lemon/suurballe.h
author Peter Kovacs <kpeter@inf.elte.hu>
Fri, 17 Apr 2009 18:04:36 +0200
changeset 601 e6927fe719e6
parent 440 88ed40ad0d4f
child 550 c5fd2d996909
permissions -rw-r--r--
Support >= and <= constraints in NetworkSimplex (#219, #234)

By default the same inequality constraints are supported as by
Circulation (the GEQ form), but the LEQ form can also be selected
using the problemType() function.

The documentation of the min. cost flow module is reworked and
extended with important notes and explanations about the different
variants of the problem and about the dual solution and optimality
conditions.
     1 /* -*- mode: C++; indent-tabs-mode: nil; -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library.
     4  *
     5  * Copyright (C) 2003-2009
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_SUURBALLE_H
    20 #define LEMON_SUURBALLE_H
    21 
    22 ///\ingroup shortest_path
    23 ///\file
    24 ///\brief An algorithm for finding arc-disjoint paths between two
    25 /// nodes having minimum total length.
    26 
    27 #include <vector>
    28 #include <lemon/bin_heap.h>
    29 #include <lemon/path.h>
    30 #include <lemon/list_graph.h>
    31 #include <lemon/maps.h>
    32 
    33 namespace lemon {
    34 
    35   /// \addtogroup shortest_path
    36   /// @{
    37 
    38   /// \brief Algorithm for finding arc-disjoint paths between two nodes
    39   /// having minimum total length.
    40   ///
    41   /// \ref lemon::Suurballe "Suurballe" implements an algorithm for
    42   /// finding arc-disjoint paths having minimum total length (cost)
    43   /// from a given source node to a given target node in a digraph.
    44   ///
    45   /// In fact, this implementation is the specialization of the
    46   /// \ref CapacityScaling "successive shortest path" algorithm.
    47   ///
    48   /// \tparam Digraph The digraph type the algorithm runs on.
    49   /// The default value is \c ListDigraph.
    50   /// \tparam LengthMap The type of the length (cost) map.
    51   /// The default value is <tt>Digraph::ArcMap<int></tt>.
    52   ///
    53   /// \warning Length values should be \e non-negative \e integers.
    54   ///
    55   /// \note For finding node-disjoint paths this algorithm can be used
    56   /// with \ref SplitNodes.
    57 #ifdef DOXYGEN
    58   template <typename Digraph, typename LengthMap>
    59 #else
    60   template < typename Digraph = ListDigraph,
    61              typename LengthMap = typename Digraph::template ArcMap<int> >
    62 #endif
    63   class Suurballe
    64   {
    65     TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
    66 
    67     typedef typename LengthMap::Value Length;
    68     typedef ConstMap<Arc, int> ConstArcMap;
    69     typedef typename Digraph::template NodeMap<Arc> PredMap;
    70 
    71   public:
    72 
    73     /// The type of the flow map.
    74     typedef typename Digraph::template ArcMap<int> FlowMap;
    75     /// The type of the potential map.
    76     typedef typename Digraph::template NodeMap<Length> PotentialMap;
    77     /// The type of the path structures.
    78     typedef SimplePath<Digraph> Path;
    79 
    80   private:
    81 
    82     /// \brief Special implementation of the Dijkstra algorithm
    83     /// for finding shortest paths in the residual network.
    84     ///
    85     /// \ref ResidualDijkstra is a special implementation of the
    86     /// \ref Dijkstra algorithm for finding shortest paths in the
    87     /// residual network of the digraph with respect to the reduced arc
    88     /// lengths and modifying the node potentials according to the
    89     /// distance of the nodes.
    90     class ResidualDijkstra
    91     {
    92       typedef typename Digraph::template NodeMap<int> HeapCrossRef;
    93       typedef BinHeap<Length, HeapCrossRef> Heap;
    94 
    95     private:
    96 
    97       // The digraph the algorithm runs on
    98       const Digraph &_graph;
    99 
   100       // The main maps
   101       const FlowMap &_flow;
   102       const LengthMap &_length;
   103       PotentialMap &_potential;
   104 
   105       // The distance map
   106       PotentialMap _dist;
   107       // The pred arc map
   108       PredMap &_pred;
   109       // The processed (i.e. permanently labeled) nodes
   110       std::vector<Node> _proc_nodes;
   111 
   112       Node _s;
   113       Node _t;
   114 
   115     public:
   116 
   117       /// Constructor.
