1 /* -*- mode: C++; indent-tabs-mode: nil; -*-
3 * This file is a part of LEMON, a generic C++ optimization library.
5 * Copyright (C) 2003-2009
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 * (Egervary Research Group on Combinatorial Optimization, EGRES).
9 * Permission to use, modify and distribute this software is granted
10 * provided that this copyright notice appears in all copies. For
11 * precise terms see the accompanying LICENSE file.
13 * This software is provided "AS IS" with no warranty of any kind,
14 * express or implied, and with no claim as to its suitability for any
19 #ifndef LEMON_NETWORK_SIMPLEX_H
20 #define LEMON_NETWORK_SIMPLEX_H
22 /// \ingroup min_cost_flow_algs
25 /// \brief Network Simplex algorithm for finding a minimum cost flow.
31 #include <lemon/core.h>
32 #include <lemon/math.h>
36 /// \addtogroup min_cost_flow_algs
39 /// \brief Implementation of the primal Network Simplex algorithm
40 /// for finding a \ref min_cost_flow "minimum cost flow".
42 /// \ref NetworkSimplex implements the primal Network Simplex algorithm
43 /// for finding a \ref min_cost_flow "minimum cost flow".
44 /// This algorithm is a specialized version of the linear programming
45 /// simplex method directly for the minimum cost flow problem.
46 /// It is one of the most efficient solution methods.
48 /// In general this class is the fastest implementation available
49 /// in LEMON for the minimum cost flow problem.
50 /// Moreover it supports both directions of the supply/demand inequality
51 /// constraints. For more information see \ref SupplyType.
53 /// Most of the parameters of the problem (except for the digraph)
54 /// can be given using separate functions, and the algorithm can be
55 /// executed using the \ref run() function. If some parameters are not
56 /// specified, then default values will be used.
58 /// \tparam GR The digraph type the algorithm runs on.
59 /// \tparam V The value type used for flow amounts, capacity bounds
60 /// and supply values in the algorithm. By default it is \c int.
61 /// \tparam C The value type used for costs and potentials in the
62 /// algorithm. By default it is the same as \c V.
64 /// \warning Both value types must be signed and all input data must
67 /// \note %NetworkSimplex provides five different pivot rule
68 /// implementations, from which the most efficient one is used
69 /// by default. For more information see \ref PivotRule.
70 template <typename GR, typename V = int, typename C = V>
75 /// The type of the flow amounts, capacity bounds and supply values
77 /// The type of the arc costs
82 /// \brief Problem type constants for the \c run() function.
84 /// Enum type containing the problem type constants that can be
85 /// returned by the \ref run() function of the algorithm.
87 /// The problem has no feasible solution (flow).
89 /// The problem has optimal solution (i.e. it is feasible and
90 /// bounded), and the algorithm has found optimal flow and node
91 /// potentials (primal and dual solutions).
93 /// The objective function of the problem is unbounded, i.e.
94 /// there is a directed cycle having negative total cost and
95 /// infinite upper bound.
99 /// \brief Constants for selecting the type of the supply constraints.
101 /// Enum type containing constants for selecting the supply type,
102 /// i.e. the direction of the inequalities in the supply/demand
103 /// constraints of the \ref min_cost_flow "minimum cost flow problem".
105 /// The default supply type is \c GEQ, the \c LEQ type can be
106 /// selected using \ref supplyType().
107 /// The equality form is a special case of both supply types.
109 /// This option means that there are <em>"greater or equal"</em>
110 /// supply/demand constraints in the definition of the problem.
112 /// This option means that there are <em>"less or equal"</em>
113 /// supply/demand constraints in the definition of the problem.
117 /// \brief Constants for selecting the pivot rule.
119 /// Enum type containing constants for selecting the pivot rule for
120 /// the \ref run() function.
122 /// \ref NetworkSimplex provides five different pivot rule
123 /// implementations that significantly affect the running time
124 /// of the algorithm.
125 /// By default \ref BLOCK_SEARCH "Block Search" is used, which
126 /// proved to be the most efficient and the most robust on various
127 /// test inputs according to our benchmark tests.
128 /// However another pivot rule can be selected using the \ref run()
129 /// function with the proper parameter.
132 /// The First Eligible pivot rule.
133 /// The next eligible arc is selected in a wraparound fashion
134 /// in every iteration.
137 /// The Best Eligible pivot rule.
138 /// The best eligible arc is selected in every iteration.
141 /// The Block Search pivot rule.
142 /// A specified number of arcs are examined in every iteration
143 /// in a wraparound fashion and the best eligible arc is selected
147 /// The Candidate List pivot rule.
