alpar@209: /* -*- mode: C++; indent-tabs-mode: nil; -*-
deba@57:  *
alpar@209:  * This file is a part of LEMON, a generic C++ optimization library.
deba@57:  *
alpar@440:  * Copyright (C) 2003-2009
deba@57:  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
deba@57:  * (Egervary Research Group on Combinatorial Optimization, EGRES).
deba@57:  *
deba@57:  * Permission to use, modify and distribute this software is granted
deba@57:  * provided that this copyright notice appears in all copies. For
deba@57:  * precise terms see the accompanying LICENSE file.
deba@57:  *
deba@57:  * This software is provided "AS IS" with no warranty of any kind,
deba@57:  * express or implied, and with no claim as to its suitability for any
deba@57:  * purpose.
deba@57:  *
deba@57:  */
deba@57: 
deba@57: ///\ingroup graph_concepts
deba@57: ///\file
deba@57: ///\brief The concept of graph components.
deba@57: 
deba@514: #ifndef LEMON_CONCEPTS_GRAPH_COMPONENTS_H
deba@514: #define LEMON_CONCEPTS_GRAPH_COMPONENTS_H
deba@57: 
deba@220: #include <lemon/core.h>
deba@57: #include <lemon/concepts/maps.h>
deba@57: 
deba@57: #include <lemon/bits/alteration_notifier.h>
deba@57: 
deba@57: namespace lemon {
deba@57:   namespace concepts {
deba@57: 
kpeter@571:     /// \brief Concept class for \c Node, \c Arc and \c Edge types.
deba@57:     ///
kpeter@571:     /// This class describes the concept of \c Node, \c Arc and \c Edge
kpeter@571:     /// subtypes of digraph and graph types.
deba@57:     ///
deba@57:     /// \note This class is a template class so that we can use it to
kpeter@571:     /// create graph skeleton classes. The reason for this is that \c Node
kpeter@571:     /// and \c Arc (or \c Edge) types should \e not derive from the same 
kpeter@571:     /// base class. For \c Node you should instantiate it with character
kpeter@571:     /// \c 'n', for \c Arc with \c 'a' and for \c Edge with \c 'e'.
deba@57: #ifndef DOXYGEN
kpeter@550:     template <char sel = '0'>
deba@57: #endif
deba@57:     class GraphItem {
deba@57:     public:
deba@57:       /// \brief Default constructor.
alpar@209:       ///
kpeter@571:       /// Default constructor.
deba@57:       /// \warning The default constructor is not required to set
deba@57:       /// the item to some well-defined value. So you should consider it
deba@57:       /// as uninitialized.
deba@57:       GraphItem() {}
kpeter@571: 
deba@57:       /// \brief Copy constructor.
deba@57:       ///
deba@57:       /// Copy constructor.
kpeter@571:       GraphItem(const GraphItem &) {}
kpeter@571: 
kpeter@571:       /// \brief Constructor for conversion from \c INVALID.
deba@57:       ///
kpeter@571:       /// Constructor for conversion from \c INVALID.
kpeter@571:       /// It initializes the item to be invalid.
deba@57:       /// \sa Invalid for more details.
deba@57:       GraphItem(Invalid) {}
kpeter@571: 
kpeter@571:       /// \brief Assignment operator.
deba@57:       ///
kpeter@571:       /// Assignment operator for the item.
kpeter@571:       GraphItem& operator=(const GraphItem&) { return *this; }
kpeter@571: 
alpar@665:       /// \brief Assignment operator for INVALID.
alpar@665:       ///
alpar@665:       /// This operator makes the item invalid.
alpar@665:       GraphItem& operator=(Invalid) { return *this; }
alpar@665: 
deba@57:       /// \brief Equality operator.
deba@57:       ///
kpeter@571:       /// Equality operator.
kpeter@571:       bool operator==(const GraphItem&) const { return false; }
kpeter@571: 
deba@57:       /// \brief Inequality operator.
deba@57:       ///
kpeter@571:       /// Inequality operator.
kpeter@571:       bool operator!=(const GraphItem&) const { return false; }
kpeter@571: 
kpeter@571:       /// \brief Ordering operator.
deba@57:       ///
kpeter@571:       /// This operator defines an ordering of the items.
kpeter@571:       /// It makes possible to use graph item types as key types in 
kpeter@571:       /// associative containers (e.g. \c std::map).
deba@57:       ///
deba@57:       /// \note This operator only have to define some strict ordering of
deba@57:       /// the items; this order has nothing to do with the iteration
deba@57:       /// ordering of the items.
kpeter@571:       bool operator<(const GraphItem&) const { return false; }
deba@57: 
deba@57:       template<typename _GraphItem>
deba@57:       struct Constraints {
alpar@209:         void constraints() {
alpar@209:           _GraphItem i1;
alpar@665:           i1=INVALID;
alpar@209:           _GraphItem i2 = i1;
alpar@209:           _GraphItem i3 = INVALID;
deba@57: 
alpar@209:           i1 = i2 = i3;
alpar@209: 
alpar@209:           bool b;
alpar@209:           b = (ia == ib) && (ia != ib);
alpar@209:           b = (ia == INVALID) && (ib != INVALID);
deba@57:           b = (ia < ib);
alpar@209:         }
deba@57: 
alpar@209:         const _GraphItem &ia;
alpar@209:         const _GraphItem &ib;
deba@57:       };
deba@57:     };
deba@57: 
kpeter@571:     /// \brief Base skeleton class for directed graphs.
alpar@209:     ///
kpeter@571:     /// This class describes the base interface of directed graph types.
kpeter@571:     /// All digraph %concepts have to conform to this class.
kpeter@571:     /// It just provides types for nodes and arcs and functions 
kpeter@571:     /// to get the source and the target nodes of arcs.
deba@57:     class BaseDigraphComponent {
deba@57:     public:
deba@57: 
deba@57:       typedef BaseDigraphComponent Digraph;
alpar@209: 
deba@57:       /// \brief Node class of the digraph.
deba@57:       ///
kpeter@571:       /// This class represents the nodes of the digraph.
deba@57:       typedef GraphItem<'n'> Node;
deba@57: 
deba@57:       /// \brief Arc class of the digraph.
deba@57:       ///
kpeter@571:       /// This class represents the arcs of the digraph.
kpeter@571:       typedef GraphItem<'a'> Arc;
kpeter@571: 
kpeter@571:       /// \brief Return the source node of an arc.
deba@57:       ///
kpeter@571:       /// This function returns the source node of an arc.
kpeter@571:       Node source(const Arc&) const { return INVALID; }
deba@57: 
kpeter@571:       /// \brief Return the target node of an arc.
deba@57:       ///
kpeter@571:       /// This function returns the target node of an arc.
kpeter@571:       Node target(const Arc&) const { return INVALID; }
kpeter@571: 
kpeter@571:       /// \brief Return the opposite node on the given arc.
deba@57:       ///
kpeter@571:       /// This function returns the opposite node on the given arc.
deba@57:       Node oppositeNode(const Node&, const Arc&) const {
deba@57:         return INVALID;
deba@57:       }
deba@57: 
deba@57:       template <typename _Digraph>
deba@57:       struct Constraints {
alpar@209:         typedef typename _Digraph::Node Node;
alpar@209:         typedef typename _Digraph::Arc Arc;
alpar@209: 
alpar@209:         void constraints() {
alpar@209:           checkConcept<GraphItem<'n'>, Node>();
alpar@209:           checkConcept<GraphItem<'a'>, Arc>();
alpar@209:           {
alpar@209:             Node n;
alpar@209:             Arc e(INVALID);
alpar@209:             n = digraph.source(e);
alpar@209:             n = digraph.target(e);
deba@57:             n = digraph.oppositeNode(n, e);
alpar@209:           }
alpar@209:         }
alpar@209: 
alpar@209:         const _Digraph& digraph;
deba@57:       };
deba@57:     };
deba@57: 
kpeter@571:     /// \brief Base skeleton class for undirected graphs.
alpar@209:     ///
kpeter@571:     /// This class describes the base interface of undirected graph types.
kpeter@571:     /// All graph %concepts have to conform to this class.
kpeter@571:     /// It extends the interface of \ref BaseDigraphComponent with an
kpeter@571:     /// \c Edge type and functions to get the end nodes of edges,
kpeter@571:     /// to convert from arcs to edges and to get both direction of edges.
deba@57:     class BaseGraphComponent : public BaseDigraphComponent {
deba@57:     public:
kpeter@609: 
kpeter@609:       typedef BaseGraphComponent Graph;
kpeter@609: 
deba@57:       typedef BaseDigraphComponent::Node Node;
deba@57:       typedef BaseDigraphComponent::Arc Arc;
kpeter@571: 
kpeter@571:       /// \brief Undirected edge class of the graph.
