lemon/concepts/graph.h
author Peter Kovacs <kpeter@inf.elte.hu>
Fri, 17 Apr 2009 18:04:36 +0200
changeset 601 e6927fe719e6
parent 440 88ed40ad0d4f
child 550 c5fd2d996909
permissions -rw-r--r--
Support >= and <= constraints in NetworkSimplex (#219, #234)

By default the same inequality constraints are supported as by
Circulation (the GEQ form), but the LEQ form can also be selected
using the problemType() function.

The documentation of the min. cost flow module is reworked and
extended with important notes and explanations about the different
variants of the problem and about the dual solution and optimality
conditions.
     1 /* -*- mode: C++; indent-tabs-mode: nil; -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library.
     4  *
     5  * Copyright (C) 2003-2009
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 ///\ingroup graph_concepts
    20 ///\file
    21 ///\brief The concept of Undirected Graphs.
    22 
    23 #ifndef LEMON_CONCEPTS_GRAPH_H
    24 #define LEMON_CONCEPTS_GRAPH_H
    25 
    26 #include <lemon/concepts/graph_components.h>
    27 #include <lemon/core.h>
    28 
    29 namespace lemon {
    30   namespace concepts {
    31 
    32     /// \ingroup graph_concepts
    33     ///
    34     /// \brief Class describing the concept of Undirected Graphs.
    35     ///
    36     /// This class describes the common interface of all Undirected
    37     /// Graphs.
    38     ///
    39     /// As all concept describing classes it provides only interface
    40     /// without any sensible implementation. So any algorithm for
    41     /// undirected graph should compile with this class, but it will not
    42     /// run properly, of course.
    43     ///
    44     /// The LEMON undirected graphs also fulfill the concept of
    45     /// directed graphs (\ref lemon::concepts::Digraph "Digraph
    46     /// Concept"). Each edges can be seen as two opposite
    47     /// directed arc and consequently the undirected graph can be
    48     /// seen as the direceted graph of these directed arcs. The
    49     /// Graph has the Edge inner class for the edges and
    50     /// the Arc type for the directed arcs. The Arc type is
    51     /// convertible to Edge or inherited from it so from a directed
    52     /// arc we can get the represented edge.
    53     ///
    54     /// In the sense of the LEMON each edge has a default
    55     /// direction (it should be in every computer implementation,
    56     /// because the order of edge's nodes defines an
    57     /// orientation). With the default orientation we can define that
    58     /// the directed arc is forward or backward directed. With the \c
    59     /// direction() and \c direct() function we can get the direction
    60     /// of the directed arc and we can direct an edge.
    61     ///
    62     /// The EdgeIt is an iterator for the edges. We can use
    63     /// the EdgeMap to map values for the edges. The InArcIt and
    64     /// OutArcIt iterates on the same edges but with opposite
    65     /// direction. The IncEdgeIt iterates also on the same edges
    66     /// as the OutArcIt and InArcIt but it is not convertible to Arc just
    67     /// to Edge.
    68     class Graph {
    69     public:
    70       /// \brief The undirected graph should be tagged by the
    71       /// UndirectedTag.
    72       ///
    73       /// The undirected graph should be tagged by the UndirectedTag. This
    74       /// tag helps the enable_if technics to make compile time
    75       /// specializations for undirected graphs.
    76       typedef True UndirectedTag;
    77 
    78       /// \brief The base type of node iterators,
    79       /// or in other words, the trivial node iterator.
    80       ///
    81       /// This is the base type of each node iterator,
    82       /// thus each kind of node iterator converts to this.
    83       /// More precisely each kind of node iterator should be inherited
    84       /// from the trivial node iterator.
    85       class Node {
    86       public:
    87         /// Default constructor
    88 
    89         /// @warning The default constructor sets the iterator
    90         /// to an undefined value.
    91         Node() { }
    92         /// Copy constructor.
    93 
    94         /// Copy constructor.
    95         ///
    96         Node(const Node&) { }
    97 
    98         /// Invalid constructor \& conversion.
    99 
   100         /// This constructor initializes the iterator to be invalid.
   101         /// \sa Invalid for more details.
   102         Node(Invalid) { }
   103         /// Equality operator
   104 
   105         /// Two iterators are equal if and only if they point to the
   106         /// same object or both are invalid.
   107         bool operator==(Node) const { return true; }
   108 
   109         /// Inequality operator
   110 
   111         /// \sa operator==(Node n)
   112         ///
   113         bool operator!=(Node) const { return true; }
   114 
   115         /// Artificial ordering operator.
