTag;
1191 Arc findArc(const Node& u, const Node& v,
1192 const Arc& prev = INVALID) const {
1193 Arc arc = Parent::findArc(u, v, prev);
1194 while (arc != INVALID && !(*_edge_filter)[arc]) {
1195 arc = Parent::findArc(u, v, arc);
1200 typedef FindEdgeTagIndicator<Graph> FindEdgeTag;
1201 Edge findEdge(const Node& u, const Node& v,
1202 const Edge& prev = INVALID) const {
1203 Edge edge = Parent::findEdge(u, v, prev);
1204 while (edge != INVALID && !(*_edge_filter)[edge]) {
1205 edge = Parent::findEdge(u, v, edge);
1210 template <typename V>
1212 : public SubMapExtender<SubGraphBase<GR, NF, EF, false>,
1213 LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, NodeMap<V>)> {
1216 typedef SubMapExtender<SubGraphBase<GR, NF, EF, false>,
1217 LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, NodeMap<V>)> Parent;
1219 NodeMap(const SubGraphBase<GR, NF, EF, false>& adaptor)
1220 : Parent(adaptor) {}
1221 NodeMap(const SubGraphBase<GR, NF, EF, false>& adaptor, const V& value)
1222 : Parent(adaptor, value) {}
1225 NodeMap& operator=(const NodeMap& cmap) {
1226 return operator=<NodeMap>(cmap);
1229 template <typename CMap>
1230 NodeMap& operator=(const CMap& cmap) {
1231 Parent::operator=(cmap);
1236 template <typename V>
1238 : public SubMapExtender<SubGraphBase<GR, NF, EF, false>,
1239 LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, ArcMap<V>)> {
1242 typedef SubMapExtender<SubGraphBase<GR, NF, EF, false>,
1243 LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, ArcMap<V>)> Parent;
1245 ArcMap(const SubGraphBase<GR, NF, EF, false>& adaptor)
1246 : Parent(adaptor) {}
1247 ArcMap(const SubGraphBase<GR, NF, EF, false>& adaptor, const V& value)
1248 : Parent(adaptor, value) {}
1251 ArcMap& operator=(const ArcMap& cmap) {
1252 return operator=<ArcMap>(cmap);
1255 template <typename CMap>
1256 ArcMap& operator=(const CMap& cmap) {
1257 Parent::operator=(cmap);
1262 template <typename V>
1264 : public SubMapExtender<SubGraphBase<GR, NF, EF, false>,
1265 LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, EdgeMap<V>)> {
1268 typedef SubMapExtender<SubGraphBase<GR, NF, EF, false>,
1269 LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, EdgeMap<V>)> Parent;
1271 EdgeMap(const SubGraphBase<GR, NF, EF, false>& adaptor)
1272 : Parent(adaptor) {}
1274 EdgeMap(const SubGraphBase<GR, NF, EF, false>& adaptor, const V& value)
1275 : Parent(adaptor, value) {}
1278 EdgeMap& operator=(const EdgeMap& cmap) {
1279 return operator=<EdgeMap>(cmap);
1282 template <typename CMap>
1283 EdgeMap& operator=(const CMap& cmap) {
1284 Parent::operator=(cmap);
1291 /// \ingroup graph_adaptors
1293 /// \brief Adaptor class for hiding nodes and edges in an undirected
1296 /// SubGraph can be used for hiding nodes and edges in a graph.
1297 /// A \c bool node map and a \c bool edge map must be specified, which
1298 /// define the filters for nodes and edges.
1299 /// Only the nodes and edges with \c true filter value are
1300 /// shown in the subgraph. The edges that are incident to hidden
1301 /// nodes are also filtered out.
1302 /// This adaptor conforms to the \ref concepts::Graph "Graph" concept.
1304 /// The adapted graph can also be modified through this adaptor
1305 /// by adding or removing nodes or edges, unless the \c GR template
1306 /// parameter is set to be \c const.
1308 /// \tparam GR The type of the adapted graph.
1309 /// It must conform to the \ref concepts::Graph "Graph" concept.
1310 /// It can also be specified to be \c const.
1311 /// \tparam NF The type of the node filter map.
1312 /// It must be a \c bool (or convertible) node map of the
1313 /// adapted graph. The default type is
1314 /// \ref concepts::Graph::NodeMap "GR::NodeMap<bool>".
1315 /// \tparam EF The type of the edge filter map.
1316 /// It must be a \c bool (or convertible) edge map of the
1317 /// adapted graph. The default type is
1318 /// \ref concepts::Graph::EdgeMap "GR::EdgeMap<bool>".
1320 /// \note The \c Node, \c Edge and \c Arc types of this adaptor and the
1321 /// adapted graph are convertible to each other.
1323 /// \see FilterNodes
1324 /// \see FilterEdges
1326 template<typename GR, typename NF, typename EF>
1329 template<typename GR,
1330 typename NF = typename GR::template NodeMap<bool>,
1331 typename EF = typename GR::template EdgeMap<bool> >
1333 public GraphAdaptorExtender<SubGraphBase<GR, NF, EF, true> > {
1336 /// The type of the adapted graph.
1338 /// The type of the node filter map.
1339 typedef NF NodeFilterMap;
1340 /// The type of the edge filter map.
1341 typedef EF EdgeFilterMap;
1343 typedef GraphAdaptorExtender<SubGraphBase<GR, NF, EF, true> >
1346 typedef typename Parent::Node Node;
1347 typedef typename Parent::Edge Edge;
1353 /// \brief Constructor
1355 /// Creates a subgraph for the given graph with the given node
1356 /// and edge filter maps.
1357 SubGraph(GR& graph, NF& node_filter, EF& edge_filter) {
1358 initialize(graph, node_filter, edge_filter);
1361 /// \brief Sets the status of the given node
1363 /// This function sets the status of the given node.
1364 /// It is done by simply setting the assigned value of \c n
1365 /// to \c v in the node filter map.
1366 void status(const Node& n, bool v) const { Parent::status(n, v); }
1368 /// \brief Sets the status of the given edge
1370 /// This function sets the status of the given edge.
1371 /// It is done by simply setting the assigned value of \c e
1372 /// to \c v in the edge filter map.
1373 void status(const Edge& e, bool v) const { Parent::status(e, v); }
1375 /// \brief Returns the status of the given node
1377 /// This function returns the status of the given node.
1378 /// It is \c true if the given node is enabled (i.e. not hidden).
1379 bool status(const Node& n) const { return Parent::status(n); }
1381 /// \brief Returns the status of the given edge
1383 /// This function returns the status of the given edge.
1384 /// It is \c true if the given edge is enabled (i.e. not hidden).
1385 bool status(const Edge& e) const { return Parent::status(e); }
1387 /// \brief Disables the given node
1389 /// This function disables the given node in the subdigraph,
1390 /// so the iteration jumps over it.
1391 /// It is the same as \ref status() "status(n, false)".
1392 void disable(const Node& n) const { Parent::status(n, false); }
1394 /// \brief Disables the given edge
1396 /// This function disables the given edge in the subgraph,
1397 /// so the iteration jumps over it.
1398 /// It is the same as \ref status() "status(e, false)".
1399 void disable(const Edge& e) const { Parent::status(e, false); }
1401 /// \brief Enables the given node
1403 /// This function enables the given node in the subdigraph.
1404 /// It is the same as \ref status() "status(n, true)".
1405 void enable(const Node& n) const { Parent::status(n, true); }
1407 /// \brief Enables the given edge
1409 /// This function enables the given edge in the subgraph.
1410 /// It is the same as \ref status() "status(e, true)".
1411 void enable(const Edge& e) const { Parent::status(e, true); }
1415 /// \brief Returns a read-only SubGraph adaptor
1417 /// This function just returns a read-only \ref SubGraph adaptor.
1418 /// \ingroup graph_adaptors
1419 /// \relates SubGraph
1420 template<typename GR, typename NF, typename EF>
1421 SubGraph<const GR, NF, EF>
1422 subGraph(const GR& graph, NF& node_filter, EF& edge_filter) {
1423 return SubGraph<const GR, NF, EF>
1424 (graph, node_filter, edge_filter);
1427 template<typename GR, typename NF, typename EF>
1428 SubGraph<const GR, const NF, EF>
1429 subGraph(const GR& graph, const NF& node_filter, EF& edge_filter) {
1430 return SubGraph<const GR, const NF, EF>
1431 (graph, node_filter, edge_filter);
1434 template<typename GR, typename NF, typename EF>
1435 SubGraph<const GR, NF, const EF>
1436 subGraph(const GR& graph, NF& node_filter, const EF& edge_filter) {
1437 return SubGraph<const GR, NF, const EF>
1438 (graph, node_filter, edge_filter);
1441 template<typename GR, typename NF, typename EF>
1442 SubGraph<const GR, const NF, const EF>
1443 subGraph(const GR& graph, const NF& node_filter, const EF& edge_filter) {
1444 return SubGraph<const GR, const NF, const EF>
1445 (graph, node_filter, edge_filter);
1449 /// \ingroup graph_adaptors
1451 /// \brief Adaptor class for hiding nodes in a digraph or a graph.
1453 /// FilterNodes adaptor can be used for hiding nodes in a digraph or a
1454 /// graph. A \c bool node map must be specified, which defines the filter
1455 /// for the nodes. Only the nodes with \c true filter value and the
1456 /// arcs/edges incident to nodes both with \c true filter value are shown
1457 /// in the subgraph. This adaptor conforms to the \ref concepts::Digraph
1458 /// "Digraph" concept or the \ref concepts::Graph "Graph" concept
1459 /// depending on the \c GR template parameter.