deba@57:       ///
kpeter@571:       /// This class represents the undirected edges of the graph.
kpeter@571:       /// Undirected graphs can be used as directed graphs, each edge is
kpeter@571:       /// represented by two opposite directed arcs.
kpeter@571:       class Edge : public GraphItem<'e'> {
kpeter@571:         typedef GraphItem<'e'> Parent;
kpeter@571: 
kpeter@609:       public:
deba@57:         /// \brief Default constructor.
alpar@209:         ///
kpeter@571:         /// Default constructor.
deba@57:         /// \warning The default constructor is not required to set
deba@57:         /// the item to some well-defined value. So you should consider it
deba@57:         /// as uninitialized.
deba@57:         Edge() {}
kpeter@571: 
deba@57:         /// \brief Copy constructor.
deba@57:         ///
deba@57:         /// Copy constructor.
kpeter@571:         Edge(const Edge &) : Parent() {}
kpeter@571: 
kpeter@571:         /// \brief Constructor for conversion from \c INVALID.
deba@57:         ///
kpeter@571:         /// Constructor for conversion from \c INVALID.
kpeter@571:         /// It initializes the item to be invalid.
deba@57:         /// \sa Invalid for more details.
deba@57:         Edge(Invalid) {}
kpeter@571: 
kpeter@571:         /// \brief Constructor for conversion from an arc.
deba@57:         ///
kpeter@571:         /// Constructor for conversion from an arc.
deba@57:         /// Besides the core graph item functionality each arc should
alpar@209:         /// be convertible to the represented edge.
deba@57:         Edge(const Arc&) {}
alpar@665:      };
deba@57: 
kpeter@571:       /// \brief Return one end node of an edge.
kpeter@571:       ///
kpeter@571:       /// This function returns one end node of an edge.
kpeter@571:       Node u(const Edge&) const { return INVALID; }
kpeter@571: 
kpeter@571:       /// \brief Return the other end node of an edge.
kpeter@571:       ///
kpeter@571:       /// This function returns the other end node of an edge.
kpeter@571:       Node v(const Edge&) const { return INVALID; }
kpeter@571: 
kpeter@571:       /// \brief Return a directed arc related to an edge.
kpeter@571:       ///
kpeter@571:       /// This function returns a directed arc from its direction and the
kpeter@571:       /// represented edge.
kpeter@571:       Arc direct(const Edge&, bool) const { return INVALID; }
kpeter@571: 
kpeter@571:       /// \brief Return a directed arc related to an edge.
kpeter@571:       ///
kpeter@571:       /// This function returns a directed arc from its source node and the
kpeter@571:       /// represented edge.
kpeter@571:       Arc direct(const Edge&, const Node&) const { return INVALID; }
kpeter@571: 
kpeter@571:       /// \brief Return the direction of the arc.
deba@57:       ///
deba@57:       /// Returns the direction of the arc. Each arc represents an
deba@57:       /// edge with a direction. It gives back the
deba@57:       /// direction.
deba@57:       bool direction(const Arc&) const { return true; }
deba@57: 
kpeter@571:       /// \brief Return the opposite arc.
deba@57:       ///
kpeter@571:       /// This function returns the opposite arc, i.e. the arc representing
kpeter@571:       /// the same edge and has opposite direction.
kpeter@571:       Arc oppositeArc(const Arc&) const { return INVALID; }
alpar@209: 
deba@57:       template <typename _Graph>
deba@57:       struct Constraints {
alpar@209:         typedef typename _Graph::Node Node;
alpar@209:         typedef typename _Graph::Arc Arc;
alpar@209:         typedef typename _Graph::Edge Edge;
alpar@209: 
alpar@209:         void constraints() {
deba@57:           checkConcept<BaseDigraphComponent, _Graph>();
kpeter@571:           checkConcept<GraphItem<'e'>, Edge>();
alpar@209:           {
alpar@209:             Node n;
alpar@209:             Edge ue(INVALID);
deba@57:             Arc e;
alpar@209:             n = graph.u(ue);
alpar@209:             n = graph.v(ue);
deba@57:             e = graph.direct(ue, true);
kpeter@571:             e = graph.direct(ue, false);
deba@57:             e = graph.direct(ue, n);
deba@57:             e = graph.oppositeArc(e);
deba@57:             ue = e;
deba@57:             bool d = graph.direction(e);
deba@57:             ignore_unused_variable_warning(d);
alpar@209:           }
alpar@209:         }
alpar@209: 
alpar@209:         const _Graph& graph;
deba@57:       };
deba@57: 
deba@57:     };
deba@57: 
kpeter@571:     /// \brief Skeleton class for \e idable directed graphs.
alpar@209:     ///
kpeter@571:     /// This class describes the interface of \e idable directed graphs.
kpeter@571:     /// It extends \ref BaseDigraphComponent with the core ID functions.
kpeter@571:     /// The ids of the items must be unique and immutable.
kpeter@571:     /// This concept is part of the Digraph concept.
kpeter@550:     template <typename BAS = BaseDigraphComponent>
kpeter@550:     class IDableDigraphComponent : public BAS {
deba@57:     public:
deba@57: 
kpeter@550:       typedef BAS Base;
deba@57:       typedef typename Base::Node Node;
deba@57:       typedef typename Base::Arc Arc;
deba@57: 
kpeter@571:       /// \brief Return a unique integer id for the given node.
deba@57:       ///
kpeter@571:       /// This function returns a unique integer id for the given node.
kpeter@571:       int id(const Node&) const { return -1; }
kpeter@571: 
kpeter@571:       /// \brief Return the node by its unique id.
deba@57:       ///
kpeter@571:       /// This function returns the node by its unique id.
kpeter@571:       /// If the digraph does not contain a node with the given id,
kpeter@571:       /// then the result of the function is undefined.
kpeter@571:       Node nodeFromId(int) const { return INVALID; }
deba@57: 
kpeter@571:       /// \brief Return a unique integer id for the given arc.
deba@57:       ///
kpeter@571:       /// This function returns a unique integer id for the given arc.
kpeter@571:       int id(const Arc&) const { return -1; }
deba@57: 
kpeter@571:       /// \brief Return the arc by its unique id.
deba@57:       ///
kpeter@571:       /// This function returns the arc by its unique id.
kpeter@571:       /// If the digraph does not contain an arc with the given id,
kpeter@571:       /// then the result of the function is undefined.
kpeter@571:       Arc arcFromId(int) const { return INVALID; }
kpeter@571: 
kpeter@571:       /// \brief Return an integer greater or equal to the maximum
kpeter@571:       /// node id.
deba@57:       ///
kpeter@571:       /// This function returns an integer greater or equal to the
kpeter@571:       /// maximum node id.
kpeter@571:       int maxNodeId() const { return -1; }
deba@57: 
kpeter@571:       /// \brief Return an integer greater or equal to the maximum
kpeter@571:       /// arc id.
deba@57:       ///
kpeter@571:       /// This function returns an integer greater or equal to the
kpeter@571:       /// maximum arc id.
kpeter@571:       int maxArcId() const { return -1; }
deba@57: 
deba@57:       template <typename _Digraph>
deba@57:       struct Constraints {
deba@57: 
alpar@209:         void constraints() {
alpar@209:           checkConcept<Base, _Digraph >();
alpar@209:           typename _Digraph::Node node;
alpar@665:           node=INVALID;
alpar@209:           int nid = digraph.id(node);
alpar@209:           nid = digraph.id(node);
alpar@209:           node = digraph.nodeFromId(nid);
alpar@209:           typename _Digraph::Arc arc;
alpar@665:           arc=INVALID;
alpar@209:           int eid = digraph.id(arc);
alpar@209:           eid = digraph.id(arc);
alpar@209:           arc = digraph.arcFromId(eid);
deba@57: 
alpar@209:           nid = digraph.maxNodeId();
alpar@209:           ignore_unused_variable_warning(nid);
alpar@209:           eid = digraph.maxArcId();
alpar@209:           ignore_unused_variable_warning(eid);
alpar@209:         }
deba@57: 
alpar@209:         const _Digraph& digraph;
deba@57:       };
deba@57:     };
deba@57: 
kpeter@571:     /// \brief Skeleton class for \e idable undirected graphs.
alpar@209:     ///
kpeter@571:     /// This class describes the interface of \e idable undirected
kpeter@571:     /// graphs. It extends \ref IDableDigraphComponent with the core ID
kpeter@571:     /// functions of undirected graphs.