   116 
   117         /// To allow the use of graph descriptors as key type in std::map or
   118         /// similar associative container we require this.
   119         ///
   120         /// \note This operator only have to define some strict ordering of
   121         /// the items; this order has nothing to do with the iteration
   122         /// ordering of the items.
   123         bool operator<(Node) const { return false; }
   124 
   125       };
   126 
   127       /// This iterator goes through each node.
   128 
   129       /// This iterator goes through each node.
   130       /// Its usage is quite simple, for example you can count the number
   131       /// of nodes in graph \c g of type \c Graph like this:
   132       ///\code
   133       /// int count=0;
   134       /// for (Graph::NodeIt n(g); n!=INVALID; ++n) ++count;
   135       ///\endcode
   136       class NodeIt : public Node {
   137       public:
   138         /// Default constructor
   139 
   140         /// @warning The default constructor sets the iterator
   141         /// to an undefined value.
   142         NodeIt() { }
   143         /// Copy constructor.
   144 
   145         /// Copy constructor.
   146         ///
   147         NodeIt(const NodeIt& n) : Node(n) { }
   148         /// Invalid constructor \& conversion.
   149 
   150         /// Initialize the iterator to be invalid.
   151         /// \sa Invalid for more details.
   152         NodeIt(Invalid) { }
   153         /// Sets the iterator to the first node.
   154 
   155         /// Sets the iterator to the first node of \c g.
   156         ///
   157         NodeIt(const Graph&) { }
   158         /// Node -> NodeIt conversion.
   159 
   160         /// Sets the iterator to the node of \c the graph pointed by
   161         /// the trivial iterator.
   162         /// This feature necessitates that each time we
   163         /// iterate the arc-set, the iteration order is the same.
   164         NodeIt(const Graph&, const Node&) { }
   165         /// Next node.
   166 
   167         /// Assign the iterator to the next node.
   168         ///
   169         NodeIt& operator++() { return *this; }
   170       };
   171 
   172 
   173       /// The base type of the edge iterators.
   174 
   175       /// The base type of the edge iterators.
   176       ///
   177       class Edge {
   178       public:
   179         /// Default constructor
   180 
   181         /// @warning The default constructor sets the iterator
   182         /// to an undefined value.
   183         Edge() { }
   184         /// Copy constructor.
   185 
   186         /// Copy constructor.
   187         ///
   188         Edge(const Edge&) { }
   189         /// Initialize the iterator to be invalid.
   190 
   191         /// Initialize the iterator to be invalid.
   192         ///
   193         Edge(Invalid) { }
   194         /// Equality operator
   195 
   196         /// Two iterators are equal if and only if they point to the
   197         /// same object or both are invalid.
   198         bool operator==(Edge) const { return true; }
   199         /// Inequality operator
   200 
   201         /// \sa operator==(Edge n)
   202         ///
   203         bool operator!=(Edge) const { return true; }
   204 
   205         /// Artificial ordering operator.
   206 
   207         /// To allow the use of graph descriptors as key type in std::map or
   208         /// similar associative container we require this.
   209         ///
   210         /// \note This operator only have to define some strict ordering of
   211         /// the items; this order has nothing to do with the iteration
   212         /// ordering of the items.
   213         bool operator<(Edge) const { return false; }
   214       };
   215 
   216       /// This iterator goes through each edge.
   217 
   218       /// This iterator goes through each edge of a graph.
   219       /// Its usage is quite simple, for example you can count the number
   220       /// of edges in a graph \c g of type \c Graph as follows:
   221       ///\code
   222       /// int count=0;
   223       /// for(Graph::EdgeIt e(g); e!=INVALID; ++e) ++count;
   224       ///\endcode
   225       class EdgeIt : public Edge {
   226       public:
   227         /// Default constructor
   228 
   229         /// @warning The default constructor sets the iterator
   230         /// to an undefined value.
   231         EdgeIt() { }
   232         /// Copy constructor.
   233 
   234         /// Copy constructor.
   235         ///
   236         EdgeIt(const EdgeIt& e) : Edge(e) { }
   237         /// Initialize the iterator to be invalid.
   238 
   239         /// Initialize the iterator to be invalid.
   240         ///
   241         EdgeIt(Invalid) { }
   242         /// This constructor sets the iterator to the first edge.
   243 
   244         /// This constructor sets the iterator to the first edge.
   245         EdgeIt(const Graph&) { }
   246         /// Edge -> EdgeIt conversion
   247 
   248         /// Sets the iterator to the value of the trivial iterator.