1461 /// The adapted (di)graph can also be modified through this adaptor
1462 /// by adding or removing nodes or arcs/edges, unless the \c GR template
1463 /// parameter is set to be \c const.
1465 /// \tparam GR The type of the adapted digraph or graph.
1466 /// It must conform to the \ref concepts::Digraph "Digraph" concept
1467 /// or the \ref concepts::Graph "Graph" concept.
1468 /// It can also be specified to be \c const.
1469 /// \tparam NF The type of the node filter map.
1470 /// It must be a \c bool (or convertible) node map of the
1471 /// adapted (di)graph. The default type is
1472 /// \ref concepts::Graph::NodeMap "GR::NodeMap<bool>".
1474 /// \note The \c Node and <tt>Arc/Edge</tt> types of this adaptor and the
1475 /// adapted (di)graph are convertible to each other.
1477 template<typename GR, typename NF>
1480 template<typename GR,
1481 typename NF = typename GR::template NodeMap<bool>,
1482 typename Enable = void>
1484 public DigraphAdaptorExtender<
1485 SubDigraphBase<GR, NF, ConstMap<typename GR::Arc, Const<bool, true> >,
1491 typedef NF NodeFilterMap;
1493 typedef DigraphAdaptorExtender<
1494 SubDigraphBase<GR, NF, ConstMap<typename GR::Arc, Const<bool, true> >,
1497 typedef typename Parent::Node Node;
1500 ConstMap<typename Digraph::Arc, Const<bool, true> > const_true_map;
1502 FilterNodes() : const_true_map() {}
1506 /// \brief Constructor
1508 /// Creates a subgraph for the given digraph or graph with the
1509 /// given node filter map.
1510 FilterNodes(GR& graph, NF& node_filter)
1511 : Parent(), const_true_map()
1513 Parent::initialize(graph, node_filter, const_true_map);
1516 /// \brief Sets the status of the given node
1518 /// This function sets the status of the given node.
1519 /// It is done by simply setting the assigned value of \c n
1520 /// to \c v in the node filter map.
1521 void status(const Node& n, bool v) const { Parent::status(n, v); }
1523 /// \brief Returns the status of the given node
1525 /// This function returns the status of the given node.
1526 /// It is \c true if the given node is enabled (i.e. not hidden).
1527 bool status(const Node& n) const { return Parent::status(n); }
1529 /// \brief Disables the given node
1531 /// This function disables the given node, so the iteration
1533 /// It is the same as \ref status() "status(n, false)".
1534 void disable(const Node& n) const { Parent::status(n, false); }
1536 /// \brief Enables the given node
1538 /// This function enables the given node.
1539 /// It is the same as \ref status() "status(n, true)".
1540 void enable(const Node& n) const { Parent::status(n, true); }
1544 template<typename GR, typename NF>
1545 class FilterNodes<GR, NF,
1546 typename enable_if<UndirectedTagIndicator<GR> >::type> :
1547 public GraphAdaptorExtender<
1548 SubGraphBase<GR, NF, ConstMap<typename GR::Edge, Const<bool, true> >,
1553 typedef NF NodeFilterMap;
1554 typedef GraphAdaptorExtender<
1555 SubGraphBase<GR, NF, ConstMap<typename GR::Edge, Const<bool, true> >,
1558 typedef typename Parent::Node Node;
1560 ConstMap<typename GR::Edge, Const<bool, true> > const_true_map;
1562 FilterNodes() : const_true_map() {}
1566 FilterNodes(GR& graph, NodeFilterMap& node_filter) :
1567 Parent(), const_true_map() {
1568 Parent::initialize(graph, node_filter, const_true_map);
1571 void status(const Node& n, bool v) const { Parent::status(n, v); }
1572 bool status(const Node& n) const { return Parent::status(n); }
1573 void disable(const Node& n) const { Parent::status(n, false); }
1574 void enable(const Node& n) const { Parent::status(n, true); }
1579 /// \brief Returns a read-only FilterNodes adaptor
1581 /// This function just returns a read-only \ref FilterNodes adaptor.
1582 /// \ingroup graph_adaptors
1583 /// \relates FilterNodes
1584 template<typename GR, typename NF>
1585 FilterNodes<const GR, NF>
1586 filterNodes(const GR& graph, NF& node_filter) {
1587 return FilterNodes<const GR, NF>(graph, node_filter);
1590 template<typename GR, typename NF>
1591 FilterNodes<const GR, const NF>
1592 filterNodes(const GR& graph, const NF& node_filter) {
1593 return FilterNodes<const GR, const NF>(graph, node_filter);
1596 /// \ingroup graph_adaptors
1598 /// \brief Adaptor class for hiding arcs in a digraph.
1600 /// FilterArcs adaptor can be used for hiding arcs in a digraph.
1601 /// A \c bool arc map must be specified, which defines the filter for
1602 /// the arcs. Only the arcs with \c true filter value are shown in the
1603 /// subdigraph. This adaptor conforms to the \ref concepts::Digraph
1604 /// "Digraph" concept.
1606 /// The adapted digraph can also be modified through this adaptor
1607 /// by adding or removing nodes or arcs, unless the \c GR template
1608 /// parameter is set to be \c const.
1610 /// \tparam DGR The type of the adapted digraph.
1611 /// It must conform to the \ref concepts::Digraph "Digraph" concept.
1612 /// It can also be specified to be \c const.
1613 /// \tparam AF The type of the arc filter map.
1614 /// It must be a \c bool (or convertible) arc map of the
1615 /// adapted digraph. The default type is
1616 /// \ref concepts::Digraph::ArcMap "DGR::ArcMap<bool>".
1618 /// \note The \c Node and \c Arc types of this adaptor and the adapted
1619 /// digraph are convertible to each other.
1621 template<typename DGR,
1625 template<typename DGR,
1626 typename AF = typename DGR::template ArcMap<bool> >
1628 public DigraphAdaptorExtender<
1629 SubDigraphBase<DGR, ConstMap<typename DGR::Node, Const<bool, true> >,
1633 /// The type of the adapted digraph.
1634 typedef DGR Digraph;
1635 /// The type of the arc filter map.
1636 typedef AF ArcFilterMap;
1638 typedef DigraphAdaptorExtender<
1639 SubDigraphBase<DGR, ConstMap<typename DGR::Node, Const<bool, true> >,
1640 AF, false> > Parent;
1642 typedef typename Parent::Arc Arc;
1645 ConstMap<typename DGR::Node, Const<bool, true> > const_true_map;
1647 FilterArcs() : const_true_map() {}
1651 /// \brief Constructor
1653 /// Creates a subdigraph for the given digraph with the given arc
1655 FilterArcs(DGR& digraph, ArcFilterMap& arc_filter)
1656 : Parent(), const_true_map() {
1657 Parent::initialize(digraph, const_true_map, arc_filter);
1660 /// \brief Sets the status of the given arc
1662 /// This function sets the status of the given arc.
1663 /// It is done by simply setting the assigned value of \c a
1664 /// to \c v in the arc filter map.
1665 void status(const Arc& a, bool v) const { Parent::status(a, v); }
1667 /// \brief Returns the status of the given arc
1669 /// This function returns the status of the given arc.
1670 /// It is \c true if the given arc is enabled (i.e. not hidden).
1671 bool status(const Arc& a) const { return Parent::status(a); }
1673 /// \brief Disables the given arc
1675 /// This function disables the given arc in the subdigraph,
1676 /// so the iteration jumps over it.
1677 /// It is the same as \ref status() "status(a, false)".
1678 void disable(const Arc& a) const { Parent::status(a, false); }
1680 /// \brief Enables the given arc
1682 /// This function enables the given arc in the subdigraph.
1683 /// It is the same as \ref status() "status(a, true)".
1684 void enable(const Arc& a) const { Parent::status(a, true); }
1688 /// \brief Returns a read-only FilterArcs adaptor
1690 /// This function just returns a read-only \ref FilterArcs adaptor.
1691 /// \ingroup graph_adaptors
1692 /// \relates FilterArcs
1693 template<typename DGR, typename AF>
1694 FilterArcs<const DGR, AF>
1695 filterArcs(const DGR& digraph, AF& arc_filter) {
1696 return FilterArcs<const DGR, AF>(digraph, arc_filter);
1699 template<typename DGR, typename AF>
1700 FilterArcs<const DGR, const AF>
1701 filterArcs(const DGR& digraph, const AF& arc_filter) {
1702 return FilterArcs<const DGR, const AF>(digraph, arc_filter);
1705 /// \ingroup graph_adaptors
1707 /// \brief Adaptor class for hiding edges in a graph.
1709 /// FilterEdges adaptor can be used for hiding edges in a graph.
1710 /// A \c bool edge map must be specified, which defines the filter for
1711 /// the edges. Only the edges with \c true filter value are shown in the
1712 /// subgraph. This adaptor conforms to the \ref concepts::Graph
1713 /// "Graph" concept.
1715 /// The adapted graph can also be modified through this adaptor
1716 /// by adding or removing nodes or edges, unless the \c GR template
1717 /// parameter is set to be \c const.
1719 /// \tparam GR The type of the adapted graph.
1720 /// It must conform to the \ref concepts::Graph "Graph" concept.
1721 /// It can also be specified to be \c const.
1722 /// \tparam EF The type of the edge filter map.
