1 /* -*- mode: C++; indent-tabs-mode: nil; -*-
3 * This file is a part of LEMON, a generic C++ optimization library.
5 * Copyright (C) 2003-2009
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 * (Egervary Research Group on Combinatorial Optimization, EGRES).
9 * Permission to use, modify and distribute this software is granted
10 * provided that this copyright notice appears in all copies. For
11 * precise terms see the accompanying LICENSE file.
13 * This software is provided "AS IS" with no warranty of any kind,
14 * express or implied, and with no claim as to its suitability for any
25 #include <lemon/config.h>
26 #include <lemon/bits/enable_if.h>
27 #include <lemon/bits/traits.h>
28 #include <lemon/assert.h>
31 ///\brief LEMON core utilities.
33 ///This header file contains core utilities for LEMON.
34 ///It is automatically included by all graph types, therefore it usually
35 ///do not have to be included directly.
39 /// \brief Dummy type to make it easier to create invalid iterators.
41 /// Dummy type to make it easier to create invalid iterators.
42 /// See \ref INVALID for the usage.
45 bool operator==(Invalid) { return true; }
46 bool operator!=(Invalid) { return false; }
47 bool operator< (Invalid) { return false; }
50 /// \brief Invalid iterators.
52 /// \ref Invalid is a global type that converts to each iterator
53 /// in such a way that the value of the target iterator will be invalid.
54 #ifdef LEMON_ONLY_TEMPLATES
55 const Invalid INVALID = Invalid();
57 extern const Invalid INVALID;
60 /// \addtogroup gutils
63 ///Create convenience typedefs for the digraph types and iterators
65 ///This \c \#define creates convenient type definitions for the following
66 ///types of \c Digraph: \c Node, \c NodeIt, \c Arc, \c ArcIt, \c InArcIt,
67 ///\c OutArcIt, \c BoolNodeMap, \c IntNodeMap, \c DoubleNodeMap,
68 ///\c BoolArcMap, \c IntArcMap, \c DoubleArcMap.
70 ///\note If the graph type is a dependent type, ie. the graph type depend
71 ///on a template parameter, then use \c TEMPLATE_DIGRAPH_TYPEDEFS()
73 #define DIGRAPH_TYPEDEFS(Digraph) \
74 typedef Digraph::Node Node; \
75 typedef Digraph::NodeIt NodeIt; \
76 typedef Digraph::Arc Arc; \
77 typedef Digraph::ArcIt ArcIt; \
78 typedef Digraph::InArcIt InArcIt; \
79 typedef Digraph::OutArcIt OutArcIt; \
80 typedef Digraph::NodeMap<bool> BoolNodeMap; \
81 typedef Digraph::NodeMap<int> IntNodeMap; \
82 typedef Digraph::NodeMap<double> DoubleNodeMap; \
83 typedef Digraph::ArcMap<bool> BoolArcMap; \
84 typedef Digraph::ArcMap<int> IntArcMap; \
85 typedef Digraph::ArcMap<double> DoubleArcMap
87 ///Create convenience typedefs for the digraph types and iterators
89 ///\see DIGRAPH_TYPEDEFS
91 ///\note Use this macro, if the graph type is a dependent type,
92 ///ie. the graph type depend on a template parameter.
93 #define TEMPLATE_DIGRAPH_TYPEDEFS(Digraph) \
94 typedef typename Digraph::Node Node; \
95 typedef typename Digraph::NodeIt NodeIt; \
96 typedef typename Digraph::Arc Arc; \
97 typedef typename Digraph::ArcIt ArcIt; \
98 typedef typename Digraph::InArcIt InArcIt; \
99 typedef typename Digraph::OutArcIt OutArcIt; \
100 typedef typename Digraph::template NodeMap<bool> BoolNodeMap; \
101 typedef typename Digraph::template NodeMap<int> IntNodeMap; \
102 typedef typename Digraph::template NodeMap<double> DoubleNodeMap; \
103 typedef typename Digraph::template ArcMap<bool> BoolArcMap; \
104 typedef typename Digraph::template ArcMap<int> IntArcMap; \
105 typedef typename Digraph::template ArcMap<double> DoubleArcMap
107 ///Create convenience typedefs for the graph types and iterators
109 ///This \c \#define creates the same convenient type definitions as defined
110 ///by \ref DIGRAPH_TYPEDEFS(Graph) and six more, namely it creates
111 ///\c Edge, \c EdgeIt, \c IncEdgeIt, \c BoolEdgeMap, \c IntEdgeMap,
114 ///\note If the graph type is a dependent type, ie. the graph type depend
115 ///on a template parameter, then use \c TEMPLATE_GRAPH_TYPEDEFS()
117 #define GRAPH_TYPEDEFS(Graph) \
118 DIGRAPH_TYPEDEFS(Graph); \
119 typedef Graph::Edge Edge; \
120 typedef Graph::EdgeIt EdgeIt; \
121 typedef Graph::IncEdgeIt IncEdgeIt; \
122 typedef Graph::EdgeMap<bool> BoolEdgeMap; \
123 typedef Graph::EdgeMap<int> IntEdgeMap; \
124 typedef Graph::EdgeMap<double> DoubleEdgeMap
126 ///Create convenience typedefs for the graph types and iterators
128 ///\see GRAPH_TYPEDEFS
130 ///\note Use this macro, if the graph type is a dependent type,
131 ///ie. the graph type depend on a template parameter.
132 #define TEMPLATE_GRAPH_TYPEDEFS(Graph) \
133 TEMPLATE_DIGRAPH_TYPEDEFS(Graph); \
134 typedef typename Graph::Edge Edge; \
135 typedef typename Graph::EdgeIt EdgeIt; \
136 typedef typename Graph::IncEdgeIt IncEdgeIt; \
137 typedef typename Graph::template EdgeMap<bool> BoolEdgeMap; \
138 typedef typename Graph::template EdgeMap<int> IntEdgeMap; \
139 typedef typename Graph::template EdgeMap<double> DoubleEdgeMap
141 /// \brief Function to count the items in a graph.
143 /// This function counts the items (nodes, arcs etc.) in a graph.
144 /// The complexity of the function is linear because
145 /// it iterates on all of the items.
146 template <typename Graph, typename Item>
147 inline int countItems(const Graph& g) {
148 typedef typename ItemSetTraits<Graph, Item>::ItemIt ItemIt;
150 for (ItemIt it(g); it != INVALID; ++it) {
158 namespace _core_bits {
160 template <typename Graph, typename Enable = void>
161 struct CountNodesSelector {
162 static int count(const Graph &g) {
163 return countItems<Graph, typename Graph::Node>(g);
167 template <typename Graph>
168 struct CountNodesSelector<
170 enable_if<typename Graph::NodeNumTag, void>::type>
172 static int count(const Graph &g) {
178 /// \brief Function to count the nodes in the graph.
180 /// This function counts the nodes in the graph.