148 /// In a major iteration a candidate list is built from eligible arcs
149 /// in a wraparound fashion and in the following minor iterations
150 /// the best eligible arc is selected from this list.
153 /// The Altering Candidate List pivot rule.
154 /// It is a modified version of the Candidate List method.
155 /// It keeps only the several best eligible arcs from the former
156 /// candidate list and extends this list in every iteration.
162 TEMPLATE_DIGRAPH_TYPEDEFS(GR);
164 typedef std::vector<Arc> ArcVector;
165 typedef std::vector<Node> NodeVector;
166 typedef std::vector<int> IntVector;
167 typedef std::vector<bool> BoolVector;
168 typedef std::vector<Value> ValueVector;
169 typedef std::vector<Cost> CostVector;
171 // State constants for arcs
180 // Data related to the underlying digraph
187 // Parameters of the problem
192 // Data structures for storing the digraph
207 // Data for storing the spanning tree structure
211 IntVector _rev_thread;
213 IntVector _last_succ;
214 IntVector _dirty_revs;
219 // Temporary data used in the current pivot iteration
220 int in_arc, join, u_in, v_in, u_out, v_out;
221 int first, second, right, last;
222 int stem, par_stem, new_stem;
227 /// \brief Constant for infinite upper bounds (capacities).
229 /// Constant for infinite upper bounds (capacities).
230 /// It is \c std::numeric_limits<Value>::infinity() if available,
231 /// \c std::numeric_limits<Value>::max() otherwise.
236 // Implementation of the First Eligible pivot rule
237 class FirstEligiblePivotRule
241 // References to the NetworkSimplex class
242 const IntVector &_source;
243 const IntVector &_target;
244 const CostVector &_cost;
245 const IntVector &_state;
246 const CostVector &_pi;
256 FirstEligiblePivotRule(NetworkSimplex &ns) :
257 _source(ns._source), _target(ns._target),
258 _cost(ns._cost), _state(ns._state), _pi(ns._pi),
259 _in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num),
263 // Find next entering arc
264 bool findEnteringArc() {
266 for (int e = _next_arc; e < _search_arc_num; ++e) {
267 c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
274 for (int e = 0; e < _next_arc; ++e) {
275 c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
285 }; //class FirstEligiblePivotRule
288 // Implementation of the Best Eligible pivot rule
289 class BestEligiblePivotRule
293 // References to the NetworkSimplex class
294 const IntVector &_source;
295 const IntVector &_target;
296 const CostVector &_cost;
297 const IntVector &_state;
298 const CostVector &_pi;
305 BestEligiblePivotRule(NetworkSimplex &ns) :
306 _source(ns._source), _target(ns._target),
307 _cost(ns._cost), _state(ns._state), _pi(ns._pi),
308 _in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num)
311 // Find next entering arc
312 bool findEnteringArc() {
314 for (int e = 0; e < _search_arc_num; ++e) {
315 c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
324 }; //class BestEligiblePivotRule
327 // Implementation of the Block Search pivot rule
328 class BlockSearchPivotRule
332 // References to the NetworkSimplex class
333 const IntVector &_source;
334 const IntVector &_target;
335 const CostVector &_cost;
336 const IntVector &_state;
337 const CostVector &_pi;
348 BlockSearchPivotRule(NetworkSimplex &ns) :
349 _source(ns._source), _target(ns._target),
350 _cost(ns._cost), _state(ns._state), _pi(ns._pi),
351 _in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num),
354 // The main parameters of the pivot rule
355 const double BLOCK_SIZE_FACTOR = 0.5;
356 const int MIN_BLOCK_SIZE = 10;
358 _block_size = std::max( int(BLOCK_SIZE_FACTOR *
359 std::sqrt(double(_search_arc_num))),
363 // Find next entering arc
364 bool findEnteringArc() {
366 int cnt = _block_size;
367 int e, min_arc = _next_arc;
368 for (e = _next_arc; e < _search_arc_num; ++e) {
369 c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
379 if (min == 0 || cnt > 0) {
380 for (e = 0; e < _next_arc; ++e) {
381 c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
392 if (min >= 0) return false;
398 }; //class BlockSearchPivotRule
401 // Implementation of the Candidate List pivot rule
402 class CandidateListPivotRule
406 // References to the NetworkSimplex class
407 const IntVector &_source;
408 const IntVector &_target;
409 const CostVector &_cost;
410 const IntVector &_state;
411 const CostVector &_pi;
416 IntVector _candidates;
