Rename max_matching.h to matching.h (#265)
authorPeter Kovacs <kpeter@inf.elte.hu>
Fri, 17 Apr 2009 09:58:50 +0200
changeset 586d657c71db7db
parent 585 7ac52d6a268e
child 587 16d7255a6849
Rename max_matching.h to matching.h (#265)
lemon/Makefile.am
lemon/matching.h
lemon/max_matching.h
test/CMakeLists.txt
test/Makefile.am
test/matching_test.cc
test/max_matching_test.cc
tools/dimacs-solver.cc
     1.1 --- a/lemon/Makefile.am	Fri Apr 17 09:54:14 2009 +0200
     1.2 +++ b/lemon/Makefile.am	Fri Apr 17 09:58:50 2009 +0200
     1.3 @@ -89,8 +89,8 @@
     1.4  	lemon/lp_skeleton.h \
     1.5  	lemon/list_graph.h \
     1.6  	lemon/maps.h \
     1.7 +	lemon/matching.h \
     1.8  	lemon/math.h \
     1.9 -	lemon/max_matching.h \
    1.10  	lemon/min_cost_arborescence.h \
    1.11  	lemon/nauty_reader.h \
    1.12  	lemon/path.h \
     2.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     2.2 +++ b/lemon/matching.h	Fri Apr 17 09:58:50 2009 +0200
     2.3 @@ -0,0 +1,3244 @@
     2.4 +/* -*- mode: C++; indent-tabs-mode: nil; -*-
     2.5 + *
     2.6 + * This file is a part of LEMON, a generic C++ optimization library.
     2.7 + *
     2.8 + * Copyright (C) 2003-2009
     2.9 + * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
    2.10 + * (Egervary Research Group on Combinatorial Optimization, EGRES).
    2.11 + *
    2.12 + * Permission to use, modify and distribute this software is granted
    2.13 + * provided that this copyright notice appears in all copies. For
    2.14 + * precise terms see the accompanying LICENSE file.
    2.15 + *
    2.16 + * This software is provided "AS IS" with no warranty of any kind,
    2.17 + * express or implied, and with no claim as to its suitability for any
    2.18 + * purpose.
    2.19 + *
    2.20 + */
    2.21 +
    2.22 +#ifndef LEMON_MAX_MATCHING_H
    2.23 +#define LEMON_MAX_MATCHING_H
    2.24 +
    2.25 +#include <vector>
    2.26 +#include <queue>
    2.27 +#include <set>
    2.28 +#include <limits>
    2.29 +
    2.30 +#include <lemon/core.h>
    2.31 +#include <lemon/unionfind.h>
    2.32 +#include <lemon/bin_heap.h>
    2.33 +#include <lemon/maps.h>
    2.34 +
    2.35 +///\ingroup matching
    2.36 +///\file
    2.37 +///\brief Maximum matching algorithms in general graphs.
    2.38 +
    2.39 +namespace lemon {
    2.40 +
    2.41 +  /// \ingroup matching
    2.42 +  ///
    2.43 +  /// \brief Maximum cardinality matching in general graphs
    2.44 +  ///
    2.45 +  /// This class implements Edmonds' alternating forest matching algorithm
    2.46 +  /// for finding a maximum cardinality matching in a general undirected graph.
    2.47 +  /// It can be started from an arbitrary initial matching 
    2.48 +  /// (the default is the empty one).
    2.49 +  ///
    2.50 +  /// The dual solution of the problem is a map of the nodes to
    2.51 +  /// \ref MaxMatching::Status "Status", having values \c EVEN (or \c D),
    2.52 +  /// \c ODD (or \c A) and \c MATCHED (or \c C) defining the Gallai-Edmonds
    2.53 +  /// decomposition of the graph. The nodes in \c EVEN/D induce a subgraph
    2.54 +  /// with factor-critical components, the nodes in \c ODD/A form the
    2.55 +  /// canonical barrier, and the nodes in \c MATCHED/C induce a graph having
    2.56 +  /// a perfect matching. The number of the factor-critical components
    2.57 +  /// minus the number of barrier nodes is a lower bound on the
    2.58 +  /// unmatched nodes, and the matching is optimal if and only if this bound is
    2.59 +  /// tight. This decomposition can be obtained using \ref status() or
    2.60 +  /// \ref statusMap() after running the algorithm.
    2.61 +  ///
    2.62 +  /// \tparam GR The undirected graph type the algorithm runs on.
    2.63 +  template <typename GR>
    2.64 +  class MaxMatching {
    2.65 +  public:
    2.66 +
    2.67 +    /// The graph type of the algorithm
    2.68 +    typedef GR Graph;
    2.69 +    /// The type of the matching map
    2.70 +    typedef typename Graph::template NodeMap<typename Graph::Arc>
    2.71 +    MatchingMap;
    2.72 +
    2.73 +    ///\brief Status constants for Gallai-Edmonds decomposition.
    2.74 +    ///
    2.75 +    ///These constants are used for indicating the Gallai-Edmonds 
    2.76 +    ///decomposition of a graph. The nodes with status \c EVEN (or \c D)
    2.77 +    ///induce a subgraph with factor-critical components, the nodes with
    2.78 +    ///status \c ODD (or \c A) form the canonical barrier, and the nodes
    2.79 +    ///with status \c MATCHED (or \c C) induce a subgraph having a 
    2.80 +    ///perfect matching.
    2.81 +    enum Status {
    2.82 +      EVEN = 1,       ///< = 1. (\c D is an alias for \c EVEN.)
    2.83 +      D = 1,
    2.84 +      MATCHED = 0,    ///< = 0. (\c C is an alias for \c MATCHED.)
    2.85 +      C = 0,
    2.86 +      ODD = -1,       ///< = -1. (\c A is an alias for \c ODD.)
    2.87 +      A = -1,
    2.88 +      UNMATCHED = -2  ///< = -2.
    2.89 +    };
    2.90 +
    2.91 +    /// The type of the status map
    2.92 +    typedef typename Graph::template NodeMap<Status> StatusMap;
    2.93 +
    2.94 +  private:
    2.95 +
    2.96 +    TEMPLATE_GRAPH_TYPEDEFS(Graph);
    2.97 +
    2.98 +    typedef UnionFindEnum<IntNodeMap> BlossomSet;
    2.99 +    typedef ExtendFindEnum<IntNodeMap> TreeSet;
   2.100 +    typedef RangeMap<Node> NodeIntMap;
   2.101 +    typedef MatchingMap EarMap;
   2.102 +    typedef std::vector<Node> NodeQueue;
   2.103 +
   2.104 +    const Graph& _graph;
   2.105 +    MatchingMap* _matching;
   2.106 +    StatusMap* _status;
   2.107 +
   2.108 +    EarMap* _ear;
   2.109 +
   2.110 +    IntNodeMap* _blossom_set_index;
   2.111 +    BlossomSet* _blossom_set;
   2.112 +    NodeIntMap* _blossom_rep;
   2.113 +
   2.114 +    IntNodeMap* _tree_set_index;
   2.115 +    TreeSet* _tree_set;
   2.116 +
   2.117 +    NodeQueue _node_queue;
   2.118 +    int _process, _postpone, _last;
   2.119 +
   2.120 +    int _node_num;
   2.121 +
   2.122 +  private:
   2.123 +
   2.124 +    void createStructures() {
   2.125 +      _node_num = countNodes(_graph);
   2.126 +      if (!_matching) {
   2.127 +        _matching = new MatchingMap(_graph);
   2.128 +      }
   2.129 +      if (!_status) {
   2.130 +        _status = new StatusMap(_graph);
   2.131 +      }
   2.132 +      if (!_ear) {
   2.133 +        _ear = new EarMap(_graph);
   2.134 +      }
   2.135 +      if (!_blossom_set) {
   2.136 +        _blossom_set_index = new IntNodeMap(_graph);
   2.137 +        _blossom_set = new BlossomSet(*_blossom_set_index);
   2.138 +      }
   2.139 +      if (!_blossom_rep) {
   2.140 +        _blossom_rep = new NodeIntMap(_node_num);
   2.141 +      }
   2.142 +      if (!_tree_set) {
   2.143 +        _tree_set_index = new IntNodeMap(_graph);
   2.144 +        _tree_set = new TreeSet(*_tree_set_index);
   2.145 +      }
   2.146 +      _node_queue.resize(_node_num);
   2.147 +    }
   2.148 +
   2.149 +    void destroyStructures() {
   2.150 +      if (_matching) {
   2.151 +        delete _matching;
   2.152 +      }
   2.153 +      if (_status) {
   2.154 +        delete _status;
   2.155 +      }
   2.156 +      if (_ear) {
   2.157 +        delete _ear;
   2.158 +      }
   2.159 +      if (_blossom_set) {
   2.160 +        delete _blossom_set;
   2.161 +        delete _blossom_set_index;
   2.162 +      }
   2.163 +      if (_blossom_rep) {
   2.164 +        delete _blossom_rep;
   2.165 +      }
   2.166 +      if (_tree_set) {
   2.167 +        delete _tree_set_index;
   2.168 +        delete _tree_set;
   2.169 +      }
   2.170 +    }
   2.171 +
   2.172 +    void processDense(const Node& n) {
   2.173 +      _process = _postpone = _last = 0;
   2.174 +      _node_queue[_last++] = n;
   2.175 +
   2.176 +      while (_process != _last) {
   2.177 +        Node u = _node_queue[_process++];
   2.178 +        for (OutArcIt a(_graph, u); a != INVALID; ++a) {
   2.179 +          Node v = _graph.target(a);
   2.180 +          if ((*_status)[v] == MATCHED) {
   2.181 +            extendOnArc(a);
   2.182 +          } else if ((*_status)[v] == UNMATCHED) {
   2.183 +            augmentOnArc(a);
   2.184 +            return;
   2.185 +          }
   2.186 +        }
   2.187 +      }
   2.188 +
   2.189 +      while (_postpone != _last) {
   2.190 +        Node u = _node_queue[_postpone++];
   2.191 +
   2.192 +        for (OutArcIt a(_graph, u); a != INVALID ; ++a) {
   2.193 +          Node v = _graph.target(a);
   2.194 +
   2.195 +          if ((*_status)[v] == EVEN) {
   2.196 +            if (_blossom_set->find(u) != _blossom_set->find(v)) {
   2.197 +              shrinkOnEdge(a);
   2.198 +            }
   2.199 +          }
   2.200 +
   2.201 +          while (_process != _last) {
   2.202 +            Node w = _node_queue[_process++];
   2.203 +            for (OutArcIt b(_graph, w); b != INVALID; ++b) {
   2.204 +              Node x = _graph.target(b);
   2.205 +              if ((*_status)[x] == MATCHED) {
   2.206 +                extendOnArc(b);
   2.207 +              } else if ((*_status)[x] == UNMATCHED) {
   2.208 +                augmentOnArc(b);
   2.209 +                return;
   2.210 +              }
   2.211 +            }
   2.212 +          }
   2.213 +        }
   2.214 +      }
   2.215 +    }
   2.216 +
   2.217 +    void processSparse(const Node& n) {
   2.218 +      _process = _last = 0;
   2.219 +      _node_queue[_last++] = n;
   2.220 +      while (_process != _last) {
   2.221 +        Node u = _node_queue[_process++];
   2.222 +        for (OutArcIt a(_graph, u); a != INVALID; ++a) {
   2.223 +          Node v = _graph.target(a);
   2.224 +
   2.225 +          if ((*_status)[v] == EVEN) {
   2.226 +            if (_blossom_set->find(u) != _blossom_set->find(v)) {
   2.227 +              shrinkOnEdge(a);
   2.228 +            }
   2.229 +          } else if ((*_status)[v] == MATCHED) {
   2.230 +            extendOnArc(a);
   2.231 +          } else if ((*_status)[v] == UNMATCHED) {
   2.232 +            augmentOnArc(a);
   2.233 +            return;
   2.234 +          }
   2.235 +        }
   2.236 +      }
   2.237 +    }
   2.238 +
   2.239 +    void shrinkOnEdge(const Edge& e) {
   2.240 +      Node nca = INVALID;
   2.241 +
   2.242 +      {
   2.243 +        std::set<Node> left_set, right_set;
   2.244 +
   2.245 +        Node left = (*_blossom_rep)[_blossom_set->find(_graph.u(e))];
   2.246 +        left_set.insert(left);
   2.247 +
   2.248 +        Node right = (*_blossom_rep)[_blossom_set->find(_graph.v(e))];
   2.249 +        right_set.insert(right);
   2.250 +
   2.251 +        while (true) {
   2.252 +          if ((*_matching)[left] == INVALID) break;
   2.253 +          left = _graph.target((*_matching)[left]);
   2.254 +          left = (*_blossom_rep)[_blossom_set->
   2.255 +                                 find(_graph.target((*_ear)[left]))];
   2.256 +          if (right_set.find(left) != right_set.end()) {
   2.257 +            nca = left;
   2.258 +            break;
   2.259 +          }
   2.260 +          left_set.insert(left);
   2.261 +
   2.262 +          if ((*_matching)[right] == INVALID) break;
   2.263 +          right = _graph.target((*_matching)[right]);
   2.264 +          right = (*_blossom_rep)[_blossom_set->
   2.265 +                                  find(_graph.target((*_ear)[right]))];
   2.266 +          if (left_set.find(right) != left_set.end()) {
   2.267 +            nca = right;
   2.268 +            break;
   2.269 +          }
   2.270 +          right_set.insert(right);
   2.271 +        }
   2.272 +
   2.273 +        if (nca == INVALID) {
   2.274 +          if ((*_matching)[left] == INVALID) {
   2.275 +            nca = right;
   2.276 +            while (left_set.find(nca) == left_set.end()) {
   2.277 +              nca = _graph.target((*_matching)[nca]);
   2.278 +              nca =(*_blossom_rep)[_blossom_set->
   2.279 +                                   find(_graph.target((*_ear)[nca]))];
   2.280 +            }
   2.281 +          } else {
   2.282 +            nca = left;
   2.283 +            while (right_set.find(nca) == right_set.end()) {
   2.284 +              nca = _graph.target((*_matching)[nca]);
   2.285 +              nca = (*_blossom_rep)[_blossom_set->
   2.286 +                                   find(_graph.target((*_ear)[nca]))];
   2.287 +            }
   2.288 +          }
   2.289 +        }
   2.290 +      }
   2.291 +
   2.292 +      {
   2.293 +
   2.294 +        Node node = _graph.u(e);
   2.295 +        Arc arc = _graph.direct(e, true);
   2.296 +        Node base = (*_blossom_rep)[_blossom_set->find(node)];
   2.297 +
   2.298 +        while (base != nca) {
   2.299 +          (*_ear)[node] = arc;
   2.300 +
   2.301 +          Node n = node;
   2.302 +          while (n != base) {
   2.303 +            n = _graph.target((*_matching)[n]);
   2.304 +            Arc a = (*_ear)[n];
   2.305 +            n = _graph.target(a);
   2.306 +            (*_ear)[n] = _graph.oppositeArc(a);
   2.307 +          }
   2.308 +          node = _graph.target((*_matching)[base]);
   2.309 +          _tree_set->erase(base);
   2.310 +          _tree_set->erase(node);
   2.311 +          _blossom_set->insert(node, _blossom_set->find(base));
   2.312 +          (*_status)[node] = EVEN;
   2.313 +          _node_queue[_last++] = node;
   2.314 +          arc = _graph.oppositeArc((*_ear)[node]);
   2.315 +          node = _graph.target((*_ear)[node]);
   2.316 +          base = (*_blossom_rep)[_blossom_set->find(node)];
   2.317 +          _blossom_set->join(_graph.target(arc), base);
   2.318 +        }
   2.319 +      }
   2.320 +
   2.321 +      (*_blossom_rep)[_blossom_set->find(nca)] = nca;
   2.322 +
   2.323 +      {
   2.324 +
   2.325 +        Node node = _graph.v(e);
   2.326 +        Arc arc = _graph.direct(e, false);
   2.327 +        Node base = (*_blossom_rep)[_blossom_set->find(node)];
   2.328 +
   2.329 +        while (base != nca) {
   2.330 +          (*_ear)[node] = arc;
   2.331 +
   2.332 +          Node n = node;
   2.333 +          while (n != base) {
   2.334 +            n = _graph.target((*_matching)[n]);
   2.335 +            Arc a = (*_ear)[n];
   2.336 +            n = _graph.target(a);
   2.337 +            (*_ear)[n] = _graph.oppositeArc(a);
   2.338 +          }
   2.339 +          node = _graph.target((*_matching)[base]);
   2.340 +          _tree_set->erase(base);
   2.341 +          _tree_set->erase(node);
   2.342 +          _blossom_set->insert(node, _blossom_set->find(base));
   2.343 +          (*_status)[node] = EVEN;
   2.344 +          _node_queue[_last++] = node;
   2.345 +          arc = _graph.oppositeArc((*_ear)[node]);
   2.346 +          node = _graph.target((*_ear)[node]);
   2.347 +          base = (*_blossom_rep)[_blossom_set->find(node)];
   2.348 +          _blossom_set->join(_graph.target(arc), base);
   2.349 +        }
   2.350 +      }
   2.351 +
   2.352 +      (*_blossom_rep)[_blossom_set->find(nca)] = nca;
   2.353 +    }
   2.354 +
   2.355 +    void extendOnArc(const Arc& a) {
   2.356 +      Node base = _graph.source(a);
   2.357 +      Node odd = _graph.target(a);
   2.358 +
   2.359 +      (*_ear)[odd] = _graph.oppositeArc(a);
   2.360 +      Node even = _graph.target((*_matching)[odd]);
   2.361 +      (*_blossom_rep)[_blossom_set->insert(even)] = even;
   2.362 +      (*_status)[odd] = ODD;
   2.363 +      (*_status)[even] = EVEN;
   2.364 +      int tree = _tree_set->find((*_blossom_rep)[_blossom_set->find(base)]);
   2.365 +      _tree_set->insert(odd, tree);
   2.366 +      _tree_set->insert(even, tree);
   2.367 +      _node_queue[_last++] = even;
   2.368 +
   2.369 +    }
   2.370 +
   2.371 +    void augmentOnArc(const Arc& a) {
   2.372 +      Node even = _graph.source(a);
   2.373 +      Node odd = _graph.target(a);
   2.374 +
   2.375 +      int tree = _tree_set->find((*_blossom_rep)[_blossom_set->find(even)]);
   2.376 +
   2.377 +      (*_matching)[odd] = _graph.oppositeArc(a);
   2.378 +      (*_status)[odd] = MATCHED;
   2.379 +
   2.380 +      Arc arc = (*_matching)[even];
   2.381 +      (*_matching)[even] = a;
   2.382 +
   2.383 +      while (arc != INVALID) {
   2.384 +        odd = _graph.target(arc);
   2.385 +        arc = (*_ear)[odd];
   2.386 +        even = _graph.target(arc);
   2.387 +        (*_matching)[odd] = arc;
   2.388 +        arc = (*_matching)[even];
   2.389 +        (*_matching)[even] = _graph.oppositeArc((*_matching)[odd]);
   2.390 +      }
   2.391 +
   2.392 +      for (typename TreeSet::ItemIt it(*_tree_set, tree);
   2.393 +           it != INVALID; ++it) {
   2.394 +        if ((*_status)[it] == ODD) {
   2.395 +          (*_status)[it] = MATCHED;
   2.396 +        } else {
   2.397 +          int blossom = _blossom_set->find(it);
   2.398 +          for (typename BlossomSet::ItemIt jt(*_blossom_set, blossom);
   2.399 +               jt != INVALID; ++jt) {
   2.400 +            (*_status)[jt] = MATCHED;
   2.401 +          }
   2.402 +          _blossom_set->eraseClass(blossom);
   2.403 +        }
   2.404 +      }
   2.405 +      _tree_set->eraseClass(tree);
   2.406 +
   2.407 +    }
   2.408 +
   2.409 +  public:
   2.410 +
   2.411 +    /// \brief Constructor
   2.412 +    ///
   2.413 +    /// Constructor.