kpeter@571:     /// The ids of the items must be unique and immutable.
kpeter@571:     /// This concept is part of the Graph concept.
kpeter@550:     template <typename BAS = BaseGraphComponent>
kpeter@550:     class IDableGraphComponent : public IDableDigraphComponent<BAS> {
deba@57:     public:
deba@57: 
kpeter@550:       typedef BAS Base;
deba@57:       typedef typename Base::Edge Edge;
deba@57: 
kpeter@550:       using IDableDigraphComponent<Base>::id;
deba@57: 
kpeter@571:       /// \brief Return a unique integer id for the given edge.
deba@57:       ///
kpeter@571:       /// This function returns a unique integer id for the given edge.
kpeter@571:       int id(const Edge&) const { return -1; }
kpeter@571: 
kpeter@571:       /// \brief Return the edge by its unique id.
deba@57:       ///
kpeter@571:       /// This function returns the edge by its unique id.
kpeter@571:       /// If the graph does not contain an edge with the given id,
kpeter@571:       /// then the result of the function is undefined.
kpeter@571:       Edge edgeFromId(int) const { return INVALID; }
deba@57: 
kpeter@571:       /// \brief Return an integer greater or equal to the maximum
kpeter@571:       /// edge id.
deba@57:       ///
kpeter@571:       /// This function returns an integer greater or equal to the
kpeter@571:       /// maximum edge id.
kpeter@571:       int maxEdgeId() const { return -1; }
deba@57: 
deba@57:       template <typename _Graph>
deba@57:       struct Constraints {
deba@57: 
alpar@209:         void constraints() {
alpar@209:           checkConcept<IDableDigraphComponent<Base>, _Graph >();
alpar@209:           typename _Graph::Edge edge;
alpar@209:           int ueid = graph.id(edge);
alpar@209:           ueid = graph.id(edge);
alpar@209:           edge = graph.edgeFromId(ueid);
alpar@209:           ueid = graph.maxEdgeId();
alpar@209:           ignore_unused_variable_warning(ueid);
alpar@209:         }
deba@57: 
alpar@209:         const _Graph& graph;
deba@57:       };
deba@57:     };
deba@57: 
kpeter@571:     /// \brief Concept class for \c NodeIt, \c ArcIt and \c EdgeIt types.
deba@57:     ///
kpeter@571:     /// This class describes the concept of \c NodeIt, \c ArcIt and 
kpeter@571:     /// \c EdgeIt subtypes of digraph and graph types.
kpeter@550:     template <typename GR, typename Item>
kpeter@550:     class GraphItemIt : public Item {
deba@57:     public:
deba@57:       /// \brief Default constructor.
deba@57:       ///
kpeter@571:       /// Default constructor.
kpeter@571:       /// \warning The default constructor is not required to set
kpeter@571:       /// the iterator to some well-defined value. So you should consider it
kpeter@571:       /// as uninitialized.
deba@57:       GraphItemIt() {}
kpeter@571: 
deba@57:       /// \brief Copy constructor.
deba@57:       ///
deba@57:       /// Copy constructor.
kpeter@571:       GraphItemIt(const GraphItemIt& it) : Item(it) {}
kpeter@571: 
kpeter@571:       /// \brief Constructor that sets the iterator to the first item.
deba@57:       ///
kpeter@571:       /// Constructor that sets the iterator to the first item.
kpeter@571:       explicit GraphItemIt(const GR&) {}
kpeter@571: 
kpeter@571:       /// \brief Constructor for conversion from \c INVALID.
deba@57:       ///
kpeter@571:       /// Constructor for conversion from \c INVALID.
kpeter@571:       /// It initializes the iterator to be invalid.
deba@57:       /// \sa Invalid for more details.
deba@57:       GraphItemIt(Invalid) {}
kpeter@571: 
kpeter@571:       /// \brief Assignment operator.
deba@57:       ///
kpeter@571:       /// Assignment operator for the iterator.
kpeter@571:       GraphItemIt& operator=(const GraphItemIt&) { return *this; }
kpeter@571: 
kpeter@571:       /// \brief Increment the iterator.
deba@57:       ///
kpeter@571:       /// This operator increments the iterator, i.e. assigns it to the
kpeter@571:       /// next item.
deba@57:       GraphItemIt& operator++() { return *this; }
kpeter@571:  
deba@57:       /// \brief Equality operator
alpar@209:       ///
kpeter@571:       /// Equality operator.
deba@57:       /// Two iterators are equal if and only if they point to the
deba@57:       /// same object or both are invalid.
deba@57:       bool operator==(const GraphItemIt&) const { return true;}
kpeter@571: 
deba@57:       /// \brief Inequality operator
alpar@209:       ///
kpeter@571:       /// Inequality operator.
kpeter@571:       /// Two iterators are equal if and only if they point to the
kpeter@571:       /// same object or both are invalid.
deba@57:       bool operator!=(const GraphItemIt&) const { return true;}
alpar@209: 
deba@57:       template<typename _GraphItemIt>
deba@57:       struct Constraints {
alpar@209:         void constraints() {
kpeter@571:           checkConcept<GraphItem<>, _GraphItemIt>();
alpar@209:           _GraphItemIt it1(g);
alpar@209:           _GraphItemIt it2;
kpeter@571:           _GraphItemIt it3 = it1;
kpeter@571:           _GraphItemIt it4 = INVALID;
deba@57: 
alpar@209:           it2 = ++it1;
alpar@209:           ++it2 = it1;
alpar@209:           ++(++it1);
deba@57: 
kpeter@550:           Item bi = it1;
alpar@209:           bi = it2;
alpar@209:         }
kpeter@571:         const GR& g;
deba@57:       };
deba@57:     };
deba@57: 
kpeter@571:     /// \brief Concept class for \c InArcIt, \c OutArcIt and 
kpeter@571:     /// \c IncEdgeIt types.
deba@57:     ///
kpeter@571:     /// This class describes the concept of \c InArcIt, \c OutArcIt 
kpeter@571:     /// and \c IncEdgeIt subtypes of digraph and graph types.
kpeter@571:     ///
kpeter@571:     /// \note Since these iterator classes do not inherit from the same
kpeter@571:     /// base class, there is an additional template parameter (selector)
kpeter@571:     /// \c sel. For \c InArcIt you should instantiate it with character 
kpeter@571:     /// \c 'i', for \c OutArcIt with \c 'o' and for \c IncEdgeIt with \c 'e'.
kpeter@550:     template <typename GR,
kpeter@550:               typename Item = typename GR::Arc,
kpeter@550:               typename Base = typename GR::Node,
kpeter@550:               char sel = '0'>
kpeter@550:     class GraphIncIt : public Item {
deba@57:     public:
deba@57:       /// \brief Default constructor.
deba@57:       ///
kpeter@571:       /// Default constructor.
kpeter@571:       /// \warning The default constructor is not required to set
kpeter@571:       /// the iterator to some well-defined value. So you should consider it
kpeter@571:       /// as uninitialized.
deba@57:       GraphIncIt() {}
kpeter@571: 
deba@57:       /// \brief Copy constructor.
deba@57:       ///
deba@57:       /// Copy constructor.
kpeter@571:       GraphIncIt(const GraphIncIt& it) : Item(it) {}
kpeter@571: 
kpeter@571:       /// \brief Constructor that sets the iterator to the first 
kpeter@571:       /// incoming or outgoing arc.
deba@57:       ///
kpeter@571:       /// Constructor that sets the iterator to the first arc 
kpeter@571:       /// incoming to or outgoing from the given node.
kpeter@571:       explicit GraphIncIt(const GR&, const Base&) {}
kpeter@571: 
kpeter@571:       /// \brief Constructor for conversion from \c INVALID.
deba@57:       ///
kpeter@571:       /// Constructor for conversion from \c INVALID.
kpeter@571:       /// It initializes the iterator to be invalid.
deba@57:       /// \sa Invalid for more details.
deba@57:       GraphIncIt(Invalid) {}
kpeter@571: 
kpeter@571:       /// \brief Assignment operator.
deba@57:       ///
kpeter@571:       /// Assignment operator for the iterator.
kpeter@571:       GraphIncIt& operator=(const GraphIncIt&) { return *this; }
kpeter@571: 
kpeter@571:       /// \brief Increment the iterator.
deba@57:       ///
kpeter@571:       /// This operator increments the iterator, i.e. assigns it to the
kpeter@571:       /// next arc incoming to or outgoing from the given node.