1723 /// It must be a \c bool (or convertible) edge map of the
1724 /// adapted graph. The default type is
1725 /// \ref concepts::Graph::EdgeMap "GR::EdgeMap<bool>".
1727 /// \note The \c Node, \c Edge and \c Arc types of this adaptor and the
1728 /// adapted graph are convertible to each other.
1730 template<typename GR,
1734 template<typename GR,
1735 typename EF = typename GR::template EdgeMap<bool> >
1737 public GraphAdaptorExtender<
1738 SubGraphBase<GR, ConstMap<typename GR::Node, Const<bool, true> >,
1742 /// The type of the adapted graph.
1744 /// The type of the edge filter map.
1745 typedef EF EdgeFilterMap;
1747 typedef GraphAdaptorExtender<
1748 SubGraphBase<GR, ConstMap<typename GR::Node, Const<bool, true > >,
1749 EF, false> > Parent;
1751 typedef typename Parent::Edge Edge;
1754 ConstMap<typename GR::Node, Const<bool, true> > const_true_map;
1756 FilterEdges() : const_true_map(true) {
1757 Parent::setNodeFilterMap(const_true_map);
1762 /// \brief Constructor
1764 /// Creates a subgraph for the given graph with the given edge
1766 FilterEdges(GR& graph, EF& edge_filter)
1767 : Parent(), const_true_map() {
1768 Parent::initialize(graph, const_true_map, edge_filter);
1771 /// \brief Sets the status of the given edge
1773 /// This function sets the status of the given edge.
1774 /// It is done by simply setting the assigned value of \c e
1775 /// to \c v in the edge filter map.
1776 void status(const Edge& e, bool v) const { Parent::status(e, v); }
1778 /// \brief Returns the status of the given edge
1780 /// This function returns the status of the given edge.
1781 /// It is \c true if the given edge is enabled (i.e. not hidden).
1782 bool status(const Edge& e) const { return Parent::status(e); }
1784 /// \brief Disables the given edge
1786 /// This function disables the given edge in the subgraph,
1787 /// so the iteration jumps over it.
1788 /// It is the same as \ref status() "status(e, false)".
1789 void disable(const Edge& e) const { Parent::status(e, false); }
1791 /// \brief Enables the given edge
1793 /// This function enables the given edge in the subgraph.
1794 /// It is the same as \ref status() "status(e, true)".
1795 void enable(const Edge& e) const { Parent::status(e, true); }
1799 /// \brief Returns a read-only FilterEdges adaptor
1801 /// This function just returns a read-only \ref FilterEdges adaptor.
1802 /// \ingroup graph_adaptors
1803 /// \relates FilterEdges
1804 template<typename GR, typename EF>
1805 FilterEdges<const GR, EF>
1806 filterEdges(const GR& graph, EF& edge_filter) {
1807 return FilterEdges<const GR, EF>(graph, edge_filter);
1810 template<typename GR, typename EF>
1811 FilterEdges<const GR, const EF>
1812 filterEdges(const GR& graph, const EF& edge_filter) {
1813 return FilterEdges<const GR, const EF>(graph, edge_filter);
1817 template <typename DGR>
1818 class UndirectorBase {
1820 typedef DGR Digraph;
1821 typedef UndirectorBase Adaptor;
1823 typedef True UndirectedTag;
1825 typedef typename Digraph::Arc Edge;
1826 typedef typename Digraph::Node Node;
1828 class Arc : public Edge {
1829 friend class UndirectorBase;
1833 Arc(const Edge& edge, bool forward) :
1834 Edge(edge), _forward(forward) {}
1839 Arc(Invalid) : Edge(INVALID), _forward(true) {}
1841 bool operator==(const Arc &other) const {
1842 return _forward == other._forward &&
1843 static_cast<const Edge&>(*this) == static_cast<const Edge&>(other);
1845 bool operator!=(const Arc &other) const {
1846 return _forward != other._forward ||
1847 static_cast<const Edge&>(*this) != static_cast<const Edge&>(other);
1849 bool operator<(const Arc &other) const {
1850 return _forward < other._forward ||
1851 (_forward == other._forward &&
1852 static_cast<const Edge&>(*this) < static_cast<const Edge&>(other));
1856 void first(Node& n) const {
1860 void next(Node& n) const {
1864 void first(Arc& a) const {
1869 void next(Arc& a) const {
1878 void first(Edge& e) const {
1882 void next(Edge& e) const {
1886 void firstOut(Arc& a, const Node& n) const {
1887 _digraph->firstIn(a, n);
1888 if( static_cast<const Edge&>(a) != INVALID ) {
1891 _digraph->firstOut(a, n);
1895 void nextOut(Arc &a) const {
1897 Node n = _digraph->target(a);
1898 _digraph->nextIn(a);
1899 if (static_cast<const Edge&>(a) == INVALID ) {
1900 _digraph->firstOut(a, n);
1905 _digraph->nextOut(a);
1909 void firstIn(Arc &a, const Node &n) const {
1910 _digraph->firstOut(a, n);
1911 if (static_cast<const Edge&>(a) != INVALID ) {
1914 _digraph->firstIn(a, n);
1918 void nextIn(Arc &a) const {
1920 Node n = _digraph->source(a);
1921 _digraph->nextOut(a);
1922 if( static_cast<const Edge&>(a) == INVALID ) {
1923 _digraph->firstIn(a, n);
1928 _digraph->nextIn(a);
1932 void firstInc(Edge &e, bool &d, const Node &n) const {
1934 _digraph->firstOut(e, n);
1935 if (e != INVALID) return;
1937 _digraph->firstIn(e, n);
1940 void nextInc(Edge &e, bool &d) const {
1942 Node s = _digraph->source(e);
1943 _digraph->nextOut(e);
1944 if (e != INVALID) return;
1946 _digraph->firstIn(e, s);
1948 _digraph->nextIn(e);
1952 Node u(const Edge& e) const {
1953 return _digraph->source(e);
1956 Node v(const Edge& e) const {
1957 return _digraph->target(e);
1960 Node source(const Arc &a) const {
1961 return a._forward ? _digraph->source(a) : _digraph->target(a);
1964 Node target(const Arc &a) const {
1965 return a._forward ? _digraph->target(a) : _digraph->source(a);
1968 static Arc direct(const Edge &e, bool d) {
1971 Arc direct(const Edge &e, const Node& n) const {
1972 return Arc(e, _digraph->source(e) == n);
1975 static bool direction(const Arc &a) { return a._forward; }
1977 Node nodeFromId(int ix) const { return _digraph->nodeFromId(ix); }
1978 Arc arcFromId(int ix) const {
1979 return direct(_digraph->arcFromId(ix >> 1), bool(ix & 1));
1981 Edge edgeFromId(int ix) const { return _digraph->arcFromId(ix); }
1983 int id(const Node &n) const { return _digraph->id(n); }
1984 int id(const Arc &a) const {
1985 return (_digraph->id(a) << 1) | (a._forward ? 1 : 0);
1987 int id(const Edge &e) const { return _digraph->id(e); }
1989 int maxNodeId() const { return _digraph->maxNodeId(); }
1990 int maxArcId() const { return (_digraph->maxArcId() << 1) | 1; }
1991 int maxEdgeId() const { return _digraph->maxArcId(); }
1993 Node addNode() { return _digraph->addNode(); }
1994 Edge addEdge(const Node& u, const Node& v) {
1995 return _digraph->addArc(u, v);
1998 void erase(const Node& i) { _digraph->erase(i); }
1999 void erase(const Edge& i) { _digraph->erase(i); }
2001 void clear() { _digraph->clear(); }
2003 typedef NodeNumTagIndicator<Digraph> NodeNumTag;
2004 int nodeNum() const { return _digraph->nodeNum(); }
2006 typedef ArcNumTagIndicator<Digraph> ArcNumTag;
2007 int arcNum() const { return 2 * _digraph->arcNum(); }
2009 typedef ArcNumTag EdgeNumTag;
2010 int edgeNum() const { return _digraph->arcNum(); }
2012 typedef FindArcTagIndicator<Digraph> FindArcTag;
2013 Arc findArc(Node s, Node t, Arc p = INVALID) const {
2015 Edge arc = _digraph->findArc(s, t);
2016 if (arc != INVALID) return direct(arc, true);
2017 arc = _digraph->findArc(t, s);
2018 if (arc != INVALID) return direct(arc, false);
2019 } else if (direction(p)) {
2020 Edge arc = _digraph->findArc(s, t, p);
2021 if (arc != INVALID) return direct(arc, true);
2022 arc = _digraph->findArc(t, s);
2023 if (arc != INVALID) return direct(arc, false);
2025 Edge arc = _digraph->findArc(t, s, p);
2026 if (arc != INVALID) return direct(arc, false);
2031 typedef FindArcTag FindEdgeTag;
2032 Edge findEdge(Node s, Node t, Edge p = INVALID) const {
2035 Edge arc = _digraph->findArc(s, t);
2036 if (arc != INVALID) return arc;
2037 arc = _digraph->findArc(t, s);
2038 if (arc != INVALID) return arc;
2039 } else if (_digraph->source(p) == s) {