   2.414 +    MaxMatching(const Graph& graph)
   2.415 +      : _graph(graph), _matching(0), _status(0), _ear(0),
   2.416 +        _blossom_set_index(0), _blossom_set(0), _blossom_rep(0),
   2.417 +        _tree_set_index(0), _tree_set(0) {}
   2.418 +
   2.419 +    ~MaxMatching() {
   2.420 +      destroyStructures();
   2.421 +    }
   2.422 +
   2.423 +    /// \name Execution Control
   2.424 +    /// The simplest way to execute the algorithm is to use the
   2.425 +    /// \c run() member function.\n
   2.426 +    /// If you need better control on the execution, you have to call
   2.427 +    /// one of the functions \ref init(), \ref greedyInit() or
   2.428 +    /// \ref matchingInit() first, then you can start the algorithm with
   2.429 +    /// \ref startSparse() or \ref startDense().
   2.430 +
   2.431 +    ///@{
   2.432 +
   2.433 +    /// \brief Set the initial matching to the empty matching.
   2.434 +    ///
   2.435 +    /// This function sets the initial matching to the empty matching.
   2.436 +    void init() {
   2.437 +      createStructures();
   2.438 +      for(NodeIt n(_graph); n != INVALID; ++n) {
   2.439 +        (*_matching)[n] = INVALID;
   2.440 +        (*_status)[n] = UNMATCHED;
   2.441 +      }
   2.442 +    }
   2.443 +
   2.444 +    /// \brief Find an initial matching in a greedy way.
   2.445 +    ///
   2.446 +    /// This function finds an initial matching in a greedy way.
   2.447 +    void greedyInit() {
   2.448 +      createStructures();
   2.449 +      for (NodeIt n(_graph); n != INVALID; ++n) {
   2.450 +        (*_matching)[n] = INVALID;
   2.451 +        (*_status)[n] = UNMATCHED;
   2.452 +      }
   2.453 +      for (NodeIt n(_graph); n != INVALID; ++n) {
   2.454 +        if ((*_matching)[n] == INVALID) {
   2.455 +          for (OutArcIt a(_graph, n); a != INVALID ; ++a) {
   2.456 +            Node v = _graph.target(a);
   2.457 +            if ((*_matching)[v] == INVALID && v != n) {
   2.458 +              (*_matching)[n] = a;
   2.459 +              (*_status)[n] = MATCHED;
   2.460 +              (*_matching)[v] = _graph.oppositeArc(a);
   2.461 +              (*_status)[v] = MATCHED;
   2.462 +              break;
   2.463 +            }
   2.464 +          }
   2.465 +        }
   2.466 +      }
   2.467 +    }
   2.468 +
   2.469 +
   2.470 +    /// \brief Initialize the matching from a map.
   2.471 +    ///
   2.472 +    /// This function initializes the matching from a \c bool valued edge
   2.473 +    /// map. This map should have the property that there are no two incident
   2.474 +    /// edges with \c true value, i.e. it really contains a matching.
   2.475 +    /// \return \c true if the map contains a matching.
   2.476 +    template <typename MatchingMap>
   2.477 +    bool matchingInit(const MatchingMap& matching) {
   2.478 +      createStructures();
   2.479 +
   2.480 +      for (NodeIt n(_graph); n != INVALID; ++n) {
   2.481 +        (*_matching)[n] = INVALID;
   2.482 +        (*_status)[n] = UNMATCHED;
   2.483 +      }
   2.484 +      for(EdgeIt e(_graph); e!=INVALID; ++e) {
   2.485 +        if (matching[e]) {
   2.486 +
   2.487 +          Node u = _graph.u(e);
   2.488 +          if ((*_matching)[u] != INVALID) return false;
   2.489 +          (*_matching)[u] = _graph.direct(e, true);
   2.490 +          (*_status)[u] = MATCHED;
   2.491 +
   2.492 +          Node v = _graph.v(e);
   2.493 +          if ((*_matching)[v] != INVALID) return false;
   2.494 +          (*_matching)[v] = _graph.direct(e, false);
   2.495 +          (*_status)[v] = MATCHED;
   2.496 +        }
   2.497 +      }
   2.498 +      return true;
   2.499 +    }
   2.500 +
   2.501 +    /// \brief Start Edmonds' algorithm
   2.502 +    ///
   2.503 +    /// This function runs the original Edmonds' algorithm.
   2.504 +    ///
   2.505 +    /// \pre \ref Init(), \ref greedyInit() or \ref matchingInit() must be
   2.506 +    /// called before using this function.
   2.507 +    void startSparse() {
   2.508 +      for(NodeIt n(_graph); n != INVALID; ++n) {
   2.509 +        if ((*_status)[n] == UNMATCHED) {
   2.510 +          (*_blossom_rep)[_blossom_set->insert(n)] = n;
   2.511 +          _tree_set->insert(n);
   2.512 +          (*_status)[n] = EVEN;
   2.513 +          processSparse(n);
   2.514 +        }
   2.515 +      }
   2.516 +    }
   2.517 +
   2.518 +    /// \brief Start Edmonds' algorithm with a heuristic improvement 
   2.519 +    /// for dense graphs
   2.520 +    ///
   2.521 +    /// This function runs Edmonds' algorithm with a heuristic of postponing
   2.522 +    /// shrinks, therefore resulting in a faster algorithm for dense graphs.
   2.523 +    ///
   2.524 +    /// \pre \ref Init(), \ref greedyInit() or \ref matchingInit() must be
   2.525 +    /// called before using this function.
   2.526 +    void startDense() {
   2.527 +      for(NodeIt n(_graph); n != INVALID; ++n) {
   2.528 +        if ((*_status)[n] == UNMATCHED) {
   2.529 +          (*_blossom_rep)[_blossom_set->insert(n)] = n;
   2.530 +          _tree_set->insert(n);
   2.531 +          (*_status)[n] = EVEN;
   2.532 +          processDense(n);
   2.533 +        }
   2.534 +      }
   2.535 +    }
   2.536 +
   2.537 +
   2.538 +    /// \brief Run Edmonds' algorithm
   2.539 +    ///
   2.540 +    /// This function runs Edmonds' algorithm. An additional heuristic of 
   2.541 +    /// postponing shrinks is used for relatively dense graphs 
   2.542 +    /// (for which <tt>m>=2*n</tt> holds).
   2.543 +    void run() {
   2.544 +      if (countEdges(_graph) < 2 * countNodes(_graph)) {
   2.545 +        greedyInit();
   2.546 +        startSparse();
   2.547 +      } else {
   2.548 +        init();
   2.549 +        startDense();
   2.550 +      }
   2.551 +    }
   2.552 +
   2.553 +    /// @}
   2.554 +
   2.555 +    /// \name Primal Solution
   2.556 +    /// Functions to get the primal solution, i.e. the maximum matching.
   2.557 +
   2.558 +    /// @{
   2.559 +
   2.560 +    /// \brief Return the size (cardinality) of the matching.
   2.561 +    ///
   2.562 +    /// This function returns the size (cardinality) of the current matching. 
   2.563 +    /// After run() it returns the size of the maximum matching in the graph.
   2.564 +    int matchingSize() const {
   2.565 +      int size = 0;
   2.566 +      for (NodeIt n(_graph); n != INVALID; ++n) {
   2.567 +        if ((*_matching)[n] != INVALID) {
   2.568 +          ++size;
   2.569 +        }
   2.570 +      }
   2.571 +      return size / 2;
   2.572 +    }
   2.573 +
   2.574 +    /// \brief Return \c true if the given edge is in the matching.
   2.575 +    ///
   2.576 +    /// This function returns \c true if the given edge is in the current 
   2.577 +    /// matching.
   2.578 +    bool matching(const Edge& edge) const {
   2.579 +      return edge == (*_matching)[_graph.u(edge)];
   2.580 +    }
   2.581 +
   2.582 +    /// \brief Return the matching arc (or edge) incident to the given node.
   2.583 +    ///
   2.584 +    /// This function returns the matching arc (or edge) incident to the
   2.585 +    /// given node in the current matching or \c INVALID if the node is 
   2.586 +    /// not covered by the matching.
   2.587 +    Arc matching(const Node& n) const {
   2.588 +      return (*_matching)[n];
   2.589 +    }
   2.590 +
   2.591 +    /// \brief Return a const reference to the matching map.
   2.592 +    ///
   2.593 +    /// This function returns a const reference to a node map that stores
   2.594 +    /// the matching arc (or edge) incident to each node.
   2.595 +    const MatchingMap& matchingMap() const {
   2.596 +      return *_matching;
   2.597 +    }
   2.598 +
   2.599 +    /// \brief Return the mate of the given node.
   2.600 +    ///
   2.601 +    /// This function returns the mate of the given node in the current 
   2.602 +    /// matching or \c INVALID if the node is not covered by the matching.
   2.603 +    Node mate(const Node& n) const {
   2.604 +      return (*_matching)[n] != INVALID ?
   2.605 +        _graph.target((*_matching)[n]) : INVALID;
   2.606 +    }
   2.607 +
   2.608 +    /// @}
   2.609 +
   2.610 +    /// \name Dual Solution
   2.611 +    /// Functions to get the dual solution, i.e. the Gallai-Edmonds 
   2.612 +    /// decomposition.
   2.613 +
   2.614 +    /// @{
   2.615 +
   2.616 +    /// \brief Return the status of the given node in the Edmonds-Gallai
   2.617 +    /// decomposition.
   2.618 +    ///
   2.619 +    /// This function returns the \ref Status "status" of the given node
   2.620 +    /// in the Edmonds-Gallai decomposition.
   2.621 +    Status status(const Node& n) const {
   2.622 +      return (*_status)[n];
   2.623 +    }
   2.624 +
   2.625 +    /// \brief Return a const reference to the status map, which stores
   2.626 +    /// the Edmonds-Gallai decomposition.
   2.627 +    ///
   2.628 +    /// This function returns a const reference to a node map that stores the
   2.629 +    /// \ref Status "status" of each node in the Edmonds-Gallai decomposition.
   2.630 +    const StatusMap& statusMap() const {
   2.631 +      return *_status;
   2.632 +    }
   2.633 +
   2.634 +    /// \brief Return \c true if the given node is in the barrier.
   2.635 +    ///
   2.636 +    /// This function returns \c true if the given node is in the barrier.
   2.637 +    bool barrier(const Node& n) const {
   2.638 +      return (*_status)[n] == ODD;
   2.639 +    }
   2.640 +
   2.641 +    /// @}
   2.642 +
   2.643 +  };
   2.644 +
   2.645 +  /// \ingroup matching
   2.646 +  ///
   2.647 +  /// \brief Weighted matching in general graphs
   2.648 +  ///
   2.649 +  /// This class provides an efficient implementation of Edmond's
   2.650 +  /// maximum weighted matching algorithm. The implementation is based
   2.651 +  /// on extensive use of priority queues and provides
   2.652 +  /// \f$O(nm\log n)\f$ time complexity.
   2.653 +  ///
   2.654 +  /// The maximum weighted matching problem is to find a subset of the 
   2.655 +  /// edges in an undirected graph with maximum overall weight for which 
   2.656 +  /// each node has at most one incident edge.
   2.657 +  /// It can be formulated with the following linear program.
   2.658 +  /// \f[ \sum_{e \in \delta(u)}x_e \le 1 \quad \forall u\in V\f]
   2.659 +  /** \f[ \sum_{e \in \gamma(B)}x_e \le \frac{\vert B \vert - 1}{2}
   2.660 +      \quad \forall B\in\mathcal{O}\f] */
   2.661 +  /// \f[x_e \ge 0\quad \forall e\in E\f]
   2.662 +  /// \f[\max \sum_{e\in E}x_ew_e\f]
   2.663 +  /// where \f$\delta(X)\f$ is the set of edges incident to a node in
   2.664 +  /// \f$X\f$, \f$\gamma(X)\f$ is the set of edges with both ends in
   2.665 +  /// \f$X\f$ and \f$\mathcal{O}\f$ is the set of odd cardinality
   2.666 +  /// subsets of the nodes.
   2.667 +  ///
   2.668 +  /// The algorithm calculates an optimal matching and a proof of the
   2.669 +  /// optimality. The solution of the dual problem can be used to check
   2.670 +  /// the result of the algorithm. The dual linear problem is the
   2.671 +  /// following.
   2.672 +  /** \f[ y_u + y_v + \sum_{B \in \mathcal{O}, uv \in \gamma(B)}
   2.673 +      z_B \ge w_{uv} \quad \forall uv\in E\f] */
   2.674 +  /// \f[y_u \ge 0 \quad \forall u \in V\f]
   2.675 +  /// \f[z_B \ge 0 \quad \forall B \in \mathcal{O}\f]
   2.676 +  /** \f[\min \sum_{u \in V}y_u + \sum_{B \in \mathcal{O}}
   2.677 +      \frac{\vert B \vert - 1}{2}z_B\f] */
   2.678 +  ///
   2.679 +  /// The algorithm can be executed with the run() function. 
   2.680 +  /// After it the matching (the primal solution) and the dual solution
   2.681 +  /// can be obtained using the query functions and the 
   2.682 +  /// \ref MaxWeightedMatching::BlossomIt "BlossomIt" nested class, 
   2.683 +  /// which is able to iterate on the nodes of a blossom. 
   2.684 +  /// If the value type is integer, then the dual solution is multiplied
   2.685 +  /// by \ref MaxWeightedMatching::dualScale "4".
   2.686 +  ///
   2.687 +  /// \tparam GR The undirected graph type the algorithm runs on.
   2.688 +  /// \tparam WM The type edge weight map. The default type is 
   2.689 +  /// \ref concepts::Graph::EdgeMap "GR::EdgeMap<int>".
   2.690 +#ifdef DOXYGEN
   2.691 +  template <typename GR, typename WM>
   2.692 +#else
   2.693 +  template <typename GR,
   2.694 +            typename WM = typename GR::template EdgeMap<int> >
   2.695 +#endif
   2.696 +  class MaxWeightedMatching {
   2.697 +  public:
   2.698 +
   2.699 +    /// The graph type of the algorithm
   2.700 +    typedef GR Graph;
   2.701 +    /// The type of the edge weight map
   2.702 +    typedef WM WeightMap;
   2.703 +    /// The value type of the edge weights
   2.704 +    typedef typename WeightMap::Value Value;
   2.705 +
   2.706 +    /// The type of the matching map
   2.707 +    typedef typename Graph::template NodeMap<typename Graph::Arc>
   2.708 +    MatchingMap;
   2.709 +
   2.710 +    /// \brief Scaling factor for dual solution
   2.711 +    ///
   2.712 +    /// Scaling factor for dual solution. It is equal to 4 or 1
   2.713 +    /// according to the value type.
