diff -r cdbba181b786 -r 9ba2d265e191 lemon/kruskal.h --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/lemon/kruskal.h Thu Mar 20 23:06:35 2008 +0000 @@ -0,0 +1,319 @@ +/* -*- C++ -*- + * + * This file is a part of LEMON, a generic C++ optimization library + * + * Copyright (C) 2003-2008 + * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport + * (Egervary Research Group on Combinatorial Optimization, EGRES). + * + * Permission to use, modify and distribute this software is granted + * provided that this copyright notice appears in all copies. For + * precise terms see the accompanying LICENSE file. + * + * This software is provided "AS IS" with no warranty of any kind, + * express or implied, and with no claim as to its suitability for any + * purpose. + * + */ + +#ifndef LEMON_KRUSKAL_H +#define LEMON_KRUSKAL_H + +#include +#include +#include +// #include +#include + +// #include + +#include +#include + +///\ingroup spantree +///\file +///\brief Kruskal's algorithm to compute a minimum cost tree +/// +///Kruskal's algorithm to compute a minimum cost tree. +/// + +namespace lemon { + + namespace _kruskal_bits { + + // Kruskal for directed graphs. + + template + typename disable_if, + typename In::value_type::second_type >::type + kruskal(const Digraph& digraph, const In& in, Out& out,dummy<0> = 0) { + typedef typename In::value_type::second_type Value; + typedef typename Digraph::template NodeMap IndexMap; + typedef typename Digraph::Node Node; + + IndexMap index(digraph); + UnionFind uf(index); + for (typename Digraph::NodeIt it(digraph); it != INVALID; ++it) { + uf.insert(it); + } + + Value tree_value = 0; + for (typename In::const_iterator it = in.begin(); it != in.end(); ++it) { + if (uf.join(digraph.target(it->first),digraph.source(it->first))) { + out.set(it->first, true); + tree_value += it->second; + } + else { + out.set(it->first, false); + } + } + return tree_value; + } + + // Kruskal for undirected graphs. + + template + typename enable_if, + typename In::value_type::second_type >::type + kruskal(const Graph& graph, const In& in, Out& out,dummy<1> = 1) { + typedef typename In::value_type::second_type Value; + typedef typename Graph::template NodeMap IndexMap; + typedef typename Graph::Node Node; + + IndexMap index(graph); + UnionFind uf(index); + for (typename Graph::NodeIt it(graph); it != INVALID; ++it) { + uf.insert(it); + } + + Value tree_value = 0; + for (typename In::const_iterator it = in.begin(); it != in.end(); ++it) { + if (uf.join(graph.u(it->first),graph.v(it->first))) { + out.set(it->first, true); + tree_value += it->second; + } + else { + out.set(it->first, false); + } + } + return tree_value; + } + + + template + struct PairComp { + typedef typename Sequence::value_type Value; + bool operator()(const Value& left, const Value& right) { + return left.second < right.second; + } + }; + + template + struct SequenceInputIndicator { + static const bool value = false; + }; + + template + struct SequenceInputIndicator::type> { + static const bool value = true; + }; + + template + struct MapInputIndicator { + static const bool value = false; + }; + + template + struct MapInputIndicator::type> { + static const bool value = true; + }; + + template + struct SequenceOutputIndicator { + static const bool value = false; + }; + + template + struct SequenceOutputIndicator::type> { + static const bool value = true; + }; + + template + struct MapOutputIndicator { + static const bool value = false; + }; + + template + struct MapOutputIndicator::type> { + static const bool value = true; + }; + + template + struct KruskalValueSelector {}; + + template + struct KruskalValueSelector, void>::type> + { + typedef typename In::value_type::second_type Value; + }; + + template + struct KruskalValueSelector, void>::type> + { + typedef typename In::Value Value; + }; + + template + struct KruskalInputSelector {}; + + template + struct KruskalOutputSelector {}; + + template + struct KruskalInputSelector, void>::type > + { + typedef