181 /// The complexity of the function is <em>O</em>(<em>n</em>), but for some
182 /// graph structures it is specialized to run in <em>O</em>(1).
184 /// \note If the graph contains a \c nodeNum() member function and a
185 /// \c NodeNumTag tag then this function calls directly the member
186 /// function to query the cardinality of the node set.
187 template <typename Graph>
188 inline int countNodes(const Graph& g) {
189 return _core_bits::CountNodesSelector<Graph>::count(g);
194 namespace _core_bits {
196 template <typename Graph, typename Enable = void>
197 struct CountArcsSelector {
198 static int count(const Graph &g) {
199 return countItems<Graph, typename Graph::Arc>(g);
203 template <typename Graph>
204 struct CountArcsSelector<
206 typename enable_if<typename Graph::ArcNumTag, void>::type>
208 static int count(const Graph &g) {
214 /// \brief Function to count the arcs in the graph.
216 /// This function counts the arcs in the graph.
217 /// The complexity of the function is <em>O</em>(<em>m</em>), but for some
218 /// graph structures it is specialized to run in <em>O</em>(1).
220 /// \note If the graph contains a \c arcNum() member function and a
221 /// \c ArcNumTag tag then this function calls directly the member
222 /// function to query the cardinality of the arc set.
223 template <typename Graph>
224 inline int countArcs(const Graph& g) {
225 return _core_bits::CountArcsSelector<Graph>::count(g);
230 namespace _core_bits {
232 template <typename Graph, typename Enable = void>
233 struct CountEdgesSelector {
234 static int count(const Graph &g) {
235 return countItems<Graph, typename Graph::Edge>(g);
239 template <typename Graph>
240 struct CountEdgesSelector<
242 typename enable_if<typename Graph::EdgeNumTag, void>::type>
244 static int count(const Graph &g) {
250 /// \brief Function to count the edges in the graph.
252 /// This function counts the edges in the graph.
253 /// The complexity of the function is <em>O</em>(<em>m</em>), but for some
254 /// graph structures it is specialized to run in <em>O</em>(1).
256 /// \note If the graph contains a \c edgeNum() member function and a
257 /// \c EdgeNumTag tag then this function calls directly the member
258 /// function to query the cardinality of the edge set.
259 template <typename Graph>
260 inline int countEdges(const Graph& g) {
261 return _core_bits::CountEdgesSelector<Graph>::count(g);
266 template <typename Graph, typename DegIt>
267 inline int countNodeDegree(const Graph& _g, const typename Graph::Node& _n) {
269 for (DegIt it(_g, _n); it != INVALID; ++it) {
275 /// \brief Function to count the number of the out-arcs from node \c n.
277 /// This function counts the number of the out-arcs from node \c n
278 /// in the graph \c g.
279 template <typename Graph>
280 inline int countOutArcs(const Graph& g, const typename Graph::Node& n) {
281 return countNodeDegree<Graph, typename Graph::OutArcIt>(g, n);
284 /// \brief Function to count the number of the in-arcs to node \c n.
286 /// This function counts the number of the in-arcs to node \c n
287 /// in the graph \c g.
288 template <typename Graph>
289 inline int countInArcs(const Graph& g, const typename Graph::Node& n) {
290 return countNodeDegree<Graph, typename Graph::InArcIt>(g, n);
293 /// \brief Function to count the number of the inc-edges to node \c n.
295 /// This function counts the number of the inc-edges to node \c n
296 /// in the undirected graph \c g.
297 template <typename Graph>
298 inline int countIncEdges(const Graph& g, const typename Graph::Node& n) {
299 return countNodeDegree<Graph, typename Graph::IncEdgeIt>(g, n);
302 namespace _core_bits {
304 template <typename Digraph, typename Item, typename RefMap>
307 virtual void copy(const Digraph& from, const RefMap& refMap) = 0;
309 virtual ~MapCopyBase() {}
312 template <typename Digraph, typename Item, typename RefMap,
313 typename FromMap, typename ToMap>
314 class MapCopy : public MapCopyBase<Digraph, Item, RefMap> {
317 MapCopy(const FromMap& map, ToMap& tmap)
318 : _map(map), _tmap(tmap) {}
320 virtual void copy(const Digraph& digraph, const RefMap& refMap) {
321 typedef typename ItemSetTraits<Digraph, Item>::ItemIt ItemIt;
322 for (ItemIt it(digraph); it != INVALID; ++it) {
323 _tmap.set(refMap[it], _map[it]);
332 template <typename Digraph, typename Item, typename RefMap, typename It>
333 class ItemCopy : public MapCopyBase<Digraph, Item, RefMap> {
336 ItemCopy(const Item& item, It& it) : _item(item), _it(it) {}
338 virtual void copy(const Digraph&, const RefMap& refMap) {
347 template <typename Digraph, typename Item, typename RefMap, typename Ref>
348 class RefCopy : public MapCopyBase<Digraph, Item, RefMap> {
351 RefCopy(Ref& map) : _map(map) {}
353 virtual void copy(const Digraph& digraph, const RefMap& refMap) {
354 typedef typename ItemSetTraits<Digraph, Item>::ItemIt ItemIt;
355 for (ItemIt it(digraph); it != INVALID; ++it) {
356 _map.set(it, refMap[it]);
364 template <typename Digraph, typename Item, typename RefMap,
366 class CrossRefCopy : public MapCopyBase<Digraph, Item, RefMap> {
369 CrossRefCopy(CrossRef& cmap) : _cmap(cmap) {}
371 virtual void copy(const Digraph& digraph, const RefMap& refMap) {
372 typedef typename ItemSetTraits<Digraph, Item>::ItemIt ItemIt;
373 for (ItemIt it(digraph); it != INVALID; ++it) {
374 _cmap.set(refMap[it], it);
382 template <typename Digraph, typename Enable = void>
383 struct DigraphCopySelector {
384 template <typename From, typename NodeRefMap, typename ArcRefMap>
385 static void copy(const From& from, Digraph &to,
386 NodeRefMap& nodeRefMap, ArcRefMap& arcRefMap) {
387 for (typename From::NodeIt it(from); it != INVALID; ++it) {
388 nodeRefMap[it] = to.addNode();
390 for (typename From::ArcIt it(from); it != INVALID; ++it) {
391 arcRefMap[it] = to.addArc(nodeRefMap[from.source(it)],
392 nodeRefMap[from.target(it)]);
397 template <typename Digraph>
398 struct DigraphCopySelector<
400 typename enable_if<typename Digraph::BuildTag, void>::type>
402 template <typename From, typename NodeRefMap, typename ArcRefMap>
403 static void copy(const From& from, Digraph &to,
404 NodeRefMap& nodeRefMap, ArcRefMap& arcRefMap) {
405 to.build(from, nodeRefMap, arcRefMap);
409 template <typename Graph, typename Enable = void>
410 struct GraphCopySelector {
411 template <typename From, typename NodeRefMap, typename EdgeRefMap>
412 static void copy(const From& from, Graph &to,
413 NodeRefMap& nodeRefMap, EdgeRefMap& edgeRefMap) {
414 for (typename From::NodeIt it(from); it != INVALID; ++it) {
415 nodeRefMap[it] = to.addNode();
417 for (typename From::EdgeIt it(from); it != INVALID; ++it) {
418 edgeRefMap[it] = to.addEdge(nodeRefMap[from.u(it)],
419 nodeRefMap[from.v(it)]);
424 template <typename Graph>
425 struct GraphCopySelector<
427 typename enable_if<typename Graph::BuildTag, void>::type>
429 template <typename From, typename NodeRefMap, typename EdgeRefMap>
430 static void copy(const From& from, Graph &to,
431 NodeRefMap& nodeRefMap, EdgeRefMap& edgeRefMap) {
432 to.build(from, nodeRefMap, edgeRefMap);
438 /// \brief Class to copy a digraph.