417 int _list_length, _minor_limit;
418 int _curr_length, _minor_count;
424 CandidateListPivotRule(NetworkSimplex &ns) :
425 _source(ns._source), _target(ns._target),
426 _cost(ns._cost), _state(ns._state), _pi(ns._pi),
427 _in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num),
430 // The main parameters of the pivot rule
431 const double LIST_LENGTH_FACTOR = 1.0;
432 const int MIN_LIST_LENGTH = 10;
433 const double MINOR_LIMIT_FACTOR = 0.1;
434 const int MIN_MINOR_LIMIT = 3;
436 _list_length = std::max( int(LIST_LENGTH_FACTOR *
437 std::sqrt(double(_search_arc_num))),
439 _minor_limit = std::max( int(MINOR_LIMIT_FACTOR * _list_length),
441 _curr_length = _minor_count = 0;
442 _candidates.resize(_list_length);
445 /// Find next entering arc
446 bool findEnteringArc() {
448 int e, min_arc = _next_arc;
449 if (_curr_length > 0 && _minor_count < _minor_limit) {
450 // Minor iteration: select the best eligible arc from the
451 // current candidate list
454 for (int i = 0; i < _curr_length; ++i) {
456 c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
462 _candidates[i--] = _candidates[--_curr_length];
471 // Major iteration: build a new candidate list
474 for (e = _next_arc; e < _search_arc_num; ++e) {
475 c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
477 _candidates[_curr_length++] = e;
482 if (_curr_length == _list_length) break;
485 if (_curr_length < _list_length) {
486 for (e = 0; e < _next_arc; ++e) {
487 c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
489 _candidates[_curr_length++] = e;
494 if (_curr_length == _list_length) break;
498 if (_curr_length == 0) return false;
505 }; //class CandidateListPivotRule
508 // Implementation of the Altering Candidate List pivot rule
509 class AlteringListPivotRule
513 // References to the NetworkSimplex class
514 const IntVector &_source;
515 const IntVector &_target;
516 const CostVector &_cost;
517 const IntVector &_state;
518 const CostVector &_pi;
523 int _block_size, _head_length, _curr_length;
525 IntVector _candidates;
526 CostVector _cand_cost;
528 // Functor class to compare arcs during sort of the candidate list
532 const CostVector &_map;
534 SortFunc(const CostVector &map) : _map(map) {}
535 bool operator()(int left, int right) {
536 return _map[left] > _map[right];
545 AlteringListPivotRule(NetworkSimplex &ns) :
546 _source(ns._source), _target(ns._target),
547 _cost(ns._cost), _state(ns._state), _pi(ns._pi),
548 _in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num),
549 _next_arc(0), _cand_cost(ns._search_arc_num), _sort_func(_cand_cost)
551 // The main parameters of the pivot rule
552 const double BLOCK_SIZE_FACTOR = 1.5;
553 const int MIN_BLOCK_SIZE = 10;
554 const double HEAD_LENGTH_FACTOR = 0.1;
555 const int MIN_HEAD_LENGTH = 3;
557 _block_size = std::max( int(BLOCK_SIZE_FACTOR *
558 std::sqrt(double(_search_arc_num))),
560 _head_length = std::max( int(HEAD_LENGTH_FACTOR * _block_size),
562 _candidates.resize(_head_length + _block_size);
566 // Find next entering arc
567 bool findEnteringArc() {
568 // Check the current candidate list
570 for (int i = 0; i < _curr_length; ++i) {
572 _cand_cost[e] = _state[e] *
573 (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
574 if (_cand_cost[e] >= 0) {
575 _candidates[i--] = _candidates[--_curr_length];
580 int cnt = _block_size;
582 int limit = _head_length;
584 for (int e = _next_arc; e < _search_arc_num; ++e) {
585 _cand_cost[e] = _state[e] *
586 (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
587 if (_cand_cost[e] < 0) {
588 _candidates[_curr_length++] = e;
592 if (_curr_length > limit) break;
597 if (_curr_length <= limit) {
598 for (int e = 0; e < _next_arc; ++e) {
599 _cand_cost[e] = _state[e] *
600 (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
601 if (_cand_cost[e] < 0) {
602 _candidates[_curr_length++] = e;
606 if (_curr_length > limit) break;
612 if (_curr_length == 0) return false;
613 _next_arc = last_arc + 1;
615 // Make heap of the candidate list (approximating a partial sort)
616 make_heap( _candidates.begin(), _candidates.begin() + _curr_length,
619 // Pop the first element of the heap
620 _in_arc = _candidates[0];
621 pop_heap( _candidates.begin(), _candidates.begin() + _curr_length,
623 _curr_length = std::min(_head_length, _curr_length - 1);
627 }; //class AlteringListPivotRule
631 /// \brief Constructor.