   249         /// This feature necessitates that each time we
   250         /// iterate the edge-set, the iteration order is the
   251         /// same.
   252         EdgeIt(const Graph&, const Edge&) { }
   253         /// Next edge
   254 
   255         /// Assign the iterator to the next edge.
   256         EdgeIt& operator++() { return *this; }
   257       };
   258 
   259       /// \brief This iterator goes trough the incident undirected
   260       /// arcs of a node.
   261       ///
   262       /// This iterator goes trough the incident edges
   263       /// of a certain node of a graph. You should assume that the
   264       /// loop arcs will be iterated twice.
   265       ///
   266       /// Its usage is quite simple, for example you can compute the
   267       /// degree (i.e. count the number of incident arcs of a node \c n
   268       /// in graph \c g of type \c Graph as follows.
   269       ///
   270       ///\code
   271       /// int count=0;
   272       /// for(Graph::IncEdgeIt e(g, n); e!=INVALID; ++e) ++count;
   273       ///\endcode
   274       class IncEdgeIt : public Edge {
   275       public:
   276         /// Default constructor
   277 
   278         /// @warning The default constructor sets the iterator
   279         /// to an undefined value.
   280         IncEdgeIt() { }
   281         /// Copy constructor.
   282 
   283         /// Copy constructor.
   284         ///
   285         IncEdgeIt(const IncEdgeIt& e) : Edge(e) { }
   286         /// Initialize the iterator to be invalid.
   287 
   288         /// Initialize the iterator to be invalid.
   289         ///
   290         IncEdgeIt(Invalid) { }
   291         /// This constructor sets the iterator to first incident arc.
   292 
   293         /// This constructor set the iterator to the first incident arc of
   294         /// the node.
   295         IncEdgeIt(const Graph&, const Node&) { }
   296         /// Edge -> IncEdgeIt conversion
   297 
   298         /// Sets the iterator to the value of the trivial iterator \c e.
   299         /// This feature necessitates that each time we
   300         /// iterate the arc-set, the iteration order is the same.
   301         IncEdgeIt(const Graph&, const Edge&) { }
   302         /// Next incident arc
   303 
   304         /// Assign the iterator to the next incident arc
   305         /// of the corresponding node.
   306         IncEdgeIt& operator++() { return *this; }
   307       };
   308 
   309       /// The directed arc type.
   310 
   311       /// The directed arc type. It can be converted to the
   312       /// edge or it should be inherited from the undirected
   313       /// arc.
   314       class Arc : public Edge {
   315       public:
   316         /// Default constructor
   317 
   318         /// @warning The default constructor sets the iterator
   319         /// to an undefined value.
   320         Arc() { }
   321         /// Copy constructor.
   322 
   323         /// Copy constructor.
   324         ///
   325         Arc(const Arc& e) : Edge(e) { }
   326         /// Initialize the iterator to be invalid.
   327 
   328         /// Initialize the iterator to be invalid.
   329         ///
   330         Arc(Invalid) { }
   331         /// Equality operator
   332 
   333         /// Two iterators are equal if and only if they point to the
   334         /// same object or both are invalid.
   335         bool operator==(Arc) const { return true; }
   336         /// Inequality operator
   337 
   338         /// \sa operator==(Arc n)
   339         ///
   340         bool operator!=(Arc) const { return true; }
   341 
   342         /// Artificial ordering operator.
   343 
   344         /// To allow the use of graph descriptors as key type in std::map or
   345         /// similar associative container we require this.
   346         ///
   347         /// \note This operator only have to define some strict ordering of
   348         /// the items; this order has nothing to do with the iteration
   349         /// ordering of the items.
   350         bool operator<(Arc) const { return false; }
   351 
   352       };
   353       /// This iterator goes through each directed arc.
   354 
   355       /// This iterator goes through each arc of a graph.
   356       /// Its usage is quite simple, for example you can count the number
   357       /// of arcs in a graph \c g of type \c Graph as follows:
   358       ///\code
   359       /// int count=0;
   360       /// for(Graph::ArcIt e(g); e!=INVALID; ++e) ++count;
   361       ///\endcode
   362       class ArcIt : public Arc {
   363       public:
   364         /// Default constructor
   365 
   366         /// @warning The default constructor sets the iterator
   367         /// to an undefined value.
   368         ArcIt() { }
   369         /// Copy constructor.
   370 
   371         /// Copy constructor.