2040 Edge arc = _digraph->findArc(s, t, p);
2041 if (arc != INVALID) return arc;
2042 arc = _digraph->findArc(t, s);
2043 if (arc != INVALID) return arc;
2045 Edge arc = _digraph->findArc(t, s, p);
2046 if (arc != INVALID) return arc;
2049 return _digraph->findArc(s, t, p);
2056 template <typename V>
2060 typedef typename DGR::template ArcMap<V> MapImpl;
2064 typedef typename MapTraits<MapImpl>::ReferenceMapTag ReferenceMapTag;
2068 typedef typename MapTraits<MapImpl>::ConstReturnValue ConstReturnValue;
2069 typedef typename MapTraits<MapImpl>::ReturnValue ReturnValue;
2070 typedef typename MapTraits<MapImpl>::ConstReturnValue ConstReference;
2071 typedef typename MapTraits<MapImpl>::ReturnValue Reference;
2073 ArcMapBase(const UndirectorBase<DGR>& adaptor) :
2074 _forward(*adaptor._digraph), _backward(*adaptor._digraph) {}
2076 ArcMapBase(const UndirectorBase<DGR>& adaptor, const V& value)
2077 : _forward(*adaptor._digraph, value),
2078 _backward(*adaptor._digraph, value) {}
2080 void set(const Arc& a, const V& value) {
2082 _forward.set(a, value);
2084 _backward.set(a, value);
2088 ConstReturnValue operator[](const Arc& a) const {
2092 return _backward[a];
2096 ReturnValue operator[](const Arc& a) {
2100 return _backward[a];
2106 MapImpl _forward, _backward;
2112 template <typename V>
2113 class NodeMap : public DGR::template NodeMap<V> {
2117 typedef typename DGR::template NodeMap<Value> Parent;
2119 explicit NodeMap(const UndirectorBase<DGR>& adaptor)
2120 : Parent(*adaptor._digraph) {}
2122 NodeMap(const UndirectorBase<DGR>& adaptor, const V& value)
2123 : Parent(*adaptor._digraph, value) { }
2126 NodeMap& operator=(const NodeMap& cmap) {
2127 return operator=<NodeMap>(cmap);
2130 template <typename CMap>
2131 NodeMap& operator=(const CMap& cmap) {
2132 Parent::operator=(cmap);
2138 template <typename V>
2140 : public SubMapExtender<UndirectorBase<DGR>, ArcMapBase<V> >
2144 typedef SubMapExtender<Adaptor, ArcMapBase<V> > Parent;
2146 explicit ArcMap(const UndirectorBase<DGR>& adaptor)
2147 : Parent(adaptor) {}
2149 ArcMap(const UndirectorBase<DGR>& adaptor, const V& value)
2150 : Parent(adaptor, value) {}
2153 ArcMap& operator=(const ArcMap& cmap) {
2154 return operator=<ArcMap>(cmap);
2157 template <typename CMap>
2158 ArcMap& operator=(const CMap& cmap) {
2159 Parent::operator=(cmap);
2164 template <typename V>
2165 class EdgeMap : public Digraph::template ArcMap<V> {
2169 typedef typename Digraph::template ArcMap<V> Parent;
2171 explicit EdgeMap(const UndirectorBase<DGR>& adaptor)
2172 : Parent(*adaptor._digraph) {}
2174 EdgeMap(const UndirectorBase<DGR>& adaptor, const V& value)
2175 : Parent(*adaptor._digraph, value) {}
2178 EdgeMap& operator=(const EdgeMap& cmap) {
2179 return operator=<EdgeMap>(cmap);
2182 template <typename CMap>
2183 EdgeMap& operator=(const CMap& cmap) {
2184 Parent::operator=(cmap);
2190 typedef typename ItemSetTraits<DGR, Node>::ItemNotifier NodeNotifier;
2191 NodeNotifier& notifier(Node) const { return _digraph->notifier(Node()); }
2193 typedef typename ItemSetTraits<DGR, Edge>::ItemNotifier EdgeNotifier;
2194 EdgeNotifier& notifier(Edge) const { return _digraph->notifier(Edge()); }
2198 UndirectorBase() : _digraph(0) {}
2202 void initialize(DGR& digraph) {
2203 _digraph = &digraph;
2208 /// \ingroup graph_adaptors
2210 /// \brief Adaptor class for viewing a digraph as an undirected graph.
2212 /// Undirector adaptor can be used for viewing a digraph as an undirected
2213 /// graph. All arcs of the underlying digraph are showed in the
2214 /// adaptor as an edge (and also as a pair of arcs, of course).
2215 /// This adaptor conforms to the \ref concepts::Graph "Graph" concept.
2217 /// The adapted digraph can also be modified through this adaptor
2218 /// by adding or removing nodes or edges, unless the \c GR template
2219 /// parameter is set to be \c const.
2221 /// \tparam DGR The type of the adapted digraph.
2222 /// It must conform to the \ref concepts::Digraph "Digraph" concept.
2223 /// It can also be specified to be \c const.
2225 /// \note The \c Node type of this adaptor and the adapted digraph are
2226 /// convertible to each other, moreover the \c Edge type of the adaptor
2227 /// and the \c Arc type of the adapted digraph are also convertible to
2229 /// (Thus the \c Arc type of the adaptor is convertible to the \c Arc type
2230 /// of the adapted digraph.)
2231 template<typename DGR>
2236 public GraphAdaptorExtender<UndirectorBase<DGR> > {
2239 /// The type of the adapted digraph.
2240 typedef DGR Digraph;
2241 typedef GraphAdaptorExtender<UndirectorBase<DGR> > Parent;
2246 /// \brief Constructor
2248 /// Creates an undirected graph from the given digraph.
2249 Undirector(DGR& digraph) {
2250 initialize(digraph);
2253 /// \brief Arc map combined from two original arc maps
2255 /// This map adaptor class adapts two arc maps of the underlying
2256 /// digraph to get an arc map of the undirected graph.
2257 /// Its value type is inherited from the first arc map type
2258 /// (\c %ForwardMap).
2259 template <typename ForwardMap, typename BackwardMap>
2260 class CombinedArcMap {
2263 /// The key type of the map
2264 typedef typename Parent::Arc Key;
2265 /// The value type of the map
2266 typedef typename ForwardMap::Value Value;
2268 typedef typename MapTraits<ForwardMap>::ReferenceMapTag ReferenceMapTag;
2270 typedef typename MapTraits<ForwardMap>::ReturnValue ReturnValue;
2271 typedef typename MapTraits<ForwardMap>::ConstReturnValue ConstReturnValue;
2272 typedef typename MapTraits<ForwardMap>::ReturnValue Reference;
2273 typedef typename MapTraits<ForwardMap>::ConstReturnValue ConstReference;
2276 CombinedArcMap(ForwardMap& forward, BackwardMap& backward)
2277 : _forward(&forward), _backward(&backward) {}
2279 /// Sets the value associated with the given key.
2280 void set(const Key& e, const Value& a) {
2281 if (Parent::direction(e)) {
2282 _forward->set(e, a);
2284 _backward->set(e, a);
2288 /// Returns the value associated with the given key.
2289 ConstReturnValue operator[](const Key& e) const {
2290 if (Parent::direction(e)) {
2291 return (*_forward)[e];
2293 return (*_backward)[e];
2297 /// Returns a reference to the value associated with the given key.
2298 ReturnValue operator[](const Key& e) {
2299 if (Parent::direction(e)) {
2300 return (*_forward)[e];
2302 return (*_backward)[e];
2308 ForwardMap* _forward;
2309 BackwardMap* _backward;
2313 /// \brief Returns a combined arc map
2315 /// This function just returns a combined arc map.
2316 template <typename ForwardMap, typename BackwardMap>
2317 static CombinedArcMap<ForwardMap, BackwardMap>
2318 combinedArcMap(ForwardMap& forward, BackwardMap& backward) {
2319 return CombinedArcMap<ForwardMap, BackwardMap>(forward, backward);
2322 template <typename ForwardMap, typename BackwardMap>
2323 static CombinedArcMap<const ForwardMap, BackwardMap>
2324 combinedArcMap(const ForwardMap& forward, BackwardMap& backward) {
2325 return CombinedArcMap<const ForwardMap,
2326 BackwardMap>(forward, backward);
2329 template <typename ForwardMap, typename BackwardMap>
2330 static CombinedArcMap<ForwardMap, const BackwardMap>
2331 combinedArcMap(ForwardMap& forward, const BackwardMap& backward) {
2332 return CombinedArcMap<ForwardMap,
2333 const BackwardMap>(forward, backward);
2336 template <typename ForwardMap, typename BackwardMap>
2337 static CombinedArcMap<const ForwardMap, const BackwardMap>
2338 combinedArcMap(const ForwardMap& forward, const BackwardMap& backward) {
2339 return CombinedArcMap<const ForwardMap,
2340 const BackwardMap>(forward, backward);
2345 /// \brief Returns a read-only Undirector adaptor
2347 /// This function just returns a read-only \ref Undirector adaptor.