typename In::value_type::second_type Value; + + static Value kruskal(const Graph& graph, const In& in, Out& out) { + return KruskalOutputSelector:: + kruskal(graph, in, out); + } + + }; + + template + struct KruskalInputSelector, void>::type > + { + typedef typename In::Value Value; + static Value kruskal(const Graph& graph, const In& in, Out& out) { + typedef typename In::Key MapArc; + typedef typename In::Value Value; + typedef typename ItemSetTraits::ItemIt MapArcIt; + typedef std::vector > Sequence; + Sequence seq; + + for (MapArcIt it(graph); it != INVALID; ++it) { + seq.push_back(std::make_pair(it, in[it])); + } + + std::sort(seq.begin(), seq.end(), PairComp()); + return KruskalOutputSelector:: + kruskal(graph, seq, out); + } + }; + + template + struct KruskalOutputSelector, void>::type > + { + typedef typename In::value_type::second_type Value; + + static Value kruskal(const Graph& graph, const In& in, Out& out) { + typedef StoreBoolMap Map; + Map map(out); + return _kruskal_bits::kruskal(graph, in, map); + } + + }; + + template + struct KruskalOutputSelector, void>::type > + { + typedef typename In::value_type::second_type Value; + + static Value kruskal(const Graph& graph, const In& in, Out& out) { + return _kruskal_bits::kruskal(graph, in, out); + } + }; + + } + + /// \ingroup spantree + /// + /// \brief Kruskal's algorithm to find a minimum cost tree of a graph. + /// + /// This function runs Kruskal's algorithm to find a minimum cost tree. + /// Due to some C++ hacking, it accepts various input and output types. + /// + /// \param g The graph the algorithm runs on. + /// It can be either \ref concepts::Digraph "directed" or + /// \ref concepts::Graph "undirected". + /// If the graph is directed, the algorithm consider it to be + /// undirected by disregarding the direction of the arcs. + /// + /// \param in This object is used to describe the arc costs. It can be one + /// of the following choices. + /// - An STL compatible 'Forward Container' with + /// std::pair or + /// std::pair as its value_type, where + /// \c X is the type of the costs. The pairs indicates the arcs + /// along with the assigned cost. They must be in a + /// cost-ascending order. + /// - Any readable Arc map. The values of the map indicate the arc costs. + /// + /// \retval out Here we also have a choise. + /// - It can be a writable \c bool arc map. After running the + /// algorithm this will contain the found minimum cost spanning + /// tree: the value of an arc will be set to \c true if it belongs + /// to the tree, otherwise it will be set to \c false. The value of + /// each arc will be set exactly once. + /// - It can also be an iteraror of an STL Container with + /// GR::Edge or GR::Arc as its + /// value_type. The algorithm copies the elements of the + /// found tree into this sequence. For example, if we know that the + /// spanning tree of the graph \c g has say 53 arcs, then we can + /// put its arcs into an STL vector \c tree with a code like this. + ///\code + /// std::vector tree(53); + /// kruskal(g,cost,tree.begin()); + ///\endcode + /// Or if we don't know in advance the size of the tree, we can + /// write this. + ///\code std::vector tree; + /// kruskal(g,cost,std::back_inserter(tree)); + ///\endcode + /// + /// \return The total cost of the found tree. + /// + /// \warning If kruskal runs on an be consistent of using the same + /// Arc type for input and output. + /// + +#ifdef DOXYGEN + template + Value kruskal(GR const& g, const In& in, Out& out) +#else + template + inline typename _kruskal_bits::KruskalValueSelector::Value + kruskal(const Graph& graph, const In& in, Out& out) +#endif + { + return _kruskal_bits::KruskalInputSelector:: + kruskal(graph, in, out); + } + + + + + template + inline typename _kruskal_bits::KruskalValueSelector::Value + kruskal(const Graph& graph, const In& in, const Out& out) + { + return _kruskal_bits::KruskalInputSelector:: + kruskal(graph, in, out); + } + +} //namespace lemon + +#endif //LEMON_KRUSKAL_H