   2.714 +    static const int dualScale =
   2.715 +      std::numeric_limits<Value>::is_integer ? 4 : 1;
   2.716 +
   2.717 +  private:
   2.718 +
   2.719 +    TEMPLATE_GRAPH_TYPEDEFS(Graph);
   2.720 +
   2.721 +    typedef typename Graph::template NodeMap<Value> NodePotential;
   2.722 +    typedef std::vector<Node> BlossomNodeList;
   2.723 +
   2.724 +    struct BlossomVariable {
   2.725 +      int begin, end;
   2.726 +      Value value;
   2.727 +
   2.728 +      BlossomVariable(int _begin, int _end, Value _value)
   2.729 +        : begin(_begin), end(_end), value(_value) {}
   2.730 +
   2.731 +    };
   2.732 +
   2.733 +    typedef std::vector<BlossomVariable> BlossomPotential;
   2.734 +
   2.735 +    const Graph& _graph;
   2.736 +    const WeightMap& _weight;
   2.737 +
   2.738 +    MatchingMap* _matching;
   2.739 +
   2.740 +    NodePotential* _node_potential;
   2.741 +
   2.742 +    BlossomPotential _blossom_potential;
   2.743 +    BlossomNodeList _blossom_node_list;
   2.744 +
   2.745 +    int _node_num;
   2.746 +    int _blossom_num;
   2.747 +
   2.748 +    typedef RangeMap<int> IntIntMap;
   2.749 +
   2.750 +    enum Status {
   2.751 +      EVEN = -1, MATCHED = 0, ODD = 1, UNMATCHED = -2
   2.752 +    };
   2.753 +
   2.754 +    typedef HeapUnionFind<Value, IntNodeMap> BlossomSet;
   2.755 +    struct BlossomData {
   2.756 +      int tree;
   2.757 +      Status status;
   2.758 +      Arc pred, next;
   2.759 +      Value pot, offset;
   2.760 +      Node base;
   2.761 +    };
   2.762 +
   2.763 +    IntNodeMap *_blossom_index;
   2.764 +    BlossomSet *_blossom_set;
   2.765 +    RangeMap<BlossomData>* _blossom_data;
   2.766 +
   2.767 +    IntNodeMap *_node_index;
   2.768 +    IntArcMap *_node_heap_index;
   2.769 +
   2.770 +    struct NodeData {
   2.771 +
   2.772 +      NodeData(IntArcMap& node_heap_index)
   2.773 +        : heap(node_heap_index) {}
   2.774 +
   2.775 +      int blossom;
   2.776 +      Value pot;
   2.777 +      BinHeap<Value, IntArcMap> heap;
   2.778 +      std::map<int, Arc> heap_index;
   2.779 +
   2.780 +      int tree;
   2.781 +    };
   2.782 +
   2.783 +    RangeMap<NodeData>* _node_data;
   2.784 +
   2.785 +    typedef ExtendFindEnum<IntIntMap> TreeSet;
   2.786 +
   2.787 +    IntIntMap *_tree_set_index;
   2.788 +    TreeSet *_tree_set;
   2.789 +
   2.790 +    IntNodeMap *_delta1_index;
   2.791 +    BinHeap<Value, IntNodeMap> *_delta1;
   2.792 +
   2.793 +    IntIntMap *_delta2_index;
   2.794 +    BinHeap<Value, IntIntMap> *_delta2;
   2.795 +
   2.796 +    IntEdgeMap *_delta3_index;
   2.797 +    BinHeap<Value, IntEdgeMap> *_delta3;
   2.798 +
   2.799 +    IntIntMap *_delta4_index;
   2.800 +    BinHeap<Value, IntIntMap> *_delta4;
   2.801 +
   2.802 +    Value _delta_sum;
   2.803 +
   2.804 +    void createStructures() {
   2.805 +      _node_num = countNodes(_graph);
   2.806 +      _blossom_num = _node_num * 3 / 2;
   2.807 +
   2.808 +      if (!_matching) {
   2.809 +        _matching = new MatchingMap(_graph);
   2.810 +      }
   2.811 +      if (!_node_potential) {
   2.812 +        _node_potential = new NodePotential(_graph);
   2.813 +      }
   2.814 +      if (!_blossom_set) {
   2.815 +        _blossom_index = new IntNodeMap(_graph);
   2.816 +        _blossom_set = new BlossomSet(*_blossom_index);
   2.817 +        _blossom_data = new RangeMap<BlossomData>(_blossom_num);
   2.818 +      }
   2.819 +
   2.820 +      if (!_node_index) {
   2.821 +        _node_index = new IntNodeMap(_graph);
   2.822 +        _node_heap_index = new IntArcMap(_graph);
   2.823 +        _node_data = new RangeMap<NodeData>(_node_num,
   2.824 +                                              NodeData(*_node_heap_index));
   2.825 +      }
   2.826 +
   2.827 +      if (!_tree_set) {
   2.828 +        _tree_set_index = new IntIntMap(_blossom_num);
   2.829 +        _tree_set = new TreeSet(*_tree_set_index);
   2.830 +      }
   2.831 +      if (!_delta1) {
   2.832 +        _delta1_index = new IntNodeMap(_graph);
   2.833 +        _delta1 = new BinHeap<Value, IntNodeMap>(*_delta1_index);
   2.834 +      }
   2.835 +      if (!_delta2) {
   2.836 +        _delta2_index = new IntIntMap(_blossom_num);
   2.837 +        _delta2 = new BinHeap<Value, IntIntMap>(*_delta2_index);
   2.838 +      }
   2.839 +      if (!_delta3) {
   2.840 +        _delta3_index = new IntEdgeMap(_graph);
   2.841 +        _delta3 = new BinHeap<Value, IntEdgeMap>(*_delta3_index);
   2.842 +      }
   2.843 +      if (!_delta4) {
   2.844 +        _delta4_index = new IntIntMap(_blossom_num);
   2.845 +        _delta4 = new BinHeap<Value, IntIntMap>(*_delta4_index);
   2.846 +      }
   2.847 +    }
   2.848 +
   2.849 +    void destroyStructures() {
   2.850 +      _node_num = countNodes(_graph);
   2.851 +      _blossom_num = _node_num * 3 / 2;
   2.852 +
   2.853 +      if (_matching) {
   2.854 +        delete _matching;
   2.855 +      }
   2.856 +      if (_node_potential) {
   2.857 +        delete _node_potential;
   2.858 +      }
   2.859 +      if (_blossom_set) {
   2.860 +        delete _blossom_index;
   2.861 +        delete _blossom_set;
   2.862 +        delete _blossom_data;
   2.863 +      }
   2.864 +
   2.865 +      if (_node_index) {
   2.866 +        delete _node_index;
   2.867 +        delete _node_heap_index;
   2.868 +        delete _node_data;
   2.869 +      }
   2.870 +
   2.871 +      if (_tree_set) {
   2.872 +        delete _tree_set_index;
   2.873 +        delete _tree_set;
   2.874 +      }
   2.875 +      if (_delta1) {
   2.876 +        delete _delta1_index;
   2.877 +        delete _delta1;
   2.878 +      }
   2.879 +      if (_delta2) {
   2.880 +        delete _delta2_index;
   2.881 +        delete _delta2;
   2.882 +      }
   2.883 +      if (_delta3) {
   2.884 +        delete _delta3_index;
   2.885 +        delete _delta3;
   2.886 +      }
   2.887 +      if (_delta4) {
   2.888 +        delete _delta4_index;
   2.889 +        delete _delta4;
   2.890 +      }
   2.891 +    }
   2.892 +
   2.893 +    void matchedToEven(int blossom, int tree) {
   2.894 +      if (_delta2->state(blossom) == _delta2->IN_HEAP) {
   2.895 +        _delta2->erase(blossom);
   2.896 +      }
   2.897 +
   2.898 +      if (!_blossom_set->trivial(blossom)) {
   2.899 +        (*_blossom_data)[blossom].pot -=
   2.900 +          2 * (_delta_sum - (*_blossom_data)[blossom].offset);
   2.901 +      }
   2.902 +
   2.903 +      for (typename BlossomSet::ItemIt n(*_blossom_set, blossom);
   2.904 +           n != INVALID; ++n) {
   2.905 +
   2.906 +        _blossom_set->increase(n, std::numeric_limits<Value>::max());
   2.907 +        int ni = (*_node_index)[n];
   2.908 +
   2.909 +        (*_node_data)[ni].heap.clear();
   2.910 +        (*_node_data)[ni].heap_index.clear();
   2.911 +
   2.912 +        (*_node_data)[ni].pot += _delta_sum - (*_blossom_data)[blossom].offset;
   2.913 +
   2.914 +        _delta1->push(n, (*_node_data)[ni].pot);
   2.915 +
   2.916 +        for (InArcIt e(_graph, n); e != INVALID; ++e) {
   2.917 +          Node v = _graph.source(e);
   2.918 +          int vb = _blossom_set->find(v);
   2.919 +          int vi = (*_node_index)[v];
   2.920 +
   2.921 +          Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot -
   2.922 +            dualScale * _weight[e];
   2.923 +
   2.924 +          if ((*_blossom_data)[vb].status == EVEN) {
   2.925 +            if (_delta3->state(e) != _delta3->IN_HEAP && blossom != vb) {
   2.926 +              _delta3->push(e, rw / 2);
   2.927 +            }
   2.928 +          } else if ((*_blossom_data)[vb].status == UNMATCHED) {
   2.929 +            if (_delta3->state(e) != _delta3->IN_HEAP) {
   2.930 +              _delta3->push(e, rw);
   2.931 +            }
   2.932 +          } else {
   2.933 +            typename std::map<int, Arc>::iterator it =
   2.934 +              (*_node_data)[vi].heap_index.find(tree);
   2.935 +
   2.936 +            if (it != (*_node_data)[vi].heap_index.end()) {
   2.937 +              if ((*_node_data)[vi].heap[it->second] > rw) {
   2.938 +                (*_node_data)[vi].heap.replace(it->second, e);
   2.939 +                (*_node_data)[vi].heap.decrease(e, rw);
   2.940 +                it->second = e;
   2.941 +              }
   2.942 +            } else {
   2.943 +              (*_node_data)[vi].heap.push(e, rw);
   2.944 +              (*_node_data)[vi].heap_index.insert(std::make_pair(tree, e));
   2.945 +            }
   2.946 +
   2.947 +            if ((*_blossom_set)[v] > (*_node_data)[vi].heap.prio()) {
   2.948 +              _blossom_set->decrease(v, (*_node_data)[vi].heap.prio());
   2.949 +
   2.950 +              if ((*_blossom_data)[vb].status == MATCHED) {
   2.951 +                if (_delta2->state(vb) != _delta2->IN_HEAP) {
   2.952 +                  _delta2->push(vb, _blossom_set->classPrio(vb) -
   2.953 +                               (*_blossom_data)[vb].offset);
   2.954 +                } else if ((*_delta2)[vb] > _blossom_set->classPrio(vb) -
   2.955 +                           (*_blossom_data)[vb].offset){
   2.956 +                  _delta2->decrease(vb, _blossom_set->classPrio(vb) -
   2.957 +                                   (*_blossom_data)[vb].offset);
   2.958 +                }
   2.959 +              }
   2.960 +            }
   2.961 +          }
   2.962 +        }
   2.963 +      }
   2.964 +      (*_blossom_data)[blossom].offset = 0;
   2.965 +    }
   2.966 +
   2.967 +    void matchedToOdd(int blossom) {
   2.968 +      if (_delta2->state(blossom) == _delta2->IN_HEAP) {
   2.969 +        _delta2->erase(blossom);
   2.970 +      }
   2.971 +      (*_blossom_data)[blossom].offset += _delta_sum;
   2.972 +      if (!_blossom_set->trivial(blossom)) {
   2.973 +        _delta4->push(blossom, (*_blossom_data)[blossom].pot / 2 +
   2.974 +                     (*_blossom_data)[blossom].offset);
   2.975 +      }
   2.976 +    }
   2.977 +
   2.978 +    void evenToMatched(int blossom, int tree) {
   2.979 +      if (!_blossom_set->trivial(blossom)) {
   2.980 +        (*_blossom_data)[blossom].pot += 2 * _delta_sum;
   2.981 +      }
   2.982 +
   2.983 +      for (typename BlossomSet::ItemIt n(*_blossom_set, blossom);
   2.984 +           n != INVALID; ++n) {
   2.985 +        int ni = (*_node_index)[n];
   2.986 +        (*_node_data)[ni].pot -= _delta_sum;
   2.987 +
   2.988 +        _delta1->erase(n);
   2.989 +
   2.990 +        for (InArcIt e(_graph, n); e != INVALID; ++e) {
   2.991 +          Node v = _graph.source(e);
   2.992 +          int vb = _blossom_set->find(v);
   2.993 +          int vi = (*_node_index)[v];
   2.994 +
   2.995 +          Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot -
   2.996 +            dualScale * _weight[e];
   2.997 +
   2.998 +          if (vb == blossom) {
   2.999 +            if (_delta3->state(e) == _delta3->IN_HEAP) {
  2.1000 +              _delta3->erase(e);
  2.1001 +            }
  2.1002 +          } else if ((*_blossom_data)[vb].status == EVEN) {
  2.1003 +
  2.1004 +            if (_delta3->state(e) == _delta3->IN_HEAP) {
  2.1005 +              _delta3->erase(e);
  2.1006 +            }
  2.1007 +
  2.1008 +            int vt = _tree_set->find(vb);
  2.1009 +
  2.1010 +            if (vt != tree) {
  2.1011 +
  2.1012 +              Arc r = _graph.oppositeArc(e);
  2.1013 +
  2.1014 +              typename std::map<int, Arc>::iterator it =
  2.1015 +                (*_node_data)[ni].heap_index.find(vt);
  2.1016 +
  2.1017 +              if (it != (*_node_data)[ni].heap_index.end()) {
  2.1018 +                if ((*_node_data)[ni].heap[it->second] > rw) {
  2.1019 +                  (*_node_data)[ni].heap.replace(it->second, r);
  2.1020 +                  (*_node_data)[ni].heap.decrease(r, rw);
  2.1021 +                  it->second = r;
  2.1022 +                }
  2.1023 +              } else {
  2.1024 +                (*_node_data)[ni].heap.push(r, rw);
  2.1025 +                (*_node_data)[ni].heap_index.insert(std::make_pair(vt, r));
  2.1026 +              }
  2.1027 +
  2.1028 +              if ((*_blossom_set)[n] > (*_node_data)[ni].heap.prio()) {
  2.1029 +                _blossom_set->decrease(n, (*_node_data)[ni].heap.prio());
  2.1030 +
  2.1031 +                if (_delta2->state(blossom) != _delta2->IN_HEAP) {
  2.1032 +                  _delta2->push(blossom, _blossom_set->classPrio(blossom) -
  2.1033 +                               (*_blossom_data)[blossom].offset);
  2.1034 +                } else if ((*_delta2)[blossom] >
  2.1035 +                           _blossom_set->classPrio(blossom) -
  2.1036 +                           (*_blossom_data)[blossom].offset){
  2.1037 +                  _delta2->decrease(blossom, _blossom_set->classPrio(blossom) -
  2.1038 +                                   (*_blossom_data)[blossom].offset);
  2.1039 +                }
  2.1040 +              }
  2.1041 +            }
  2.1042 +
  2.1043 +          } else if ((*_blossom_data)[vb].status == UNMATCHED) {
  2.1044 +            if (_delta3->state(e) == _delta3->IN_HEAP) {
  2.1045 +              _delta3->erase(e);
  2.1046 +            }
  2.1047 +          } else {
  2.1048 +
  2.1049 +            typename std::map<int, Arc>::iterator it =
  2.1050 +              (*_node_data)[vi].heap_index.find(tree);
  2.1051 +
  2.1052 +            if (it != (*_node_data)[vi].heap_index.end()) {
  2.1053 +              (*_node_data)[vi].heap.erase(it->second);
  2.1054 +              (*_node_data)[vi].heap_index.erase(it);
  2.1055 +              if ((*_node_data)[vi].heap.empty()) {
  2.1056 +                _blossom_set->increase(v, std::numeric_limits<Value>::max());
  2.1057 +              } else if ((*_blossom_set)[v] < (*_node_data)[vi].heap.prio()) {
  2.1058 +                _blossom_set->increase(v, (*_node_data)[vi].heap.prio());
  2.1059 +              }
  2.1060 +
  2.1061 +              if ((*_blossom_data)[vb].status == MATCHED) {
  2.1062 +                if (_blossom_set->classPrio(vb) ==
  2.1063 +                    std::numeric_limits<Value>::max()) {
  2.1064 +                  _delta2->erase(vb);
  2.1065 +                } else if ((*_delta2)[vb] < _blossom_set->classPrio(vb) -
  2.1066 +                           (*_blossom_data)[vb].offset) {
  2.1067 +                  _delta2->increase(vb, _blossom_set->classPrio(vb) -
  2.1068 +                                   (*_blossom_data)[vb].offset);
  2.1069 +                }
  2.1070 +              }
  2.1071 +            }
  2.1072 +          }
  2.1073 +        }
  2.1074 +      }
  2.1075 +    }
  2.1076 +
  2.1077 +    void oddToMatched(int blossom) {
  2.1078 +      (*_blossom_data)[blossom].offset -= _delta_sum;
  2.1079 +
  2.1080 +      if (_blossom_set->classPrio(blossom) !=
  2.1081 +          std::numeric_limits<Value>::max()) {
  2.1082 +        _delta2->push(blossom, _blossom_set->classPrio(blossom) -
  2.1083 +                       (*_blossom_data)[blossom].offset);
  2.1084 +      }
  2.1085 +
  2.1086 +      if (!_blossom_set->trivial(blossom)) {
  2.1087 +        _delta4->erase(blossom);
  2.1088 +      }
  2.1089 +    }
  2.1090 +
  2.1091 +    void oddToEven(int blossom, int tree) {
  2.1092 +      if (!_blossom_set->trivial(blossom)) {
  2.1093 +        _delta4->erase(blossom);
  2.1094 +        (*_blossom_data)[blossom].pot -=
  2.1095 +          2 * (2 * _delta_sum - (*_blossom_data)[blossom].offset);
  2.1096 +      }
  2.1097 +
  2.1098 +      for (typename BlossomSet::ItemIt n(*_blossom_set, blossom);
  2.1099 +           n != INVALID; ++n) {
  2.1100 +        int ni = (*_node_index)[n];
  2.1101 +
  2.1102 +        _blossom_set->increase(n, std::numeric_limits<Value>::max());
  2.1103 +
  2.1104 +        (*_node_data)[ni].heap.clear();
  2.1105 +        (*_node_data)[ni].heap_index.clear();
  2.1106 +        (*_node_data)[ni].pot +=
  2.1107 +          2 * _delta_sum - (*_blossom_data)[blossom].offset;
  2.1108 +
  2.1109 +        _delta1->push(n, (*_node_data)[ni].pot);
  2.1110 +
  2.1111 +        for (InArcIt e(_graph, n); e != INVALID; ++e) {
  2.1112 +          Node v = _graph.source(e);
  2.1113 +          int vb = _blossom_set->find(v);
  2.1114 +          int vi = (*_node_index)[v];
  2.1115 +
  2.1116 +          Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot -
  2.1117 +            dualScale * _weight[e];
  2.1118 +
  2.1119 +          if ((*_blossom_data)[vb].status == EVEN) {
  2.1120 +            if (_delta3->state(e) != _delta3->IN_HEAP && blossom != vb) {
  2.1121 +              _delta3->push(e, rw / 2);
  2.1122 +            }
  2.1123 +          } else if ((*_blossom_data)[vb].status == UNMATCHED) {
  2.1124 +            if (_delta3->state(e) != _delta3->IN_HEAP) {
  2.1125 +              _delta3->push(e, rw);
  2.1126 +            }
  2.1127 +          } else {
  2.1128 +
  2.1129 +            typename std::map<int, Arc>::iterator it =
  2.1130 +              (*_node_data)[vi].heap_index.find(tree);
  2.1131 +
  2.1132 +            if (it != (*_node_data)[vi].heap_index.end()) {
  2.1133 +              if ((*_node_data)[vi].heap[it->second] > rw) {
  2.1134 +                (*_node_data)[vi].heap.replace(it->second, e);
  2.1135 +                (*_node_data)[vi].heap.decrease(e, rw);
  2.1136 +                it->second = e;
  2.1137 +              }
  2.1138 +            } else {
  2.1139 +              (*_node_data)[vi].heap.push(e, rw);
  2.1140 +              (*_node_data)[vi].heap_index.insert(std::make_pair(tree, e));
  2.1141 +            }
  2.1142 +
  2.1143 +            if ((*_blossom_set)[v] > (*_node_data)[vi].heap.prio()) {
  2.1144 +              _blossom_set->decrease(v, (*_node_data)[vi].heap.prio());
  2.1145 +
  2.1146 +              if ((*_blossom_data)[vb].status == MATCHED) {
  2.1147 +                if (_delta2->state(vb) != _delta2->IN_HEAP) {
  2.1148 +                  _delta2->push(vb, _blossom_set->classPrio(vb) -
  2.1149 +                               (*_blossom_data)[vb].offset);
  2.1150 +                } else if ((*_delta2)[vb] > _blossom_set->classPrio(vb) -
  2.1151 +                           (*_blossom_data)[vb].offset) {
  2.1152 +                  _delta2->decrease(vb, _blossom_set->classPrio(vb) -
  2.1153 +                                   (*_blossom_data)[vb].offset);
  2.1154 +                }
  2.1155 +              }
  2.1156 +            }
  2.1157 +          }
  2.1158 +        }
  2.1159 +      }
  2.1160 +      (*_blossom_data)[blossom].offset = 0;
  2.1161 +    }
  2.1162 +
  2.1163 +
  2.1164 +    void matchedToUnmatched(int blossom) {
  2.1165 +      if (_delta2->state(blossom) == _delta2->IN_HEAP) {
  2.1166 +        _delta2->erase(blossom);
  2.1167 +      }
  2.1168 +
  2.1169 +      for (typename BlossomSet::ItemIt n(*_blossom_set, blossom);
  2.1170 +           n != INVALID; ++n) {
  2.1171 +        int ni = (*_node_index)[n];
  2.1172 +
  2.1173 +        _blossom_set->increase(n, std::numeric_limits<Value>::max());
  2.1174 +
  2.1175 +        (*_node_data)[ni].heap.clear();
  2.1176 +        (*_node_data)[ni].heap_index.clear();
  2.1177 +
  2.1178 +        for (OutArcIt e(_graph, n); e != INVALID; ++e) {
  2.1179 +          Node v = _graph.target(e);
  2.1180 +          int vb = _blossom_set->find(v);
  2.1181 +          int vi = (*_node_index)[v];
  2.1182 +
  2.1183 +          Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot -
  2.1184 +            dualScale * _weight[e];
  2.1185 +
  2.1186 +          if ((*_blossom_data)[vb].status == EVEN) {
  2.1187 +            if (_delta3->state(e) != _delta3->IN_HEAP) {
  2.1188 +              _delta3->push(e, rw);
  2.1189 +            }
  2.1190 +          }
  2.1191 +        }
  2.1192 +      }
  2.1193 +    }
  2.1194 +
  2.1195 +    void unmatchedToMatched(int blossom) {
  2.1196 +      for (typename BlossomSet::ItemIt n(*_blossom_set, blossom);
  2.1197 +           n != INVALID; ++n) {
  2.1198 +        int ni = (*_node_index)[n];