440 /// Class to copy a digraph to another digraph (duplicate a digraph). The
441 /// simplest way of using it is through the \c digraphCopy() function.
443 /// This class not only make a copy of a digraph, but it can create
444 /// references and cross references between the nodes and arcs of
445 /// the two digraphs, and it can copy maps to use with the newly created
448 /// To make a copy from a digraph, first an instance of DigraphCopy
449 /// should be created, then the data belongs to the digraph should
450 /// assigned to copy. In the end, the \c run() member should be
453 /// The next code copies a digraph with several data:
455 /// DigraphCopy<OrigGraph, NewGraph> cg(orig_graph, new_graph);
456 /// // Create references for the nodes
457 /// OrigGraph::NodeMap<NewGraph::Node> nr(orig_graph);
459 /// // Create cross references (inverse) for the arcs
460 /// NewGraph::ArcMap<OrigGraph::Arc> acr(new_graph);
461 /// cg.arcCrossRef(acr);
462 /// // Copy an arc map
463 /// OrigGraph::ArcMap<double> oamap(orig_graph);
464 /// NewGraph::ArcMap<double> namap(new_graph);
465 /// cg.arcMap(oamap, namap);
467 /// OrigGraph::Node on;
468 /// NewGraph::Node nn;
470 /// // Execute copying
473 template <typename From, typename To>
477 typedef typename From::Node Node;
478 typedef typename From::NodeIt NodeIt;
479 typedef typename From::Arc Arc;
480 typedef typename From::ArcIt ArcIt;
482 typedef typename To::Node TNode;
483 typedef typename To::Arc TArc;
485 typedef typename From::template NodeMap<TNode> NodeRefMap;
486 typedef typename From::template ArcMap<TArc> ArcRefMap;
490 /// \brief Constructor of DigraphCopy.
492 /// Constructor of DigraphCopy for copying the content of the
493 /// \c from digraph into the \c to digraph.
494 DigraphCopy(const From& from, To& to)
495 : _from(from), _to(to) {}
497 /// \brief Destructor of DigraphCopy
499 /// Destructor of DigraphCopy.
501 for (int i = 0; i < int(_node_maps.size()); ++i) {
502 delete _node_maps[i];
504 for (int i = 0; i < int(_arc_maps.size()); ++i) {
510 /// \brief Copy the node references into the given map.
512 /// This function copies the node references into the given map.
513 /// The parameter should be a map, whose key type is the Node type of
514 /// the source digraph, while the value type is the Node type of the
515 /// destination digraph.
516 template <typename NodeRef>
517 DigraphCopy& nodeRef(NodeRef& map) {
518 _node_maps.push_back(new _core_bits::RefCopy<From, Node,
519 NodeRefMap, NodeRef>(map));
523 /// \brief Copy the node cross references into the given map.
525 /// This function copies the node cross references (reverse references)
526 /// into the given map. The parameter should be a map, whose key type
527 /// is the Node type of the destination digraph, while the value type is
528 /// the Node type of the source digraph.
529 template <typename NodeCrossRef>
530 DigraphCopy& nodeCrossRef(NodeCrossRef& map) {
531 _node_maps.push_back(new _core_bits::CrossRefCopy<From, Node,
532 NodeRefMap, NodeCrossRef>(map));
536 /// \brief Make a copy of the given node map.
538 /// This function makes a copy of the given node map for the newly
540 /// The key type of the new map \c tmap should be the Node type of the
541 /// destination digraph, and the key type of the original map \c map
542 /// should be the Node type of the source digraph.
543 template <typename FromMap, typename ToMap>
544 DigraphCopy& nodeMap(const FromMap& map, ToMap& tmap) {
545 _node_maps.push_back(new _core_bits::MapCopy<From, Node,
546 NodeRefMap, FromMap, ToMap>(map, tmap));
550 /// \brief Make a copy of the given node.
552 /// This function makes a copy of the given node.
553 DigraphCopy& node(const Node& node, TNode& tnode) {
554 _node_maps.push_back(new _core_bits::ItemCopy<From, Node,
555 NodeRefMap, TNode>(node, tnode));
559 /// \brief Copy the arc references into the given map.
561 /// This function copies the arc references into the given map.
562 /// The parameter should be a map, whose key type is the Arc type of
563 /// the source digraph, while the value type is the Arc type of the
564 /// destination digraph.
565 template <typename ArcRef>
566 DigraphCopy& arcRef(ArcRef& map) {
567 _arc_maps.push_back(new _core_bits::RefCopy<From, Arc,
568 ArcRefMap, ArcRef>(map));
572 /// \brief Copy the arc cross references into the given map.
574 /// This function copies the arc cross references (reverse references)
575 /// into the given map. The parameter should be a map, whose key type
576 /// is the Arc type of the destination digraph, while the value type is
577 /// the Arc type of the source digraph.
578 template <typename ArcCrossRef>
579 DigraphCopy& arcCrossRef(ArcCrossRef& map) {
580 _arc_maps.push_back(new _core_bits::CrossRefCopy<From, Arc,
581 ArcRefMap, ArcCrossRef>(map));
585 /// \brief Make a copy of the given arc map.
587 /// This function makes a copy of the given arc map for the newly
589 /// The key type of the new map \c tmap should be the Arc type of the
590 /// destination digraph, and the key type of the original map \c map
591 /// should be the Arc type of the source digraph.
592 template <typename FromMap, typename ToMap>
593 DigraphCopy& arcMap(const FromMap& map, ToMap& tmap) {
594 _arc_maps.push_back(new _core_bits::MapCopy<From, Arc,
595 ArcRefMap, FromMap, ToMap>(map, tmap));
599 /// \brief Make a copy of the given arc.
601 /// This function makes a copy of the given arc.
602 DigraphCopy& arc(const Arc& arc, TArc& tarc) {
603 _arc_maps.push_back(new _core_bits::ItemCopy<From, Arc,
604 ArcRefMap, TArc>(arc, tarc));
608 /// \brief Execute copying.
610 /// This function executes the copying of the digraph along with the
611 /// copying of the assigned data.