633 /// The constructor of the class.
635 /// \param graph The digraph the algorithm runs on.
636 NetworkSimplex(const GR& graph) :
637 _graph(graph), _node_id(graph), _arc_id(graph),
638 INF(std::numeric_limits<Value>::has_infinity ?
639 std::numeric_limits<Value>::infinity() :
640 std::numeric_limits<Value>::max())
642 // Check the value types
643 LEMON_ASSERT(std::numeric_limits<Value>::is_signed,
644 "The flow type of NetworkSimplex must be signed");
645 LEMON_ASSERT(std::numeric_limits<Cost>::is_signed,
646 "The cost type of NetworkSimplex must be signed");
649 _node_num = countNodes(_graph);
650 _arc_num = countArcs(_graph);
651 int all_node_num = _node_num + 1;
652 int max_arc_num = _arc_num + 2 * _node_num;
654 _source.resize(max_arc_num);
655 _target.resize(max_arc_num);
657 _lower.resize(_arc_num);
658 _upper.resize(_arc_num);
659 _cap.resize(max_arc_num);
660 _cost.resize(max_arc_num);
661 _supply.resize(all_node_num);
662 _flow.resize(max_arc_num);
663 _pi.resize(all_node_num);
665 _parent.resize(all_node_num);
666 _pred.resize(all_node_num);
667 _forward.resize(all_node_num);
668 _thread.resize(all_node_num);
669 _rev_thread.resize(all_node_num);
670 _succ_num.resize(all_node_num);
671 _last_succ.resize(all_node_num);
672 _state.resize(max_arc_num);
674 // Copy the graph (store the arcs in a mixed order)
676 for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
679 int k = std::max(int(std::sqrt(double(_arc_num))), 10);
681 for (ArcIt a(_graph); a != INVALID; ++a) {
683 _source[i] = _node_id[_graph.source(a)];
684 _target[i] = _node_id[_graph.target(a)];
685 if ((i += k) >= _arc_num) i = (i % k) + 1;
689 for (int i = 0; i != _node_num; ++i) {
692 for (int i = 0; i != _arc_num; ++i) {
702 /// The parameters of the algorithm can be specified using these
707 /// \brief Set the lower bounds on the arcs.
709 /// This function sets the lower bounds on the arcs.
710 /// If it is not used before calling \ref run(), the lower bounds
711 /// will be set to zero on all arcs.
713 /// \param map An arc map storing the lower bounds.
714 /// Its \c Value type must be convertible to the \c Value type
715 /// of the algorithm.
717 /// \return <tt>(*this)</tt>
718 template <typename LowerMap>
719 NetworkSimplex& lowerMap(const LowerMap& map) {
721 for (ArcIt a(_graph); a != INVALID; ++a) {
722 _lower[_arc_id[a]] = map[a];
727 /// \brief Set the upper bounds (capacities) on the arcs.
729 /// This function sets the upper bounds (capacities) on the arcs.
730 /// If it is not used before calling \ref run(), the upper bounds
731 /// will be set to \ref INF on all arcs (i.e. the flow value will be
732 /// unbounded from above on each arc).
734 /// \param map An arc map storing the upper bounds.
735 /// Its \c Value type must be convertible to the \c Value type
736 /// of the algorithm.
738 /// \return <tt>(*this)</tt>
739 template<typename UpperMap>
740 NetworkSimplex& upperMap(const UpperMap& map) {
741 for (ArcIt a(_graph); a != INVALID; ++a) {
742 _upper[_arc_id[a]] = map[a];
747 /// \brief Set the costs of the arcs.
749 /// This function sets the costs of the arcs.
750 /// If it is not used before calling \ref run(), the costs
751 /// will be set to \c 1 on all arcs.
753 /// \param map An arc map storing the costs.
754 /// Its \c Value type must be convertible to the \c Cost type
755 /// of the algorithm.
757 /// \return <tt>(*this)</tt>
758 template<typename CostMap>
759 NetworkSimplex& costMap(const CostMap& map) {
760 for (ArcIt a(_graph); a != INVALID; ++a) {
761 _cost[_arc_id[a]] = map[a];
766 /// \brief Set the supply values of the nodes.
768 /// This function sets the supply values of the nodes.
769 /// If neither this function nor \ref stSupply() is used before
770 /// calling \ref run(), the supply of each node will be set to zero.
771 /// (It makes sense only if non-zero lower bounds are given.)
773 /// \param map A node map storing the supply values.
774 /// Its \c Value type must be convertible to the \c Value type
775 /// of the algorithm.