   118       ResidualDijkstra( const Digraph &digraph,
   119                         const FlowMap &flow,
   120                         const LengthMap &length,
   121                         PotentialMap &potential,
   122                         PredMap &pred,
   123                         Node s, Node t ) :
   124         _graph(digraph), _flow(flow), _length(length), _potential(potential),
   125         _dist(digraph), _pred(pred), _s(s), _t(t) {}
   126 
   127       /// \brief Run the algorithm. It returns \c true if a path is found
   128       /// from the source node to the target node.
   129       bool run() {
   130         HeapCrossRef heap_cross_ref(_graph, Heap::PRE_HEAP);
   131         Heap heap(heap_cross_ref);
   132         heap.push(_s, 0);
   133         _pred[_s] = INVALID;
   134         _proc_nodes.clear();
   135 
   136         // Process nodes
   137         while (!heap.empty() && heap.top() != _t) {
   138           Node u = heap.top(), v;
   139           Length d = heap.prio() + _potential[u], nd;
   140           _dist[u] = heap.prio();
   141           heap.pop();
   142           _proc_nodes.push_back(u);
   143 
   144           // Traverse outgoing arcs
   145           for (OutArcIt e(_graph, u); e != INVALID; ++e) {
   146             if (_flow[e] == 0) {
   147               v = _graph.target(e);
   148               switch(heap.state(v)) {
   149               case Heap::PRE_HEAP:
   150                 heap.push(v, d + _length[e] - _potential[v]);
   151                 _pred[v] = e;
   152                 break;
   153               case Heap::IN_HEAP:
   154                 nd = d + _length[e] - _potential[v];
   155                 if (nd < heap[v]) {
   156                   heap.decrease(v, nd);
   157                   _pred[v] = e;
   158                 }
   159                 break;
   160               case Heap::POST_HEAP:
   161                 break;
   162               }
   163             }
   164           }
   165 
   166           // Traverse incoming arcs
   167           for (InArcIt e(_graph, u); e != INVALID; ++e) {
   168             if (_flow[e] == 1) {
   169               v = _graph.source(e);
   170               switch(heap.state(v)) {
   171               case Heap::PRE_HEAP:
   172                 heap.push(v, d - _length[e] - _potential[v]);
   173                 _pred[v] = e;
   174                 break;
   175               case Heap::IN_HEAP:
   176                 nd = d - _length[e] - _potential[v];
   177                 if (nd < heap[v]) {
   178                   heap.decrease(v, nd);
   179                   _pred[v] = e;
   180                 }
   181                 break;
   182               case Heap::POST_HEAP:
   183                 break;
   184               }
   185             }
   186           }
   187         }
   188         if (heap.empty()) return false;
   189 
   190         // Update potentials of processed nodes
   191         Length t_dist = heap.prio();
   192         for (int i = 0; i < int(_proc_nodes.size()); ++i)
   193           _potential[_proc_nodes[i]] += _dist[_proc_nodes[i]] - t_dist;
   194         return true;
   195       }
   196 
   197     }; //class ResidualDijkstra
   198 
   199   private:
   200 
   201     // The digraph the algorithm runs on
   202     const Digraph &_graph;
   203     // The length map
   204     const LengthMap &_length;
   205 
   206     // Arc map of the current flow
   207     FlowMap *_flow;
   208     bool _local_flow;
   209     // Node map of the current potentials
   210     PotentialMap *_potential;
   211     bool _local_potential;
   212 
   213     // The source node
   214     Node _source;
   215     // The target node
   216     Node _target;
   217 
   218     // Container to store the found paths
   219     std::vector< SimplePath<Digraph> > paths;
   220     int _path_num;
   221 
   222     // The pred arc map
   223     PredMap _pred;
   224     // Implementation of the Dijkstra algorithm for finding augmenting
   225     // shortest paths in the residual network
   226     ResidualDijkstra *_dijkstra;
   227 
   228   public:
   229 
   230     /// \brief Constructor.
   231     ///
   232     /// Constructor.
   233     ///
   234     /// \param digraph The digraph the algorithm runs on.
   235     /// \param length The length (cost) values of the arcs.
   236     /// \param s The source node.
   237     /// \param t The target node.
   238     Suurballe( const Digraph &digraph,
   239                const LengthMap &length,
   240                Node s, Node t ) :
   241       _graph(digraph), _length(length), _flow(0), _local_flow(false),
   242       _potential(0), _local_potential(false), _source(s), _target(t),
   243       _pred(digraph) {}
   244 
   245     /// Destructor.