613 NodeRefMap nodeRefMap(_from);
614 ArcRefMap arcRefMap(_from);
615 _core_bits::DigraphCopySelector<To>::
616 copy(_from, _to, nodeRefMap, arcRefMap);
617 for (int i = 0; i < int(_node_maps.size()); ++i) {
618 _node_maps[i]->copy(_from, nodeRefMap);
620 for (int i = 0; i < int(_arc_maps.size()); ++i) {
621 _arc_maps[i]->copy(_from, arcRefMap);
630 std::vector<_core_bits::MapCopyBase<From, Node, NodeRefMap>* >
633 std::vector<_core_bits::MapCopyBase<From, Arc, ArcRefMap>* >
638 /// \brief Copy a digraph to another digraph.
640 /// This function copies a digraph to another digraph.
641 /// The complete usage of it is detailed in the DigraphCopy class, but
642 /// a short example shows a basic work:
644 /// digraphCopy(src, trg).nodeRef(nr).arcCrossRef(acr).run();
647 /// After the copy the \c nr map will contain the mapping from the
648 /// nodes of the \c from digraph to the nodes of the \c to digraph and
649 /// \c acr will contain the mapping from the arcs of the \c to digraph
650 /// to the arcs of the \c from digraph.
653 template <typename From, typename To>
654 DigraphCopy<From, To> digraphCopy(const From& from, To& to) {
655 return DigraphCopy<From, To>(from, to);
658 /// \brief Class to copy a graph.
660 /// Class to copy a graph to another graph (duplicate a graph). The
661 /// simplest way of using it is through the \c graphCopy() function.
663 /// This class not only make a copy of a graph, but it can create
664 /// references and cross references between the nodes, edges and arcs of
665 /// the two graphs, and it can copy maps for using with the newly created
668 /// To make a copy from a graph, first an instance of GraphCopy
669 /// should be created, then the data belongs to the graph should
670 /// assigned to copy. In the end, the \c run() member should be
673 /// The next code copies a graph with several data:
675 /// GraphCopy<OrigGraph, NewGraph> cg(orig_graph, new_graph);
676 /// // Create references for the nodes
677 /// OrigGraph::NodeMap<NewGraph::Node> nr(orig_graph);
679 /// // Create cross references (inverse) for the edges
680 /// NewGraph::EdgeMap<OrigGraph::Edge> ecr(new_graph);
681 /// cg.edgeCrossRef(ecr);
682 /// // Copy an edge map
683 /// OrigGraph::EdgeMap<double> oemap(orig_graph);
684 /// NewGraph::EdgeMap<double> nemap(new_graph);
685 /// cg.edgeMap(oemap, nemap);
687 /// OrigGraph::Node on;
688 /// NewGraph::Node nn;
690 /// // Execute copying
693 template <typename From, typename To>
697 typedef typename From::Node Node;
698 typedef typename From::NodeIt NodeIt;
699 typedef typename From::Arc Arc;
700 typedef typename From::ArcIt ArcIt;
701 typedef typename From::Edge Edge;
702 typedef typename From::EdgeIt EdgeIt;
704 typedef typename To::Node TNode;
705 typedef typename To::Arc TArc;
706 typedef typename To::Edge TEdge;
708 typedef typename From::template NodeMap<TNode> NodeRefMap;
709 typedef typename From::template EdgeMap<TEdge> EdgeRefMap;
712 ArcRefMap(const From& from, const To& to,
713 const EdgeRefMap& edge_ref, const NodeRefMap& node_ref)
714 : _from(from), _to(to),
715 _edge_ref(edge_ref), _node_ref(node_ref) {}
717 typedef typename From::Arc Key;
718 typedef typename To::Arc Value;
720 Value operator[](const Key& key) const {
721 bool forward = _from.u(key) != _from.v(key) ?
722 _node_ref[_from.source(key)] ==
723 _to.source(_to.direct(_edge_ref[key], true)) :
724 _from.direction(key);
725 return _to.direct(_edge_ref[key], forward);
730 const EdgeRefMap& _edge_ref;
731 const NodeRefMap& _node_ref;
736 /// \brief Constructor of GraphCopy.
738 /// Constructor of GraphCopy for copying the content of the
739 /// \c from graph into the \c to graph.
740 GraphCopy(const From& from, To& to)
741 : _from(from), _to(to) {}
743 /// \brief Destructor of GraphCopy
745 /// Destructor of GraphCopy.
747 for (int i = 0; i < int(_node_maps.size()); ++i) {
748 delete _node_maps[i];
750 for (int i = 0; i < int(_arc_maps.size()); ++i) {
753 for (int i = 0; i < int(_edge_maps.size()); ++i) {
754 delete _edge_maps[i];
758 /// \brief Copy the node references into the given map.
760 /// This function copies the node references into the given map.
761 /// The parameter should be a map, whose key type is the Node type of
762 /// the source graph, while the value type is the Node type of the
763 /// destination graph.
764 template <typename NodeRef>
765 GraphCopy& nodeRef(NodeRef& map) {
766 _node_maps.push_back(new _core_bits::RefCopy<From, Node,
767 NodeRefMap, NodeRef>(map));
771 /// \brief Copy the node cross references into the given map.
773 /// This function copies the node cross references (reverse references)
774 /// into the given map. The parameter should be a map, whose key type
775 /// is the Node type of the destination graph, while the value type is
776 /// the Node type of the source graph.
777 template <typename NodeCrossRef>
778 GraphCopy& nodeCrossRef(NodeCrossRef& map) {
779 _node_maps.push_back(new _core_bits::CrossRefCopy<From, Node,
780 NodeRefMap, NodeCrossRef>(map));
784 /// \brief Make a copy of the given node map.
786 /// This function makes a copy of the given node map for the newly
788 /// The key type of the new map \c tmap should be the Node type of the
789 /// destination graph, and the key type of the original map \c map
790 /// should be the Node type of the source graph.
791 template <typename FromMap, typename ToMap>
792 GraphCopy& nodeMap(const FromMap& map, ToMap& tmap) {
793 _node_maps.push_back(new _core_bits::MapCopy<From, Node,
794 NodeRefMap, FromMap, ToMap>(map, tmap));
798 /// \brief Make a copy of the given node.
800 /// This function makes a copy of the given node.
801 GraphCopy& node(const Node& node, TNode& tnode) {
802 _node_maps.push_back(new _core_bits::ItemCopy<From, Node,
803 NodeRefMap, TNode>(node, tnode));
807 /// \brief Copy the arc references into the given map.
809 /// This function copies the arc references into the given map.
810 /// The parameter should be a map, whose key type is the Arc type of
811 /// the source graph, while the value type is the Arc type of the
812 /// destination graph.
813 template <typename ArcRef>
814 GraphCopy& arcRef(ArcRef& map) {
815 _arc_maps.push_back(new _core_bits::RefCopy<From, Arc,
816 ArcRefMap, ArcRef>(map));
820 /// \brief Copy the arc cross references into the given map.