777 /// \return <tt>(*this)</tt>
778 template<typename SupplyMap>
779 NetworkSimplex& supplyMap(const SupplyMap& map) {
780 for (NodeIt n(_graph); n != INVALID; ++n) {
781 _supply[_node_id[n]] = map[n];
786 /// \brief Set single source and target nodes and a supply value.
788 /// This function sets a single source node and a single target node
789 /// and the required flow value.
790 /// If neither this function nor \ref supplyMap() is used before
791 /// calling \ref run(), the supply of each node will be set to zero.
792 /// (It makes sense only if non-zero lower bounds are given.)
794 /// Using this function has the same effect as using \ref supplyMap()
795 /// with such a map in which \c k is assigned to \c s, \c -k is
796 /// assigned to \c t and all other nodes have zero supply value.
798 /// \param s The source node.
799 /// \param t The target node.
800 /// \param k The required amount of flow from node \c s to node \c t
801 /// (i.e. the supply of \c s and the demand of \c t).
803 /// \return <tt>(*this)</tt>
804 NetworkSimplex& stSupply(const Node& s, const Node& t, Value k) {
805 for (int i = 0; i != _node_num; ++i) {
808 _supply[_node_id[s]] = k;
809 _supply[_node_id[t]] = -k;
813 /// \brief Set the type of the supply constraints.
815 /// This function sets the type of the supply/demand constraints.
816 /// If it is not used before calling \ref run(), the \ref GEQ supply
817 /// type will be used.
819 /// For more information see \ref SupplyType.
821 /// \return <tt>(*this)</tt>
822 NetworkSimplex& supplyType(SupplyType supply_type) {
823 _stype = supply_type;
829 /// \name Execution Control
830 /// The algorithm can be executed using \ref run().
834 /// \brief Run the algorithm.
836 /// This function runs the algorithm.
837 /// The paramters can be specified using functions \ref lowerMap(),
838 /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(),
839 /// \ref supplyType().
842 /// NetworkSimplex<ListDigraph> ns(graph);
843 /// ns.lowerMap(lower).upperMap(upper).costMap(cost)
844 /// .supplyMap(sup).run();
847 /// This function can be called more than once. All the parameters
848 /// that have been given are kept for the next call, unless
849 /// \ref reset() is called, thus only the modified parameters
850 /// have to be set again. See \ref reset() for examples.
851 /// However the underlying digraph must not be modified after this
852 /// class have been constructed, since it copies and extends the graph.
854 /// \param pivot_rule The pivot rule that will be used during the
855 /// algorithm. For more information see \ref PivotRule.
857 /// \return \c INFEASIBLE if no feasible flow exists,
858 /// \n \c OPTIMAL if the problem has optimal solution
859 /// (i.e. it is feasible and bounded), and the algorithm has found
860 /// optimal flow and node potentials (primal and dual solutions),
861 /// \n \c UNBOUNDED if the objective function of the problem is
862 /// unbounded, i.e. there is a directed cycle having negative total
863 /// cost and infinite upper bound.
865 /// \see ProblemType, PivotRule
866 ProblemType run(PivotRule pivot_rule = BLOCK_SEARCH) {
867 if (!init()) return INFEASIBLE;
868 return start(pivot_rule);
871 /// \brief Reset all the parameters that have been given before.
873 /// This function resets all the paramaters that have been given
874 /// before using functions \ref lowerMap(), \ref upperMap(),
875 /// \ref costMap(), \ref supplyMap(), \ref stSupply(), \ref supplyType().
877 /// It is useful for multiple run() calls. If this function is not
878 /// used, all the parameters given before are kept for the next
880 /// However the underlying digraph must not be modified after this
881 /// class have been constructed, since it copies and extends the graph.
885 /// NetworkSimplex<ListDigraph> ns(graph);
888 /// ns.lowerMap(lower).upperMap(upper).costMap(cost)
889 /// .supplyMap(sup).run();
891 /// // Run again with modified cost map (reset() is not called,
892 /// // so only the cost map have to be set again)
894 /// ns.costMap(cost).run();
896 /// // Run again from scratch using reset()
897 /// // (the lower bounds will be set to zero on all arcs)
899 /// ns.upperMap(capacity).costMap(cost)
900 /// .supplyMap(sup).run();
903 /// \return <tt>(*this)</tt>
904 NetworkSimplex& reset() {
905 for (int i = 0; i != _node_num; ++i) {
908 for (int i = 0; i != _arc_num; ++i) {
920 /// \name Query Functions
921 /// The results of the algorithm can be obtained using these
923 /// The \ref run() function must be called before using them.
927 /// \brief Return the total cost of the found flow.
929 /// This function returns the total cost of the found flow.
930 /// Its complexity is O(e).