deba@57:       GraphIncIt& operator++() { return *this; }
deba@57: 
deba@57:       /// \brief Equality operator
deba@57:       ///
kpeter@571:       /// Equality operator.
deba@57:       /// Two iterators are equal if and only if they point to the
deba@57:       /// same object or both are invalid.
deba@57:       bool operator==(const GraphIncIt&) const { return true;}
deba@57: 
deba@57:       /// \brief Inequality operator
deba@57:       ///
kpeter@571:       /// Inequality operator.
kpeter@571:       /// Two iterators are equal if and only if they point to the
kpeter@571:       /// same object or both are invalid.
deba@57:       bool operator!=(const GraphIncIt&) const { return true;}
deba@57: 
deba@57:       template <typename _GraphIncIt>
deba@57:       struct Constraints {
alpar@209:         void constraints() {
kpeter@550:           checkConcept<GraphItem<sel>, _GraphIncIt>();
alpar@209:           _GraphIncIt it1(graph, node);
alpar@209:           _GraphIncIt it2;
kpeter@571:           _GraphIncIt it3 = it1;
kpeter@571:           _GraphIncIt it4 = INVALID;
deba@57: 
alpar@209:           it2 = ++it1;
alpar@209:           ++it2 = it1;
alpar@209:           ++(++it1);
kpeter@550:           Item e = it1;
alpar@209:           e = it2;
alpar@209:         }
kpeter@571:         const Base& node;
kpeter@571:         const GR& graph;
deba@57:       };
deba@57:     };
deba@57: 
kpeter@571:     /// \brief Skeleton class for iterable directed graphs.
deba@57:     ///
kpeter@571:     /// This class describes the interface of iterable directed
kpeter@571:     /// graphs. It extends \ref BaseDigraphComponent with the core
kpeter@571:     /// iterable interface.
deba@57:     /// This concept is part of the Digraph concept.
kpeter@550:     template <typename BAS = BaseDigraphComponent>
kpeter@550:     class IterableDigraphComponent : public BAS {
deba@57: 
deba@57:     public:
alpar@209: 
kpeter@550:       typedef BAS Base;
deba@57:       typedef typename Base::Node Node;
deba@57:       typedef typename Base::Arc Arc;
deba@57: 
deba@57:       typedef IterableDigraphComponent Digraph;
deba@57: 
kpeter@576:       /// \name Base Iteration
alpar@209:       ///
kpeter@571:       /// This interface provides functions for iteration on digraph items.
deba@57:       ///
alpar@209:       /// @{
deba@57: 
kpeter@571:       /// \brief Return the first node.
alpar@209:       ///
kpeter@571:       /// This function gives back the first node in the iteration order.
deba@57:       void first(Node&) const {}
deba@57: 
kpeter@571:       /// \brief Return the next node.
deba@57:       ///
kpeter@571:       /// This function gives back the next node in the iteration order.
deba@57:       void next(Node&) const {}
deba@57: 
kpeter@571:       /// \brief Return the first arc.
deba@57:       ///
kpeter@571:       /// This function gives back the first arc in the iteration order.
deba@57:       void first(Arc&) const {}
deba@57: 
kpeter@571:       /// \brief Return the next arc.
deba@57:       ///
kpeter@571:       /// This function gives back the next arc in the iteration order.
deba@57:       void next(Arc&) const {}
deba@57: 
kpeter@571:       /// \brief Return the first arc incomming to the given node.
deba@57:       ///
kpeter@571:       /// This function gives back the first arc incomming to the
kpeter@571:       /// given node.
deba@57:       void firstIn(Arc&, const Node&) const {}
deba@57: 
kpeter@571:       /// \brief Return the next arc incomming to the given node.
deba@57:       ///
kpeter@571:       /// This function gives back the next arc incomming to the
kpeter@571:       /// given node.
deba@57:       void nextIn(Arc&) const {}
deba@57: 
kpeter@571:       /// \brief Return the first arc outgoing form the given node.
kpeter@571:       ///
kpeter@571:       /// This function gives back the first arc outgoing form the
deba@57:       /// given node.
deba@57:       void firstOut(Arc&, const Node&) const {}
deba@57: 
kpeter@571:       /// \brief Return the next arc outgoing form the given node.
deba@57:       ///
kpeter@571:       /// This function gives back the next arc outgoing form the
kpeter@571:       /// given node.
deba@57:       void nextOut(Arc&) const {}
deba@57: 
deba@57:       /// @}
deba@57: 
kpeter@576:       /// \name Class Based Iteration
alpar@209:       ///
kpeter@571:       /// This interface provides iterator classes for digraph items.
deba@57:       ///
deba@57:       /// @{
deba@57: 
deba@57:       /// \brief This iterator goes through each node.
deba@57:       ///
deba@57:       /// This iterator goes through each node.
deba@57:       ///
deba@57:       typedef GraphItemIt<Digraph, Node> NodeIt;
deba@57: 
kpeter@571:       /// \brief This iterator goes through each arc.
deba@57:       ///
kpeter@571:       /// This iterator goes through each arc.
deba@57:       ///
deba@57:       typedef GraphItemIt<Digraph, Arc> ArcIt;
deba@57: 
deba@57:       /// \brief This iterator goes trough the incoming arcs of a node.
deba@57:       ///
kpeter@571:       /// This iterator goes trough the \e incoming arcs of a certain node
deba@57:       /// of a digraph.
deba@57:       typedef GraphIncIt<Digraph, Arc, Node, 'i'> InArcIt;
deba@57: 
deba@57:       /// \brief This iterator goes trough the outgoing arcs of a node.
deba@57:       ///
deba@57:       /// This iterator goes trough the \e outgoing arcs of a certain node
deba@57:       /// of a digraph.
deba@57:       typedef GraphIncIt<Digraph, Arc, Node, 'o'> OutArcIt;
deba@57: 
deba@57:       /// \brief The base node of the iterator.
deba@57:       ///
kpeter@571:       /// This function gives back the base node of the iterator.
kpeter@571:       /// It is always the target node of the pointed arc.
deba@57:       Node baseNode(const InArcIt&) const { return INVALID; }
deba@57: 
deba@57:       /// \brief The running node of the iterator.
deba@57:       ///
kpeter@571:       /// This function gives back the running node of the iterator.
kpeter@571:       /// It is always the source node of the pointed arc.
deba@57:       Node runningNode(const InArcIt&) const { return INVALID; }
deba@57: 
deba@57:       /// \brief The base node of the iterator.
deba@57:       ///
kpeter@571:       /// This function gives back the base node of the iterator.
kpeter@571:       /// It is always the source node of the pointed arc.
deba@57:       Node baseNode(const OutArcIt&) const { return INVALID; }
deba@57: 
deba@57:       /// \brief The running node of the iterator.
deba@57:       ///
kpeter@571:       /// This function gives back the running node of the iterator.
kpeter@571:       /// It is always the target node of the pointed arc.
deba@57:       Node runningNode(const OutArcIt&) const { return INVALID; }
deba@57: 
deba@57:       /// @}
deba@57: 
alpar@209:       template <typename _Digraph>
deba@57:       struct Constraints {
alpar@209:         void constraints() {
alpar@209:           checkConcept<Base, _Digraph>();
deba@57: 
deba@57:           {
alpar@209:             typename _Digraph::Node node(INVALID);
deba@57:             typename _Digraph::Arc arc(INVALID);
deba@57:             {
deba@57:               digraph.first(node);
deba@57:               digraph.next(node);
deba@57:             }
deba@57:             {
deba@57:               digraph.first(arc);
deba@57:               digraph.next(arc);
deba@57:             }
deba@57:             {
deba@57:               digraph.firstIn(arc, node);
deba@57:               digraph.nextIn(arc);
deba@57:             }
deba@57:             {
deba@57:               digraph.firstOut(arc, node);
deba@57:               digraph.nextOut(arc);
deba@57:             }
alpar@209:           }
deba@57: 
deba@57:           {
deba@57:             checkConcept<GraphItemIt<_Digraph, typename _Digraph::Arc>,
deba@57:               typename _Digraph::ArcIt >();
deba@57:             checkConcept<GraphItemIt<_Digraph, typename _Digraph::Node>,
deba@57:               typename _Digraph::NodeIt >();
alpar@209:             checkConcept<GraphIncIt<_Digraph, typename _Digraph::Arc,
deba@57:               typename _Digraph::Node, 'i'>, typename _Digraph::InArcIt>();
alpar@209:             checkConcept<GraphIncIt<_Digraph, typename _Digraph::Arc,
deba@57:               typename _Digraph::Node, 'o'>, typename _Digraph::OutArcIt>();
deba@57: 
deba@57:             typename _Digraph::Node n;
kpeter@571:             const typename _Digraph::InArcIt iait(INVALID);
kpeter@571:             const typename _Digraph::OutArcIt oait(INVALID);
kpeter@571:             n = digraph.baseNode(iait);
kpeter@571:             n = digraph.runningNode(iait);
kpeter@571:             n = digraph.baseNode(oait);
kpeter@571:             n = digraph.runningNode(oait);
deba@57:             ignore_unused_variable_warning(n);
deba@57:           }
deba@57:         }
alpar@209: 
alpar@209:         const _Digraph& digraph;
deba@57:       };
deba@57:     };
deba@57: 
kpeter@571:     /// \brief Skeleton class for iterable undirected graphs.