822 /// This function copies the arc cross references (reverse references)
823 /// into the given map. The parameter should be a map, whose key type
824 /// is the Arc type of the destination graph, while the value type is
825 /// the Arc type of the source graph.
826 template <typename ArcCrossRef>
827 GraphCopy& arcCrossRef(ArcCrossRef& map) {
828 _arc_maps.push_back(new _core_bits::CrossRefCopy<From, Arc,
829 ArcRefMap, ArcCrossRef>(map));
833 /// \brief Make a copy of the given arc map.
835 /// This function makes a copy of the given arc map for the newly
837 /// The key type of the new map \c tmap should be the Arc type of the
838 /// destination graph, and the key type of the original map \c map
839 /// should be the Arc type of the source graph.
840 template <typename FromMap, typename ToMap>
841 GraphCopy& arcMap(const FromMap& map, ToMap& tmap) {
842 _arc_maps.push_back(new _core_bits::MapCopy<From, Arc,
843 ArcRefMap, FromMap, ToMap>(map, tmap));
847 /// \brief Make a copy of the given arc.
849 /// This function makes a copy of the given arc.
850 GraphCopy& arc(const Arc& arc, TArc& tarc) {
851 _arc_maps.push_back(new _core_bits::ItemCopy<From, Arc,
852 ArcRefMap, TArc>(arc, tarc));
856 /// \brief Copy the edge references into the given map.
858 /// This function copies the edge references into the given map.
859 /// The parameter should be a map, whose key type is the Edge type of
860 /// the source graph, while the value type is the Edge type of the
861 /// destination graph.
862 template <typename EdgeRef>
863 GraphCopy& edgeRef(EdgeRef& map) {
864 _edge_maps.push_back(new _core_bits::RefCopy<From, Edge,
865 EdgeRefMap, EdgeRef>(map));
869 /// \brief Copy the edge cross references into the given map.
871 /// This function copies the edge cross references (reverse references)
872 /// into the given map. The parameter should be a map, whose key type
873 /// is the Edge type of the destination graph, while the value type is
874 /// the Edge type of the source graph.
875 template <typename EdgeCrossRef>
876 GraphCopy& edgeCrossRef(EdgeCrossRef& map) {
877 _edge_maps.push_back(new _core_bits::CrossRefCopy<From,
878 Edge, EdgeRefMap, EdgeCrossRef>(map));
882 /// \brief Make a copy of the given edge map.
884 /// This function makes a copy of the given edge map for the newly
886 /// The key type of the new map \c tmap should be the Edge type of the
887 /// destination graph, and the key type of the original map \c map
888 /// should be the Edge type of the source graph.
889 template <typename FromMap, typename ToMap>
890 GraphCopy& edgeMap(const FromMap& map, ToMap& tmap) {
891 _edge_maps.push_back(new _core_bits::MapCopy<From, Edge,
892 EdgeRefMap, FromMap, ToMap>(map, tmap));
896 /// \brief Make a copy of the given edge.
898 /// This function makes a copy of the given edge.
899 GraphCopy& edge(const Edge& edge, TEdge& tedge) {
900 _edge_maps.push_back(new _core_bits::ItemCopy<From, Edge,
901 EdgeRefMap, TEdge>(edge, tedge));
905 /// \brief Execute copying.
907 /// This function executes the copying of the graph along with the
908 /// copying of the assigned data.
910 NodeRefMap nodeRefMap(_from);
911 EdgeRefMap edgeRefMap(_from);
912 ArcRefMap arcRefMap(_from, _to, edgeRefMap, nodeRefMap);
913 _core_bits::GraphCopySelector<To>::
914 copy(_from, _to, nodeRefMap, edgeRefMap);
915 for (int i = 0; i < int(_node_maps.size()); ++i) {
916 _node_maps[i]->copy(_from, nodeRefMap);
918 for (int i = 0; i < int(_edge_maps.size()); ++i) {
919 _edge_maps[i]->copy(_from, edgeRefMap);
921 for (int i = 0; i < int(_arc_maps.size()); ++i) {
922 _arc_maps[i]->copy(_from, arcRefMap);
931 std::vector<_core_bits::MapCopyBase<From, Node, NodeRefMap>* >
934 std::vector<_core_bits::MapCopyBase<From, Arc, ArcRefMap>* >
937 std::vector<_core_bits::MapCopyBase<From, Edge, EdgeRefMap>* >
942 /// \brief Copy a graph to another graph.
944 /// This function copies a graph to another graph.
945 /// The complete usage of it is detailed in the GraphCopy class,
946 /// but a short example shows a basic work:
948 /// graphCopy(src, trg).nodeRef(nr).edgeCrossRef(ecr).run();
951 /// After the copy the \c nr map will contain the mapping from the
952 /// nodes of the \c from graph to the nodes of the \c to graph and
953 /// \c ecr will contain the mapping from the edges of the \c to graph
954 /// to the edges of the \c from graph.
957 template <typename From, typename To>
959 graphCopy(const From& from, To& to) {
960 return GraphCopy<From, To>(from, to);
963 namespace _core_bits {
965 template <typename Graph, typename Enable = void>
966 struct FindArcSelector {
967 typedef typename Graph::Node Node;
968 typedef typename Graph::Arc Arc;
969 static Arc find(const Graph &g, Node u, Node v, Arc e) {
975 while (e != INVALID && g.target(e) != v) {
982 template <typename Graph>
983 struct FindArcSelector<
985 typename enable_if<typename Graph::FindArcTag, void>::type>
987 typedef typename Graph::Node Node;
988 typedef typename Graph::Arc Arc;
989 static Arc find(const Graph &g, Node u, Node v, Arc prev) {
990 return g.findArc(u, v, prev);
995 /// \brief Find an arc between two nodes of a digraph.
997 /// This function finds an arc from node \c u to node \c v in the
1000 /// If \c prev is \ref INVALID (this is the default value), then
1001 /// it finds the first arc from \c u to \c v. Otherwise it looks for
1002 /// the next arc from \c u to \c v after \c prev.
1003 /// \return The found arc or \ref INVALID if there is no such an arc.
1005 /// Thus you can iterate through each arc from \c u to \c v as it follows.
1007 /// for(Arc e = findArc(g,u,v); e != INVALID; e = findArc(g,u,v,e)) {
1012 /// \note \ref ConArcIt provides iterator interface for the same
1016 ///\sa ArcLookUp, AllArcLookUp, DynArcLookUp
1017 template <typename Graph>
1018 inline typename Graph::Arc
1019 findArc(const Graph &g, typename Graph::Node u, typename Graph::Node v,
1020 typename Graph::Arc prev = INVALID) {
1021 return _core_bits::FindArcSelector<Graph>::find(g, u, v, prev);
1024 /// \brief Iterator for iterating on parallel arcs connecting the same nodes.