   372         ///
   373         ArcIt(const ArcIt& e) : Arc(e) { }
   374         /// Initialize the iterator to be invalid.
   375 
   376         /// Initialize the iterator to be invalid.
   377         ///
   378         ArcIt(Invalid) { }
   379         /// This constructor sets the iterator to the first arc.
   380 
   381         /// This constructor sets the iterator to the first arc of \c g.
   382         ///@param g the graph
   383         ArcIt(const Graph &g) { ignore_unused_variable_warning(g); }
   384         /// Arc -> ArcIt conversion
   385 
   386         /// Sets the iterator to the value of the trivial iterator \c e.
   387         /// This feature necessitates that each time we
   388         /// iterate the arc-set, the iteration order is the same.
   389         ArcIt(const Graph&, const Arc&) { }
   390         ///Next arc
   391 
   392         /// Assign the iterator to the next arc.
   393         ArcIt& operator++() { return *this; }
   394       };
   395 
   396       /// This iterator goes trough the outgoing directed arcs of a node.
   397 
   398       /// This iterator goes trough the \e outgoing arcs of a certain node
   399       /// of a graph.
   400       /// Its usage is quite simple, for example you can count the number
   401       /// of outgoing arcs of a node \c n
   402       /// in graph \c g of type \c Graph as follows.
   403       ///\code
   404       /// int count=0;
   405       /// for (Graph::OutArcIt e(g, n); e!=INVALID; ++e) ++count;
   406       ///\endcode
   407 
   408       class OutArcIt : public Arc {
   409       public:
   410         /// Default constructor
   411 
   412         /// @warning The default constructor sets the iterator
   413         /// to an undefined value.
   414         OutArcIt() { }
   415         /// Copy constructor.
   416 
   417         /// Copy constructor.
   418         ///
   419         OutArcIt(const OutArcIt& e) : Arc(e) { }
   420         /// Initialize the iterator to be invalid.
   421 
   422         /// Initialize the iterator to be invalid.
   423         ///
   424         OutArcIt(Invalid) { }
   425         /// This constructor sets the iterator to the first outgoing arc.
   426 
   427         /// This constructor sets the iterator to the first outgoing arc of
   428         /// the node.
   429         ///@param n the node
   430         ///@param g the graph
   431         OutArcIt(const Graph& n, const Node& g) {
   432           ignore_unused_variable_warning(n);
   433           ignore_unused_variable_warning(g);
   434         }
   435         /// Arc -> OutArcIt conversion
   436 
   437         /// Sets the iterator to the value of the trivial iterator.
   438         /// This feature necessitates that each time we
   439         /// iterate the arc-set, the iteration order is the same.
   440         OutArcIt(const Graph&, const Arc&) { }
   441         ///Next outgoing arc
   442 
   443         /// Assign the iterator to the next
   444         /// outgoing arc of the corresponding node.
   445         OutArcIt& operator++() { return *this; }
   446       };
   447 
   448       /// This iterator goes trough the incoming directed arcs of a node.
   449 
   450       /// This iterator goes trough the \e incoming arcs of a certain node
   451       /// of a graph.
   452       /// Its usage is quite simple, for example you can count the number
   453       /// of outgoing arcs of a node \c n
   454       /// in graph \c g of type \c Graph as follows.
   455       ///\code
   456       /// int count=0;
   457       /// for(Graph::InArcIt e(g, n); e!=INVALID; ++e) ++count;
   458       ///\endcode
   459 
   460       class InArcIt : public Arc {
   461       public:
   462         /// Default constructor
   463 
   464         /// @warning The default constructor sets the iterator
   465         /// to an undefined value.
   466         InArcIt() { }
   467         /// Copy constructor.
   468 
   469         /// Copy constructor.
   470         ///
   471         InArcIt(const InArcIt& e) : Arc(e) { }
   472         /// Initialize the iterator to be invalid.
   473 
   474         /// Initialize the iterator to be invalid.
   475         ///
   476         InArcIt(Invalid) { }
   477         /// This constructor sets the iterator to first incoming arc.
   478 
   479         /// This constructor set the iterator to the first incoming arc of
   480         /// the node.
   481         ///@param n the node
   482         ///@param g the graph
   483         InArcIt(const Graph& g, const Node& n) {
   484           ignore_unused_variable_warning(n);
   485           ignore_unused_variable_warning(g);
   486         }
   487         /// Arc -> InArcIt conversion
   488 
   489         /// Sets the iterator to the value of the trivial iterator \c e.