deba@57:     ///
kpeter@571:     /// This class describes the interface of iterable undirected
kpeter@571:     /// graphs. It extends \ref IterableDigraphComponent with the core
kpeter@571:     /// iterable interface of undirected graphs.
deba@57:     /// This concept is part of the Graph concept.
kpeter@550:     template <typename BAS = BaseGraphComponent>
kpeter@550:     class IterableGraphComponent : public IterableDigraphComponent<BAS> {
deba@57:     public:
deba@57: 
kpeter@550:       typedef BAS Base;
deba@57:       typedef typename Base::Node Node;
deba@57:       typedef typename Base::Arc Arc;
deba@57:       typedef typename Base::Edge Edge;
deba@57: 
alpar@209: 
deba@57:       typedef IterableGraphComponent Graph;
deba@57: 
kpeter@576:       /// \name Base Iteration
alpar@209:       ///
kpeter@571:       /// This interface provides functions for iteration on edges.
kpeter@571:       ///
alpar@209:       /// @{
deba@57: 
kpeter@550:       using IterableDigraphComponent<Base>::first;
kpeter@550:       using IterableDigraphComponent<Base>::next;
deba@57: 
kpeter@571:       /// \brief Return the first edge.
deba@57:       ///
kpeter@571:       /// This function gives back the first edge in the iteration order.
deba@57:       void first(Edge&) const {}
deba@57: 
kpeter@571:       /// \brief Return the next edge.
deba@57:       ///
kpeter@571:       /// This function gives back the next edge in the iteration order.
deba@57:       void next(Edge&) const {}
deba@57: 
kpeter@571:       /// \brief Return the first edge incident to the given node.
kpeter@571:       ///
kpeter@571:       /// This function gives back the first edge incident to the given 
kpeter@571:       /// node. The bool parameter gives back the direction for which the
kpeter@571:       /// source node of the directed arc representing the edge is the 
deba@57:       /// given node.
deba@57:       void firstInc(Edge&, bool&, const Node&) const {}
deba@57: 
deba@57:       /// \brief Gives back the next of the edges from the
deba@57:       /// given node.
deba@57:       ///
kpeter@571:       /// This function gives back the next edge incident to the given 
kpeter@571:       /// node. The bool parameter should be used as \c firstInc() use it.
deba@57:       void nextInc(Edge&, bool&) const {}
deba@57: 
kpeter@550:       using IterableDigraphComponent<Base>::baseNode;
kpeter@550:       using IterableDigraphComponent<Base>::runningNode;
deba@57: 
deba@57:       /// @}
deba@57: 
kpeter@576:       /// \name Class Based Iteration
alpar@209:       ///
kpeter@571:       /// This interface provides iterator classes for edges.
deba@57:       ///
deba@57:       /// @{
deba@57: 
kpeter@571:       /// \brief This iterator goes through each edge.
deba@57:       ///
kpeter@571:       /// This iterator goes through each edge.
deba@57:       typedef GraphItemIt<Graph, Edge> EdgeIt;
kpeter@571: 
kpeter@571:       /// \brief This iterator goes trough the incident edges of a
deba@57:       /// node.
deba@57:       ///
kpeter@571:       /// This iterator goes trough the incident edges of a certain
deba@57:       /// node of a graph.
kpeter@571:       typedef GraphIncIt<Graph, Edge, Node, 'e'> IncEdgeIt;
kpeter@571: 
deba@57:       /// \brief The base node of the iterator.
deba@57:       ///
kpeter@571:       /// This function gives back the base node of the iterator.
deba@78:       Node baseNode(const IncEdgeIt&) const { return INVALID; }
deba@57: 
deba@57:       /// \brief The running node of the iterator.
deba@57:       ///
kpeter@571:       /// This function gives back the running node of the iterator.
deba@78:       Node runningNode(const IncEdgeIt&) const { return INVALID; }
deba@57: 
deba@57:       /// @}
deba@57: 
alpar@209:       template <typename _Graph>
deba@57:       struct Constraints {
alpar@209:         void constraints() {
alpar@209:           checkConcept<IterableDigraphComponent<Base>, _Graph>();
deba@57: 
deba@57:           {
deba@57:             typename _Graph::Node node(INVALID);
deba@57:             typename _Graph::Edge edge(INVALID);
deba@57:             bool dir;
deba@57:             {
deba@57:               graph.first(edge);
deba@57:               graph.next(edge);
deba@57:             }
deba@57:             {
deba@57:               graph.firstInc(edge, dir, node);
deba@57:               graph.nextInc(edge, dir);
deba@57:             }
alpar@209: 
alpar@209:           }
alpar@209: 
deba@57:           {
deba@57:             checkConcept<GraphItemIt<_Graph, typename _Graph::Edge>,
deba@57:               typename _Graph::EdgeIt >();
alpar@209:             checkConcept<GraphIncIt<_Graph, typename _Graph::Edge,
kpeter@571:               typename _Graph::Node, 'e'>, typename _Graph::IncEdgeIt>();
alpar@209: 
deba@57:             typename _Graph::Node n;
kpeter@571:             const typename _Graph::IncEdgeIt ieit(INVALID);
kpeter@571:             n = graph.baseNode(ieit);
kpeter@571:             n = graph.runningNode(ieit);
deba@57:           }
deba@57:         }
alpar@209: 
alpar@209:         const _Graph& graph;
deba@57:       };
deba@57:     };
deba@57: 
kpeter@571:     /// \brief Skeleton class for alterable directed graphs.
alpar@209:     ///
kpeter@571:     /// This class describes the interface of alterable directed
kpeter@571:     /// graphs. It extends \ref BaseDigraphComponent with the alteration
kpeter@571:     /// notifier interface. It implements
deba@57:     /// an observer-notifier pattern for each digraph item. More
deba@57:     /// obsevers can be registered into the notifier and whenever an
kpeter@571:     /// alteration occured in the digraph all the observers will be
deba@57:     /// notified about it.
kpeter@550:     template <typename BAS = BaseDigraphComponent>
kpeter@550:     class AlterableDigraphComponent : public BAS {
deba@57:     public:
deba@57: 
kpeter@550:       typedef BAS Base;
deba@57:       typedef typename Base::Node Node;
deba@57:       typedef typename Base::Arc Arc;
deba@57: 
deba@57: 
kpeter@571:       /// Node alteration notifier class.
alpar@209:       typedef AlterationNotifier<AlterableDigraphComponent, Node>
deba@57:       NodeNotifier;
kpeter@571:       /// Arc alteration notifier class.
alpar@209:       typedef AlterationNotifier<AlterableDigraphComponent, Arc>
deba@57:       ArcNotifier;
alpar@209: 
kpeter@571:       /// \brief Return the node alteration notifier.
deba@57:       ///
kpeter@571:       /// This function gives back the node alteration notifier.
deba@57:       NodeNotifier& notifier(Node) const {
kpeter@571:          return NodeNotifier();
deba@57:       }
alpar@209: 
kpeter@571:       /// \brief Return the arc alteration notifier.
deba@57:       ///
kpeter@571:       /// This function gives back the arc alteration notifier.
deba@57:       ArcNotifier& notifier(Arc) const {
alpar@209:         return ArcNotifier();
deba@57:       }
deba@57: 
alpar@209:       template <typename _Digraph>
deba@57:       struct Constraints {
alpar@209:         void constraints() {
alpar@209:           checkConcept<Base, _Digraph>();
alpar@209:           typename _Digraph::NodeNotifier& nn
deba@57:             = digraph.notifier(typename _Digraph::Node());
deba@57: 
alpar@209:           typename _Digraph::ArcNotifier& en
deba@57:             = digraph.notifier(typename _Digraph::Arc());
alpar@209: 
deba@57:           ignore_unused_variable_warning(nn);
deba@57:           ignore_unused_variable_warning(en);
alpar@209:         }
alpar@209: 
alpar@209:         const _Digraph& digraph;
deba@57:       };
deba@57:     };
deba@57: 
kpeter@571:     /// \brief Skeleton class for alterable undirected graphs.