2348 /// \ingroup graph_adaptors
2349 /// \relates Undirector
2350 template<typename DGR>
2351 Undirector<const DGR> undirector(const DGR& digraph) {
2352 return Undirector<const DGR>(digraph);
2356 template <typename GR, typename DM>
2357 class OrienterBase {
2361 typedef DM DirectionMap;
2363 typedef typename GR::Node Node;
2364 typedef typename GR::Edge Arc;
2366 void reverseArc(const Arc& arc) {
2367 _direction->set(arc, !(*_direction)[arc]);
2370 void first(Node& i) const { _graph->first(i); }
2371 void first(Arc& i) const { _graph->first(i); }
2372 void firstIn(Arc& i, const Node& n) const {
2374 _graph->firstInc(i, d, n);
2375 while (i != INVALID && d == (*_direction)[i]) _graph->nextInc(i, d);
2377 void firstOut(Arc& i, const Node& n ) const {
2379 _graph->firstInc(i, d, n);
2380 while (i != INVALID && d != (*_direction)[i]) _graph->nextInc(i, d);
2383 void next(Node& i) const { _graph->next(i); }
2384 void next(Arc& i) const { _graph->next(i); }
2385 void nextIn(Arc& i) const {
2386 bool d = !(*_direction)[i];
2387 _graph->nextInc(i, d);
2388 while (i != INVALID && d == (*_direction)[i]) _graph->nextInc(i, d);
2390 void nextOut(Arc& i) const {
2391 bool d = (*_direction)[i];
2392 _graph->nextInc(i, d);
2393 while (i != INVALID && d != (*_direction)[i]) _graph->nextInc(i, d);
2396 Node source(const Arc& e) const {
2397 return (*_direction)[e] ? _graph->u(e) : _graph->v(e);
2399 Node target(const Arc& e) const {
2400 return (*_direction)[e] ? _graph->v(e) : _graph->u(e);
2403 typedef NodeNumTagIndicator<Graph> NodeNumTag;
2404 int nodeNum() const { return _graph->nodeNum(); }
2406 typedef EdgeNumTagIndicator<Graph> ArcNumTag;
2407 int arcNum() const { return _graph->edgeNum(); }
2409 typedef FindEdgeTagIndicator<Graph> FindArcTag;
2410 Arc findArc(const Node& u, const Node& v,
2411 const Arc& prev = INVALID) const {
2412 Arc arc = _graph->findEdge(u, v, prev);
2413 while (arc != INVALID && source(arc) != u) {
2414 arc = _graph->findEdge(u, v, arc);
2420 return Node(_graph->addNode());
2423 Arc addArc(const Node& u, const Node& v) {
2424 Arc arc = _graph->addEdge(u, v);
2425 _direction->set(arc, _graph->u(arc) == u);
2429 void erase(const Node& i) { _graph->erase(i); }
2430 void erase(const Arc& i) { _graph->erase(i); }
2432 void clear() { _graph->clear(); }
2434 int id(const Node& v) const { return _graph->id(v); }
2435 int id(const Arc& e) const { return _graph->id(e); }
2437 Node nodeFromId(int idx) const { return _graph->nodeFromId(idx); }
2438 Arc arcFromId(int idx) const { return _graph->edgeFromId(idx); }
2440 int maxNodeId() const { return _graph->maxNodeId(); }
2441 int maxArcId() const { return _graph->maxEdgeId(); }
2443 typedef typename ItemSetTraits<GR, Node>::ItemNotifier NodeNotifier;
2444 NodeNotifier& notifier(Node) const { return _graph->notifier(Node()); }
2446 typedef typename ItemSetTraits<GR, Arc>::ItemNotifier ArcNotifier;
2447 ArcNotifier& notifier(Arc) const { return _graph->notifier(Arc()); }
2449 template <typename V>
2450 class NodeMap : public GR::template NodeMap<V> {
2453 typedef typename GR::template NodeMap<V> Parent;
2455 explicit NodeMap(const OrienterBase<GR, DM>& adapter)
2456 : Parent(*adapter._graph) {}
2458 NodeMap(const OrienterBase<GR, DM>& adapter, const V& value)
2459 : Parent(*adapter._graph, value) {}
2462 NodeMap& operator=(const NodeMap& cmap) {
2463 return operator=<NodeMap>(cmap);
2466 template <typename CMap>
2467 NodeMap& operator=(const CMap& cmap) {
2468 Parent::operator=(cmap);
2474 template <typename V>
2475 class ArcMap : public GR::template EdgeMap<V> {
2478 typedef typename Graph::template EdgeMap<V> Parent;
2480 explicit ArcMap(const OrienterBase<GR, DM>& adapter)
2481 : Parent(*adapter._graph) { }
2483 ArcMap(const OrienterBase<GR, DM>& adapter, const V& value)
2484 : Parent(*adapter._graph, value) { }
2487 ArcMap& operator=(const ArcMap& cmap) {
2488 return operator=<ArcMap>(cmap);
2491 template <typename CMap>
2492 ArcMap& operator=(const CMap& cmap) {
2493 Parent::operator=(cmap);
2504 void initialize(GR& graph, DM& direction) {
2506 _direction = &direction;
2511 /// \ingroup graph_adaptors
2513 /// \brief Adaptor class for orienting the edges of a graph to get a digraph
2515 /// Orienter adaptor can be used for orienting the edges of a graph to
2516 /// get a digraph. A \c bool edge map of the underlying graph must be
2517 /// specified, which define the direction of the arcs in the adaptor.
2518 /// The arcs can be easily reversed by the \c reverseArc() member function
2520 /// This class conforms to the \ref concepts::Digraph "Digraph" concept.
2522 /// The adapted graph can also be modified through this adaptor
2523 /// by adding or removing nodes or arcs, unless the \c GR template
2524 /// parameter is set to be \c const.
2526 /// \tparam GR The type of the adapted graph.
2527 /// It must conform to the \ref concepts::Graph "Graph" concept.
2528 /// It can also be specified to be \c const.
2529 /// \tparam DM The type of the direction map.
2530 /// It must be a \c bool (or convertible) edge map of the
2531 /// adapted graph. The default type is
2532 /// \ref concepts::Graph::EdgeMap "GR::EdgeMap<bool>".
2534 /// \note The \c Node type of this adaptor and the adapted graph are
2535 /// convertible to each other, moreover the \c Arc type of the adaptor
2536 /// and the \c Edge type of the adapted graph are also convertible to
2539 template<typename GR,
2543 template<typename GR,
2544 typename DM = typename GR::template EdgeMap<bool> >
2546 public DigraphAdaptorExtender<OrienterBase<GR, DM> > {
2550 /// The type of the adapted graph.
2552 /// The type of the direction edge map.
2553 typedef DM DirectionMap;
2555 typedef DigraphAdaptorExtender<OrienterBase<GR, DM> > Parent;
2556 typedef typename Parent::Arc Arc;
2561 /// \brief Constructor
2563 /// Constructor of the adaptor.
2564 Orienter(GR& graph, DM& direction) {
2565 Parent::initialize(graph, direction);
2568 /// \brief Reverses the given arc
2570 /// This function reverses the given arc.
2571 /// It is done by simply negate the assigned value of \c a
2572 /// in the direction map.
2573 void reverseArc(const Arc& a) {
2574 Parent::reverseArc(a);
2578 /// \brief Returns a read-only Orienter adaptor
2580 /// This function just returns a read-only \ref Orienter adaptor.
2581 /// \ingroup graph_adaptors
2582 /// \relates Orienter
2583 template<typename GR, typename DM>
2584 Orienter<const GR, DM>
2585 orienter(const GR& graph, DM& direction) {
2586 return Orienter<const GR, DM>(graph, direction);
2589 template<typename GR, typename DM>
2590 Orienter<const GR, const DM>
2591 orienter(const GR& graph, const DM& direction) {
2592 return Orienter<const GR, const DM>(graph, direction);
2595 namespace _adaptor_bits {
2597 template <typename DGR, typename CM, typename FM, typename TL>
2598 class ResForwardFilter {
2601 typedef typename DGR::Arc Key;
2606 const CM* _capacity;
2612 ResForwardFilter(const CM& capacity, const FM& flow,
2613 const TL& tolerance = TL())
2614 : _capacity(&capacity), _flow(&flow), _tolerance(tolerance) { }
2616 bool operator[](const typename DGR::Arc& a) const {
2617 return _tolerance.positive((*_capacity)[a] - (*_flow)[a]);
2621 template<typename DGR,typename CM, typename FM, typename TL>
2622 class ResBackwardFilter {
2625 typedef typename DGR::Arc Key;
2630 const CM* _capacity;
2636 ResBackwardFilter(const CM& capacity, const FM& flow,
2637 const TL& tolerance = TL())
2638 : _capacity(&capacity), _flow(&flow), _tolerance(tolerance) { }
2640 bool operator[](const typename DGR::Arc& a) const {
2641 return _tolerance.positive((*_flow)[a]);
2647 /// \ingroup graph_adaptors
2649 /// \brief Adaptor class for composing the residual digraph for directed
2650 /// flow and circulation problems.
2652 /// ResidualDigraph can be used for composing the \e residual digraph
2653 /// for directed flow and circulation problems. Let \f$ G=(V, A) \f$
2654 /// be a directed graph and let \f$ F \f$ be a number type.
2655 /// Let \f$ flow, cap: A\to F \f$ be functions on the arcs.
2656 /// This adaptor implements a digraph structure with node set \f$ V \f$
2657 /// and arc set \f$ A_{forward}\cup A_{backward} \f$,
2658 /// where \f$ A_{forward}=\{uv : uv\in A, flow(uv)<cap(uv)\} \f$ and
2659 /// \f$ A_{backward}=\{vu : uv\in A, flow(uv)>0\} \f$, i.e. the so
2660 /// called residual digraph.
2661 /// When the union \f$ A_{forward}\cup A_{backward} \f$ is taken,
2662 /// multiplicities are counted, i.e. the adaptor has exactly
2663 /// \f$ |A_{forward}| + |A_{backward}|\f$ arcs (it may have parallel
2665 /// This class conforms to the \ref concepts::Digraph "Digraph" concept.
2667 /// \tparam DGR The type of the adapted digraph.
2668 /// It must conform to the \ref concepts::Digraph "Digraph" concept.