932 /// \note The return type of the function can be specified as a
933 /// template parameter. For example,
935 /// ns.totalCost<double>();
937 /// It is useful if the total cost cannot be stored in the \c Cost
938 /// type of the algorithm, which is the default return type of the
941 /// \pre \ref run() must be called before using this function.
942 template <typename Number>
943 Number totalCost() const {
945 for (ArcIt a(_graph); a != INVALID; ++a) {
947 c += Number(_flow[i]) * Number(_cost[i]);
953 Cost totalCost() const {
954 return totalCost<Cost>();
958 /// \brief Return the flow on the given arc.
960 /// This function returns the flow on the given arc.
962 /// \pre \ref run() must be called before using this function.
963 Value flow(const Arc& a) const {
964 return _flow[_arc_id[a]];
967 /// \brief Return the flow map (the primal solution).
969 /// This function copies the flow value on each arc into the given
970 /// map. The \c Value type of the algorithm must be convertible to
971 /// the \c Value type of the map.
973 /// \pre \ref run() must be called before using this function.
974 template <typename FlowMap>
975 void flowMap(FlowMap &map) const {
976 for (ArcIt a(_graph); a != INVALID; ++a) {
977 map.set(a, _flow[_arc_id[a]]);
981 /// \brief Return the potential (dual value) of the given node.
983 /// This function returns the potential (dual value) of the
986 /// \pre \ref run() must be called before using this function.
987 Cost potential(const Node& n) const {
988 return _pi[_node_id[n]];
991 /// \brief Return the potential map (the dual solution).
993 /// This function copies the potential (dual value) of each node
994 /// into the given map.
995 /// The \c Cost type of the algorithm must be convertible to the
996 /// \c Value type of the map.
998 /// \pre \ref run() must be called before using this function.
999 template <typename PotentialMap>
1000 void potentialMap(PotentialMap &map) const {
1001 for (NodeIt n(_graph); n != INVALID; ++n) {
1002 map.set(n, _pi[_node_id[n]]);
1010 // Initialize internal data structures
1012 if (_node_num == 0) return false;
1014 // Check the sum of supply values
1016 for (int i = 0; i != _node_num; ++i) {
1017 _sum_supply += _supply[i];
1019 if ( !((_stype == GEQ && _sum_supply <= 0) ||
1020 (_stype == LEQ && _sum_supply >= 0)) ) return false;
1022 // Remove non-zero lower bounds
1024 for (int i = 0; i != _arc_num; ++i) {
1025 Value c = _lower[i];
1027 _cap[i] = _upper[i] < INF ? _upper[i] - c : INF;
1029 _cap[i] = _upper[i] < INF + c ? _upper[i] - c : INF;
1031 _supply[_source[i]] -= c;
1032 _supply[_target[i]] += c;
1035 for (int i = 0; i != _arc_num; ++i) {
1036 _cap[i] = _upper[i];
1040 // Initialize artifical cost
1042 if (std::numeric_limits<Cost>::is_exact) {
1043 ART_COST = std::numeric_limits<Cost>::max() / 2 + 1;
1045 ART_COST = std::numeric_limits<Cost>::min();
1046 for (int i = 0; i != _arc_num; ++i) {
1047 if (_cost[i] > ART_COST) ART_COST = _cost[i];
1049 ART_COST = (ART_COST + 1) * _node_num;
1052 // Initialize arc maps
1053 for (int i = 0; i != _arc_num; ++i) {
1055 _state[i] = STATE_LOWER;
1058 // Set data for the artificial root node
1060 _parent[_root] = -1;
1063 _rev_thread[0] = _root;
1064 _succ_num[_root] = _node_num + 1;
1065 _last_succ[_root] = _root - 1;
1066 _supply[_root] = -_sum_supply;
1069 // Add artificial arcs and initialize the spanning tree data structure
1070 if (_sum_supply == 0) {
1071 // EQ supply constraints
1072 _search_arc_num = _arc_num;
1073 _all_arc_num = _arc_num + _node_num;
1074 for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
1078 _rev_thread[u + 1] = u;
1082 _state[e] = STATE_TREE;
1083 if (_supply[u] >= 0) {
1088 _flow[e] = _supply[u];
1091 _forward[u] = false;