   490         /// This feature necessitates that each time we
   491         /// iterate the arc-set, the iteration order is the same.
   492         InArcIt(const Graph&, const Arc&) { }
   493         /// Next incoming arc
   494 
   495         /// Assign the iterator to the next inarc of the corresponding node.
   496         ///
   497         InArcIt& operator++() { return *this; }
   498       };
   499 
   500       /// \brief Read write map of the nodes to type \c T.
   501       ///
   502       /// ReadWrite map of the nodes to type \c T.
   503       /// \sa Reference
   504       template<class T>
   505       class NodeMap : public ReadWriteMap< Node, T >
   506       {
   507       public:
   508 
   509         ///\e
   510         NodeMap(const Graph&) { }
   511         ///\e
   512         NodeMap(const Graph&, T) { }
   513 
   514       private:
   515         ///Copy constructor
   516         NodeMap(const NodeMap& nm) : ReadWriteMap< Node, T >(nm) { }
   517         ///Assignment operator
   518         template <typename CMap>
   519         NodeMap& operator=(const CMap&) {
   520           checkConcept<ReadMap<Node, T>, CMap>();
   521           return *this;
   522         }
   523       };
   524 
   525       /// \brief Read write map of the directed arcs to type \c T.
   526       ///
   527       /// Reference map of the directed arcs to type \c T.
   528       /// \sa Reference
   529       template<class T>
   530       class ArcMap : public ReadWriteMap<Arc,T>
   531       {
   532       public:
   533 
   534         ///\e
   535         ArcMap(const Graph&) { }
   536         ///\e
   537         ArcMap(const Graph&, T) { }
   538       private:
   539         ///Copy constructor
   540         ArcMap(const ArcMap& em) : ReadWriteMap<Arc,T>(em) { }
   541         ///Assignment operator
   542         template <typename CMap>
   543         ArcMap& operator=(const CMap&) {
   544           checkConcept<ReadMap<Arc, T>, CMap>();
   545           return *this;
   546         }
   547       };
   548 
   549       /// Read write map of the edges to type \c T.
   550 
   551       /// Reference map of the arcs to type \c T.
   552       /// \sa Reference
   553       template<class T>
   554       class EdgeMap : public ReadWriteMap<Edge,T>
   555       {
   556       public:
   557 
   558         ///\e
   559         EdgeMap(const Graph&) { }
   560         ///\e
   561         EdgeMap(const Graph&, T) { }
   562       private:
   563         ///Copy constructor
   564         EdgeMap(const EdgeMap& em) : ReadWriteMap<Edge,T>(em) {}
   565         ///Assignment operator
   566         template <typename CMap>
   567         EdgeMap& operator=(const CMap&) {
   568           checkConcept<ReadMap<Edge, T>, CMap>();
   569           return *this;
   570         }
   571       };
   572 
   573       /// \brief Direct the given edge.
   574       ///
   575       /// Direct the given edge. The returned arc source
   576       /// will be the given node.
   577       Arc direct(const Edge&, const Node&) const {
   578         return INVALID;
   579       }
   580 
   581       /// \brief Direct the given edge.
   582       ///
   583       /// Direct the given edge. The returned arc
   584       /// represents the given edge and the direction comes
   585       /// from the bool parameter. The source of the edge and
   586       /// the directed arc is the same when the given bool is true.
   587       Arc direct(const Edge&, bool) const {
   588         return INVALID;
   589       }
   590 
   591       /// \brief Returns true if the arc has default orientation.
   592       ///
   593       /// Returns whether the given directed arc is same orientation as
   594       /// the corresponding edge's default orientation.
   595       bool direction(Arc) const { return true; }
   596 
   597       /// \brief Returns the opposite directed arc.
   598       ///
   599       /// Returns the opposite directed arc.
   600       Arc oppositeArc(Arc) const { return INVALID; }
   601 
   602       /// \brief Opposite node on an arc
   603       ///
   604       /// \return the opposite of the given Node on the given Edge
   605       Node oppositeNode(Node, Edge) const { return INVALID; }
   606 
   607       /// \brief First node of the edge.
   608       ///
   609       /// \return the first node of the given Edge.
   610       ///
   611       /// Naturally edges don't have direction and thus
   612       /// don't have source and target node. But we use these two methods
   613       /// to query the two nodes of the arc. The direction of the arc
   614       /// which arises this way is called the inherent direction of the
   615       /// edge, and is used to define the "default" direction
   616       /// of the directed versions of the arcs.