1026 /// Iterator for iterating on parallel arcs connecting the same nodes. It is
1027 /// a higher level interface for the \ref findArc() function. You can
1028 /// use it the following way:
1030 /// for (ConArcIt<Graph> it(g, src, trg); it != INVALID; ++it) {
1036 ///\sa ArcLookUp, AllArcLookUp, DynArcLookUp
1037 template <typename GR>
1038 class ConArcIt : public GR::Arc {
1039 typedef typename GR::Arc Parent;
1043 typedef typename GR::Arc Arc;
1044 typedef typename GR::Node Node;
1046 /// \brief Constructor.
1048 /// Construct a new ConArcIt iterating on the arcs that
1049 /// connects nodes \c u and \c v.
1050 ConArcIt(const GR& g, Node u, Node v) : _graph(g) {
1051 Parent::operator=(findArc(_graph, u, v));
1054 /// \brief Constructor.
1056 /// Construct a new ConArcIt that continues the iterating from arc \c a.
1057 ConArcIt(const GR& g, Arc a) : Parent(a), _graph(g) {}
1059 /// \brief Increment operator.
1061 /// It increments the iterator and gives back the next arc.
1062 ConArcIt& operator++() {
1063 Parent::operator=(findArc(_graph, _graph.source(*this),
1064 _graph.target(*this), *this));
1071 namespace _core_bits {
1073 template <typename Graph, typename Enable = void>
1074 struct FindEdgeSelector {
1075 typedef typename Graph::Node Node;
1076 typedef typename Graph::Edge Edge;
1077 static Edge find(const Graph &g, Node u, Node v, Edge e) {
1081 g.firstInc(e, b, u);
1086 while (e != INVALID && (b ? g.v(e) : g.u(e)) != v) {
1091 g.firstInc(e, b, u);
1096 while (e != INVALID && (!b || g.v(e) != v)) {
1104 template <typename Graph>
1105 struct FindEdgeSelector<
1107 typename enable_if<typename Graph::FindEdgeTag, void>::type>
1109 typedef typename Graph::Node Node;
1110 typedef typename Graph::Edge Edge;
1111 static Edge find(const Graph &g, Node u, Node v, Edge prev) {
1112 return g.findEdge(u, v, prev);
1117 /// \brief Find an edge between two nodes of a graph.
1119 /// This function finds an edge from node \c u to node \c v in graph \c g.
1120 /// If node \c u and node \c v is equal then each loop edge
1121 /// will be enumerated once.
1123 /// If \c prev is \ref INVALID (this is the default value), then
1124 /// it finds the first edge from \c u to \c v. Otherwise it looks for
1125 /// the next edge from \c u to \c v after \c prev.
1126 /// \return The found edge or \ref INVALID if there is no such an edge.
1128 /// Thus you can iterate through each edge between \c u and \c v
1131 /// for(Edge e = findEdge(g,u,v); e != INVALID; e = findEdge(g,u,v,e)) {
1136 /// \note \ref ConEdgeIt provides iterator interface for the same
1140 template <typename Graph>
1141 inline typename Graph::Edge
1142 findEdge(const Graph &g, typename Graph::Node u, typename Graph::Node v,
1143 typename Graph::Edge p = INVALID) {
1144 return _core_bits::FindEdgeSelector<Graph>::find(g, u, v, p);
1147 /// \brief Iterator for iterating on parallel edges connecting the same nodes.
1149 /// Iterator for iterating on parallel edges connecting the same nodes.
1150 /// It is a higher level interface for the findEdge() function. You can
1151 /// use it the following way:
1153 /// for (ConEdgeIt<Graph> it(g, u, v); it != INVALID; ++it) {
1159 template <typename GR>
1160 class ConEdgeIt : public GR::Edge {
1161 typedef typename GR::Edge Parent;
1165 typedef typename GR::Edge Edge;
1166 typedef typename GR::Node Node;
1168 /// \brief Constructor.
1170 /// Construct a new ConEdgeIt iterating on the edges that
1171 /// connects nodes \c u and \c v.
1172 ConEdgeIt(const GR& g, Node u, Node v) : _graph(g), _u(u), _v(v) {
1173 Parent::operator=(findEdge(_graph, _u, _v));
1176 /// \brief Constructor.
1178 /// Construct a new ConEdgeIt that continues iterating from edge \c e.
1179 ConEdgeIt(const GR& g, Edge e) : Parent(e), _graph(g) {}
1181 /// \brief Increment operator.
1183 /// It increments the iterator and gives back the next edge.
1184 ConEdgeIt& operator++() {
1185 Parent::operator=(findEdge(_graph, _u, _v, *this));
1194 ///Dynamic arc look-up between given endpoints.
1196 ///Using this class, you can find an arc in a digraph from a given
1197 ///source to a given target in amortized time <em>O</em>(log<em>d</em>),
1198 ///where <em>d</em> is the out-degree of the source node.
1200 ///It is possible to find \e all parallel arcs between two nodes with
1201 ///the \c operator() member.
1203 ///This is a dynamic data structure. Consider to use \ref ArcLookUp or
1204 ///\ref AllArcLookUp if your digraph is not changed so frequently.
1206 ///This class uses a self-adjusting binary search tree, the Splay tree
1207 ///of Sleator and Tarjan to guarantee the logarithmic amortized
1208 ///time bound for arc look-ups. This class also guarantees the
1209 ///optimal time bound in a constant factor for any distribution of
1212 ///\tparam GR The type of the underlying digraph.
1216 template <typename GR>
1218 : protected ItemSetTraits<GR, typename GR::Arc>::ItemNotifier::ObserverBase
1220 typedef typename ItemSetTraits<GR, typename GR::Arc>
1221 ::ItemNotifier::ObserverBase Parent;
1223 TEMPLATE_DIGRAPH_TYPEDEFS(GR);
1227 /// The Digraph type
1232 class AutoNodeMap : public ItemSetTraits<GR, Node>::template Map<Arc>::Type {
1233 typedef typename ItemSetTraits<GR, Node>::template Map<Arc>::Type Parent;
1237 AutoNodeMap(const GR& digraph) : Parent(digraph, INVALID) {}
1239 virtual void add(const Node& node) {
1241 Parent::set(node, INVALID);
1244 virtual void add(const std::vector<Node>& nodes) {
1246 for (int i = 0; i < int(nodes.size()); ++i) {
1247 Parent::set(nodes[i], INVALID);
1251 virtual void build() {
1254 typename Parent::Notifier* nf = Parent::notifier();
1255 for (nf->first(it); it != INVALID; nf->next(it)) {
1256 Parent::set(it, INVALID);
1264 ArcLess(const Digraph &_g) : g(_g) {}
1265 bool operator()(Arc a,Arc b) const
1267 return g.target(a)<g.target(b);
1275 typename Digraph::template ArcMap<Arc> _parent;
1276 typename Digraph::template ArcMap<Arc> _left;
1277 typename Digraph::template ArcMap<Arc> _right;
1285 ///It builds up the search database.