  2.1199 +
  2.1200 +        for (InArcIt e(_graph, n); e != INVALID; ++e) {
  2.1201 +          Node v = _graph.source(e);
  2.1202 +          int vb = _blossom_set->find(v);
  2.1203 +          int vi = (*_node_index)[v];
  2.1204 +
  2.1205 +          Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot -
  2.1206 +            dualScale * _weight[e];
  2.1207 +
  2.1208 +          if (vb == blossom) {
  2.1209 +            if (_delta3->state(e) == _delta3->IN_HEAP) {
  2.1210 +              _delta3->erase(e);
  2.1211 +            }
  2.1212 +          } else if ((*_blossom_data)[vb].status == EVEN) {
  2.1213 +
  2.1214 +            if (_delta3->state(e) == _delta3->IN_HEAP) {
  2.1215 +              _delta3->erase(e);
  2.1216 +            }
  2.1217 +
  2.1218 +            int vt = _tree_set->find(vb);
  2.1219 +
  2.1220 +            Arc r = _graph.oppositeArc(e);
  2.1221 +
  2.1222 +            typename std::map<int, Arc>::iterator it =
  2.1223 +              (*_node_data)[ni].heap_index.find(vt);
  2.1224 +
  2.1225 +            if (it != (*_node_data)[ni].heap_index.end()) {
  2.1226 +              if ((*_node_data)[ni].heap[it->second] > rw) {
  2.1227 +                (*_node_data)[ni].heap.replace(it->second, r);
  2.1228 +                (*_node_data)[ni].heap.decrease(r, rw);
  2.1229 +                it->second = r;
  2.1230 +              }
  2.1231 +            } else {
  2.1232 +              (*_node_data)[ni].heap.push(r, rw);
  2.1233 +              (*_node_data)[ni].heap_index.insert(std::make_pair(vt, r));
  2.1234 +            }
  2.1235 +
  2.1236 +            if ((*_blossom_set)[n] > (*_node_data)[ni].heap.prio()) {
  2.1237 +              _blossom_set->decrease(n, (*_node_data)[ni].heap.prio());
  2.1238 +
  2.1239 +              if (_delta2->state(blossom) != _delta2->IN_HEAP) {
  2.1240 +                _delta2->push(blossom, _blossom_set->classPrio(blossom) -
  2.1241 +                             (*_blossom_data)[blossom].offset);
  2.1242 +              } else if ((*_delta2)[blossom] > _blossom_set->classPrio(blossom)-
  2.1243 +                         (*_blossom_data)[blossom].offset){
  2.1244 +                _delta2->decrease(blossom, _blossom_set->classPrio(blossom) -
  2.1245 +                                 (*_blossom_data)[blossom].offset);
  2.1246 +              }
  2.1247 +            }
  2.1248 +
  2.1249 +          } else if ((*_blossom_data)[vb].status == UNMATCHED) {
  2.1250 +            if (_delta3->state(e) == _delta3->IN_HEAP) {
  2.1251 +              _delta3->erase(e);
  2.1252 +            }
  2.1253 +          }
  2.1254 +        }
  2.1255 +      }
  2.1256 +    }
  2.1257 +
  2.1258 +    void alternatePath(int even, int tree) {
  2.1259 +      int odd;
  2.1260 +
  2.1261 +      evenToMatched(even, tree);
  2.1262 +      (*_blossom_data)[even].status = MATCHED;
  2.1263 +
  2.1264 +      while ((*_blossom_data)[even].pred != INVALID) {
  2.1265 +        odd = _blossom_set->find(_graph.target((*_blossom_data)[even].pred));
  2.1266 +        (*_blossom_data)[odd].status = MATCHED;
  2.1267 +        oddToMatched(odd);
  2.1268 +        (*_blossom_data)[odd].next = (*_blossom_data)[odd].pred;
  2.1269 +
  2.1270 +        even = _blossom_set->find(_graph.target((*_blossom_data)[odd].pred));
  2.1271 +        (*_blossom_data)[even].status = MATCHED;
  2.1272 +        evenToMatched(even, tree);
  2.1273 +        (*_blossom_data)[even].next =
  2.1274 +          _graph.oppositeArc((*_blossom_data)[odd].pred);
  2.1275 +      }
  2.1276 +
  2.1277 +    }
  2.1278 +
  2.1279 +    void destroyTree(int tree) {
  2.1280 +      for (TreeSet::ItemIt b(*_tree_set, tree); b != INVALID; ++b) {
  2.1281 +        if ((*_blossom_data)[b].status == EVEN) {
  2.1282 +          (*_blossom_data)[b].status = MATCHED;
  2.1283 +          evenToMatched(b, tree);
  2.1284 +        } else if ((*_blossom_data)[b].status == ODD) {
  2.1285 +          (*_blossom_data)[b].status = MATCHED;
  2.1286 +          oddToMatched(b);
  2.1287 +        }
  2.1288 +      }
  2.1289 +      _tree_set->eraseClass(tree);
  2.1290 +    }
  2.1291 +
  2.1292 +
  2.1293 +    void unmatchNode(const Node& node) {
  2.1294 +      int blossom = _blossom_set->find(node);
  2.1295 +      int tree = _tree_set->find(blossom);
  2.1296 +
  2.1297 +      alternatePath(blossom, tree);
  2.1298 +      destroyTree(tree);
  2.1299 +
  2.1300 +      (*_blossom_data)[blossom].status = UNMATCHED;
  2.1301 +      (*_blossom_data)[blossom].base = node;
  2.1302 +      matchedToUnmatched(blossom);
  2.1303 +    }
  2.1304 +
  2.1305 +
  2.1306 +    void augmentOnEdge(const Edge& edge) {
  2.1307 +
  2.1308 +      int left = _blossom_set->find(_graph.u(edge));
  2.1309 +      int right = _blossom_set->find(_graph.v(edge));
  2.1310 +
  2.1311 +      if ((*_blossom_data)[left].status == EVEN) {
  2.1312 +        int left_tree = _tree_set->find(left);
  2.1313 +        alternatePath(left, left_tree);
  2.1314 +        destroyTree(left_tree);
  2.1315 +      } else {
  2.1316 +        (*_blossom_data)[left].status = MATCHED;
  2.1317 +        unmatchedToMatched(left);
  2.1318 +      }
  2.1319 +
  2.1320 +      if ((*_blossom_data)[right].status == EVEN) {
  2.1321 +        int right_tree = _tree_set->find(right);
  2.1322 +        alternatePath(right, right_tree);
  2.1323 +        destroyTree(right_tree);
  2.1324 +      } else {
  2.1325 +        (*_blossom_data)[right].status = MATCHED;
  2.1326 +        unmatchedToMatched(right);
  2.1327 +      }
  2.1328 +
  2.1329 +      (*_blossom_data)[left].next = _graph.direct(edge, true);
  2.1330 +      (*_blossom_data)[right].next = _graph.direct(edge, false);
  2.1331 +    }
  2.1332 +
  2.1333 +    void extendOnArc(const Arc& arc) {
  2.1334 +      int base = _blossom_set->find(_graph.target(arc));
  2.1335 +      int tree = _tree_set->find(base);
  2.1336 +
  2.1337 +      int odd = _blossom_set->find(_graph.source(arc));
  2.1338 +      _tree_set->insert(odd, tree);
  2.1339 +      (*_blossom_data)[odd].status = ODD;
  2.1340 +      matchedToOdd(odd);
  2.1341 +      (*_blossom_data)[odd].pred = arc;
  2.1342 +
  2.1343 +      int even = _blossom_set->find(_graph.target((*_blossom_data)[odd].next));
  2.1344 +      (*_blossom_data)[even].pred = (*_blossom_data)[even].next;
  2.1345 +      _tree_set->insert(even, tree);
  2.1346 +      (*_blossom_data)[even].status = EVEN;
  2.1347 +      matchedToEven(even, tree);
  2.1348 +    }
  2.1349 +
  2.1350 +    void shrinkOnEdge(const Edge& edge, int tree) {
  2.1351 +      int nca = -1;
  2.1352 +      std::vector<int> left_path, right_path;
  2.1353 +
  2.1354 +      {
  2.1355 +        std::set<int> left_set, right_set;
  2.1356 +        int left = _blossom_set->find(_graph.u(edge));
  2.1357 +        left_path.push_back(left);
  2.1358 +        left_set.insert(left);
  2.1359 +
  2.1360 +        int right = _blossom_set->find(_graph.v(edge));
  2.1361 +        right_path.push_back(right);
  2.1362 +        right_set.insert(right);
  2.1363 +
  2.1364 +        while (true) {
  2.1365 +
  2.1366 +          if ((*_blossom_data)[left].pred == INVALID) break;
  2.1367 +
  2.1368 +          left =
  2.1369 +            _blossom_set->find(_graph.target((*_blossom_data)[left].pred));
  2.1370 +          left_path.push_back(left);
  2.1371 +          left =
  2.1372 +            _blossom_set->find(_graph.target((*_blossom_data)[left].pred));
  2.1373 +          left_path.push_back(left);
  2.1374 +
  2.1375 +          left_set.insert(left);
  2.1376 +
  2.1377 +          if (right_set.find(left) != right_set.end()) {
  2.1378 +            nca = left;
  2.1379 +            break;
  2.1380 +          }
  2.1381 +
  2.1382 +          if ((*_blossom_data)[right].pred == INVALID) break;
  2.1383 +
  2.1384 +          right =
  2.1385 +            _blossom_set->find(_graph.target((*_blossom_data)[right].pred));
  2.1386 +          right_path.push_back(right);
  2.1387 +          right =
  2.1388 +            _blossom_set->find(_graph.target((*_blossom_data)[right].pred));
  2.1389 +          right_path.push_back(right);
  2.1390 +
  2.1391 +          right_set.insert(right);
  2.1392 +
  2.1393 +          if (left_set.find(right) != left_set.end()) {
  2.1394 +            nca = right;
  2.1395 +            break;
  2.1396 +          }
  2.1397 +
  2.1398 +        }
  2.1399 +
  2.1400 +        if (nca == -1) {
  2.1401 +          if ((*_blossom_data)[left].pred == INVALID) {
  2.1402 +            nca = right;
  2.1403 +            while (left_set.find(nca) == left_set.end()) {
  2.1404 +              nca =
  2.1405 +                _blossom_set->find(_graph.target((*_blossom_data)[nca].pred));
  2.1406 +              right_path.push_back(nca);
  2.1407 +              nca =
  2.1408 +                _blossom_set->find(_graph.target((*_blossom_data)[nca].pred));
  2.1409 +              right_path.push_back(nca);
  2.1410 +            }
  2.1411 +          } else {
  2.1412 +            nca = left;
  2.1413 +            while (right_set.find(nca) == right_set.end()) {
  2.1414 +              nca =
  2.1415 +                _blossom_set->find(_graph.target((*_blossom_data)[nca].pred));
  2.1416 +              left_path.push_back(nca);
  2.1417 +              nca =
  2.1418 +                _blossom_set->find(_graph.target((*_blossom_data)[nca].pred));
  2.1419 +              left_path.push_back(nca);
  2.1420 +            }
  2.1421 +          }
  2.1422 +        }
  2.1423 +      }
  2.1424 +
  2.1425 +      std::vector<int> subblossoms;
  2.1426 +      Arc prev;
  2.1427 +
  2.1428 +      prev = _graph.direct(edge, true);
  2.1429 +      for (int i = 0; left_path[i] != nca; i += 2) {
  2.1430 +        subblossoms.push_back(left_path[i]);
  2.1431 +        (*_blossom_data)[left_path[i]].next = prev;
  2.1432 +        _tree_set->erase(left_path[i]);
  2.1433 +
  2.1434 +        subblossoms.push_back(left_path[i + 1]);
  2.1435 +        (*_blossom_data)[left_path[i + 1]].status = EVEN;
  2.1436 +        oddToEven(left_path[i + 1], tree);
  2.1437 +        _tree_set->erase(left_path[i + 1]);
  2.1438 +        prev = _graph.oppositeArc((*_blossom_data)[left_path[i + 1]].pred);
  2.1439 +      }
  2.1440 +
  2.1441 +      int k = 0;
  2.1442 +      while (right_path[k] != nca) ++k;
  2.1443 +
  2.1444 +      subblossoms.push_back(nca);
  2.1445 +      (*_blossom_data)[nca].next = prev;
  2.1446 +
  2.1447 +      for (int i = k - 2; i >= 0; i -= 2) {
  2.1448 +        subblossoms.push_back(right_path[i + 1]);
  2.1449 +        (*_blossom_data)[right_path[i + 1]].status = EVEN;
  2.1450 +        oddToEven(right_path[i + 1], tree);
  2.1451 +        _tree_set->erase(right_path[i + 1]);
  2.1452 +
  2.1453 +        (*_blossom_data)[right_path[i + 1]].next =
  2.1454 +          (*_blossom_data)[right_path[i + 1]].pred;
  2.1455 +
  2.1456 +        subblossoms.push_back(right_path[i]);
  2.1457 +        _tree_set->erase(right_path[i]);
  2.1458 +      }
  2.1459 +
  2.1460 +      int surface =
  2.1461 +        _blossom_set->join(subblossoms.begin(), subblossoms.end());
  2.1462 +
  2.1463 +      for (int i = 0; i < int(subblossoms.size()); ++i) {
  2.1464 +        if (!_blossom_set->trivial(subblossoms[i])) {
  2.1465 +          (*_blossom_data)[subblossoms[i]].pot += 2 * _delta_sum;
  2.1466 +        }
  2.1467 +        (*_blossom_data)[subblossoms[i]].status = MATCHED;
  2.1468 +      }
  2.1469 +
  2.1470 +      (*_blossom_data)[surface].pot = -2 * _delta_sum;
  2.1471 +      (*_blossom_data)[surface].offset = 0;
  2.1472 +      (*_blossom_data)[surface].status = EVEN;
  2.1473 +      (*_blossom_data)[surface].pred = (*_blossom_data)[nca].pred;
  2.1474 +      (*_blossom_data)[surface].next = (*_blossom_data)[nca].pred;
  2.1475 +
  2.1476 +      _tree_set->insert(surface, tree);
  2.1477 +      _tree_set->erase(nca);
  2.1478 +    }
  2.1479 +
  2.1480 +    void splitBlossom(int blossom) {
  2.1481 +      Arc next = (*_blossom_data)[blossom].next;
  2.1482 +      Arc pred = (*_blossom_data)[blossom].pred;
  2.1483 +
  2.1484 +      int tree = _tree_set->find(blossom);
  2.1485 +
  2.1486 +      (*_blossom_data)[blossom].status = MATCHED;
  2.1487 +      oddToMatched(blossom);
  2.1488 +      if (_delta2->state(blossom) == _delta2->IN_HEAP) {
  2.1489 +        _delta2->erase(blossom);
  2.1490 +      }
  2.1491 +
  2.1492 +      std::vector<int> subblossoms;
  2.1493 +      _blossom_set->split(blossom, std::back_inserter(subblossoms));
  2.1494 +
  2.1495 +      Value offset = (*_blossom_data)[blossom].offset;
  2.1496 +      int b = _blossom_set->find(_graph.source(pred));
  2.1497 +      int d = _blossom_set->find(_graph.source(next));
  2.1498 +
  2.1499 +      int ib = -1, id = -1;
  2.1500 +      for (int i = 0; i < int(subblossoms.size()); ++i) {
  2.1501 +        if (subblossoms[i] == b) ib = i;
  2.1502 +        if (subblossoms[i] == d) id = i;
  2.1503 +
  2.1504 +        (*_blossom_data)[subblossoms[i]].offset = offset;
  2.1505 +        if (!_blossom_set->trivial(subblossoms[i])) {
  2.1506 +          (*_blossom_data)[subblossoms[i]].pot -= 2 * offset;
  2.1507 +        }
  2.1508 +        if (_blossom_set->classPrio(subblossoms[i]) !=
  2.1509 +            std::numeric_limits<Value>::max()) {
  2.1510 +          _delta2->push(subblossoms[i],
  2.1511 +                        _blossom_set->classPrio(subblossoms[i]) -
  2.1512 +                        (*_blossom_data)[subblossoms[i]].offset);
  2.1513 +        }
  2.1514 +      }
  2.1515 +
  2.1516 +      if (id > ib ? ((id - ib) % 2 == 0) : ((ib - id) % 2 == 1)) {
  2.1517 +        for (int i = (id + 1) % subblossoms.size();
  2.1518 +             i != ib; i = (i + 2) % subblossoms.size()) {
  2.1519 +          int sb = subblossoms[i];
  2.1520 +          int tb = subblossoms[(i + 1) % subblossoms.size()];
  2.1521 +          (*_blossom_data)[sb].next =
  2.1522 +            _graph.oppositeArc((*_blossom_data)[tb].next);
  2.1523 +        }
  2.1524 +
  2.1525 +        for (int i = ib; i != id; i = (i + 2) % subblossoms.size()) {
  2.1526 +          int sb = subblossoms[i];
  2.1527 +          int tb = subblossoms[(i + 1) % subblossoms.size()];
  2.1528 +          int ub = subblossoms[(i + 2) % subblossoms.size()];
  2.1529 +
  2.1530 +          (*_blossom_data)[sb].status = ODD;
  2.1531 +          matchedToOdd(sb);
  2.1532 +          _tree_set->insert(sb, tree);
  2.1533 +          (*_blossom_data)[sb].pred = pred;
  2.1534 +          (*_blossom_data)[sb].next =
  2.1535 +                           _graph.oppositeArc((*_blossom_data)[tb].next);
  2.1536 +
  2.1537 +          pred = (*_blossom_data)[ub].next;
  2.1538 +
  2.1539 +          (*_blossom_data)[tb].status = EVEN;
  2.1540 +          matchedToEven(tb, tree);
  2.1541 +          _tree_set->insert(tb, tree);
  2.1542 +          (*_blossom_data)[tb].pred = (*_blossom_data)[tb].next;
  2.1543 +        }
  2.1544 +
  2.1545 +        (*_blossom_data)[subblossoms[id]].status = ODD;
  2.1546 +        matchedToOdd(subblossoms[id]);
  2.1547 +        _tree_set->insert(subblossoms[id], tree);
  2.1548 +        (*_blossom_data)[subblossoms[id]].next = next;
  2.1549 +        (*_blossom_data)[subblossoms[id]].pred = pred;
  2.1550 +
  2.1551 +      } else {
  2.1552 +
  2.1553 +        for (int i = (ib + 1) % subblossoms.size();
  2.1554 +             i != id; i = (i + 2) % subblossoms.size()) {
  2.1555 +          int sb = subblossoms[i];
  2.1556 +          int tb = subblossoms[(i + 1) % subblossoms.size()];
  2.1557 +          (*_blossom_data)[sb].next =
  2.1558 +            _graph.oppositeArc((*_blossom_data)[tb].next);
  2.1559 +        }
  2.1560 +
  2.1561 +        for (int i = id; i != ib; i = (i + 2) % subblossoms.size()) {
  2.1562 +          int sb = subblossoms[i];
  2.1563 +          int tb = subblossoms[(i + 1) % subblossoms.size()];
  2.1564 +          int ub = subblossoms[(i + 2) % subblossoms.size()];
  2.1565 +
  2.1566 +          (*_blossom_data)[sb].status = ODD;
  2.1567 +          matchedToOdd(sb);
  2.1568 +          _tree_set->insert(sb, tree);
  2.1569 +          (*_blossom_data)[sb].next = next;
  2.1570 +          (*_blossom_data)[sb].pred =
  2.1571 +            _graph.oppositeArc((*_blossom_data)[tb].next);
  2.1572 +
  2.1573 +          (*_blossom_data)[tb].status = EVEN;
  2.1574 +          matchedToEven(tb, tree);
  2.1575 +          _tree_set->insert(tb, tree);
  2.1576 +          (*_blossom_data)[tb].pred =
  2.1577 +            (*_blossom_data)[tb].next =
  2.1578 +            _graph.oppositeArc((*_blossom_data)[ub].next);
  2.1579 +          next = (*_blossom_data)[ub].next;
  2.1580 +        }
  2.1581 +
  2.1582 +        (*_blossom_data)[subblossoms[ib]].status = ODD;
  2.1583 +        matchedToOdd(subblossoms[ib]);
  2.1584 +        _tree_set->insert(subblossoms[ib], tree);
  2.1585 +        (*_blossom_data)[subblossoms[ib]].next = next;
  2.1586 +        (*_blossom_data)[subblossoms[ib]].pred = pred;
  2.1587 +      }
  2.1588 +      _tree_set->erase(blossom);
  2.1589 +    }
  2.1590 +
  2.1591 +    void extractBlossom(int blossom, const Node& base, const Arc& matching) {
  2.1592 +      if (_blossom_set->trivial(blossom)) {
  2.1593 +        int bi = (*_node_index)[base];
  2.1594 +        Value pot = (*_node_data)[bi].pot;
  2.1595 +
  2.1596 +        (*_matching)[base] = matching;
  2.1597 +        _blossom_node_list.push_back(base);
  2.1598 +        (*_node_potential)[base] = pot;
  2.1599 +      } else {
  2.1600 +
  2.1601 +        Value pot = (*_blossom_data)[blossom].pot;
  2.1602 +        int bn = _blossom_node_list.size();
  2.1603 +
  2.1604 +        std::vector<int> subblossoms;
  2.1605 +        _blossom_set->split(blossom, std::back_inserter(subblossoms));
  2.1606 +        int b = _blossom_set->find(base);
  2.1607 +        int ib = -1;
  2.1608 +        for (int i = 0; i < int(subblossoms.size()); ++i) {
  2.1609 +          if (subblossoms[i] == b) { ib = i; break; }
  2.1610 +        }
  2.1611 +
  2.1612 +        for (int i = 1; i < int(subblossoms.size()); i += 2) {
  2.1613 +          int sb = subblossoms[(ib + i) % subblossoms.size()];
  2.1614 +          int tb = subblossoms[(ib + i + 1) % subblossoms.size()];
  2.1615 +
  2.1616 +          Arc m = (*_blossom_data)[tb].next;
  2.1617 +          extractBlossom(sb, _graph.target(m), _graph.oppositeArc(m));
  2.1618 +          extractBlossom(tb, _graph.source(m), m);
  2.1619 +        }
  2.1620 +        extractBlossom(subblossoms[ib], base, matching);
  2.1621 +
  2.1622 +        int en = _blossom_node_list.size();
  2.1623 +
  2.1624 +        _blossom_potential.push_back(BlossomVariable(bn, en, pot));
  2.1625 +      }
  2.1626 +    }
  2.1627 +
  2.1628 +    void extractMatching() {
  2.1629 +      std::vector<int> blossoms;
  2.1630 +      for (typename BlossomSet::ClassIt c(*_blossom_set); c != INVALID; ++c) {
  2.1631 +        blossoms.push_back(c);
  2.1632 +      }
  2.1633 +
  2.1634 +      for (int i = 0; i < int(blossoms.size()); ++i) {
  2.1635 +        if ((*_blossom_data)[blossoms[i]].status == MATCHED) {
  2.1636 +
  2.1637 +          Value offset = (*_blossom_data)[blossoms[i]].offset;
  2.1638 +          (*_blossom_data)[blossoms[i]].pot += 2 * offset;
  2.1639 +          for (typename BlossomSet::ItemIt n(*_blossom_set, blossoms[i]);
  2.1640 +               n != INVALID; ++n) {
  2.1641 +            (*_node_data)[(*_node_index)[n]].pot -= offset;
  2.1642 +          }
  2.1643 +
  2.1644 +          Arc matching = (*_blossom_data)[blossoms[i]].next;
  2.1645 +          Node base = _graph.source(matching);
  2.1646 +          extractBlossom(blossoms[i], base, matching);
  2.1647 +        } else {
  2.1648 +          Node base = (*_blossom_data)[blossoms[i]].base;
  2.1649 +          extractBlossom(blossoms[i], base, INVALID);
  2.1650 +        }
  2.1651 +      }
  2.1652 +    }
  2.1653 +
  2.1654 +  public:
  2.1655 +
  2.1656 +    /// \brief Constructor
  2.1657 +    ///
  2.1658 +    /// Constructor.