2669 /// It is implicitly \c const.
2670 /// \tparam CM The type of the capacity map.
2671 /// It must be an arc map of some numerical type, which defines
2672 /// the capacities in the flow problem. It is implicitly \c const.
2673 /// The default type is
2674 /// \ref concepts::Digraph::ArcMap "GR::ArcMap<int>".
2675 /// \tparam FM The type of the flow map.
2676 /// It must be an arc map of some numerical type, which defines
2677 /// the flow values in the flow problem. The default type is \c CM.
2678 /// \tparam TL The tolerance type for handling inexact computation.
2679 /// The default tolerance type depends on the value type of the
2682 /// \note This adaptor is implemented using Undirector and FilterArcs
2685 /// \note The \c Node type of this adaptor and the adapted digraph are
2686 /// convertible to each other, moreover the \c Arc type of the adaptor
2687 /// is convertible to the \c Arc type of the adapted digraph.
2689 template<typename DGR, typename CM, typename FM, typename TL>
2690 class ResidualDigraph
2692 template<typename DGR,
2693 typename CM = typename DGR::template ArcMap<int>,
2695 typename TL = Tolerance<typename CM::Value> >
2696 class ResidualDigraph
2697 : public SubDigraph<
2698 Undirector<const DGR>,
2699 ConstMap<typename DGR::Node, Const<bool, true> >,
2700 typename Undirector<const DGR>::template CombinedArcMap<
2701 _adaptor_bits::ResForwardFilter<const DGR, CM, FM, TL>,
2702 _adaptor_bits::ResBackwardFilter<const DGR, CM, FM, TL> > >
2707 /// The type of the underlying digraph.
2708 typedef DGR Digraph;
2709 /// The type of the capacity map.
2710 typedef CM CapacityMap;
2711 /// The type of the flow map.
2713 /// The tolerance type.
2714 typedef TL Tolerance;
2716 typedef typename CapacityMap::Value Value;
2717 typedef ResidualDigraph Adaptor;
2721 typedef Undirector<const Digraph> Undirected;
2723 typedef ConstMap<typename DGR::Node, Const<bool, true> > NodeFilter;
2725 typedef _adaptor_bits::ResForwardFilter<const DGR, CM,
2726 FM, TL> ForwardFilter;
2728 typedef _adaptor_bits::ResBackwardFilter<const DGR, CM,
2729 FM, TL> BackwardFilter;
2731 typedef typename Undirected::
2732 template CombinedArcMap<ForwardFilter, BackwardFilter> ArcFilter;
2734 typedef SubDigraph<Undirected, NodeFilter, ArcFilter> Parent;
2736 const CapacityMap* _capacity;
2740 NodeFilter _node_filter;
2741 ForwardFilter _forward_filter;
2742 BackwardFilter _backward_filter;
2743 ArcFilter _arc_filter;
2747 /// \brief Constructor
2749 /// Constructor of the residual digraph adaptor. The parameters are the
2750 /// digraph, the capacity map, the flow map, and a tolerance object.
2751 ResidualDigraph(const DGR& digraph, const CM& capacity,
2752 FM& flow, const TL& tolerance = Tolerance())
2753 : Parent(), _capacity(&capacity), _flow(&flow),
2754 _graph(digraph), _node_filter(),
2755 _forward_filter(capacity, flow, tolerance),
2756 _backward_filter(capacity, flow, tolerance),
2757 _arc_filter(_forward_filter, _backward_filter)
2759 Parent::initialize(_graph, _node_filter, _arc_filter);
2762 typedef typename Parent::Arc Arc;
2764 /// \brief Returns the residual capacity of the given arc.
2766 /// Returns the residual capacity of the given arc.
2767 Value residualCapacity(const Arc& a) const {
2768 if (Undirected::direction(a)) {
2769 return (*_capacity)[a] - (*_flow)[a];
2775 /// \brief Augments on the given arc in the residual digraph.
2777 /// Augments on the given arc in the residual digraph. It increases
2778 /// or decreases the flow value on the original arc according to the
2779 /// direction of the residual arc.
2780 void augment(const Arc& a, const Value& v) const {
2781 if (Undirected::direction(a)) {
2782 _flow->set(a, (*_flow)[a] + v);
2784 _flow->set(a, (*_flow)[a] - v);
2788 /// \brief Returns \c true if the given residual arc is a forward arc.
2790 /// Returns \c true if the given residual arc has the same orientation
2791 /// as the original arc, i.e. it is a so called forward arc.
2792 static bool forward(const Arc& a) {
2793 return Undirected::direction(a);
2796 /// \brief Returns \c true if the given residual arc is a backward arc.
2798 /// Returns \c true if the given residual arc has the opposite orientation
2799 /// than the original arc, i.e. it is a so called backward arc.
2800 static bool backward(const Arc& a) {
2801 return !Undirected::direction(a);
2804 /// \brief Returns the forward oriented residual arc.
2806 /// Returns the forward oriented residual arc related to the given
2807 /// arc of the underlying digraph.
2808 static Arc forward(const typename Digraph::Arc& a) {
2809 return Undirected::direct(a, true);
2812 /// \brief Returns the backward oriented residual arc.
2814 /// Returns the backward oriented residual arc related to the given
2815 /// arc of the underlying digraph.
2816 static Arc backward(const typename Digraph::Arc& a) {
2817 return Undirected::direct(a, false);
2820 /// \brief Residual capacity map.
2822 /// This map adaptor class can be used for obtaining the residual
2823 /// capacities as an arc map of the residual digraph.
2824 /// Its value type is inherited from the capacity map.
2825 class ResidualCapacity {
2827 const Adaptor* _adaptor;
2829 /// The key type of the map
2831 /// The value type of the map
2832 typedef typename CapacityMap::Value Value;
2835 ResidualCapacity(const ResidualDigraph<DGR, CM, FM, TL>& adaptor)
2836 : _adaptor(&adaptor) {}
2838 /// Returns the value associated with the given residual arc
2839 Value operator[](const Arc& a) const {
2840 return _adaptor->residualCapacity(a);
2845 /// \brief Returns a residual capacity map
2847 /// This function just returns a residual capacity map.
2848 ResidualCapacity residualCapacity() const {
2849 return ResidualCapacity(*this);
2854 /// \brief Returns a (read-only) Residual adaptor
2856 /// This function just returns a (read-only) \ref ResidualDigraph adaptor.
2857 /// \ingroup graph_adaptors
2858 /// \relates ResidualDigraph
2859 template<typename DGR, typename CM, typename FM>
2860 ResidualDigraph<DGR, CM, FM>
2861 residualDigraph(const DGR& digraph, const CM& capacity_map, FM& flow_map) {
2862 return ResidualDigraph<DGR, CM, FM> (digraph, capacity_map, flow_map);
2866 template <typename DGR>
2867 class SplitNodesBase {
2870 typedef DGR Digraph;
2871 typedef DigraphAdaptorBase<const DGR> Parent;
2872 typedef SplitNodesBase Adaptor;
2874 typedef typename DGR::Node DigraphNode;
2875 typedef typename DGR::Arc DigraphArc;
2882 template <typename T> class NodeMapBase;
2883 template <typename T> class ArcMapBase;
2887 class Node : public DigraphNode {
2888 friend class SplitNodesBase;
2889 template <typename T> friend class NodeMapBase;
2893 Node(DigraphNode node, bool in)
2894 : DigraphNode(node), _in(in) {}
2899 Node(Invalid) : DigraphNode(INVALID), _in(true) {}
2901 bool operator==(const Node& node) const {
2902 return DigraphNode::operator==(node) && _in == node._in;
2905 bool operator!=(const Node& node) const {
2906 return !(*this == node);
2909 bool operator<(const Node& node) const {
2910 return DigraphNode::operator<(node) ||
2911 (DigraphNode::operator==(node) && _in < node._in);
2916 friend class SplitNodesBase;
2917 template <typename T> friend class ArcMapBase;
2919 typedef BiVariant<DigraphArc, DigraphNode> ArcImpl;
2921 explicit Arc(const DigraphArc& arc) : _item(arc) {}
2922 explicit Arc(const DigraphNode& node) : _item(node) {}
2928 Arc(Invalid) : _item(DigraphArc(INVALID)) {}
2930 bool operator==(const Arc& arc) const {
2931 if (_item.firstState()) {
2932 if (arc._item.firstState()) {
2933 return _item.first() == arc._item.first();
2936 if (arc._item.secondState()) {
2937 return _item.second() == arc._item.second();
2943 bool operator!=(const Arc& arc) const {
2944 return !(*this == arc);
2947 bool operator<(const Arc& arc) const {
2948 if (_item.firstState()) {
2949 if (arc._item.firstState()) {
2950 return _item.first() < arc._item.first();
2954 if (arc._item.secondState()) {
2955 return _item.second() < arc._item.second();
2961 operator DigraphArc() const { return _item.first(); }
2962 operator DigraphNode() const { return _item.second(); }