   246     ~Suurballe() {
   247       if (_local_flow) delete _flow;
   248       if (_local_potential) delete _potential;
   249       delete _dijkstra;
   250     }
   251 
   252     /// \brief Set the flow map.
   253     ///
   254     /// This function sets the flow map.
   255     ///
   256     /// The found flow contains only 0 and 1 values. It is the union of
   257     /// the found arc-disjoint paths.
   258     ///
   259     /// \return \c (*this)
   260     Suurballe& flowMap(FlowMap &map) {
   261       if (_local_flow) {
   262         delete _flow;
   263         _local_flow = false;
   264       }
   265       _flow = &map;
   266       return *this;
   267     }
   268 
   269     /// \brief Set the potential map.
   270     ///
   271     /// This function sets the potential map.
   272     ///
   273     /// The potentials provide the dual solution of the underlying
   274     /// minimum cost flow problem.
   275     ///
   276     /// \return \c (*this)
   277     Suurballe& potentialMap(PotentialMap &map) {
   278       if (_local_potential) {
   279         delete _potential;
   280         _local_potential = false;
   281       }
   282       _potential = &map;
   283       return *this;
   284     }
   285 
   286     /// \name Execution control
   287     /// The simplest way to execute the algorithm is to call the run()
   288     /// function.
   289     /// \n
   290     /// If you only need the flow that is the union of the found
   291     /// arc-disjoint paths, you may call init() and findFlow().
   292 
   293     /// @{
   294 
   295     /// \brief Run the algorithm.
   296     ///
   297     /// This function runs the algorithm.
   298     ///
   299     /// \param k The number of paths to be found.
   300     ///
   301     /// \return \c k if there are at least \c k arc-disjoint paths from
   302     /// \c s to \c t in the digraph. Otherwise it returns the number of
   303     /// arc-disjoint paths found.
   304     ///
   305     /// \note Apart from the return value, <tt>s.run(k)</tt> is just a
   306     /// shortcut of the following code.
   307     /// \code
   308     ///   s.init();
   309     ///   s.findFlow(k);
   310     ///   s.findPaths();
   311     /// \endcode
   312     int run(int k = 2) {
   313       init();
   314       findFlow(k);
   315       findPaths();
   316       return _path_num;
   317     }
   318 
   319     /// \brief Initialize the algorithm.
   320     ///
   321     /// This function initializes the algorithm.
   322     void init() {
   323       // Initialize maps
   324       if (!_flow) {
   325         _flow = new FlowMap(_graph);
   326         _local_flow = true;
   327       }
   328       if (!_potential) {
   329         _potential = new PotentialMap(_graph);
   330         _local_potential = true;
   331       }
   332       for (ArcIt e(_graph); e != INVALID; ++e) (*_flow)[e] = 0;
   333       for (NodeIt n(_graph); n != INVALID; ++n) (*_potential)[n] = 0;
   334 
   335       _dijkstra = new ResidualDijkstra( _graph, *_flow, _length,
   336                                         *_potential, _pred,
   337                                         _source, _target );
   338     }
   339 
   340     /// \brief Execute the successive shortest path algorithm to find
   341     /// an optimal flow.
   342     ///
   343     /// This function executes the successive shortest path algorithm to
   344     /// find a minimum cost flow, which is the union of \c k or less
   345     /// arc-disjoint paths.
   346     ///
   347     /// \return \c k if there are at least \c k arc-disjoint paths from
   348     /// \c s to \c t in the digraph. Otherwise it returns the number of
   349     /// arc-disjoint paths found.
   350     ///
   351     /// \pre \ref init() must be called before using this function.
   352     int findFlow(int k = 2) {
   353       // Find shortest paths
   354       _path_num = 0;
   355       while (_path_num < k) {
   356         // Run Dijkstra
   357         if (!_dijkstra->run()) break;
   358         ++_path_num;
   359 
   360         // Set the flow along the found shortest path
   361         Node u = _target;
   362         Arc e;
   363         while ((e = _pred[u]) != INVALID) {
   364           if (u == _graph.target(e)) {
   365             (*_flow)[e] = 1;
   366             u = _graph.source(e);
   367           } else {
   368             (*_flow)[e] = 0;
   369             u = _graph.target(e);
   370           }
   371         }
   372       }
   373       return _path_num;
   374     }
   375 
   376     /// \brief Compute the paths from the flow.