  2.1659 +    MaxWeightedMatching(const Graph& graph, const WeightMap& weight)
  2.1660 +      : _graph(graph), _weight(weight), _matching(0),
  2.1661 +        _node_potential(0), _blossom_potential(), _blossom_node_list(),
  2.1662 +        _node_num(0), _blossom_num(0),
  2.1663 +
  2.1664 +        _blossom_index(0), _blossom_set(0), _blossom_data(0),
  2.1665 +        _node_index(0), _node_heap_index(0), _node_data(0),
  2.1666 +        _tree_set_index(0), _tree_set(0),
  2.1667 +
  2.1668 +        _delta1_index(0), _delta1(0),
  2.1669 +        _delta2_index(0), _delta2(0),
  2.1670 +        _delta3_index(0), _delta3(0),
  2.1671 +        _delta4_index(0), _delta4(0),
  2.1672 +
  2.1673 +        _delta_sum() {}
  2.1674 +
  2.1675 +    ~MaxWeightedMatching() {
  2.1676 +      destroyStructures();
  2.1677 +    }
  2.1678 +
  2.1679 +    /// \name Execution Control
  2.1680 +    /// The simplest way to execute the algorithm is to use the
  2.1681 +    /// \ref run() member function.
  2.1682 +
  2.1683 +    ///@{
  2.1684 +
  2.1685 +    /// \brief Initialize the algorithm
  2.1686 +    ///
  2.1687 +    /// This function initializes the algorithm.
  2.1688 +    void init() {
  2.1689 +      createStructures();
  2.1690 +
  2.1691 +      for (ArcIt e(_graph); e != INVALID; ++e) {
  2.1692 +        (*_node_heap_index)[e] = BinHeap<Value, IntArcMap>::PRE_HEAP;
  2.1693 +      }
  2.1694 +      for (NodeIt n(_graph); n != INVALID; ++n) {
  2.1695 +        (*_delta1_index)[n] = _delta1->PRE_HEAP;
  2.1696 +      }
  2.1697 +      for (EdgeIt e(_graph); e != INVALID; ++e) {
  2.1698 +        (*_delta3_index)[e] = _delta3->PRE_HEAP;
  2.1699 +      }
  2.1700 +      for (int i = 0; i < _blossom_num; ++i) {
  2.1701 +        (*_delta2_index)[i] = _delta2->PRE_HEAP;
  2.1702 +        (*_delta4_index)[i] = _delta4->PRE_HEAP;
  2.1703 +      }
  2.1704 +
  2.1705 +      int index = 0;
  2.1706 +      for (NodeIt n(_graph); n != INVALID; ++n) {
  2.1707 +        Value max = 0;
  2.1708 +        for (OutArcIt e(_graph, n); e != INVALID; ++e) {
  2.1709 +          if (_graph.target(e) == n) continue;
  2.1710 +          if ((dualScale * _weight[e]) / 2 > max) {
  2.1711 +            max = (dualScale * _weight[e]) / 2;
  2.1712 +          }
  2.1713 +        }
  2.1714 +        (*_node_index)[n] = index;
  2.1715 +        (*_node_data)[index].pot = max;
  2.1716 +        _delta1->push(n, max);
  2.1717 +        int blossom =
  2.1718 +          _blossom_set->insert(n, std::numeric_limits<Value>::max());
  2.1719 +
  2.1720 +        _tree_set->insert(blossom);
  2.1721 +
  2.1722 +        (*_blossom_data)[blossom].status = EVEN;
  2.1723 +        (*_blossom_data)[blossom].pred = INVALID;
  2.1724 +        (*_blossom_data)[blossom].next = INVALID;
  2.1725 +        (*_blossom_data)[blossom].pot = 0;
  2.1726 +        (*_blossom_data)[blossom].offset = 0;
  2.1727 +        ++index;
  2.1728 +      }
  2.1729 +      for (EdgeIt e(_graph); e != INVALID; ++e) {
  2.1730 +        int si = (*_node_index)[_graph.u(e)];
  2.1731 +        int ti = (*_node_index)[_graph.v(e)];
  2.1732 +        if (_graph.u(e) != _graph.v(e)) {
  2.1733 +          _delta3->push(e, ((*_node_data)[si].pot + (*_node_data)[ti].pot -
  2.1734 +                            dualScale * _weight[e]) / 2);
  2.1735 +        }
  2.1736 +      }
  2.1737 +    }
  2.1738 +
  2.1739 +    /// \brief Start the algorithm
  2.1740 +    ///
  2.1741 +    /// This function starts the algorithm.
  2.1742 +    ///
  2.1743 +    /// \pre \ref init() must be called before using this function.
  2.1744 +    void start() {
  2.1745 +      enum OpType {
  2.1746 +        D1, D2, D3, D4
  2.1747 +      };
  2.1748 +
  2.1749 +      int unmatched = _node_num;
  2.1750 +      while (unmatched > 0) {
  2.1751 +        Value d1 = !_delta1->empty() ?
  2.1752 +          _delta1->prio() : std::numeric_limits<Value>::max();
  2.1753 +
  2.1754 +        Value d2 = !_delta2->empty() ?
  2.1755 +          _delta2->prio() : std::numeric_limits<Value>::max();
  2.1756 +
  2.1757 +        Value d3 = !_delta3->empty() ?
  2.1758 +          _delta3->prio() : std::numeric_limits<Value>::max();
  2.1759 +
  2.1760 +        Value d4 = !_delta4->empty() ?
  2.1761 +          _delta4->prio() : std::numeric_limits<Value>::max();
  2.1762 +
  2.1763 +        _delta_sum = d1; OpType ot = D1;
  2.1764 +        if (d2 < _delta_sum) { _delta_sum = d2; ot = D2; }
  2.1765 +        if (d3 < _delta_sum) { _delta_sum = d3; ot = D3; }
  2.1766 +        if (d4 < _delta_sum) { _delta_sum = d4; ot = D4; }
  2.1767 +
  2.1768 +
  2.1769 +        switch (ot) {
  2.1770 +        case D1:
  2.1771 +          {
  2.1772 +            Node n = _delta1->top();
  2.1773 +            unmatchNode(n);
  2.1774 +            --unmatched;
  2.1775 +          }
  2.1776 +          break;
  2.1777 +        case D2:
  2.1778 +          {
  2.1779 +            int blossom = _delta2->top();
  2.1780 +            Node n = _blossom_set->classTop(blossom);
  2.1781 +            Arc e = (*_node_data)[(*_node_index)[n]].heap.top();
  2.1782 +            extendOnArc(e);
  2.1783 +          }
  2.1784 +          break;
  2.1785 +        case D3:
  2.1786 +          {
  2.1787 +            Edge e = _delta3->top();
  2.1788 +
  2.1789 +            int left_blossom = _blossom_set->find(_graph.u(e));
  2.1790 +            int right_blossom = _blossom_set->find(_graph.v(e));
  2.1791 +
  2.1792 +            if (left_blossom == right_blossom) {
  2.1793 +              _delta3->pop();
  2.1794 +            } else {
  2.1795 +              int left_tree;
  2.1796 +              if ((*_blossom_data)[left_blossom].status == EVEN) {
  2.1797 +                left_tree = _tree_set->find(left_blossom);
  2.1798 +              } else {
  2.1799 +                left_tree = -1;
  2.1800 +                ++unmatched;
  2.1801 +              }
  2.1802 +              int right_tree;
  2.1803 +              if ((*_blossom_data)[right_blossom].status == EVEN) {
  2.1804 +                right_tree = _tree_set->find(right_blossom);
  2.1805 +              } else {
  2.1806 +                right_tree = -1;
  2.1807 +                ++unmatched;
  2.1808 +              }
  2.1809 +
  2.1810 +              if (left_tree == right_tree) {
  2.1811 +                shrinkOnEdge(e, left_tree);
  2.1812 +              } else {
  2.1813 +                augmentOnEdge(e);
  2.1814 +                unmatched -= 2;
  2.1815 +              }
  2.1816 +            }
  2.1817 +          } break;
  2.1818 +        case D4:
  2.1819 +          splitBlossom(_delta4->top());
  2.1820 +          break;
  2.1821 +        }
  2.1822 +      }
  2.1823 +      extractMatching();
  2.1824 +    }
  2.1825 +
  2.1826 +    /// \brief Run the algorithm.
  2.1827 +    ///
  2.1828 +    /// This method runs the \c %MaxWeightedMatching algorithm.
  2.1829 +    ///
  2.1830 +    /// \note mwm.run() is just a shortcut of the following code.
  2.1831 +    /// \code
  2.1832 +    ///   mwm.init();
  2.1833 +    ///   mwm.start();
  2.1834 +    /// \endcode
  2.1835 +    void run() {
  2.1836 +      init();
  2.1837 +      start();
  2.1838 +    }
  2.1839 +
  2.1840 +    /// @}
  2.1841 +
  2.1842 +    /// \name Primal Solution
  2.1843 +    /// Functions to get the primal solution, i.e. the maximum weighted 
  2.1844 +    /// matching.\n
  2.1845 +    /// Either \ref run() or \ref start() function should be called before
  2.1846 +    /// using them.
  2.1847 +
  2.1848 +    /// @{
  2.1849 +
  2.1850 +    /// \brief Return the weight of the matching.
  2.1851 +    ///
  2.1852 +    /// This function returns the weight of the found matching.
  2.1853 +    ///
  2.1854 +    /// \pre Either run() or start() must be called before using this function.
  2.1855 +    Value matchingWeight() const {
  2.1856 +      Value sum = 0;
  2.1857 +      for (NodeIt n(_graph); n != INVALID; ++n) {
  2.1858 +        if ((*_matching)[n] != INVALID) {
  2.1859 +          sum += _weight[(*_matching)[n]];
  2.1860 +        }
  2.1861 +      }
  2.1862 +      return sum /= 2;
  2.1863 +    }
  2.1864 +
  2.1865 +    /// \brief Return the size (cardinality) of the matching.
  2.1866 +    ///
  2.1867 +    /// This function returns the size (cardinality) of the found matching.
  2.1868 +    ///
  2.1869 +    /// \pre Either run() or start() must be called before using this function.
  2.1870 +    int matchingSize() const {
  2.1871 +      int num = 0;
  2.1872 +      for (NodeIt n(_graph); n != INVALID; ++n) {
  2.1873 +        if ((*_matching)[n] != INVALID) {
  2.1874 +          ++num;
  2.1875 +        }
  2.1876 +      }
  2.1877 +      return num /= 2;
  2.1878 +    }
  2.1879 +
  2.1880 +    /// \brief Return \c true if the given edge is in the matching.
  2.1881 +    ///
  2.1882 +    /// This function returns \c true if the given edge is in the found 
  2.1883 +    /// matching.
  2.1884 +    ///
  2.1885 +    /// \pre Either run() or start() must be called before using this function.
  2.1886 +    bool matching(const Edge& edge) const {
  2.1887 +      return edge == (*_matching)[_graph.u(edge)];
  2.1888 +    }
  2.1889 +
  2.1890 +    /// \brief Return the matching arc (or edge) incident to the given node.
  2.1891 +    ///
  2.1892 +    /// This function returns the matching arc (or edge) incident to the
  2.1893 +    /// given node in the found matching or \c INVALID if the node is 
  2.1894 +    /// not covered by the matching.
  2.1895 +    ///
  2.1896 +    /// \pre Either run() or start() must be called before using this function.
  2.1897 +    Arc matching(const Node& node) const {
  2.1898 +      return (*_matching)[node];
  2.1899 +    }
  2.1900 +
  2.1901 +    /// \brief Return a const reference to the matching map.
  2.1902 +    ///
  2.1903 +    /// This function returns a const reference to a node map that stores
  2.1904 +    /// the matching arc (or edge) incident to each node.
  2.1905 +    const MatchingMap& matchingMap() const {
  2.1906 +      return *_matching;
  2.1907 +    }
  2.1908 +
  2.1909 +    /// \brief Return the mate of the given node.
  2.1910 +    ///
  2.1911 +    /// This function returns the mate of the given node in the found 
  2.1912 +    /// matching or \c INVALID if the node is not covered by the matching.
  2.1913 +    ///
  2.1914 +    /// \pre Either run() or start() must be called before using this function.
  2.1915 +    Node mate(const Node& node) const {
  2.1916 +      return (*_matching)[node] != INVALID ?
  2.1917 +        _graph.target((*_matching)[node]) : INVALID;
  2.1918 +    }
  2.1919 +
  2.1920 +    /// @}
  2.1921 +
  2.1922 +    /// \name Dual Solution
  2.1923 +    /// Functions to get the dual solution.\n
  2.1924 +    /// Either \ref run() or \ref start() function should be called before
  2.1925 +    /// using them.
  2.1926 +
  2.1927 +    /// @{
  2.1928 +
  2.1929 +    /// \brief Return the value of the dual solution.
  2.1930 +    ///
  2.1931 +    /// This function returns the value of the dual solution. 
  2.1932 +    /// It should be equal to the primal value scaled by \ref dualScale 
  2.1933 +    /// "dual scale".
  2.1934 +    ///
  2.1935 +    /// \pre Either run() or start() must be called before using this function.
  2.1936 +    Value dualValue() const {
  2.1937 +      Value sum = 0;
  2.1938 +      for (NodeIt n(_graph); n != INVALID; ++n) {
  2.1939 +        sum += nodeValue(n);
  2.1940 +      }
  2.1941 +      for (int i = 0; i < blossomNum(); ++i) {
  2.1942 +        sum += blossomValue(i) * (blossomSize(i) / 2);
  2.1943 +      }
  2.1944 +      return sum;
  2.1945 +    }
  2.1946 +
  2.1947 +    /// \brief Return the dual value (potential) of the given node.
  2.1948 +    ///
  2.1949 +    /// This function returns the dual value (potential) of the given node.
  2.1950 +    ///
  2.1951 +    /// \pre Either run() or start() must be called before using this function.
  2.1952 +    Value nodeValue(const Node& n) const {
  2.1953 +      return (*_node_potential)[n];
  2.1954 +    }
  2.1955 +
  2.1956 +    /// \brief Return the number of the blossoms in the basis.
  2.1957 +    ///
  2.1958 +    /// This function returns the number of the blossoms in the basis.
  2.1959 +    ///
  2.1960 +    /// \pre Either run() or start() must be called before using this function.
  2.1961 +    /// \see BlossomIt
  2.1962 +    int blossomNum() const {
  2.1963 +      return _blossom_potential.size();
  2.1964 +    }
  2.1965 +
  2.1966 +    /// \brief Return the number of the nodes in the given blossom.
  2.1967 +    ///
  2.1968 +    /// This function returns the number of the nodes in the given blossom.
  2.1969 +    ///
  2.1970 +    /// \pre Either run() or start() must be called before using this function.
  2.1971 +    /// \see BlossomIt
  2.1972 +    int blossomSize(int k) const {
  2.1973 +      return _blossom_potential[k].end - _blossom_potential[k].begin;
  2.1974 +    }
  2.1975 +
  2.1976 +    /// \brief Return the dual value (ptential) of the given blossom.
  2.1977 +    ///
  2.1978 +    /// This function returns the dual value (ptential) of the given blossom.
  2.1979 +    ///
  2.1980 +    /// \pre Either run() or start() must be called before using this function.
  2.1981 +    Value blossomValue(int k) const {
  2.1982 +      return _blossom_potential[k].value;
  2.1983 +    }
  2.1984 +
  2.1985 +    /// \brief Iterator for obtaining the nodes of a blossom.
  2.1986 +    ///
  2.1987 +    /// This class provides an iterator for obtaining the nodes of the 
  2.1988 +    /// given blossom. It lists a subset of the nodes.
  2.1989 +    /// Before using this iterator, you must allocate a 
  2.1990 +    /// MaxWeightedMatching class and execute it.
  2.1991 +    class BlossomIt {
  2.1992 +    public:
  2.1993 +
  2.1994 +      /// \brief Constructor.
  2.1995 +      ///
  2.1996 +      /// Constructor to get the nodes of the given variable.
  2.1997 +      ///
  2.1998 +      /// \pre Either \ref MaxWeightedMatching::run() "algorithm.run()" or 
  2.1999 +      /// \ref MaxWeightedMatching::start() "algorithm.start()" must be 
  2.2000 +      /// called before initializing this iterator.
  2.2001 +      BlossomIt(const MaxWeightedMatching& algorithm, int variable)
  2.2002 +        : _algorithm(&algorithm)
  2.2003 +      {
  2.2004 +        _index = _algorithm->_blossom_potential[variable].begin;
  2.2005 +        _last = _algorithm->_blossom_potential[variable].end;
  2.2006 +      }
  2.2007 +
  2.2008 +      /// \brief Conversion to \c Node.
  2.2009 +      ///
  2.2010 +      /// Conversion to \c Node.
  2.2011 +      operator Node() const {
  2.2012 +        return _algorithm->_blossom_node_list[_index];
  2.2013 +      }
  2.2014 +
  2.2015 +      /// \brief Increment operator.
  2.2016 +      ///
  2.2017 +      /// Increment operator.
  2.2018 +      BlossomIt& operator++() {
  2.2019 +        ++_index;
  2.2020 +        return *this;
  2.2021 +      }
  2.2022 +
  2.2023 +      /// \brief Validity checking
  2.2024 +      ///
  2.2025 +      /// Checks whether the iterator is invalid.
  2.2026 +      bool operator==(Invalid) const { return _index == _last; }
  2.2027 +
  2.2028 +      /// \brief Validity checking
  2.2029 +      ///
  2.2030 +      /// Checks whether the iterator is valid.