1095 _flow[e] = -_supply[u];
1096 _cost[e] = ART_COST;
1100 else if (_sum_supply > 0) {
1101 // LEQ supply constraints
1102 _search_arc_num = _arc_num + _node_num;
1103 int f = _arc_num + _node_num;
1104 for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
1107 _rev_thread[u + 1] = u;
1110 if (_supply[u] >= 0) {
1117 _flow[e] = _supply[u];
1119 _state[e] = STATE_TREE;
1121 _forward[u] = false;
1127 _flow[f] = -_supply[u];
1128 _cost[f] = ART_COST;
1129 _state[f] = STATE_TREE;
1135 _state[e] = STATE_LOWER;
1142 // GEQ supply constraints
1143 _search_arc_num = _arc_num + _node_num;
1144 int f = _arc_num + _node_num;
1145 for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
1148 _rev_thread[u + 1] = u;
1151 if (_supply[u] <= 0) {
1152 _forward[u] = false;
1158 _flow[e] = -_supply[u];
1160 _state[e] = STATE_TREE;
1168 _flow[f] = _supply[u];
1169 _state[f] = STATE_TREE;
1170 _cost[f] = ART_COST;
1176 _state[e] = STATE_LOWER;
1186 // Find the join node
1187 void findJoinNode() {
1188 int u = _source[in_arc];
1189 int v = _target[in_arc];
1191 if (_succ_num[u] < _succ_num[v]) {
1200 // Find the leaving arc of the cycle and returns true if the
1201 // leaving arc is not the same as the entering arc
1202 bool findLeavingArc() {
1203 // Initialize first and second nodes according to the direction
1205 if (_state[in_arc] == STATE_LOWER) {
1206 first = _source[in_arc];
1207 second = _target[in_arc];
1209 first = _target[in_arc];
1210 second = _source[in_arc];
1212 delta = _cap[in_arc];
1217 // Search the cycle along the path form the first node to the root
1218 for (int u = first; u != join; u = _parent[u]) {
1221 _flow[e] : (_cap[e] == INF ? INF : _cap[e] - _flow[e]);
1228 // Search the cycle along the path form the second node to the root
1229 for (int u = second; u != join; u = _parent[u]) {
1232 (_cap[e] == INF ? INF : _cap[e] - _flow[e]) : _flow[e];
1250 // Change _flow and _state vectors
1251 void changeFlow(bool change) {
1252 // Augment along the cycle
1254 Value val = _state[in_arc] * delta;
1255 _flow[in_arc] += val;
1256 for (int u = _source[in_arc]; u != join; u = _parent[u]) {
1257 _flow[_pred[u]] += _forward[u] ? -val : val;
1259 for (int u = _target[in_arc]; u != join; u = _parent[u]) {
1260 _flow[_pred[u]] += _forward[u] ? val : -val;
1263 // Update the state of the entering and leaving arcs
1265 _state[in_arc] = STATE_TREE;
1266 _state[_pred[u_out]] =
1267 (_flow[_pred[u_out]] == 0) ? STATE_LOWER : STATE_UPPER;
1269 _state[in_arc] = -_state[in_arc];
1273 // Update the tree structure
1274 void updateTreeStructure() {
1276 int old_rev_thread = _rev_thread[u_out];
1277 int old_succ_num = _succ_num[u_out];
1278 int old_last_succ = _last_succ[u_out];
1279 v_out = _parent[u_out];
1281 u = _last_succ[u_in]; // the last successor of u_in
1282 right = _thread[u]; // the node after it
1284 // Handle the case when old_rev_thread equals to v_in
1285 // (it also means that join and v_out coincide)
1286 if (old_rev_thread == v_in) {
1287 last = _thread[_last_succ[u_out]];
1289 last = _thread[v_in];
1292 // Update _thread and _parent along the stem nodes (i.e. the nodes
1293 // between u_in and u_out, whose parent have to be changed)
1294 _thread[v_in] = stem = u_in;
1295 _dirty_revs.clear();
1296 _dirty_revs.push_back(v_in);
1298 while (stem != u_out) {
1299 // Insert the next stem node into the thread list
1300 new_stem = _parent[stem];
1301 _thread[u] = new_stem;
1302 _dirty_revs.push_back(u);
1304 // Remove the subtree of stem from the thread list
1305 w = _rev_thread[stem];
1307 _rev_thread[right] = w;
1309 // Change the parent node and shift stem nodes
1310 _parent[stem] = par_stem;
1314 // Update u and right
1315 u = _last_succ[stem] == _last_succ[par_stem] ?