1286 DynArcLookUp(const Digraph &g)
1287 : _g(g),_head(g),_parent(g),_left(g),_right(g)
1289 Parent::attach(_g.notifier(typename Digraph::Arc()));
1295 virtual void add(const Arc& arc) {
1299 virtual void add(const std::vector<Arc>& arcs) {
1300 for (int i = 0; i < int(arcs.size()); ++i) {
1305 virtual void erase(const Arc& arc) {
1309 virtual void erase(const std::vector<Arc>& arcs) {
1310 for (int i = 0; i < int(arcs.size()); ++i) {
1315 virtual void build() {
1319 virtual void clear() {
1320 for(NodeIt n(_g);n!=INVALID;++n) {
1325 void insert(Arc arc) {
1326 Node s = _g.source(arc);
1327 Node t = _g.target(arc);
1328 _left[arc] = INVALID;
1329 _right[arc] = INVALID;
1334 _parent[arc] = INVALID;
1338 if (t < _g.target(e)) {
1339 if (_left[e] == INVALID) {
1348 if (_right[e] == INVALID) {
1360 void remove(Arc arc) {
1361 if (_left[arc] == INVALID) {
1362 if (_right[arc] != INVALID) {
1363 _parent[_right[arc]] = _parent[arc];
1365 if (_parent[arc] != INVALID) {
1366 if (_left[_parent[arc]] == arc) {
1367 _left[_parent[arc]] = _right[arc];
1369 _right[_parent[arc]] = _right[arc];
1372 _head[_g.source(arc)] = _right[arc];
1374 } else if (_right[arc] == INVALID) {
1375 _parent[_left[arc]] = _parent[arc];
1376 if (_parent[arc] != INVALID) {
1377 if (_left[_parent[arc]] == arc) {
1378 _left[_parent[arc]] = _left[arc];
1380 _right[_parent[arc]] = _left[arc];
1383 _head[_g.source(arc)] = _left[arc];
1387 if (_right[e] != INVALID) {
1389 while (_right[e] != INVALID) {
1393 _right[_parent[e]] = _left[e];
1394 if (_left[e] != INVALID) {
1395 _parent[_left[e]] = _parent[e];
1398 _left[e] = _left[arc];
1399 _parent[_left[arc]] = e;
1400 _right[e] = _right[arc];
1401 _parent[_right[arc]] = e;
1403 _parent[e] = _parent[arc];
1404 if (_parent[arc] != INVALID) {
1405 if (_left[_parent[arc]] == arc) {
1406 _left[_parent[arc]] = e;
1408 _right[_parent[arc]] = e;
1413 _right[e] = _right[arc];
1414 _parent[_right[arc]] = e;
1415 _parent[e] = _parent[arc];
1417 if (_parent[arc] != INVALID) {
1418 if (_left[_parent[arc]] == arc) {
1419 _left[_parent[arc]] = e;
1421 _right[_parent[arc]] = e;
1424 _head[_g.source(arc)] = e;
1430 Arc refreshRec(std::vector<Arc> &v,int a,int b)
1435 Arc left = refreshRec(v,a,m-1);
1439 _left[me] = INVALID;
1442 Arc right = refreshRec(v,m+1,b);
1444 _parent[right] = me;
1446 _right[me] = INVALID;
1452 for(NodeIt n(_g);n!=INVALID;++n) {
1454 for(OutArcIt a(_g,n);a!=INVALID;++a) v.push_back(a);
1456 std::sort(v.begin(),v.end(),ArcLess(_g));
1457 Arc head = refreshRec(v,0,v.size()-1);
1459 _parent[head] = INVALID;
1461 else _head[n] = INVALID;
1467 _parent[v] = _parent[w];
1469 _left[w] = _right[v];
1471 if (_parent[v] != INVALID) {
1472 if (_right[_parent[v]] == w) {
1473 _right[_parent[v]] = v;
1475 _left[_parent[v]] = v;
1478 if (_left[w] != INVALID){
1479 _parent[_left[w]] = w;
1485 _parent[v] = _parent[w];
1487 _right[w] = _left[v];
1489 if (_parent[v] != INVALID){
1490 if (_left[_parent[v]] == w) {
1491 _left[_parent[v]] = v;
1493 _right[_parent[v]] = v;
1496 if (_right[w] != INVALID){
1497 _parent[_right[w]] = w;
1502 while (_parent[v] != INVALID) {
1503 if (v == _left[_parent[v]]) {
1504 if (_parent[_parent[v]] == INVALID) {
1507 if (_parent[v] == _left[_parent[_parent[v]]]) {
1516 if (_parent[_parent[v]] == INVALID) {
1519 if (_parent[v] == _left[_parent[_parent[v]]]) {
1529 _head[_g.source(v)] = v;
1535 ///Find an arc between two nodes.
1537 ///Find an arc between two nodes.
1538 ///\param s The source node.
1539 ///\param t The target node.
1540 ///\param p The previous arc between \c s and \c t. It it is INVALID or
1541 ///not given, the operator finds the first appropriate arc.
1542 ///\return An arc from \c s to \c t after \c p or
1543 ///\ref INVALID if there is no more.
1545 ///For example, you can count the number of arcs from \c u to \c v in the
1548 ///DynArcLookUp<ListDigraph> ae(g);
1551 ///for(Arc a = ae(u,v); a != INVALID; a = ae(u,v,a)) n++;
1554 ///Finding the arcs take at most <em>O</em>(log<em>d</em>)
1555 ///amortized time, specifically, the time complexity of the lookups
1556 ///is equal to the optimal search tree implementation for the
1557 ///current query distribution in a constant factor.
1559 ///\note This is a dynamic data structure, therefore the data
1560 ///structure is updated after each graph alteration. Thus although
1561 ///this data structure is theoretically faster than \ref ArcLookUp
1562 ///and \ref AllArcLookUp, it often provides worse performance than
1564 Arc operator()(Node s, Node t, Arc p = INVALID) const {
1567 if (a == INVALID) return INVALID;
1570 if (_g.target(a) < t) {
1571 if (_right[a] == INVALID) {
1572 const_cast<DynArcLookUp&>(*this).splay(a);
1578 if (_g.target(a) == t) {
1581 if (_left[a] == INVALID) {
1582 const_cast<DynArcLookUp&>(*this).splay(a);
1591 if (_right[a] != INVALID) {
1593 while (_left[a] != INVALID) {
1596 const_cast<DynArcLookUp&>(*this).splay(a);
1598 while (_parent[a] != INVALID && _right[_parent[a]] == a) {
1601 if (_parent[a] == INVALID) {
1605 const_cast<DynArcLookUp&>(*this).splay(a);
1608 if (_g.target(a) == t) return a;
1609 else return INVALID;
1615 ///Fast arc look-up between given endpoints.
1617 ///Using this class, you can find an arc in a digraph from a given
1618 ///source to a given target in time <em>O</em>(log<em>d</em>),
1619 ///where <em>d</em> is the out-degree of the source node.