  2.2031 +      bool operator!=(Invalid) const { return _index != _last; }
  2.2032 +
  2.2033 +    private:
  2.2034 +      const MaxWeightedMatching* _algorithm;
  2.2035 +      int _last;
  2.2036 +      int _index;
  2.2037 +    };
  2.2038 +
  2.2039 +    /// @}
  2.2040 +
  2.2041 +  };
  2.2042 +
  2.2043 +  /// \ingroup matching
  2.2044 +  ///
  2.2045 +  /// \brief Weighted perfect matching in general graphs
  2.2046 +  ///
  2.2047 +  /// This class provides an efficient implementation of Edmond's
  2.2048 +  /// maximum weighted perfect matching algorithm. The implementation
  2.2049 +  /// is based on extensive use of priority queues and provides
  2.2050 +  /// \f$O(nm\log n)\f$ time complexity.
  2.2051 +  ///
  2.2052 +  /// The maximum weighted perfect matching problem is to find a subset of 
  2.2053 +  /// the edges in an undirected graph with maximum overall weight for which 
  2.2054 +  /// each node has exactly one incident edge.
  2.2055 +  /// It can be formulated with the following linear program.
  2.2056 +  /// \f[ \sum_{e \in \delta(u)}x_e = 1 \quad \forall u\in V\f]
  2.2057 +  /** \f[ \sum_{e \in \gamma(B)}x_e \le \frac{\vert B \vert - 1}{2}
  2.2058 +      \quad \forall B\in\mathcal{O}\f] */
  2.2059 +  /// \f[x_e \ge 0\quad \forall e\in E\f]
  2.2060 +  /// \f[\max \sum_{e\in E}x_ew_e\f]
  2.2061 +  /// where \f$\delta(X)\f$ is the set of edges incident to a node in
  2.2062 +  /// \f$X\f$, \f$\gamma(X)\f$ is the set of edges with both ends in
  2.2063 +  /// \f$X\f$ and \f$\mathcal{O}\f$ is the set of odd cardinality
  2.2064 +  /// subsets of the nodes.
  2.2065 +  ///
  2.2066 +  /// The algorithm calculates an optimal matching and a proof of the
  2.2067 +  /// optimality. The solution of the dual problem can be used to check
  2.2068 +  /// the result of the algorithm. The dual linear problem is the
  2.2069 +  /// following.
  2.2070 +  /** \f[ y_u + y_v + \sum_{B \in \mathcal{O}, uv \in \gamma(B)}z_B \ge
  2.2071 +      w_{uv} \quad \forall uv\in E\f] */
  2.2072 +  /// \f[z_B \ge 0 \quad \forall B \in \mathcal{O}\f]
  2.2073 +  /** \f[\min \sum_{u \in V}y_u + \sum_{B \in \mathcal{O}}
  2.2074 +      \frac{\vert B \vert - 1}{2}z_B\f] */
  2.2075 +  ///
  2.2076 +  /// The algorithm can be executed with the run() function. 
  2.2077 +  /// After it the matching (the primal solution) and the dual solution
  2.2078 +  /// can be obtained using the query functions and the 
  2.2079 +  /// \ref MaxWeightedPerfectMatching::BlossomIt "BlossomIt" nested class, 
  2.2080 +  /// which is able to iterate on the nodes of a blossom. 
  2.2081 +  /// If the value type is integer, then the dual solution is multiplied
  2.2082 +  /// by \ref MaxWeightedMatching::dualScale "4".
  2.2083 +  ///
  2.2084 +  /// \tparam GR The undirected graph type the algorithm runs on.
  2.2085 +  /// \tparam WM The type edge weight map. The default type is 
  2.2086 +  /// \ref concepts::Graph::EdgeMap "GR::EdgeMap<int>".
  2.2087 +#ifdef DOXYGEN
  2.2088 +  template <typename GR, typename WM>
  2.2089 +#else
  2.2090 +  template <typename GR,
  2.2091 +            typename WM = typename GR::template EdgeMap<int> >
  2.2092 +#endif
  2.2093 +  class MaxWeightedPerfectMatching {
  2.2094 +  public:
  2.2095 +
  2.2096 +    /// The graph type of the algorithm
  2.2097 +    typedef GR Graph;
  2.2098 +    /// The type of the edge weight map
  2.2099 +    typedef WM WeightMap;
  2.2100 +    /// The value type of the edge weights
  2.2101 +    typedef typename WeightMap::Value Value;
  2.2102 +
  2.2103 +    /// \brief Scaling factor for dual solution
  2.2104 +    ///
  2.2105 +    /// Scaling factor for dual solution, it is equal to 4 or 1
  2.2106 +    /// according to the value type.
  2.2107 +    static const int dualScale =
  2.2108 +      std::numeric_limits<Value>::is_integer ? 4 : 1;
  2.2109 +
  2.2110 +    /// The type of the matching map
  2.2111 +    typedef typename Graph::template NodeMap<typename Graph::Arc>
  2.2112 +    MatchingMap;
  2.2113 +
  2.2114 +  private:
  2.2115 +
  2.2116 +    TEMPLATE_GRAPH_TYPEDEFS(Graph);
  2.2117 +
  2.2118 +    typedef typename Graph::template NodeMap<Value> NodePotential;
  2.2119 +    typedef std::vector<Node> BlossomNodeList;
  2.2120 +
  2.2121 +    struct BlossomVariable {
  2.2122 +      int begin, end;
  2.2123 +      Value value;
  2.2124 +
  2.2125 +      BlossomVariable(int _begin, int _end, Value _value)
  2.2126 +        : begin(_begin), end(_end), value(_value) {}
  2.2127 +
  2.2128 +    };
  2.2129 +
  2.2130 +    typedef std::vector<BlossomVariable> BlossomPotential;
  2.2131 +
  2.2132 +    const Graph& _graph;
  2.2133 +    const WeightMap& _weight;
  2.2134 +
  2.2135 +    MatchingMap* _matching;
  2.2136 +
  2.2137 +    NodePotential* _node_potential;
  2.2138 +
  2.2139 +    BlossomPotential _blossom_potential;
  2.2140 +    BlossomNodeList _blossom_node_list;
  2.2141 +
  2.2142 +    int _node_num;
  2.2143 +    int _blossom_num;
  2.2144 +
  2.2145 +    typedef RangeMap<int> IntIntMap;
  2.2146 +
  2.2147 +    enum Status {
  2.2148 +      EVEN = -1, MATCHED = 0, ODD = 1
  2.2149 +    };
  2.2150 +
  2.2151 +    typedef HeapUnionFind<Value, IntNodeMap> BlossomSet;
  2.2152 +    struct BlossomData {
  2.2153 +      int tree;
  2.2154 +      Status status;
  2.2155 +      Arc pred, next;
  2.2156 +      Value pot, offset;
  2.2157 +    };
  2.2158 +
  2.2159 +    IntNodeMap *_blossom_index;
  2.2160 +    BlossomSet *_blossom_set;
  2.2161 +    RangeMap<BlossomData>* _blossom_data;
  2.2162 +
  2.2163 +    IntNodeMap *_node_index;
  2.2164 +    IntArcMap *_node_heap_index;
  2.2165 +
  2.2166 +    struct NodeData {
  2.2167 +
  2.2168 +      NodeData(IntArcMap& node_heap_index)
  2.2169 +        : heap(node_heap_index) {}
  2.2170 +
  2.2171 +      int blossom;
  2.2172 +      Value pot;
  2.2173 +      BinHeap<Value, IntArcMap> heap;
  2.2174 +      std::map<int, Arc> heap_index;
  2.2175 +
  2.2176 +      int tree;
  2.2177 +    };
  2.2178 +
  2.2179 +    RangeMap<NodeData>* _node_data;
  2.2180 +
  2.2181 +    typedef ExtendFindEnum<IntIntMap> TreeSet;
  2.2182 +
  2.2183 +    IntIntMap *_tree_set_index;
  2.2184 +    TreeSet *_tree_set;
  2.2185 +
  2.2186 +    IntIntMap *_delta2_index;
  2.2187 +    BinHeap<Value, IntIntMap> *_delta2;
  2.2188 +
  2.2189 +    IntEdgeMap *_delta3_index;
  2.2190 +    BinHeap<Value, IntEdgeMap> *_delta3;
  2.2191 +
  2.2192 +    IntIntMap *_delta4_index;
  2.2193 +    BinHeap<Value, IntIntMap> *_delta4;
  2.2194 +
  2.2195 +    Value _delta_sum;
  2.2196 +
  2.2197 +    void createStructures() {
  2.2198 +      _node_num = countNodes(_graph);
  2.2199 +      _blossom_num = _node_num * 3 / 2;
  2.2200 +
  2.2201 +      if (!_matching) {
  2.2202 +        _matching = new MatchingMap(_graph);
  2.2203 +      }
  2.2204 +      if (!_node_potential) {
  2.2205 +        _node_potential = new NodePotential(_graph);
  2.2206 +      }
  2.2207 +      if (!_blossom_set) {
  2.2208 +        _blossom_index = new IntNodeMap(_graph);
  2.2209 +        _blossom_set = new BlossomSet(*_blossom_index);
  2.2210 +        _blossom_data = new RangeMap<BlossomData>(_blossom_num);
  2.2211 +      }
  2.2212 +
  2.2213 +      if (!_node_index) {
  2.2214 +        _node_index = new IntNodeMap(_graph);
  2.2215 +        _node_heap_index = new IntArcMap(_graph);
  2.2216 +        _node_data = new RangeMap<NodeData>(_node_num,
  2.2217 +                                            NodeData(*_node_heap_index));
  2.2218 +      }
  2.2219 +
  2.2220 +      if (!_tree_set) {
  2.2221 +        _tree_set_index = new IntIntMap(_blossom_num);
  2.2222 +        _tree_set = new TreeSet(*_tree_set_index);
  2.2223 +      }
  2.2224 +      if (!_delta2) {
  2.2225 +        _delta2_index = new IntIntMap(_blossom_num);
  2.2226 +        _delta2 = new BinHeap<Value, IntIntMap>(*_delta2_index);
  2.2227 +      }
  2.2228 +      if (!_delta3) {
  2.2229 +        _delta3_index = new IntEdgeMap(_graph);
  2.2230 +        _delta3 = new BinHeap<Value, IntEdgeMap>(*_delta3_index);
  2.2231 +      }
  2.2232 +      if (!_delta4) {
  2.2233 +        _delta4_index = new IntIntMap(_blossom_num);
  2.2234 +        _delta4 = new BinHeap<Value, IntIntMap>(*_delta4_index);
  2.2235 +      }
  2.2236 +    }
  2.2237 +
  2.2238 +    void destroyStructures() {
  2.2239 +      _node_num = countNodes(_graph);
  2.2240 +      _blossom_num = _node_num * 3 / 2;
  2.2241 +
  2.2242 +      if (_matching) {
  2.2243 +        delete _matching;
  2.2244 +      }
  2.2245 +      if (_node_potential) {
  2.2246 +        delete _node_potential;
  2.2247 +      }
  2.2248 +      if (_blossom_set) {
  2.2249 +        delete _blossom_index;
  2.2250 +        delete _blossom_set;
  2.2251 +        delete _blossom_data;
  2.2252 +      }
  2.2253 +
  2.2254 +      if (_node_index) {
  2.2255 +        delete _node_index;
  2.2256 +        delete _node_heap_index;
  2.2257 +        delete _node_data;
  2.2258 +      }
  2.2259 +
  2.2260 +      if (_tree_set) {
  2.2261 +        delete _tree_set_index;
  2.2262 +        delete _tree_set;
  2.2263 +      }
  2.2264 +      if (_delta2) {
  2.2265 +        delete _delta2_index;
  2.2266 +        delete _delta2;
  2.2267 +      }
  2.2268 +      if (_delta3) {
  2.2269 +        delete _delta3_index;
  2.2270 +        delete _delta3;
  2.2271 +      }
  2.2272 +      if (_delta4) {
  2.2273 +        delete _delta4_index;
  2.2274 +        delete _delta4;
  2.2275 +      }
  2.2276 +    }
  2.2277 +
  2.2278 +    void matchedToEven(int blossom, int tree) {
  2.2279 +      if (_delta2->state(blossom) == _delta2->IN_HEAP) {
  2.2280 +        _delta2->erase(blossom);
  2.2281 +      }
  2.2282 +
  2.2283 +      if (!_blossom_set->trivial(blossom)) {
  2.2284 +        (*_blossom_data)[blossom].pot -=
  2.2285 +          2 * (_delta_sum - (*_blossom_data)[blossom].offset);
  2.2286 +      }
  2.2287 +
  2.2288 +      for (typename BlossomSet::ItemIt n(*_blossom_set, blossom);
  2.2289 +           n != INVALID; ++n) {
  2.2290 +
  2.2291 +        _blossom_set->increase(n, std::numeric_limits<Value>::max());
  2.2292 +        int ni = (*_node_index)[n];
  2.2293 +
  2.2294 +        (*_node_data)[ni].heap.clear();
  2.2295 +        (*_node_data)[ni].heap_index.clear();
  2.2296 +
  2.2297 +        (*_node_data)[ni].pot += _delta_sum - (*_blossom_data)[blossom].offset;
  2.2298 +
  2.2299 +        for (InArcIt e(_graph, n); e != INVALID; ++e) {
  2.2300 +          Node v = _graph.source(e);
  2.2301 +          int vb = _blossom_set->find(v);
  2.2302 +          int vi = (*_node_index)[v];
  2.2303 +
  2.2304 +          Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot -
  2.2305 +            dualScale * _weight[e];
  2.2306 +
  2.2307 +          if ((*_blossom_data)[vb].status == EVEN) {
  2.2308 +            if (_delta3->state(e) != _delta3->IN_HEAP && blossom != vb) {
  2.2309 +              _delta3->push(e, rw / 2);
  2.2310 +            }
  2.2311 +          } else {
  2.2312 +            typename std::map<int, Arc>::iterator it =
  2.2313 +              (*_node_data)[vi].heap_index.find(tree);
  2.2314 +
  2.2315 +            if (it != (*_node_data)[vi].heap_index.end()) {
  2.2316 +              if ((*_node_data)[vi].heap[it->second] > rw) {
  2.2317 +                (*_node_data)[vi].heap.replace(it->second, e);
  2.2318 +                (*_node_data)[vi].heap.decrease(e, rw);
  2.2319 +                it->second = e;
  2.2320 +              }
  2.2321 +            } else {
  2.2322 +              (*_node_data)[vi].heap.push(e, rw);
  2.2323 +              (*_node_data)[vi].heap_index.insert(std::make_pair(tree, e));
  2.2324 +            }
  2.2325 +
  2.2326 +            if ((*_blossom_set)[v] > (*_node_data)[vi].heap.prio()) {
  2.2327 +              _blossom_set->decrease(v, (*_node_data)[vi].heap.prio());
  2.2328 +
  2.2329 +              if ((*_blossom_data)[vb].status == MATCHED) {
  2.2330 +                if (_delta2->state(vb) != _delta2->IN_HEAP) {
  2.2331 +                  _delta2->push(vb, _blossom_set->classPrio(vb) -
  2.2332 +                               (*_blossom_data)[vb].offset);
  2.2333 +                } else if ((*_delta2)[vb] > _blossom_set->classPrio(vb) -
  2.2334 +                           (*_blossom_data)[vb].offset){
  2.2335 +                  _delta2->decrease(vb, _blossom_set->classPrio(vb) -
  2.2336 +                                   (*_blossom_data)[vb].offset);
  2.2337 +                }
  2.2338 +              }
  2.2339 +            }
  2.2340 +          }
  2.2341 +        }
  2.2342 +      }
  2.2343 +      (*_blossom_data)[blossom].offset = 0;
  2.2344 +    }
  2.2345 +
  2.2346 +    void matchedToOdd(int blossom) {
  2.2347 +      if (_delta2->state(blossom) == _delta2->IN_HEAP) {
  2.2348 +        _delta2->erase(blossom);
  2.2349 +      }
  2.2350 +      (*_blossom_data)[blossom].offset += _delta_sum;
  2.2351 +      if (!_blossom_set->trivial(blossom)) {
  2.2352 +        _delta4->push(blossom, (*_blossom_data)[blossom].pot / 2 +
  2.2353 +                     (*_blossom_data)[blossom].offset);
  2.2354 +      }
  2.2355 +    }
  2.2356 +
  2.2357 +    void evenToMatched(int blossom, int tree) {
  2.2358 +      if (!_blossom_set->trivial(blossom)) {
  2.2359 +        (*_blossom_data)[blossom].pot += 2 * _delta_sum;
  2.2360 +      }
  2.2361 +
  2.2362 +      for (typename BlossomSet::ItemIt n(*_blossom_set, blossom);
  2.2363 +           n != INVALID; ++n) {
  2.2364 +        int ni = (*_node_index)[n];
  2.2365 +        (*_node_data)[ni].pot -= _delta_sum;
  2.2366 +
  2.2367 +        for (InArcIt e(_graph, n); e != INVALID; ++e) {
  2.2368 +          Node v = _graph.source(e);
  2.2369 +          int vb = _blossom_set->find(v);
  2.2370 +          int vi = (*_node_index)[v];
  2.2371 +
  2.2372 +          Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot -
  2.2373 +            dualScale * _weight[e];
  2.2374 +
  2.2375 +          if (vb == blossom) {
  2.2376 +            if (_delta3->state(e) == _delta3->IN_HEAP) {
  2.2377 +              _delta3->erase(e);
  2.2378 +            }
  2.2379 +          } else if ((*_blossom_data)[vb].status == EVEN) {
  2.2380 +
  2.2381 +            if (_delta3->state(e) == _delta3->IN_HEAP) {
  2.2382 +              _delta3->erase(e);
  2.2383 +            }
  2.2384 +
  2.2385 +            int vt = _tree_set->find(vb);
  2.2386 +
  2.2387 +            if (vt != tree) {
  2.2388 +
  2.2389 +              Arc r = _graph.oppositeArc(e);
  2.2390 +
  2.2391 +              typename std::map<int, Arc>::iterator it =
  2.2392 +                (*_node_data)[ni].heap_index.find(vt);
  2.2393 +
  2.2394 +              if (it != (*_node_data)[ni].heap_index.end()) {
  2.2395 +                if ((*_node_data)[ni].heap[it->second] > rw) {
  2.2396 +                  (*_node_data)[ni].heap.replace(it->second, r);
  2.2397 +                  (*_node_data)[ni].heap.decrease(r, rw);
  2.2398 +                  it->second = r;
  2.2399 +                }
  2.2400 +              } else {
  2.2401 +                (*_node_data)[ni].heap.push(r, rw);
  2.2402 +                (*_node_data)[ni].heap_index.insert(std::make_pair(vt, r));
  2.2403 +              }
  2.2404 +
  2.2405 +              if ((*_blossom_set)[n] > (*_node_data)[ni].heap.prio()) {
  2.2406 +                _blossom_set->decrease(n, (*_node_data)[ni].heap.prio());
  2.2407 +
  2.2408 +                if (_delta2->state(blossom) != _delta2->IN_HEAP) {
  2.2409 +                  _delta2->push(blossom, _blossom_set->classPrio(blossom) -
  2.2410 +                               (*_blossom_data)[blossom].offset);
  2.2411 +                } else if ((*_delta2)[blossom] >
  2.2412 +                           _blossom_set->classPrio(blossom) -
  2.2413 +                           (*_blossom_data)[blossom].offset){
  2.2414 +                  _delta2->decrease(blossom, _blossom_set->classPrio(blossom) -
  2.2415 +                                   (*_blossom_data)[blossom].offset);
  2.2416 +                }
  2.2417 +              }
  2.2418 +            }
  2.2419 +          } else {
  2.2420 +
  2.2421 +            typename std::map<int, Arc>::iterator it =
  2.2422 +              (*_node_data)[vi].heap_index.find(tree);
  2.2423 +
  2.2424 +            if (it != (*_node_data)[vi].heap_index.end()) {
  2.2425 +              (*_node_data)[vi].heap.erase(it->second);
  2.2426 +              (*_node_data)[vi].heap_index.erase(it);
  2.2427 +              if ((*_node_data)[vi].heap.empty()) {
  2.2428 +                _blossom_set->increase(v, std::numeric_limits<Value>::max());
  2.2429 +              } else if ((*_blossom_set)[v] < (*_node_data)[vi].heap.prio()) {
  2.2430 +                _blossom_set->increase(v, (*_node_data)[vi].heap.prio());
  2.2431 +              }
  2.2432 +
  2.2433 +              if ((*_blossom_data)[vb].status == MATCHED) {
  2.2434 +                if (_blossom_set->classPrio(vb) ==
  2.2435 +                    std::numeric_limits<Value>::max()) {
  2.2436 +                  _delta2->erase(vb);
  2.2437 +                } else if ((*_delta2)[vb] < _blossom_set->classPrio(vb) -
  2.2438 +                           (*_blossom_data)[vb].offset) {
  2.2439 +                  _delta2->increase(vb, _blossom_set->classPrio(vb) -
  2.2440 +                                   (*_blossom_data)[vb].offset);
  2.2441 +                }
  2.2442 +              }
  2.2443 +            }
  2.2444 +          }
  2.2445 +        }
  2.2446 +      }
  2.2447 +    }
  2.2448 +
  2.2449 +    void oddToMatched(int blossom) {
  2.2450 +      (*_blossom_data)[blossom].offset -= _delta_sum;
  2.2451 +
  2.2452 +      if (_blossom_set->classPrio(blossom) !=
  2.2453 +          std::numeric_limits<Value>::max()) {
  2.2454 +        _delta2->push(blossom, _blossom_set->classPrio(blossom) -
  2.2455 +                       (*_blossom_data)[blossom].offset);
  2.2456 +      }
  2.2457 +
  2.2458 +      if (!_blossom_set->trivial(blossom)) {
  2.2459 +        _delta4->erase(blossom);
  2.2460 +      }
  2.2461 +    }
  2.2462 +
  2.2463 +    void oddToEven(int blossom, int tree) {
  2.2464 +      if (!_blossom_set->trivial(blossom)) {
  2.2465 +        _delta4->erase(blossom);
  2.2466 +        (*_blossom_data)[blossom].pot -=
  2.2467 +          2 * (2 * _delta_sum - (*_blossom_data)[blossom].offset);
  2.2468 +      }
  2.2469 +
  2.2470 +      for (typename BlossomSet::ItemIt n(*_blossom_set, blossom);
  2.2471 +           n != INVALID; ++n) {
  2.2472 +        int ni = (*_node_index)[n];
  2.2473 +
  2.2474 +        _blossom_set->increase(n, std::numeric_limits<Value>::max());
  2.2475 +