alpar@209:     ///
kpeter@571:     /// This class describes the interface of alterable undirected
kpeter@571:     /// graphs. It extends \ref AlterableDigraphComponent with the alteration
kpeter@571:     /// notifier interface of undirected graphs. It implements
kpeter@571:     /// an observer-notifier pattern for the edges. More
deba@57:     /// obsevers can be registered into the notifier and whenever an
kpeter@571:     /// alteration occured in the graph all the observers will be
deba@57:     /// notified about it.
kpeter@550:     template <typename BAS = BaseGraphComponent>
kpeter@550:     class AlterableGraphComponent : public AlterableDigraphComponent<BAS> {
deba@57:     public:
deba@57: 
kpeter@550:       typedef BAS Base;
deba@57:       typedef typename Base::Edge Edge;
deba@57: 
deba@57: 
kpeter@571:       /// Edge alteration notifier class.
alpar@209:       typedef AlterationNotifier<AlterableGraphComponent, Edge>
deba@57:       EdgeNotifier;
alpar@209: 
kpeter@571:       /// \brief Return the edge alteration notifier.
deba@57:       ///
kpeter@571:       /// This function gives back the edge alteration notifier.
deba@57:       EdgeNotifier& notifier(Edge) const {
alpar@209:         return EdgeNotifier();
deba@57:       }
deba@57: 
alpar@209:       template <typename _Graph>
deba@57:       struct Constraints {
alpar@209:         void constraints() {
kpeter@571:           checkConcept<AlterableDigraphComponent<Base>, _Graph>();
alpar@209:           typename _Graph::EdgeNotifier& uen
deba@57:             = graph.notifier(typename _Graph::Edge());
deba@57:           ignore_unused_variable_warning(uen);
alpar@209:         }
alpar@209: 
alpar@209:         const _Graph& graph;
deba@57:       };
deba@57:     };
deba@57: 
kpeter@571:     /// \brief Concept class for standard graph maps.
alpar@209:     ///
kpeter@571:     /// This class describes the concept of standard graph maps, i.e.
kpeter@571:     /// the \c NodeMap, \c ArcMap and \c EdgeMap subtypes of digraph and 
kpeter@571:     /// graph types, which can be used for associating data to graph items.
kpeter@572:     /// The standard graph maps must conform to the ReferenceMap concept.
kpeter@550:     template <typename GR, typename K, typename V>
kpeter@572:     class GraphMap : public ReferenceMap<K, V, V&, const V&> {
kpeter@609:       typedef ReferenceMap<K, V, V&, const V&> Parent;
kpeter@609: 
deba@57:     public:
deba@57: 
deba@57:       /// The key type of the map.
kpeter@550:       typedef K Key;
deba@57:       /// The value type of the map.
kpeter@550:       typedef V Value;
kpeter@572:       /// The reference type of the map.
kpeter@572:       typedef Value& Reference;
kpeter@572:       /// The const reference type of the map.
kpeter@572:       typedef const Value& ConstReference;
kpeter@572: 
kpeter@572:       // The reference map tag.
kpeter@572:       typedef True ReferenceMapTag;
deba@57: 
deba@57:       /// \brief Construct a new map.
deba@57:       ///
deba@57:       /// Construct a new map for the graph.
kpeter@609:       explicit GraphMap(const GR&) {}
deba@57:       /// \brief Construct a new map with default value.
deba@57:       ///
kpeter@571:       /// Construct a new map for the graph and initalize the values.
kpeter@609:       GraphMap(const GR&, const Value&) {}
kpeter@263: 
kpeter@263:     private:
deba@57:       /// \brief Copy constructor.
deba@57:       ///
deba@57:       /// Copy Constructor.
deba@57:       GraphMap(const GraphMap&) : Parent() {}
alpar@209: 
kpeter@571:       /// \brief Assignment operator.
deba@57:       ///
kpeter@571:       /// Assignment operator. It does not mofify the underlying graph,
deba@57:       /// it just iterates on the current item set and set the  map
alpar@209:       /// with the value returned by the assigned map.
deba@57:       template <typename CMap>
alpar@209:       GraphMap& operator=(const CMap&) {
deba@57:         checkConcept<ReadMap<Key, Value>, CMap>();
deba@57:         return *this;
deba@57:       }
deba@57: 
kpeter@263:     public:
deba@57:       template<typename _Map>
deba@57:       struct Constraints {
alpar@209:         void constraints() {
kpeter@572:           checkConcept
kpeter@572:             <ReferenceMap<Key, Value, Value&, const Value&>, _Map>();
kpeter@571:           _Map m1(g);
kpeter@571:           _Map m2(g,t);
kpeter@571:           
kpeter@571:           // Copy constructor
kpeter@571:           // _Map m3(m);
alpar@209: 
kpeter@571:           // Assignment operator
kpeter@263:           // ReadMap<Key, Value> cmap;
kpeter@571:           // m3 = cmap;
deba@57: 
kpeter@571:           ignore_unused_variable_warning(m1);
kpeter@571:           ignore_unused_variable_warning(m2);
kpeter@571:           // ignore_unused_variable_warning(m3);
alpar@209:         }
deba@57: 
kpeter@571:         const _Map &m;
kpeter@609:         const GR &g;
alpar@209:         const typename GraphMap::Value &t;
deba@57:       };
deba@57: 
deba@57:     };
deba@57: 
kpeter@571:     /// \brief Skeleton class for mappable directed graphs.
deba@57:     ///
kpeter@571:     /// This class describes the interface of mappable directed graphs.
kpeter@571:     /// It extends \ref BaseDigraphComponent with the standard digraph 
kpeter@571:     /// map classes, namely \c NodeMap and \c ArcMap.
deba@57:     /// This concept is part of the Digraph concept.
kpeter@550:     template <typename BAS = BaseDigraphComponent>
kpeter@550:     class MappableDigraphComponent : public BAS  {
deba@57:     public:
deba@57: 
kpeter@550:       typedef BAS Base;
deba@57:       typedef typename Base::Node Node;
deba@57:       typedef typename Base::Arc Arc;
deba@57: 
deba@57:       typedef MappableDigraphComponent Digraph;
deba@57: 
kpeter@571:       /// \brief Standard graph map for the nodes.
deba@57:       ///
kpeter@571:       /// Standard graph map for the nodes.
kpeter@572:       /// It conforms to the ReferenceMap concept.
kpeter@550:       template <typename V>
kpeter@571:       class NodeMap : public GraphMap<MappableDigraphComponent, Node, V> {
kpeter@550:         typedef GraphMap<MappableDigraphComponent, Node, V> Parent;
deba@57: 
kpeter@609:       public:
alpar@209:         /// \brief Construct a new map.
alpar@209:         ///
alpar@209:         /// Construct a new map for the digraph.
alpar@209:         explicit NodeMap(const MappableDigraphComponent& digraph)
deba@57:           : Parent(digraph) {}
deba@57: 
alpar@209:         /// \brief Construct a new map with default value.
alpar@209:         ///
kpeter@571:         /// Construct a new map for the digraph and initalize the values.
kpeter@550:         NodeMap(const MappableDigraphComponent& digraph, const V& value)
deba@57:           : Parent(digraph, value) {}
deba@57: 
kpeter@263:       private:
alpar@209:         /// \brief Copy constructor.
alpar@209:         ///
alpar@209:         /// Copy Constructor.
alpar@209:         NodeMap(const NodeMap& nm) : Parent(nm) {}
deba@57: 
kpeter@571:         /// \brief Assignment operator.
alpar@209:         ///
kpeter@571:         /// Assignment operator.
deba@57:         template <typename CMap>
alpar@209:         NodeMap& operator=(const CMap&) {
kpeter@550:           checkConcept<ReadMap<Node, V>, CMap>();
deba@57:           return *this;
deba@57:         }
deba@57: 
deba@57:       };
deba@57: 
kpeter@571:       /// \brief Standard graph map for the arcs.
deba@57:       ///
kpeter@571:       /// Standard graph map for the arcs.
kpeter@572:       /// It conforms to the ReferenceMap concept.
kpeter@550:       template <typename V>
kpeter@571:       class ArcMap : public GraphMap<MappableDigraphComponent, Arc, V> {
kpeter@550:         typedef GraphMap<MappableDigraphComponent, Arc, V> Parent;
deba@57: 
kpeter@609:       public:
alpar@209:         /// \brief Construct a new map.