1316 _rev_thread[par_stem] : _last_succ[stem];
1319 _parent[u_out] = par_stem;
1321 _rev_thread[last] = u;
1322 _last_succ[u_out] = u;
1324 // Remove the subtree of u_out from the thread list except for
1325 // the case when old_rev_thread equals to v_in
1326 // (it also means that join and v_out coincide)
1327 if (old_rev_thread != v_in) {
1328 _thread[old_rev_thread] = right;
1329 _rev_thread[right] = old_rev_thread;
1332 // Update _rev_thread using the new _thread values
1333 for (int i = 0; i < int(_dirty_revs.size()); ++i) {
1335 _rev_thread[_thread[u]] = u;
1338 // Update _pred, _forward, _last_succ and _succ_num for the
1339 // stem nodes from u_out to u_in
1340 int tmp_sc = 0, tmp_ls = _last_succ[u_out];
1344 _pred[u] = _pred[w];
1345 _forward[u] = !_forward[w];
1346 tmp_sc += _succ_num[u] - _succ_num[w];
1347 _succ_num[u] = tmp_sc;
1348 _last_succ[w] = tmp_ls;
1351 _pred[u_in] = in_arc;
1352 _forward[u_in] = (u_in == _source[in_arc]);
1353 _succ_num[u_in] = old_succ_num;
1355 // Set limits for updating _last_succ form v_in and v_out
1357 int up_limit_in = -1;
1358 int up_limit_out = -1;
1359 if (_last_succ[join] == v_in) {
1360 up_limit_out = join;
1365 // Update _last_succ from v_in towards the root
1366 for (u = v_in; u != up_limit_in && _last_succ[u] == v_in;
1368 _last_succ[u] = _last_succ[u_out];
1370 // Update _last_succ from v_out towards the root
1371 if (join != old_rev_thread && v_in != old_rev_thread) {
1372 for (u = v_out; u != up_limit_out && _last_succ[u] == old_last_succ;
1374 _last_succ[u] = old_rev_thread;
1377 for (u = v_out; u != up_limit_out && _last_succ[u] == old_last_succ;
1379 _last_succ[u] = _last_succ[u_out];
1383 // Update _succ_num from v_in to join
1384 for (u = v_in; u != join; u = _parent[u]) {
1385 _succ_num[u] += old_succ_num;
1387 // Update _succ_num from v_out to join
1388 for (u = v_out; u != join; u = _parent[u]) {
1389 _succ_num[u] -= old_succ_num;
1393 // Update potentials
1394 void updatePotential() {
1395 Cost sigma = _forward[u_in] ?
1396 _pi[v_in] - _pi[u_in] - _cost[_pred[u_in]] :
1397 _pi[v_in] - _pi[u_in] + _cost[_pred[u_in]];
1398 // Update potentials in the subtree, which has been moved
1399 int end = _thread[_last_succ[u_in]];
1400 for (int u = u_in; u != end; u = _thread[u]) {
1405 // Execute the algorithm
1406 ProblemType start(PivotRule pivot_rule) {
1407 // Select the pivot rule implementation
1408 switch (pivot_rule) {
1409 case FIRST_ELIGIBLE:
1410 return start<FirstEligiblePivotRule>();
1412 return start<BestEligiblePivotRule>();
1414 return start<BlockSearchPivotRule>();
1415 case CANDIDATE_LIST:
1416 return start<CandidateListPivotRule>();
1418 return start<AlteringListPivotRule>();
1420 return INFEASIBLE; // avoid warning
1423 template <typename PivotRuleImpl>
1424 ProblemType start() {
1425 PivotRuleImpl pivot(*this);
1427 // Execute the Network Simplex algorithm
1428 while (pivot.findEnteringArc()) {
1430 bool change = findLeavingArc();
1431 if (delta >= INF) return UNBOUNDED;
1434 updateTreeStructure();
1439 // Check feasibility
1440 for (int e = _search_arc_num; e != _all_arc_num; ++e) {
1441 if (_flow[e] != 0) return INFEASIBLE;
1444 // Transform the solution and the supply map to the original form
1446 for (int i = 0; i != _arc_num; ++i) {
1447 Value c = _lower[i];
1450 _supply[_source[i]] += c;
1451 _supply[_target[i]] -= c;
1456 // Shift potentials to meet the requirements of the GEQ/LEQ type
1457 // optimality conditions
1458 if (_sum_supply == 0) {
1459 if (_stype == GEQ) {
1460 Cost max_pot = std::numeric_limits<Cost>::min();
1461 for (int i = 0; i != _node_num; ++i) {
1462 if (_pi[i] > max_pot) max_pot = _pi[i];
1465 for (int i = 0; i != _node_num; ++i)
1469 Cost min_pot = std::numeric_limits<Cost>::max();
1470 for (int i = 0; i != _node_num; ++i) {
1471 if (_pi[i] < min_pot) min_pot = _pi[i];
1474 for (int i = 0; i != _node_num; ++i)
1483 }; //class NetworkSimplex
1489 #endif //LEMON_NETWORK_SIMPLEX_H