  2.2476 +        (*_node_data)[ni].heap.clear();
  2.2477 +        (*_node_data)[ni].heap_index.clear();
  2.2478 +        (*_node_data)[ni].pot +=
  2.2479 +          2 * _delta_sum - (*_blossom_data)[blossom].offset;
  2.2480 +
  2.2481 +        for (InArcIt e(_graph, n); e != INVALID; ++e) {
  2.2482 +          Node v = _graph.source(e);
  2.2483 +          int vb = _blossom_set->find(v);
  2.2484 +          int vi = (*_node_index)[v];
  2.2485 +
  2.2486 +          Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot -
  2.2487 +            dualScale * _weight[e];
  2.2488 +
  2.2489 +          if ((*_blossom_data)[vb].status == EVEN) {
  2.2490 +            if (_delta3->state(e) != _delta3->IN_HEAP && blossom != vb) {
  2.2491 +              _delta3->push(e, rw / 2);
  2.2492 +            }
  2.2493 +          } else {
  2.2494 +
  2.2495 +            typename std::map<int, Arc>::iterator it =
  2.2496 +              (*_node_data)[vi].heap_index.find(tree);
  2.2497 +
  2.2498 +            if (it != (*_node_data)[vi].heap_index.end()) {
  2.2499 +              if ((*_node_data)[vi].heap[it->second] > rw) {
  2.2500 +                (*_node_data)[vi].heap.replace(it->second, e);
  2.2501 +                (*_node_data)[vi].heap.decrease(e, rw);
  2.2502 +                it->second = e;
  2.2503 +              }
  2.2504 +            } else {
  2.2505 +              (*_node_data)[vi].heap.push(e, rw);
  2.2506 +              (*_node_data)[vi].heap_index.insert(std::make_pair(tree, e));
  2.2507 +            }
  2.2508 +
  2.2509 +            if ((*_blossom_set)[v] > (*_node_data)[vi].heap.prio()) {
  2.2510 +              _blossom_set->decrease(v, (*_node_data)[vi].heap.prio());
  2.2511 +
  2.2512 +              if ((*_blossom_data)[vb].status == MATCHED) {
  2.2513 +                if (_delta2->state(vb) != _delta2->IN_HEAP) {
  2.2514 +                  _delta2->push(vb, _blossom_set->classPrio(vb) -
  2.2515 +                               (*_blossom_data)[vb].offset);
  2.2516 +                } else if ((*_delta2)[vb] > _blossom_set->classPrio(vb) -
  2.2517 +                           (*_blossom_data)[vb].offset) {
  2.2518 +                  _delta2->decrease(vb, _blossom_set->classPrio(vb) -
  2.2519 +                                   (*_blossom_data)[vb].offset);
  2.2520 +                }
  2.2521 +              }
  2.2522 +            }
  2.2523 +          }
  2.2524 +        }
  2.2525 +      }
  2.2526 +      (*_blossom_data)[blossom].offset = 0;
  2.2527 +    }
  2.2528 +
  2.2529 +    void alternatePath(int even, int tree) {
  2.2530 +      int odd;
  2.2531 +
  2.2532 +      evenToMatched(even, tree);
  2.2533 +      (*_blossom_data)[even].status = MATCHED;
  2.2534 +
  2.2535 +      while ((*_blossom_data)[even].pred != INVALID) {
  2.2536 +        odd = _blossom_set->find(_graph.target((*_blossom_data)[even].pred));
  2.2537 +        (*_blossom_data)[odd].status = MATCHED;
  2.2538 +        oddToMatched(odd);
  2.2539 +        (*_blossom_data)[odd].next = (*_blossom_data)[odd].pred;
  2.2540 +
  2.2541 +        even = _blossom_set->find(_graph.target((*_blossom_data)[odd].pred));
  2.2542 +        (*_blossom_data)[even].status = MATCHED;
  2.2543 +        evenToMatched(even, tree);
  2.2544 +        (*_blossom_data)[even].next =
  2.2545 +          _graph.oppositeArc((*_blossom_data)[odd].pred);
  2.2546 +      }
  2.2547 +
  2.2548 +    }
  2.2549 +
  2.2550 +    void destroyTree(int tree) {
  2.2551 +      for (TreeSet::ItemIt b(*_tree_set, tree); b != INVALID; ++b) {
  2.2552 +        if ((*_blossom_data)[b].status == EVEN) {
  2.2553 +          (*_blossom_data)[b].status = MATCHED;
  2.2554 +          evenToMatched(b, tree);
  2.2555 +        } else if ((*_blossom_data)[b].status == ODD) {
  2.2556 +          (*_blossom_data)[b].status = MATCHED;
  2.2557 +          oddToMatched(b);
  2.2558 +        }
  2.2559 +      }
  2.2560 +      _tree_set->eraseClass(tree);
  2.2561 +    }
  2.2562 +
  2.2563 +    void augmentOnEdge(const Edge& edge) {
  2.2564 +
  2.2565 +      int left = _blossom_set->find(_graph.u(edge));
  2.2566 +      int right = _blossom_set->find(_graph.v(edge));
  2.2567 +
  2.2568 +      int left_tree = _tree_set->find(left);
  2.2569 +      alternatePath(left, left_tree);
  2.2570 +      destroyTree(left_tree);
  2.2571 +
  2.2572 +      int right_tree = _tree_set->find(right);
  2.2573 +      alternatePath(right, right_tree);
  2.2574 +      destroyTree(right_tree);
  2.2575 +
  2.2576 +      (*_blossom_data)[left].next = _graph.direct(edge, true);
  2.2577 +      (*_blossom_data)[right].next = _graph.direct(edge, false);
  2.2578 +    }
  2.2579 +
  2.2580 +    void extendOnArc(const Arc& arc) {
  2.2581 +      int base = _blossom_set->find(_graph.target(arc));
  2.2582 +      int tree = _tree_set->find(base);
  2.2583 +
  2.2584 +      int odd = _blossom_set->find(_graph.source(arc));
  2.2585 +      _tree_set->insert(odd, tree);
  2.2586 +      (*_blossom_data)[odd].status = ODD;
  2.2587 +      matchedToOdd(odd);
  2.2588 +      (*_blossom_data)[odd].pred = arc;
  2.2589 +
  2.2590 +      int even = _blossom_set->find(_graph.target((*_blossom_data)[odd].next));
  2.2591 +      (*_blossom_data)[even].pred = (*_blossom_data)[even].next;
  2.2592 +      _tree_set->insert(even, tree);
  2.2593 +      (*_blossom_data)[even].status = EVEN;
  2.2594 +      matchedToEven(even, tree);
  2.2595 +    }
  2.2596 +
  2.2597 +    void shrinkOnEdge(const Edge& edge, int tree) {
  2.2598 +      int nca = -1;
  2.2599 +      std::vector<int> left_path, right_path;
  2.2600 +
  2.2601 +      {
  2.2602 +        std::set<int> left_set, right_set;
  2.2603 +        int left = _blossom_set->find(_graph.u(edge));
  2.2604 +        left_path.push_back(left);
  2.2605 +        left_set.insert(left);
  2.2606 +
  2.2607 +        int right = _blossom_set->find(_graph.v(edge));
  2.2608 +        right_path.push_back(right);
  2.2609 +        right_set.insert(right);
  2.2610 +
  2.2611 +        while (true) {
  2.2612 +
  2.2613 +          if ((*_blossom_data)[left].pred == INVALID) break;
  2.2614 +
  2.2615 +          left =
  2.2616 +            _blossom_set->find(_graph.target((*_blossom_data)[left].pred));
  2.2617 +          left_path.push_back(left);
  2.2618 +          left =
  2.2619 +            _blossom_set->find(_graph.target((*_blossom_data)[left].pred));
  2.2620 +          left_path.push_back(left);
  2.2621 +
  2.2622 +          left_set.insert(left);
  2.2623 +
  2.2624 +          if (right_set.find(left) != right_set.end()) {
  2.2625 +            nca = left;
  2.2626 +            break;
  2.2627 +          }
  2.2628 +
  2.2629 +          if ((*_blossom_data)[right].pred == INVALID) break;
  2.2630 +
  2.2631 +          right =
  2.2632 +            _blossom_set->find(_graph.target((*_blossom_data)[right].pred));
  2.2633 +          right_path.push_back(right);
  2.2634 +          right =
  2.2635 +            _blossom_set->find(_graph.target((*_blossom_data)[right].pred));
  2.2636 +          right_path.push_back(right);
  2.2637 +
  2.2638 +          right_set.insert(right);
  2.2639 +
  2.2640 +          if (left_set.find(right) != left_set.end()) {
  2.2641 +            nca = right;
  2.2642 +            break;
  2.2643 +          }
  2.2644 +
  2.2645 +        }
  2.2646 +
  2.2647 +        if (nca == -1) {
  2.2648 +          if ((*_blossom_data)[left].pred == INVALID) {
  2.2649 +            nca = right;
  2.2650 +            while (left_set.find(nca) == left_set.end()) {
  2.2651 +              nca =
  2.2652 +                _blossom_set->find(_graph.target((*_blossom_data)[nca].pred));
  2.2653 +              right_path.push_back(nca);
  2.2654 +              nca =
  2.2655 +                _blossom_set->find(_graph.target((*_blossom_data)[nca].pred));
  2.2656 +              right_path.push_back(nca);
  2.2657 +            }
  2.2658 +          } else {
  2.2659 +            nca = left;
  2.2660 +            while (right_set.find(nca) == right_set.end()) {
  2.2661 +              nca =
  2.2662 +                _blossom_set->find(_graph.target((*_blossom_data)[nca].pred));
  2.2663 +              left_path.push_back(nca);
  2.2664 +              nca =
  2.2665 +                _blossom_set->find(_graph.target((*_blossom_data)[nca].pred));
  2.2666 +              left_path.push_back(nca);
  2.2667 +            }
  2.2668 +          }
  2.2669 +        }
  2.2670 +      }
  2.2671 +
  2.2672 +      std::vector<int> subblossoms;
  2.2673 +      Arc prev;
  2.2674 +
  2.2675 +      prev = _graph.direct(edge, true);
  2.2676 +      for (int i = 0; left_path[i] != nca; i += 2) {
  2.2677 +        subblossoms.push_back(left_path[i]);
  2.2678 +        (*_blossom_data)[left_path[i]].next = prev;
  2.2679 +        _tree_set->erase(left_path[i]);
  2.2680 +
  2.2681 +        subblossoms.push_back(left_path[i + 1]);
  2.2682 +        (*_blossom_data)[left_path[i + 1]].status = EVEN;
  2.2683 +        oddToEven(left_path[i + 1], tree);
  2.2684 +        _tree_set->erase(left_path[i + 1]);
  2.2685 +        prev = _graph.oppositeArc((*_blossom_data)[left_path[i + 1]].pred);
  2.2686 +      }
  2.2687 +
  2.2688 +      int k = 0;
  2.2689 +      while (right_path[k] != nca) ++k;
  2.2690 +
  2.2691 +      subblossoms.push_back(nca);
  2.2692 +      (*_blossom_data)[nca].next = prev;
  2.2693 +
  2.2694 +      for (int i = k - 2; i >= 0; i -= 2) {
  2.2695 +        subblossoms.push_back(right_path[i + 1]);
  2.2696 +        (*_blossom_data)[right_path[i + 1]].status = EVEN;
  2.2697 +        oddToEven(right_path[i + 1], tree);
  2.2698 +        _tree_set->erase(right_path[i + 1]);
  2.2699 +
  2.2700 +        (*_blossom_data)[right_path[i + 1]].next =
  2.2701 +          (*_blossom_data)[right_path[i + 1]].pred;
  2.2702 +
  2.2703 +        subblossoms.push_back(right_path[i]);
  2.2704 +        _tree_set->erase(right_path[i]);
  2.2705 +      }
  2.2706 +
  2.2707 +      int surface =
  2.2708 +        _blossom_set->join(subblossoms.begin(), subblossoms.end());
  2.2709 +
  2.2710 +      for (int i = 0; i < int(subblossoms.size()); ++i) {
  2.2711 +        if (!_blossom_set->trivial(subblossoms[i])) {
  2.2712 +          (*_blossom_data)[subblossoms[i]].pot += 2 * _delta_sum;
  2.2713 +        }
  2.2714 +        (*_blossom_data)[subblossoms[i]].status = MATCHED;
  2.2715 +      }
  2.2716 +
  2.2717 +      (*_blossom_data)[surface].pot = -2 * _delta_sum;
  2.2718 +      (*_blossom_data)[surface].offset = 0;
  2.2719 +      (*_blossom_data)[surface].status = EVEN;
  2.2720 +      (*_blossom_data)[surface].pred = (*_blossom_data)[nca].pred;
  2.2721 +      (*_blossom_data)[surface].next = (*_blossom_data)[nca].pred;
  2.2722 +
  2.2723 +      _tree_set->insert(surface, tree);
  2.2724 +      _tree_set->erase(nca);
  2.2725 +    }
  2.2726 +
  2.2727 +    void splitBlossom(int blossom) {
  2.2728 +      Arc next = (*_blossom_data)[blossom].next;
  2.2729 +      Arc pred = (*_blossom_data)[blossom].pred;
  2.2730 +
  2.2731 +      int tree = _tree_set->find(blossom);
  2.2732 +
  2.2733 +      (*_blossom_data)[blossom].status = MATCHED;
  2.2734 +      oddToMatched(blossom);
  2.2735 +      if (_delta2->state(blossom) == _delta2->IN_HEAP) {
  2.2736 +        _delta2->erase(blossom);
  2.2737 +      }
  2.2738 +
  2.2739 +      std::vector<int> subblossoms;
  2.2740 +      _blossom_set->split(blossom, std::back_inserter(subblossoms));
  2.2741 +
  2.2742 +      Value offset = (*_blossom_data)[blossom].offset;
  2.2743 +      int b = _blossom_set->find(_graph.source(pred));
  2.2744 +      int d = _blossom_set->find(_graph.source(next));
  2.2745 +
  2.2746 +      int ib = -1, id = -1;
  2.2747 +      for (int i = 0; i < int(subblossoms.size()); ++i) {
  2.2748 +        if (subblossoms[i] == b) ib = i;
  2.2749 +        if (subblossoms[i] == d) id = i;
  2.2750 +
  2.2751 +        (*_blossom_data)[subblossoms[i]].offset = offset;
  2.2752 +        if (!_blossom_set->trivial(subblossoms[i])) {
  2.2753 +          (*_blossom_data)[subblossoms[i]].pot -= 2 * offset;
  2.2754 +        }
  2.2755 +        if (_blossom_set->classPrio(subblossoms[i]) !=
  2.2756 +            std::numeric_limits<Value>::max()) {
  2.2757 +          _delta2->push(subblossoms[i],
  2.2758 +                        _blossom_set->classPrio(subblossoms[i]) -
  2.2759 +                        (*_blossom_data)[subblossoms[i]].offset);
  2.2760 +        }
  2.2761 +      }
  2.2762 +
  2.2763 +      if (id > ib ? ((id - ib) % 2 == 0) : ((ib - id) % 2 == 1)) {
  2.2764 +        for (int i = (id + 1) % subblossoms.size();
  2.2765 +             i != ib; i = (i + 2) % subblossoms.size()) {
  2.2766 +          int sb = subblossoms[i];
  2.2767 +          int tb = subblossoms[(i + 1) % subblossoms.size()];
  2.2768 +          (*_blossom_data)[sb].next =
  2.2769 +            _graph.oppositeArc((*_blossom_data)[tb].next);
  2.2770 +        }
  2.2771 +
  2.2772 +        for (int i = ib; i != id; i = (i + 2) % subblossoms.size()) {
  2.2773 +          int sb = subblossoms[i];
  2.2774 +          int tb = subblossoms[(i + 1) % subblossoms.size()];
  2.2775 +          int ub = subblossoms[(i + 2) % subblossoms.size()];
  2.2776 +
  2.2777 +          (*_blossom_data)[sb].status = ODD;
  2.2778 +          matchedToOdd(sb);
  2.2779 +          _tree_set->insert(sb, tree);
  2.2780 +          (*_blossom_data)[sb].pred = pred;
  2.2781 +          (*_blossom_data)[sb].next =
  2.2782 +                           _graph.oppositeArc((*_blossom_data)[tb].next);
  2.2783 +
  2.2784 +          pred = (*_blossom_data)[ub].next;
  2.2785 +
  2.2786 +          (*_blossom_data)[tb].status = EVEN;
  2.2787 +          matchedToEven(tb, tree);
  2.2788 +          _tree_set->insert(tb, tree);
  2.2789 +          (*_blossom_data)[tb].pred = (*_blossom_data)[tb].next;
  2.2790 +        }
  2.2791 +
  2.2792 +        (*_blossom_data)[subblossoms[id]].status = ODD;
  2.2793 +        matchedToOdd(subblossoms[id]);
  2.2794 +        _tree_set->insert(subblossoms[id], tree);
  2.2795 +        (*_blossom_data)[subblossoms[id]].next = next;
  2.2796 +        (*_blossom_data)[subblossoms[id]].pred = pred;
  2.2797 +
  2.2798 +      } else {
  2.2799 +
  2.2800 +        for (int i = (ib + 1) % subblossoms.size();
  2.2801 +             i != id; i = (i + 2) % subblossoms.size()) {
  2.2802 +          int sb = subblossoms[i];
  2.2803 +          int tb = subblossoms[(i + 1) % subblossoms.size()];
  2.2804 +          (*_blossom_data)[sb].next =
  2.2805 +            _graph.oppositeArc((*_blossom_data)[tb].next);
  2.2806 +        }
  2.2807 +
  2.2808 +        for (int i = id; i != ib; i = (i + 2) % subblossoms.size()) {
  2.2809 +          int sb = subblossoms[i];
  2.2810 +          int tb = subblossoms[(i + 1) % subblossoms.size()];
  2.2811 +          int ub = subblossoms[(i + 2) % subblossoms.size()];
  2.2812 +
  2.2813 +          (*_blossom_data)[sb].status = ODD;
  2.2814 +          matchedToOdd(sb);
  2.2815 +          _tree_set->insert(sb, tree);
  2.2816 +          (*_blossom_data)[sb].next = next;
  2.2817 +          (*_blossom_data)[sb].pred =
  2.2818 +            _graph.oppositeArc((*_blossom_data)[tb].next);
  2.2819 +
  2.2820 +          (*_blossom_data)[tb].status = EVEN;
  2.2821 +          matchedToEven(tb, tree);
  2.2822 +          _tree_set->insert(tb, tree);
  2.2823 +          (*_blossom_data)[tb].pred =
  2.2824 +            (*_blossom_data)[tb].next =
  2.2825 +            _graph.oppositeArc((*_blossom_data)[ub].next);
  2.2826 +          next = (*_blossom_data)[ub].next;
  2.2827 +        }
  2.2828 +
  2.2829 +        (*_blossom_data)[subblossoms[ib]].status = ODD;
  2.2830 +        matchedToOdd(subblossoms[ib]);
  2.2831 +        _tree_set->insert(subblossoms[ib], tree);
  2.2832 +        (*_blossom_data)[subblossoms[ib]].next = next;
  2.2833 +        (*_blossom_data)[subblossoms[ib]].pred = pred;
  2.2834 +      }
  2.2835 +      _tree_set->erase(blossom);
  2.2836 +    }
  2.2837 +
  2.2838 +    void extractBlossom(int blossom, const Node& base, const Arc& matching) {
  2.2839 +      if (_blossom_set->trivial(blossom)) {
  2.2840 +        int bi = (*_node_index)[base];
  2.2841 +        Value pot = (*_node_data)[bi].pot;
  2.2842 +
  2.2843 +        (*_matching)[base] = matching;
  2.2844 +        _blossom_node_list.push_back(base);
  2.2845 +        (*_node_potential)[base] = pot;
  2.2846 +      } else {
  2.2847 +
  2.2848 +        Value pot = (*_blossom_data)[blossom].pot;
  2.2849 +        int bn = _blossom_node_list.size();
  2.2850 +
  2.2851 +        std::vector<int> subblossoms;
  2.2852 +        _blossom_set->split(blossom, std::back_inserter(subblossoms));
  2.2853 +        int b = _blossom_set->find(base);
  2.2854 +        int ib = -1;
  2.2855 +        for (int i = 0; i < int(subblossoms.size()); ++i) {
  2.2856 +          if (subblossoms[i] == b) { ib = i; break; }
  2.2857 +        }
  2.2858 +
  2.2859 +        for (int i = 1; i < int(subblossoms.size()); i += 2) {
  2.2860 +          int sb = subblossoms[(ib + i) % subblossoms.size()];
  2.2861 +          int tb = subblossoms[(ib + i + 1) % subblossoms.size()];
  2.2862 +
  2.2863 +          Arc m = (*_blossom_data)[tb].next;
  2.2864 +          extractBlossom(sb, _graph.target(m), _graph.oppositeArc(m));
  2.2865 +          extractBlossom(tb, _graph.source(m), m);
  2.2866 +        }
  2.2867 +        extractBlossom(subblossoms[ib], base, matching);
  2.2868 +
  2.2869 +        int en = _blossom_node_list.size();
  2.2870 +
  2.2871 +        _blossom_potential.push_back(BlossomVariable(bn, en, pot));
  2.2872 +      }
  2.2873 +    }
  2.2874 +
  2.2875 +    void extractMatching() {
  2.2876 +      std::vector<int> blossoms;
  2.2877 +      for (typename BlossomSet::ClassIt c(*_blossom_set); c != INVALID; ++c) {
  2.2878 +        blossoms.push_back(c);
  2.2879 +      }
  2.2880 +
  2.2881 +      for (int i = 0; i < int(blossoms.size()); ++i) {
  2.2882 +
  2.2883 +        Value offset = (*_blossom_data)[blossoms[i]].offset;
  2.2884 +        (*_blossom_data)[blossoms[i]].pot += 2 * offset;
  2.2885 +        for (typename BlossomSet::ItemIt n(*_blossom_set, blossoms[i]);
  2.2886 +             n != INVALID; ++n) {
  2.2887 +          (*_node_data)[(*_node_index)[n]].pot -= offset;
  2.2888 +        }
  2.2889 +
  2.2890 +        Arc matching = (*_blossom_data)[blossoms[i]].next;
  2.2891 +        Node base = _graph.source(matching);
  2.2892 +        extractBlossom(blossoms[i], base, matching);
  2.2893 +      }
  2.2894 +    }
  2.2895 +
  2.2896 +  public:
  2.2897 +
  2.2898 +    /// \brief Constructor
  2.2899 +    ///
  2.2900 +    /// Constructor.