1621 ///It is not possible to find \e all parallel arcs between two nodes.
1622 ///Use \ref AllArcLookUp for this purpose.
1624 ///\warning This class is static, so you should call refresh() (or at
1625 ///least refresh(Node)) to refresh this data structure whenever the
1626 ///digraph changes. This is a time consuming (superlinearly proportional
1627 ///(<em>O</em>(<em>m</em> log<em>m</em>)) to the number of arcs).
1629 ///\tparam GR The type of the underlying digraph.
1636 TEMPLATE_DIGRAPH_TYPEDEFS(GR);
1640 /// The Digraph type
1645 typename Digraph::template NodeMap<Arc> _head;
1646 typename Digraph::template ArcMap<Arc> _left;
1647 typename Digraph::template ArcMap<Arc> _right;
1652 ArcLess(const Digraph &_g) : g(_g) {}
1653 bool operator()(Arc a,Arc b) const
1655 return g.target(a)<g.target(b);
1665 ///It builds up the search database, which remains valid until the digraph
1667 ArcLookUp(const Digraph &g) :_g(g),_head(g),_left(g),_right(g) {refresh();}
1670 Arc refreshRec(std::vector<Arc> &v,int a,int b)
1674 _left[me] = a<m?refreshRec(v,a,m-1):INVALID;
1675 _right[me] = m<b?refreshRec(v,m+1,b):INVALID;
1679 ///Refresh the search data structure at a node.
1681 ///Build up the search database of node \c n.
1683 ///It runs in time <em>O</em>(<em>d</em> log<em>d</em>), where <em>d</em>
1684 ///is the number of the outgoing arcs of \c n.
1685 void refresh(Node n)
1688 for(OutArcIt e(_g,n);e!=INVALID;++e) v.push_back(e);
1690 std::sort(v.begin(),v.end(),ArcLess(_g));
1691 _head[n]=refreshRec(v,0,v.size()-1);
1693 else _head[n]=INVALID;
1695 ///Refresh the full data structure.
1697 ///Build up the full search database. In fact, it simply calls
1698 ///\ref refresh(Node) "refresh(n)" for each node \c n.
1700 ///It runs in time <em>O</em>(<em>m</em> log<em>D</em>), where <em>m</em> is
1701 ///the number of the arcs in the digraph and <em>D</em> is the maximum
1702 ///out-degree of the digraph.
1705 for(NodeIt n(_g);n!=INVALID;++n) refresh(n);
1708 ///Find an arc between two nodes.
1710 ///Find an arc between two nodes in time <em>O</em>(log<em>d</em>),
1711 ///where <em>d</em> is the number of outgoing arcs of \c s.
1712 ///\param s The source node.
1713 ///\param t The target node.
1714 ///\return An arc from \c s to \c t if there exists,
1715 ///\ref INVALID otherwise.
1717 ///\warning If you change the digraph, refresh() must be called before using
1718 ///this operator. If you change the outgoing arcs of
1719 ///a single node \c n, then \ref refresh(Node) "refresh(n)" is enough.
1720 Arc operator()(Node s, Node t) const
1724 e!=INVALID&&_g.target(e)!=t;
1725 e = t < _g.target(e)?_left[e]:_right[e]) ;
1731 ///Fast look-up of all arcs between given endpoints.
1733 ///This class is the same as \ref ArcLookUp, with the addition
1734 ///that it makes it possible to find all parallel arcs between given
1737 ///\warning This class is static, so you should call refresh() (or at
1738 ///least refresh(Node)) to refresh this data structure whenever the
1739 ///digraph changes. This is a time consuming (superlinearly proportional
1740 ///(<em>O</em>(<em>m</em> log<em>m</em>)) to the number of arcs).
1742 ///\tparam GR The type of the underlying digraph.
1747 class AllArcLookUp : public ArcLookUp<GR>
1749 using ArcLookUp<GR>::_g;
1750 using ArcLookUp<GR>::_right;
1751 using ArcLookUp<GR>::_left;
1752 using ArcLookUp<GR>::_head;
1754 TEMPLATE_DIGRAPH_TYPEDEFS(GR);
1756 typename GR::template ArcMap<Arc> _next;
1758 Arc refreshNext(Arc head,Arc next=INVALID)
1760 if(head==INVALID) return next;
1762 next=refreshNext(_right[head],next);
1763 _next[head]=( next!=INVALID && _g.target(next)==_g.target(head))
1765 return refreshNext(_left[head],head);
1771 for(NodeIt n(_g);n!=INVALID;++n) refreshNext(_head[n]);
1776 /// The Digraph type
1783 ///It builds up the search database, which remains valid until the digraph
1785 AllArcLookUp(const Digraph &g) : ArcLookUp<GR>(g), _next(g) {refreshNext();}
1787 ///Refresh the data structure at a node.
1789 ///Build up the search database of node \c n.
1791 ///It runs in time <em>O</em>(<em>d</em> log<em>d</em>), where <em>d</em> is
1792 ///the number of the outgoing arcs of \c n.
1793 void refresh(Node n)
1795 ArcLookUp<GR>::refresh(n);
1796 refreshNext(_head[n]);
1799 ///Refresh the full data structure.
1801 ///Build up the full search database. In fact, it simply calls
1802 ///\ref refresh(Node) "refresh(n)" for each node \c n.
1804 ///It runs in time <em>O</em>(<em>m</em> log<em>D</em>), where <em>m</em> is
1805 ///the number of the arcs in the digraph and <em>D</em> is the maximum
1806 ///out-degree of the digraph.
1809 for(NodeIt n(_g);n!=INVALID;++n) refresh(_head[n]);
1812 ///Find an arc between two nodes.
1814 ///Find an arc between two nodes.
1815 ///\param s The source node.
1816 ///\param t The target node.
1817 ///\param prev The previous arc between \c s and \c t. It it is INVALID or
1818 ///not given, the operator finds the first appropriate arc.
1819 ///\return An arc from \c s to \c t after \c prev or
1820 ///\ref INVALID if there is no more.
1822 ///For example, you can count the number of arcs from \c u to \c v in the
1825 ///AllArcLookUp<ListDigraph> ae(g);
1828 ///for(Arc a = ae(u,v); a != INVALID; a=ae(u,v,a)) n++;
1831 ///Finding the first arc take <em>O</em>(log<em>d</em>) time,
1832 ///where <em>d</em> is the number of outgoing arcs of \c s. Then the
1833 ///consecutive arcs are found in constant time.
1835 ///\warning If you change the digraph, refresh() must be called before using
1836 ///this operator. If you change the outgoing arcs of
1837 ///a single node \c n, then \ref refresh(Node) "refresh(n)" is enough.
1840 Arc operator()(Node s, Node t, Arc prev=INVALID) const {}
1842 using ArcLookUp<GR>::operator() ;
1843 Arc operator()(Node s, Node t, Arc prev) const
1845 return prev==INVALID?(*this)(s,t):_next[prev];