alpar@209:         ///
alpar@209:         /// Construct a new map for the digraph.
alpar@209:         explicit ArcMap(const MappableDigraphComponent& digraph)
deba@57:           : Parent(digraph) {}
deba@57: 
alpar@209:         /// \brief Construct a new map with default value.
alpar@209:         ///
kpeter@571:         /// Construct a new map for the digraph and initalize the values.
kpeter@550:         ArcMap(const MappableDigraphComponent& digraph, const V& value)
deba@57:           : Parent(digraph, value) {}
deba@57: 
kpeter@263:       private:
alpar@209:         /// \brief Copy constructor.
alpar@209:         ///
alpar@209:         /// Copy Constructor.
alpar@209:         ArcMap(const ArcMap& nm) : Parent(nm) {}
deba@57: 
kpeter@571:         /// \brief Assignment operator.
alpar@209:         ///
kpeter@571:         /// Assignment operator.
deba@57:         template <typename CMap>
alpar@209:         ArcMap& operator=(const CMap&) {
kpeter@550:           checkConcept<ReadMap<Arc, V>, CMap>();
deba@57:           return *this;
deba@57:         }
deba@57: 
deba@57:       };
deba@57: 
deba@57: 
deba@57:       template <typename _Digraph>
deba@57:       struct Constraints {
deba@57: 
alpar@209:         struct Dummy {
alpar@209:           int value;
alpar@209:           Dummy() : value(0) {}
alpar@209:           Dummy(int _v) : value(_v) {}
alpar@209:         };
deba@57: 
alpar@209:         void constraints() {
alpar@209:           checkConcept<Base, _Digraph>();
alpar@209:           { // int map test
alpar@209:             typedef typename _Digraph::template NodeMap<int> IntNodeMap;
alpar@209:             checkConcept<GraphMap<_Digraph, typename _Digraph::Node, int>,
alpar@209:               IntNodeMap >();
alpar@209:           } { // bool map test
alpar@209:             typedef typename _Digraph::template NodeMap<bool> BoolNodeMap;
alpar@209:             checkConcept<GraphMap<_Digraph, typename _Digraph::Node, bool>,
alpar@209:               BoolNodeMap >();
alpar@209:           } { // Dummy map test
alpar@209:             typedef typename _Digraph::template NodeMap<Dummy> DummyNodeMap;
alpar@209:             checkConcept<GraphMap<_Digraph, typename _Digraph::Node, Dummy>,
alpar@209:               DummyNodeMap >();
alpar@209:           }
deba@57: 
alpar@209:           { // int map test
alpar@209:             typedef typename _Digraph::template ArcMap<int> IntArcMap;
alpar@209:             checkConcept<GraphMap<_Digraph, typename _Digraph::Arc, int>,
alpar@209:               IntArcMap >();
alpar@209:           } { // bool map test
alpar@209:             typedef typename _Digraph::template ArcMap<bool> BoolArcMap;
alpar@209:             checkConcept<GraphMap<_Digraph, typename _Digraph::Arc, bool>,
alpar@209:               BoolArcMap >();
alpar@209:           } { // Dummy map test
alpar@209:             typedef typename _Digraph::template ArcMap<Dummy> DummyArcMap;
alpar@209:             checkConcept<GraphMap<_Digraph, typename _Digraph::Arc, Dummy>,
alpar@209:               DummyArcMap >();
alpar@209:           }
alpar@209:         }
deba@57: 
kpeter@571:         const _Digraph& digraph;
deba@57:       };
deba@57:     };
deba@57: 
kpeter@571:     /// \brief Skeleton class for mappable undirected graphs.
deba@57:     ///
kpeter@571:     /// This class describes the interface of mappable undirected graphs.
kpeter@571:     /// It extends \ref MappableDigraphComponent with the standard graph 
kpeter@571:     /// map class for edges (\c EdgeMap).
deba@57:     /// This concept is part of the Graph concept.
kpeter@550:     template <typename BAS = BaseGraphComponent>
kpeter@550:     class MappableGraphComponent : public MappableDigraphComponent<BAS>  {
deba@57:     public:
deba@57: 
kpeter@550:       typedef BAS Base;
deba@57:       typedef typename Base::Edge Edge;
deba@57: 
deba@57:       typedef MappableGraphComponent Graph;
deba@57: 
kpeter@571:       /// \brief Standard graph map for the edges.
deba@57:       ///
kpeter@571:       /// Standard graph map for the edges.
kpeter@572:       /// It conforms to the ReferenceMap concept.
kpeter@550:       template <typename V>
kpeter@571:       class EdgeMap : public GraphMap<MappableGraphComponent, Edge, V> {
kpeter@550:         typedef GraphMap<MappableGraphComponent, Edge, V> Parent;
deba@57: 
kpeter@609:       public:
alpar@209:         /// \brief Construct a new map.
alpar@209:         ///
alpar@209:         /// Construct a new map for the graph.
alpar@209:         explicit EdgeMap(const MappableGraphComponent& graph)
deba@57:           : Parent(graph) {}
deba@57: 
alpar@209:         /// \brief Construct a new map with default value.
alpar@209:         ///
kpeter@571:         /// Construct a new map for the graph and initalize the values.
kpeter@550:         EdgeMap(const MappableGraphComponent& graph, const V& value)
deba@57:           : Parent(graph, value) {}
deba@57: 
kpeter@263:       private:
alpar@209:         /// \brief Copy constructor.
alpar@209:         ///
alpar@209:         /// Copy Constructor.
alpar@209:         EdgeMap(const EdgeMap& nm) : Parent(nm) {}
deba@57: 
kpeter@571:         /// \brief Assignment operator.
alpar@209:         ///
kpeter@571:         /// Assignment operator.
deba@57:         template <typename CMap>
alpar@209:         EdgeMap& operator=(const CMap&) {
kpeter@550:           checkConcept<ReadMap<Edge, V>, CMap>();
deba@57:           return *this;
deba@57:         }
deba@57: 
deba@57:       };
deba@57: 
deba@57: 
deba@57:       template <typename _Graph>
deba@57:       struct Constraints {
deba@57: 
alpar@209:         struct Dummy {
alpar@209:           int value;
alpar@209:           Dummy() : value(0) {}
alpar@209:           Dummy(int _v) : value(_v) {}
alpar@209:         };
deba@57: 
alpar@209:         void constraints() {
kpeter@571:           checkConcept<MappableDigraphComponent<Base>, _Graph>();
deba@57: 
alpar@209:           { // int map test
alpar@209:             typedef typename _Graph::template EdgeMap<int> IntEdgeMap;
alpar@209:             checkConcept<GraphMap<_Graph, typename _Graph::Edge, int>,
alpar@209:               IntEdgeMap >();
alpar@209:           } { // bool map test
alpar@209:             typedef typename _Graph::template EdgeMap<bool> BoolEdgeMap;
alpar@209:             checkConcept<GraphMap<_Graph, typename _Graph::Edge, bool>,
alpar@209:               BoolEdgeMap >();
alpar@209:           } { // Dummy map test
alpar@209:             typedef typename _Graph::template EdgeMap<Dummy> DummyEdgeMap;
alpar@209:             checkConcept<GraphMap<_Graph, typename _Graph::Edge, Dummy>,
alpar@209:               DummyEdgeMap >();
alpar@209:           }
alpar@209:         }
deba@57: 
kpeter@571:         const _Graph& graph;
deba@57:       };
deba@57:     };
deba@57: 
kpeter@571:     /// \brief Skeleton class for extendable directed graphs.
deba@57:     ///
kpeter@571:     /// This class describes the interface of extendable directed graphs.
kpeter@571:     /// It extends \ref BaseDigraphComponent with functions for adding 
kpeter@571:     /// nodes and arcs to the digraph.
kpeter@571:     /// This concept requires \ref AlterableDigraphComponent.
kpeter@550:     template <typename BAS = BaseDigraphComponent>
kpeter@550:     class ExtendableDigraphComponent : public BAS {
deba@57:     public:
kpeter@550:       typedef BAS Base;
deba@57: 
kpeter@550:       typedef typename Base::Node Node;
kpeter@550:       typedef typename Base::Arc Arc;
deba@57: 
kpeter@571:       /// \brief Add a new node to the digraph.
deba@57:       ///
kpeter@571:       /// This function adds a new node to the digraph.
deba@57:       Node addNode() {
alpar@209:         return INVALID;
deba@57:       }
alpar@209: 
kpeter@571:       /// \brief Add a new arc connecting the given two nodes.
deba@57:       ///
kpeter@571:       /// This function adds a new arc connecting the given two nodes
kpeter@571:       /// of the digraph.