   377     ///
   378     /// This function computes the paths from the flow.
   379     ///
   380     /// \pre \ref init() and \ref findFlow() must be called before using
   381     /// this function.
   382     void findPaths() {
   383       // Create the residual flow map (the union of the paths not found
   384       // so far)
   385       FlowMap res_flow(_graph);
   386       for(ArcIt a(_graph); a != INVALID; ++a) res_flow[a] = (*_flow)[a];
   387 
   388       paths.clear();
   389       paths.resize(_path_num);
   390       for (int i = 0; i < _path_num; ++i) {
   391         Node n = _source;
   392         while (n != _target) {
   393           OutArcIt e(_graph, n);
   394           for ( ; res_flow[e] == 0; ++e) ;
   395           n = _graph.target(e);
   396           paths[i].addBack(e);
   397           res_flow[e] = 0;
   398         }
   399       }
   400     }
   401 
   402     /// @}
   403 
   404     /// \name Query Functions
   405     /// The results of the algorithm can be obtained using these
   406     /// functions.
   407     /// \n The algorithm should be executed before using them.
   408 
   409     /// @{
   410 
   411     /// \brief Return a const reference to the arc map storing the
   412     /// found flow.
   413     ///
   414     /// This function returns a const reference to the arc map storing
   415     /// the flow that is the union of the found arc-disjoint paths.
   416     ///
   417     /// \pre \ref run() or \ref findFlow() must be called before using
   418     /// this function.
   419     const FlowMap& flowMap() const {
   420       return *_flow;
   421     }
   422 
   423     /// \brief Return a const reference to the node map storing the
   424     /// found potentials (the dual solution).
   425     ///
   426     /// This function returns a const reference to the node map storing
   427     /// the found potentials that provide the dual solution of the
   428     /// underlying minimum cost flow problem.
   429     ///
   430     /// \pre \ref run() or \ref findFlow() must be called before using
   431     /// this function.
   432     const PotentialMap& potentialMap() const {
   433       return *_potential;
   434     }
   435 
   436     /// \brief Return the flow on the given arc.
   437     ///
   438     /// This function returns the flow on the given arc.
   439     /// It is \c 1 if the arc is involved in one of the found paths,
   440     /// otherwise it is \c 0.
   441     ///
   442     /// \pre \ref run() or \ref findFlow() must be called before using
   443     /// this function.
   444     int flow(const Arc& arc) const {
   445       return (*_flow)[arc];
   446     }
   447 
   448     /// \brief Return the potential of the given node.
   449     ///
   450     /// This function returns the potential of the given node.
   451     ///
   452     /// \pre \ref run() or \ref findFlow() must be called before using
   453     /// this function.
   454     Length potential(const Node& node) const {
   455       return (*_potential)[node];
   456     }
   457 
   458     /// \brief Return the total length (cost) of the found paths (flow).
   459     ///
   460     /// This function returns the total length (cost) of the found paths
   461     /// (flow). The complexity of the function is \f$ O(e) \f$.
   462     ///
   463     /// \pre \ref run() or \ref findFlow() must be called before using
   464     /// this function.
   465     Length totalLength() const {
   466       Length c = 0;
   467       for (ArcIt e(_graph); e != INVALID; ++e)
   468         c += (*_flow)[e] * _length[e];
   469       return c;
   470     }
   471 
   472     /// \brief Return the number of the found paths.
   473     ///
   474     /// This function returns the number of the found paths.
   475     ///
   476     /// \pre \ref run() or \ref findFlow() must be called before using
   477     /// this function.
   478     int pathNum() const {
   479       return _path_num;
   480     }
   481 
   482     /// \brief Return a const reference to the specified path.
   483     ///
   484     /// This function returns a const reference to the specified path.
   485     ///
   486     /// \param i The function returns the \c i-th path.
   487     /// \c i must be between \c 0 and <tt>%pathNum()-1</tt>.
   488     ///
   489     /// \pre \ref run() or \ref findPaths() must be called before using
   490     /// this function.
   491     Path path(int i) const {
   492       return paths[i];
   493     }
   494 
   495     /// @}
   496 
   497   }; //class Suurballe
   498 
   499   ///@}
   500 
   501 } //namespace lemon
   502 
   503 #endif //LEMON_SUURBALLE_H