   617       /// \sa direction
   618       Node u(Edge) const { return INVALID; }
   619 
   620       /// \brief Second node of the edge.
   621       Node v(Edge) const { return INVALID; }
   622 
   623       /// \brief Source node of the directed arc.
   624       Node source(Arc) const { return INVALID; }
   625 
   626       /// \brief Target node of the directed arc.
   627       Node target(Arc) const { return INVALID; }
   628 
   629       /// \brief Returns the id of the node.
   630       int id(Node) const { return -1; }
   631 
   632       /// \brief Returns the id of the edge.
   633       int id(Edge) const { return -1; }
   634 
   635       /// \brief Returns the id of the arc.
   636       int id(Arc) const { return -1; }
   637 
   638       /// \brief Returns the node with the given id.
   639       ///
   640       /// \pre The argument should be a valid node id in the graph.
   641       Node nodeFromId(int) const { return INVALID; }
   642 
   643       /// \brief Returns the edge with the given id.
   644       ///
   645       /// \pre The argument should be a valid edge id in the graph.
   646       Edge edgeFromId(int) const { return INVALID; }
   647 
   648       /// \brief Returns the arc with the given id.
   649       ///
   650       /// \pre The argument should be a valid arc id in the graph.
   651       Arc arcFromId(int) const { return INVALID; }
   652 
   653       /// \brief Returns an upper bound on the node IDs.
   654       int maxNodeId() const { return -1; }
   655 
   656       /// \brief Returns an upper bound on the edge IDs.
   657       int maxEdgeId() const { return -1; }
   658 
   659       /// \brief Returns an upper bound on the arc IDs.
   660       int maxArcId() const { return -1; }
   661 
   662       void first(Node&) const {}
   663       void next(Node&) const {}
   664 
   665       void first(Edge&) const {}
   666       void next(Edge&) const {}
   667 
   668       void first(Arc&) const {}
   669       void next(Arc&) const {}
   670 
   671       void firstOut(Arc&, Node) const {}
   672       void nextOut(Arc&) const {}
   673 
   674       void firstIn(Arc&, Node) const {}
   675       void nextIn(Arc&) const {}
   676 
   677       void firstInc(Edge &, bool &, const Node &) const {}
   678       void nextInc(Edge &, bool &) const {}
   679 
   680       // The second parameter is dummy.
   681       Node fromId(int, Node) const { return INVALID; }
   682       // The second parameter is dummy.
   683       Edge fromId(int, Edge) const { return INVALID; }
   684       // The second parameter is dummy.
   685       Arc fromId(int, Arc) const { return INVALID; }
   686 
   687       // Dummy parameter.
   688       int maxId(Node) const { return -1; }
   689       // Dummy parameter.
   690       int maxId(Edge) const { return -1; }
   691       // Dummy parameter.
   692       int maxId(Arc) const { return -1; }
   693 
   694       /// \brief Base node of the iterator
   695       ///
   696       /// Returns the base node (the source in this case) of the iterator
   697       Node baseNode(OutArcIt e) const {
   698         return source(e);
   699       }
   700       /// \brief Running node of the iterator
   701       ///
   702       /// Returns the running node (the target in this case) of the
   703       /// iterator
   704       Node runningNode(OutArcIt e) const {
   705         return target(e);
   706       }
   707 
   708       /// \brief Base node of the iterator
   709       ///
   710       /// Returns the base node (the target in this case) of the iterator
   711       Node baseNode(InArcIt e) const {
   712         return target(e);
   713       }
   714       /// \brief Running node of the iterator
   715       ///
   716       /// Returns the running node (the source in this case) of the
   717       /// iterator
   718       Node runningNode(InArcIt e) const {
   719         return source(e);
   720       }
   721 
   722       /// \brief Base node of the iterator
   723       ///
   724       /// Returns the base node of the iterator
   725       Node baseNode(IncEdgeIt) const {
   726         return INVALID;
   727       }
   728 
   729       /// \brief Running node of the iterator
   730       ///
   731       /// Returns the running node of the iterator
   732       Node runningNode(IncEdgeIt) const {
   733         return INVALID;
   734       }
   735 
   736       template <typename _Graph>
   737       struct Constraints {
   738         void constraints() {
   739           checkConcept<IterableGraphComponent<>, _Graph>();
   740           checkConcept<IDableGraphComponent<>, _Graph>();
   741           checkConcept<MappableGraphComponent<>, _Graph>();
   742         }
   743       };
   744 
   745     };
   746 
   747   }
   748 
   749 }
   750 
   751 #endif