2966 void first(Node& n) const {
2971 void next(Node& n) const {
2980 void first(Arc& e) const {
2981 e._item.setSecond();
2982 _digraph->first(e._item.second());
2983 if (e._item.second() == INVALID) {
2985 _digraph->first(e._item.first());
2989 void next(Arc& e) const {
2990 if (e._item.secondState()) {
2991 _digraph->next(e._item.second());
2992 if (e._item.second() == INVALID) {
2994 _digraph->first(e._item.first());
2997 _digraph->next(e._item.first());
3001 void firstOut(Arc& e, const Node& n) const {
3003 e._item.setSecond(n);
3006 _digraph->firstOut(e._item.first(), n);
3010 void nextOut(Arc& e) const {
3011 if (!e._item.firstState()) {
3012 e._item.setFirst(INVALID);
3014 _digraph->nextOut(e._item.first());
3018 void firstIn(Arc& e, const Node& n) const {
3020 e._item.setSecond(n);
3023 _digraph->firstIn(e._item.first(), n);
3027 void nextIn(Arc& e) const {
3028 if (!e._item.firstState()) {
3029 e._item.setFirst(INVALID);
3031 _digraph->nextIn(e._item.first());
3035 Node source(const Arc& e) const {
3036 if (e._item.firstState()) {
3037 return Node(_digraph->source(e._item.first()), false);
3039 return Node(e._item.second(), true);
3043 Node target(const Arc& e) const {
3044 if (e._item.firstState()) {
3045 return Node(_digraph->target(e._item.first()), true);
3047 return Node(e._item.second(), false);
3051 int id(const Node& n) const {
3052 return (_digraph->id(n) << 1) | (n._in ? 0 : 1);
3054 Node nodeFromId(int ix) const {
3055 return Node(_digraph->nodeFromId(ix >> 1), (ix & 1) == 0);
3057 int maxNodeId() const {
3058 return 2 * _digraph->maxNodeId() + 1;
3061 int id(const Arc& e) const {
3062 if (e._item.firstState()) {
3063 return _digraph->id(e._item.first()) << 1;
3065 return (_digraph->id(e._item.second()) << 1) | 1;
3068 Arc arcFromId(int ix) const {
3069 if ((ix & 1) == 0) {
3070 return Arc(_digraph->arcFromId(ix >> 1));
3072 return Arc(_digraph->nodeFromId(ix >> 1));
3075 int maxArcId() const {
3076 return std::max(_digraph->maxNodeId() << 1,
3077 (_digraph->maxArcId() << 1) | 1);
3080 static bool inNode(const Node& n) {
3084 static bool outNode(const Node& n) {
3088 static bool origArc(const Arc& e) {
3089 return e._item.firstState();
3092 static bool bindArc(const Arc& e) {
3093 return e._item.secondState();
3096 static Node inNode(const DigraphNode& n) {
3097 return Node(n, true);
3100 static Node outNode(const DigraphNode& n) {
3101 return Node(n, false);
3104 static Arc arc(const DigraphNode& n) {
3108 static Arc arc(const DigraphArc& e) {
3112 typedef True NodeNumTag;
3113 int nodeNum() const {
3114 return 2 * countNodes(*_digraph);
3117 typedef True ArcNumTag;
3118 int arcNum() const {
3119 return countArcs(*_digraph) + countNodes(*_digraph);
3122 typedef True FindArcTag;
3123 Arc findArc(const Node& u, const Node& v,
3124 const Arc& prev = INVALID) const {
3125 if (inNode(u) && outNode(v)) {
3126 if (static_cast<const DigraphNode&>(u) ==
3127 static_cast<const DigraphNode&>(v) && prev == INVALID) {
3131 else if (outNode(u) && inNode(v)) {
3132 return Arc(::lemon::findArc(*_digraph, u, v, prev));
3139 template <typename V>
3141 : public MapTraits<typename Parent::template NodeMap<V> > {
3142 typedef typename Parent::template NodeMap<V> NodeImpl;
3146 typedef typename MapTraits<NodeImpl>::ReferenceMapTag ReferenceMapTag;
3147 typedef typename MapTraits<NodeImpl>::ReturnValue ReturnValue;
3148 typedef typename MapTraits<NodeImpl>::ConstReturnValue ConstReturnValue;
3149 typedef typename MapTraits<NodeImpl>::ReturnValue Reference;
3150 typedef typename MapTraits<NodeImpl>::ConstReturnValue ConstReference;
3152 NodeMapBase(const SplitNodesBase<DGR>& adaptor)
3153 : _in_map(*adaptor._digraph), _out_map(*adaptor._digraph) {}
3154 NodeMapBase(const SplitNodesBase<DGR>& adaptor, const V& value)
3155 : _in_map(*adaptor._digraph, value),
3156 _out_map(*adaptor._digraph, value) {}
3158 void set(const Node& key, const V& val) {
3159 if (SplitNodesBase<DGR>::inNode(key)) { _in_map.set(key, val); }
3160 else {_out_map.set(key, val); }
3163 ReturnValue operator[](const Node& key) {
3164 if (SplitNodesBase<DGR>::inNode(key)) { return _in_map[key]; }
3165 else { return _out_map[key]; }
3168 ConstReturnValue operator[](const Node& key) const {
3169 if (Adaptor::inNode(key)) { return _in_map[key]; }
3170 else { return _out_map[key]; }
3174 NodeImpl _in_map, _out_map;
3177 template <typename V>
3179 : public MapTraits<typename Parent::template ArcMap<V> > {
3180 typedef typename Parent::template ArcMap<V> ArcImpl;
3181 typedef typename Parent::template NodeMap<V> NodeImpl;
3185 typedef typename MapTraits<ArcImpl>::ReferenceMapTag ReferenceMapTag;
3186 typedef typename MapTraits<ArcImpl>::ReturnValue ReturnValue;
3187 typedef typename MapTraits<ArcImpl>::ConstReturnValue ConstReturnValue;
3188 typedef typename MapTraits<ArcImpl>::ReturnValue Reference;
3189 typedef typename MapTraits<ArcImpl>::ConstReturnValue ConstReference;
3191 ArcMapBase(const SplitNodesBase<DGR>& adaptor)
3192 : _arc_map(*adaptor._digraph), _node_map(*adaptor._digraph) {}
3193 ArcMapBase(const SplitNodesBase<DGR>& adaptor, const V& value)
3194 : _arc_map(*adaptor._digraph, value),
3195 _node_map(*adaptor._digraph, value) {}
3197 void set(const Arc& key, const V& val) {
3198 if (SplitNodesBase<DGR>::origArc(key)) {
3199 _arc_map.set(static_cast<const DigraphArc&>(key), val);
3201 _node_map.set(static_cast<const DigraphNode&>(key), val);
3205 ReturnValue operator[](const Arc& key) {
3206 if (SplitNodesBase<DGR>::origArc(key)) {
3207 return _arc_map[static_cast<const DigraphArc&>(key)];
3209 return _node_map[static_cast<const DigraphNode&>(key)];
3213 ConstReturnValue operator[](const Arc& key) const {
3214 if (SplitNodesBase<DGR>::origArc(key)) {
3215 return _arc_map[static_cast<const DigraphArc&>(key)];
3217 return _node_map[static_cast<const DigraphNode&>(key)];
3228 template <typename V>
3230 : public SubMapExtender<SplitNodesBase<DGR>, NodeMapBase<V> >
3234 typedef SubMapExtender<SplitNodesBase<DGR>, NodeMapBase<Value> > Parent;
3236 NodeMap(const SplitNodesBase<DGR>& adaptor)
3237 : Parent(adaptor) {}
3239 NodeMap(const SplitNodesBase<DGR>& adaptor, const V& value)
3240 : Parent(adaptor, value) {}
3243 NodeMap& operator=(const NodeMap& cmap) {
3244 return operator=<NodeMap>(cmap);
3247 template <typename CMap>
3248 NodeMap& operator=(const CMap& cmap) {
3249 Parent::operator=(cmap);
3254 template <typename V>
3256 : public SubMapExtender<SplitNodesBase<DGR>, ArcMapBase<V> >
3260 typedef SubMapExtender<SplitNodesBase<DGR>, ArcMapBase<Value> > Parent;
3262 ArcMap(const SplitNodesBase<DGR>& adaptor)
3263 : Parent(adaptor) {}
3265 ArcMap(const SplitNodesBase<DGR>& adaptor, const V& value)
3266 : Parent(adaptor, value) {}
3269 ArcMap& operator=(const ArcMap& cmap) {
3270 return operator=<ArcMap>(cmap);
3273 template <typename CMap>
3274 ArcMap& operator=(const CMap& cmap) {
3275 Parent::operator=(cmap);
3282 SplitNodesBase() : _digraph(0) {}
3286 void initialize(Digraph& digraph) {
3287 _digraph = &digraph;
3292 /// \ingroup graph_adaptors
3294 /// \brief Adaptor class for splitting the nodes of a digraph.
3296 /// SplitNodes adaptor can be used for splitting each node into an
3297 /// \e in-node and an \e out-node in a digraph. Formaly, the adaptor
3298 /// replaces each node \f$ u \f$ in the digraph with two nodes,
3299 /// namely node \f$ u_{in} \f$ and node \f$ u_{out} \f$.
3300 /// If there is a \f$ (v, u) \f$ arc in the original digraph, then the
3301 /// new target of the arc will be \f$ u_{in} \f$ and similarly the
3302 /// source of each original \f$ (u, v) \f$ arc will be \f$ u_{out} \f$.
3303 /// The adaptor adds an additional \e bind \e arc from \f$ u_{in} \f$
3304 /// to \f$ u_{out} \f$ for each node \f$ u \f$ of the original digraph.
3306 /// The aim of this class is running an algorithm with respect to node
3307 /// costs or capacities if the algorithm considers only arc costs or
3308 /// capacities directly.
3309 /// In this case you can use \c SplitNodes adaptor, and set the node
3310 /// costs/capacities of the original digraph to the \e bind \e arcs
3313 /// \tparam DGR The type of the adapted digraph.