deba@57:       Arc addArc(const Node&, const Node&) {
alpar@209:         return INVALID;
deba@57:       }
deba@57: 
deba@57:       template <typename _Digraph>
deba@57:       struct Constraints {
alpar@209:         void constraints() {
deba@57:           checkConcept<Base, _Digraph>();
alpar@209:           typename _Digraph::Node node_a, node_b;
alpar@209:           node_a = digraph.addNode();
alpar@209:           node_b = digraph.addNode();
alpar@209:           typename _Digraph::Arc arc;
alpar@209:           arc = digraph.addArc(node_a, node_b);
alpar@209:         }
deba@57: 
alpar@209:         _Digraph& digraph;
deba@57:       };
deba@57:     };
deba@57: 
kpeter@571:     /// \brief Skeleton class for extendable undirected graphs.
deba@57:     ///
kpeter@571:     /// This class describes the interface of extendable undirected graphs.
kpeter@571:     /// It extends \ref BaseGraphComponent with functions for adding 
kpeter@571:     /// nodes and edges to the graph.
kpeter@571:     /// This concept requires \ref AlterableGraphComponent.
kpeter@550:     template <typename BAS = BaseGraphComponent>
kpeter@550:     class ExtendableGraphComponent : public BAS {
deba@57:     public:
deba@57: 
kpeter@550:       typedef BAS Base;
kpeter@550:       typedef typename Base::Node Node;
kpeter@550:       typedef typename Base::Edge Edge;
deba@57: 
kpeter@571:       /// \brief Add a new node to the digraph.
deba@57:       ///
kpeter@571:       /// This function adds a new node to the digraph.
deba@57:       Node addNode() {
alpar@209:         return INVALID;
deba@57:       }
alpar@209: 
kpeter@571:       /// \brief Add a new edge connecting the given two nodes.
deba@57:       ///
kpeter@571:       /// This function adds a new edge connecting the given two nodes
kpeter@571:       /// of the graph.
kpeter@571:       Edge addEdge(const Node&, const Node&) {
alpar@209:         return INVALID;
deba@57:       }
deba@57: 
deba@57:       template <typename _Graph>
deba@57:       struct Constraints {
alpar@209:         void constraints() {
alpar@209:           checkConcept<Base, _Graph>();
alpar@209:           typename _Graph::Node node_a, node_b;
alpar@209:           node_a = graph.addNode();
alpar@209:           node_b = graph.addNode();
alpar@209:           typename _Graph::Edge edge;
alpar@209:           edge = graph.addEdge(node_a, node_b);
alpar@209:         }
deba@57: 
alpar@209:         _Graph& graph;
deba@57:       };
deba@57:     };
deba@57: 
kpeter@571:     /// \brief Skeleton class for erasable directed graphs.
alpar@209:     ///
kpeter@571:     /// This class describes the interface of erasable directed graphs.
kpeter@571:     /// It extends \ref BaseDigraphComponent with functions for removing 
kpeter@571:     /// nodes and arcs from the digraph.
kpeter@571:     /// This concept requires \ref AlterableDigraphComponent.
kpeter@550:     template <typename BAS = BaseDigraphComponent>
kpeter@550:     class ErasableDigraphComponent : public BAS {
deba@57:     public:
deba@57: 
kpeter@550:       typedef BAS Base;
deba@57:       typedef typename Base::Node Node;
deba@57:       typedef typename Base::Arc Arc;
deba@57: 
deba@57:       /// \brief Erase a node from the digraph.
deba@57:       ///
kpeter@571:       /// This function erases the given node from the digraph and all arcs 
kpeter@571:       /// connected to the node.
alpar@209:       void erase(const Node&) {}
deba@57: 
deba@57:       /// \brief Erase an arc from the digraph.
deba@57:       ///
kpeter@571:       /// This function erases the given arc from the digraph.
deba@57:       void erase(const Arc&) {}
deba@57: 
deba@57:       template <typename _Digraph>
deba@57:       struct Constraints {
alpar@209:         void constraints() {
deba@57:           checkConcept<Base, _Digraph>();
kpeter@571:           const typename _Digraph::Node node(INVALID);
alpar@209:           digraph.erase(node);
kpeter@571:           const typename _Digraph::Arc arc(INVALID);
alpar@209:           digraph.erase(arc);
alpar@209:         }
deba@57: 
alpar@209:         _Digraph& digraph;
deba@57:       };
deba@57:     };
deba@57: 
kpeter@571:     /// \brief Skeleton class for erasable undirected graphs.
alpar@209:     ///
kpeter@571:     /// This class describes the interface of erasable undirected graphs.
kpeter@571:     /// It extends \ref BaseGraphComponent with functions for removing 
kpeter@571:     /// nodes and edges from the graph.
kpeter@571:     /// This concept requires \ref AlterableGraphComponent.
kpeter@550:     template <typename BAS = BaseGraphComponent>
kpeter@550:     class ErasableGraphComponent : public BAS {
deba@57:     public:
deba@57: 
kpeter@550:       typedef BAS Base;
deba@57:       typedef typename Base::Node Node;
deba@57:       typedef typename Base::Edge Edge;
deba@57: 
deba@57:       /// \brief Erase a node from the graph.
deba@57:       ///
kpeter@571:       /// This function erases the given node from the graph and all edges
kpeter@571:       /// connected to the node.
alpar@209:       void erase(const Node&) {}
deba@57: 
kpeter@571:       /// \brief Erase an edge from the digraph.
deba@57:       ///
kpeter@571:       /// This function erases the given edge from the digraph.
deba@57:       void erase(const Edge&) {}
deba@57: 
deba@57:       template <typename _Graph>
deba@57:       struct Constraints {
alpar@209:         void constraints() {
deba@57:           checkConcept<Base, _Graph>();
kpeter@571:           const typename _Graph::Node node(INVALID);
alpar@209:           graph.erase(node);
kpeter@571:           const typename _Graph::Edge edge(INVALID);
alpar@209:           graph.erase(edge);
alpar@209:         }
deba@57: 
alpar@209:         _Graph& graph;
deba@57:       };
deba@57:     };
deba@57: 
kpeter@571:     /// \brief Skeleton class for clearable directed graphs.
deba@57:     ///
kpeter@571:     /// This class describes the interface of clearable directed graphs.
kpeter@571:     /// It extends \ref BaseDigraphComponent with a function for clearing
kpeter@571:     /// the digraph.
kpeter@571:     /// This concept requires \ref AlterableDigraphComponent.
kpeter@550:     template <typename BAS = BaseDigraphComponent>
kpeter@550:     class ClearableDigraphComponent : public BAS {
deba@57:     public:
deba@57: 
kpeter@550:       typedef BAS Base;
deba@57: 
deba@57:       /// \brief Erase all nodes and arcs from the digraph.
deba@57:       ///
kpeter@571:       /// This function erases all nodes and arcs from the digraph.
alpar@209:       void clear() {}
deba@57: 
deba@57:       template <typename _Digraph>
deba@57:       struct Constraints {
alpar@209:         void constraints() {
deba@57:           checkConcept<Base, _Digraph>();
alpar@209:           digraph.clear();
alpar@209:         }
deba@57: 
kpeter@571:         _Digraph& digraph;
deba@57:       };
deba@57:     };
deba@57: 
kpeter@571:     /// \brief Skeleton class for clearable undirected graphs.
deba@57:     ///
kpeter@571:     /// This class describes the interface of clearable undirected graphs.
kpeter@571:     /// It extends \ref BaseGraphComponent with a function for clearing
kpeter@571:     /// the graph.
kpeter@571:     /// This concept requires \ref AlterableGraphComponent.
kpeter@550:     template <typename BAS = BaseGraphComponent>
kpeter@550:     class ClearableGraphComponent : public ClearableDigraphComponent<BAS> {
deba@57:     public:
deba@57: 
kpeter@550:       typedef BAS Base;
deba@57: 
kpeter@571:       /// \brief Erase all nodes and edges from the graph.
kpeter@571:       ///
kpeter@571:       /// This function erases all nodes and edges from the graph.
kpeter@571:       void clear() {}
kpeter@571: 
deba@57:       template <typename _Graph>
deba@57:       struct Constraints {
alpar@209:         void constraints() {
kpeter@571:           checkConcept<Base, _Graph>();
kpeter@571:           graph.clear();
alpar@209:         }
deba@57: 
kpeter@571:         _Graph& graph;
deba@57:       };
deba@57:     };
deba@57: 
deba@57:   }
deba@57: 
deba@57: }
deba@57: 
deba@57: #endif