3314 /// It must conform to the \ref concepts::Digraph "Digraph" concept.
3315 /// It is implicitly \c const.
3317 /// \note The \c Node type of this adaptor is converible to the \c Node
3318 /// type of the adapted digraph.
3319 template <typename DGR>
3324 : public DigraphAdaptorExtender<SplitNodesBase<const DGR> > {
3327 typedef DGR Digraph;
3328 typedef DigraphAdaptorExtender<SplitNodesBase<const DGR> > Parent;
3330 typedef typename DGR::Node DigraphNode;
3331 typedef typename DGR::Arc DigraphArc;
3333 typedef typename Parent::Node Node;
3334 typedef typename Parent::Arc Arc;
3336 /// \brief Constructor
3338 /// Constructor of the adaptor.
3339 SplitNodes(const DGR& g) {
3340 Parent::initialize(g);
3343 /// \brief Returns \c true if the given node is an in-node.
3345 /// Returns \c true if the given node is an in-node.
3346 static bool inNode(const Node& n) {
3347 return Parent::inNode(n);
3350 /// \brief Returns \c true if the given node is an out-node.
3352 /// Returns \c true if the given node is an out-node.
3353 static bool outNode(const Node& n) {
3354 return Parent::outNode(n);
3357 /// \brief Returns \c true if the given arc is an original arc.
3359 /// Returns \c true if the given arc is one of the arcs in the
3360 /// original digraph.
3361 static bool origArc(const Arc& a) {
3362 return Parent::origArc(a);
3365 /// \brief Returns \c true if the given arc is a bind arc.
3367 /// Returns \c true if the given arc is a bind arc, i.e. it connects
3368 /// an in-node and an out-node.
3369 static bool bindArc(const Arc& a) {
3370 return Parent::bindArc(a);
3373 /// \brief Returns the in-node created from the given original node.
3375 /// Returns the in-node created from the given original node.
3376 static Node inNode(const DigraphNode& n) {
3377 return Parent::inNode(n);
3380 /// \brief Returns the out-node created from the given original node.
3382 /// Returns the out-node created from the given original node.
3383 static Node outNode(const DigraphNode& n) {
3384 return Parent::outNode(n);
3387 /// \brief Returns the bind arc that corresponds to the given
3390 /// Returns the bind arc in the adaptor that corresponds to the given
3391 /// original node, i.e. the arc connecting the in-node and out-node
3393 static Arc arc(const DigraphNode& n) {
3394 return Parent::arc(n);
3397 /// \brief Returns the arc that corresponds to the given original arc.
3399 /// Returns the arc in the adaptor that corresponds to the given
3401 static Arc arc(const DigraphArc& a) {
3402 return Parent::arc(a);
3405 /// \brief Node map combined from two original node maps
3407 /// This map adaptor class adapts two node maps of the original digraph
3408 /// to get a node map of the split digraph.
3409 /// Its value type is inherited from the first node map type
3411 template <typename InNodeMap, typename OutNodeMap>
3412 class CombinedNodeMap {
3415 /// The key type of the map
3417 /// The value type of the map
3418 typedef typename InNodeMap::Value Value;
3420 typedef typename MapTraits<InNodeMap>::ReferenceMapTag ReferenceMapTag;
3421 typedef typename MapTraits<InNodeMap>::ReturnValue ReturnValue;
3422 typedef typename MapTraits<InNodeMap>::ConstReturnValue ConstReturnValue;
3423 typedef typename MapTraits<InNodeMap>::ReturnValue Reference;
3424 typedef typename MapTraits<InNodeMap>::ConstReturnValue ConstReference;
3427 CombinedNodeMap(InNodeMap& in_map, OutNodeMap& out_map)
3428 : _in_map(in_map), _out_map(out_map) {}
3430 /// Returns the value associated with the given key.
3431 Value operator[](const Key& key) const {
3432 if (SplitNodesBase<const DGR>::inNode(key)) {
3433 return _in_map[key];
3435 return _out_map[key];
3439 /// Returns a reference to the value associated with the given key.
3440 Value& operator[](const Key& key) {
3441 if (SplitNodesBase<const DGR>::inNode(key)) {
3442 return _in_map[key];
3444 return _out_map[key];
3448 /// Sets the value associated with the given key.
3449 void set(const Key& key, const Value& value) {
3450 if (SplitNodesBase<const DGR>::inNode(key)) {
3451 _in_map.set(key, value);
3453 _out_map.set(key, value);
3460 OutNodeMap& _out_map;
3465 /// \brief Returns a combined node map
3467 /// This function just returns a combined node map.
3468 template <typename InNodeMap, typename OutNodeMap>
3469 static CombinedNodeMap<InNodeMap, OutNodeMap>
3470 combinedNodeMap(InNodeMap& in_map, OutNodeMap& out_map) {
3471 return CombinedNodeMap<InNodeMap, OutNodeMap>(in_map, out_map);
3474 template <typename InNodeMap, typename OutNodeMap>
3475 static CombinedNodeMap<const InNodeMap, OutNodeMap>
3476 combinedNodeMap(const InNodeMap& in_map, OutNodeMap& out_map) {
3477 return CombinedNodeMap<const InNodeMap, OutNodeMap>(in_map, out_map);
3480 template <typename InNodeMap, typename OutNodeMap>
3481 static CombinedNodeMap<InNodeMap, const OutNodeMap>
3482 combinedNodeMap(InNodeMap& in_map, const OutNodeMap& out_map) {
3483 return CombinedNodeMap<InNodeMap, const OutNodeMap>(in_map, out_map);
3486 template <typename InNodeMap, typename OutNodeMap>
3487 static CombinedNodeMap<const InNodeMap, const OutNodeMap>
3488 combinedNodeMap(const InNodeMap& in_map, const OutNodeMap& out_map) {
3489 return CombinedNodeMap<const InNodeMap,
3490 const OutNodeMap>(in_map, out_map);
3493 /// \brief Arc map combined from an arc map and a node map of the
3494 /// original digraph.
3496 /// This map adaptor class adapts an arc map and a node map of the
3497 /// original digraph to get an arc map of the split digraph.
3498 /// Its value type is inherited from the original arc map type
3500 template <typename ArcMap, typename NodeMap>
3501 class CombinedArcMap {
3504 /// The key type of the map
3506 /// The value type of the map
3507 typedef typename ArcMap::Value Value;
3509 typedef typename MapTraits<ArcMap>::ReferenceMapTag ReferenceMapTag;
3510 typedef typename MapTraits<ArcMap>::ReturnValue ReturnValue;
3511 typedef typename MapTraits<ArcMap>::ConstReturnValue ConstReturnValue;
3512 typedef typename MapTraits<ArcMap>::ReturnValue Reference;
3513 typedef typename MapTraits<ArcMap>::ConstReturnValue ConstReference;
3516 CombinedArcMap(ArcMap& arc_map, NodeMap& node_map)
3517 : _arc_map(arc_map), _node_map(node_map) {}
3519 /// Returns the value associated with the given key.
3520 Value operator[](const Key& arc) const {
3521 if (SplitNodesBase<const DGR>::origArc(arc)) {
3522 return _arc_map[arc];
3524 return _node_map[arc];
3528 /// Returns a reference to the value associated with the given key.
3529 Value& operator[](const Key& arc) {
3530 if (SplitNodesBase<const DGR>::origArc(arc)) {
3531 return _arc_map[arc];
3533 return _node_map[arc];
3537 /// Sets the value associated with the given key.
3538 void set(const Arc& arc, const Value& val) {
3539 if (SplitNodesBase<const DGR>::origArc(arc)) {
3540 _arc_map.set(arc, val);
3542 _node_map.set(arc, val);
3551 /// \brief Returns a combined arc map
3553 /// This function just returns a combined arc map.
3554 template <typename ArcMap, typename NodeMap>
3555 static CombinedArcMap<ArcMap, NodeMap>
3556 combinedArcMap(ArcMap& arc_map, NodeMap& node_map) {
3557 return CombinedArcMap<ArcMap, NodeMap>(arc_map, node_map);
3560 template <typename ArcMap, typename NodeMap>
3561 static CombinedArcMap<const ArcMap, NodeMap>
3562 combinedArcMap(const ArcMap& arc_map, NodeMap& node_map) {
3563 return CombinedArcMap<const ArcMap, NodeMap>(arc_map, node_map);
3566 template <typename ArcMap, typename NodeMap>
3567 static CombinedArcMap<ArcMap, const NodeMap>
3568 combinedArcMap(ArcMap& arc_map, const NodeMap& node_map) {
3569 return CombinedArcMap<ArcMap, const NodeMap>(arc_map, node_map);
3572 template <typename ArcMap, typename NodeMap>
3573 static CombinedArcMap<const ArcMap, const NodeMap>
3574 combinedArcMap(const ArcMap& arc_map, const NodeMap& node_map) {
3575 return CombinedArcMap<const ArcMap, const NodeMap>(arc_map, node_map);
3580 /// \brief Returns a (read-only) SplitNodes adaptor
3582 /// This function just returns a (read-only) \ref SplitNodes adaptor.
3583 /// \ingroup graph_adaptors
3584 /// \relates SplitNodes
3585 template<typename DGR>
3587 splitNodes(const DGR& digraph) {
3588 return SplitNodes<DGR>(digraph);
3591 #undef LEMON_SCOPE_FIX
3595 #endif //LEMON_ADAPTORS_H