  2.2901 +    MaxWeightedPerfectMatching(const Graph& graph, const WeightMap& weight)
  2.2902 +      : _graph(graph), _weight(weight), _matching(0),
  2.2903 +        _node_potential(0), _blossom_potential(), _blossom_node_list(),
  2.2904 +        _node_num(0), _blossom_num(0),
  2.2905 +
  2.2906 +        _blossom_index(0), _blossom_set(0), _blossom_data(0),
  2.2907 +        _node_index(0), _node_heap_index(0), _node_data(0),
  2.2908 +        _tree_set_index(0), _tree_set(0),
  2.2909 +
  2.2910 +        _delta2_index(0), _delta2(0),
  2.2911 +        _delta3_index(0), _delta3(0),
  2.2912 +        _delta4_index(0), _delta4(0),
  2.2913 +
  2.2914 +        _delta_sum() {}
  2.2915 +
  2.2916 +    ~MaxWeightedPerfectMatching() {
  2.2917 +      destroyStructures();
  2.2918 +    }
  2.2919 +
  2.2920 +    /// \name Execution Control
  2.2921 +    /// The simplest way to execute the algorithm is to use the
  2.2922 +    /// \ref run() member function.
  2.2923 +
  2.2924 +    ///@{
  2.2925 +
  2.2926 +    /// \brief Initialize the algorithm
  2.2927 +    ///
  2.2928 +    /// This function initializes the algorithm.
  2.2929 +    void init() {
  2.2930 +      createStructures();
  2.2931 +
  2.2932 +      for (ArcIt e(_graph); e != INVALID; ++e) {
  2.2933 +        (*_node_heap_index)[e] = BinHeap<Value, IntArcMap>::PRE_HEAP;
  2.2934 +      }
  2.2935 +      for (EdgeIt e(_graph); e != INVALID; ++e) {
  2.2936 +        (*_delta3_index)[e] = _delta3->PRE_HEAP;
  2.2937 +      }
  2.2938 +      for (int i = 0; i < _blossom_num; ++i) {
  2.2939 +        (*_delta2_index)[i] = _delta2->PRE_HEAP;
  2.2940 +        (*_delta4_index)[i] = _delta4->PRE_HEAP;
  2.2941 +      }
  2.2942 +
  2.2943 +      int index = 0;
  2.2944 +      for (NodeIt n(_graph); n != INVALID; ++n) {
  2.2945 +        Value max = - std::numeric_limits<Value>::max();
  2.2946 +        for (OutArcIt e(_graph, n); e != INVALID; ++e) {
  2.2947 +          if (_graph.target(e) == n) continue;
  2.2948 +          if ((dualScale * _weight[e]) / 2 > max) {
  2.2949 +            max = (dualScale * _weight[e]) / 2;
  2.2950 +          }
  2.2951 +        }
  2.2952 +        (*_node_index)[n] = index;
  2.2953 +        (*_node_data)[index].pot = max;
  2.2954 +        int blossom =
  2.2955 +          _blossom_set->insert(n, std::numeric_limits<Value>::max());
  2.2956 +
  2.2957 +        _tree_set->insert(blossom);
  2.2958 +
  2.2959 +        (*_blossom_data)[blossom].status = EVEN;
  2.2960 +        (*_blossom_data)[blossom].pred = INVALID;
  2.2961 +        (*_blossom_data)[blossom].next = INVALID;
  2.2962 +        (*_blossom_data)[blossom].pot = 0;
  2.2963 +        (*_blossom_data)[blossom].offset = 0;
  2.2964 +        ++index;
  2.2965 +      }
  2.2966 +      for (EdgeIt e(_graph); e != INVALID; ++e) {
  2.2967 +        int si = (*_node_index)[_graph.u(e)];
  2.2968 +        int ti = (*_node_index)[_graph.v(e)];
  2.2969 +        if (_graph.u(e) != _graph.v(e)) {
  2.2970 +          _delta3->push(e, ((*_node_data)[si].pot + (*_node_data)[ti].pot -
  2.2971 +                            dualScale * _weight[e]) / 2);
  2.2972 +        }
  2.2973 +      }
  2.2974 +    }
  2.2975 +
  2.2976 +    /// \brief Start the algorithm
  2.2977 +    ///
  2.2978 +    /// This function starts the algorithm.
  2.2979 +    ///
  2.2980 +    /// \pre \ref init() must be called before using this function.
  2.2981 +    bool start() {
  2.2982 +      enum OpType {
  2.2983 +        D2, D3, D4
  2.2984 +      };
  2.2985 +
  2.2986 +      int unmatched = _node_num;
  2.2987 +      while (unmatched > 0) {
  2.2988 +        Value d2 = !_delta2->empty() ?
  2.2989 +          _delta2->prio() : std::numeric_limits<Value>::max();
  2.2990 +
  2.2991 +        Value d3 = !_delta3->empty() ?
  2.2992 +          _delta3->prio() : std::numeric_limits<Value>::max();
  2.2993 +
  2.2994 +        Value d4 = !_delta4->empty() ?
  2.2995 +          _delta4->prio() : std::numeric_limits<Value>::max();
  2.2996 +
  2.2997 +        _delta_sum = d2; OpType ot = D2;
  2.2998 +        if (d3 < _delta_sum) { _delta_sum = d3; ot = D3; }
  2.2999 +        if (d4 < _delta_sum) { _delta_sum = d4; ot = D4; }
  2.3000 +
  2.3001 +        if (_delta_sum == std::numeric_limits<Value>::max()) {
  2.3002 +          return false;
  2.3003 +        }
  2.3004 +
  2.3005 +        switch (ot) {
  2.3006 +        case D2:
  2.3007 +          {
  2.3008 +            int blossom = _delta2->top();
  2.3009 +            Node n = _blossom_set->classTop(blossom);
  2.3010 +            Arc e = (*_node_data)[(*_node_index)[n]].heap.top();
  2.3011 +            extendOnArc(e);
  2.3012 +          }
  2.3013 +          break;
  2.3014 +        case D3:
  2.3015 +          {
  2.3016 +            Edge e = _delta3->top();
  2.3017 +
  2.3018 +            int left_blossom = _blossom_set->find(_graph.u(e));
  2.3019 +            int right_blossom = _blossom_set->find(_graph.v(e));
  2.3020 +
  2.3021 +            if (left_blossom == right_blossom) {
  2.3022 +              _delta3->pop();
  2.3023 +            } else {
  2.3024 +              int left_tree = _tree_set->find(left_blossom);
  2.3025 +              int right_tree = _tree_set->find(right_blossom);
  2.3026 +
  2.3027 +              if (left_tree == right_tree) {
  2.3028 +                shrinkOnEdge(e, left_tree);
  2.3029 +              } else {
  2.3030 +                augmentOnEdge(e);
  2.3031 +                unmatched -= 2;
  2.3032 +              }
  2.3033 +            }
  2.3034 +          } break;
  2.3035 +        case D4:
  2.3036 +          splitBlossom(_delta4->top());
  2.3037 +          break;
  2.3038 +        }
  2.3039 +      }
  2.3040 +      extractMatching();
  2.3041 +      return true;
  2.3042 +    }
  2.3043 +
  2.3044 +    /// \brief Run the algorithm.
  2.3045 +    ///
  2.3046 +    /// This method runs the \c %MaxWeightedPerfectMatching algorithm.
  2.3047 +    ///
  2.3048 +    /// \note mwpm.run() is just a shortcut of the following code.
  2.3049 +    /// \code
  2.3050 +    ///   mwpm.init();
  2.3051 +    ///   mwpm.start();
  2.3052 +    /// \endcode
  2.3053 +    bool run() {
  2.3054 +      init();
  2.3055 +      return start();
  2.3056 +    }
  2.3057 +
  2.3058 +    /// @}
  2.3059 +
  2.3060 +    /// \name Primal Solution
  2.3061 +    /// Functions to get the primal solution, i.e. the maximum weighted 
  2.3062 +    /// perfect matching.\n
  2.3063 +    /// Either \ref run() or \ref start() function should be called before
  2.3064 +    /// using them.
  2.3065 +
  2.3066 +    /// @{
  2.3067 +
  2.3068 +    /// \brief Return the weight of the matching.
  2.3069 +    ///
  2.3070 +    /// This function returns the weight of the found matching.
  2.3071 +    ///
  2.3072 +    /// \pre Either run() or start() must be called before using this function.
  2.3073 +    Value matchingWeight() const {
  2.3074 +      Value sum = 0;
  2.3075 +      for (NodeIt n(_graph); n != INVALID; ++n) {
  2.3076 +        if ((*_matching)[n] != INVALID) {
  2.3077 +          sum += _weight[(*_matching)[n]];
  2.3078 +        }
  2.3079 +      }
  2.3080 +      return sum /= 2;
  2.3081 +    }
  2.3082 +
  2.3083 +    /// \brief Return \c true if the given edge is in the matching.
  2.3084 +    ///
  2.3085 +    /// This function returns \c true if the given edge is in the found 
  2.3086 +    /// matching.
  2.3087 +    ///
  2.3088 +    /// \pre Either run() or start() must be called before using this function.
  2.3089 +    bool matching(const Edge& edge) const {
  2.3090 +      return static_cast<const Edge&>((*_matching)[_graph.u(edge)]) == edge;
  2.3091 +    }
  2.3092 +
  2.3093 +    /// \brief Return the matching arc (or edge) incident to the given node.
  2.3094 +    ///
  2.3095 +    /// This function returns the matching arc (or edge) incident to the
  2.3096 +    /// given node in the found matching or \c INVALID if the node is 
  2.3097 +    /// not covered by the matching.
  2.3098 +    ///
  2.3099 +    /// \pre Either run() or start() must be called before using this function.
  2.3100 +    Arc matching(const Node& node) const {
  2.3101 +      return (*_matching)[node];
  2.3102 +    }
  2.3103 +
  2.3104 +    /// \brief Return a const reference to the matching map.
  2.3105 +    ///
  2.3106 +    /// This function returns a const reference to a node map that stores
  2.3107 +    /// the matching arc (or edge) incident to each node.
  2.3108 +    const MatchingMap& matchingMap() const {
  2.3109 +      return *_matching;
  2.3110 +    }
  2.3111 +
  2.3112 +    /// \brief Return the mate of the given node.
  2.3113 +    ///
  2.3114 +    /// This function returns the mate of the given node in the found 
  2.3115 +    /// matching or \c INVALID if the node is not covered by the matching.
  2.3116 +    ///
  2.3117 +    /// \pre Either run() or start() must be called before using this function.
  2.3118 +    Node mate(const Node& node) const {
  2.3119 +      return _graph.target((*_matching)[node]);
  2.3120 +    }
  2.3121 +
  2.3122 +    /// @}
  2.3123 +
  2.3124 +    /// \name Dual Solution
  2.3125 +    /// Functions to get the dual solution.\n
  2.3126 +    /// Either \ref run() or \ref start() function should be called before
  2.3127 +    /// using them.
  2.3128 +
  2.3129 +    /// @{
  2.3130 +
  2.3131 +    /// \brief Return the value of the dual solution.
  2.3132 +    ///
  2.3133 +    /// This function returns the value of the dual solution. 
  2.3134 +    /// It should be equal to the primal value scaled by \ref dualScale 
  2.3135 +    /// "dual scale".
  2.3136 +    ///
  2.3137 +    /// \pre Either run() or start() must be called before using this function.
  2.3138 +    Value dualValue() const {
  2.3139 +      Value sum = 0;
  2.3140 +      for (NodeIt n(_graph); n != INVALID; ++n) {
  2.3141 +        sum += nodeValue(n);
  2.3142 +      }
  2.3143 +      for (int i = 0; i < blossomNum(); ++i) {
  2.3144 +        sum += blossomValue(i) * (blossomSize(i) / 2);
  2.3145 +      }
  2.3146 +      return sum;
  2.3147 +    }
  2.3148 +
  2.3149 +    /// \brief Return the dual value (potential) of the given node.
  2.3150 +    ///
  2.3151 +    /// This function returns the dual value (potential) of the given node.
  2.3152 +    ///
  2.3153 +    /// \pre Either run() or start() must be called before using this function.
  2.3154 +    Value nodeValue(const Node& n) const {
  2.3155 +      return (*_node_potential)[n];
  2.3156 +    }
  2.3157 +
  2.3158 +    /// \brief Return the number of the blossoms in the basis.
  2.3159 +    ///
  2.3160 +    /// This function returns the number of the blossoms in the basis.
  2.3161 +    ///
  2.3162 +    /// \pre Either run() or start() must be called before using this function.
  2.3163 +    /// \see BlossomIt
  2.3164 +    int blossomNum() const {
  2.3165 +      return _blossom_potential.size();
  2.3166 +    }
  2.3167 +
  2.3168 +    /// \brief Return the number of the nodes in the given blossom.
  2.3169 +    ///
  2.3170 +    /// This function returns the number of the nodes in the given blossom.
  2.3171 +    ///
  2.3172 +    /// \pre Either run() or start() must be called before using this function.
  2.3173 +    /// \see BlossomIt
  2.3174 +    int blossomSize(int k) const {
  2.3175 +      return _blossom_potential[k].end - _blossom_potential[k].begin;
  2.3176 +    }
  2.3177 +
  2.3178 +    /// \brief Return the dual value (ptential) of the given blossom.
  2.3179 +    ///
  2.3180 +    /// This function returns the dual value (ptential) of the given blossom.
  2.3181 +    ///
  2.3182 +    /// \pre Either run() or start() must be called before using this function.
  2.3183 +    Value blossomValue(int k) const {
  2.3184 +      return _blossom_potential[k].value;
  2.3185 +    }
  2.3186 +
  2.3187 +    /// \brief Iterator for obtaining the nodes of a blossom.
  2.3188 +    ///
  2.3189 +    /// This class provides an iterator for obtaining the nodes of the 
  2.3190 +    /// given blossom. It lists a subset of the nodes.
  2.3191 +    /// Before using this iterator, you must allocate a 
  2.3192 +    /// MaxWeightedPerfectMatching class and execute it.
  2.3193 +    class BlossomIt {
  2.3194 +    public:
  2.3195 +
  2.3196 +      /// \brief Constructor.
  2.3197 +      ///
  2.3198 +      /// Constructor to get the nodes of the given variable.
  2.3199 +      ///
  2.3200 +      /// \pre Either \ref MaxWeightedPerfectMatching::run() "algorithm.run()" 
  2.3201 +      /// or \ref MaxWeightedPerfectMatching::start() "algorithm.start()" 
  2.3202 +      /// must be called before initializing this iterator.
  2.3203 +      BlossomIt(const MaxWeightedPerfectMatching& algorithm, int variable)
  2.3204 +        : _algorithm(&algorithm)
  2.3205 +      {
  2.3206 +        _index = _algorithm->_blossom_potential[variable].begin;
  2.3207 +        _last = _algorithm->_blossom_potential[variable].end;
  2.3208 +      }
  2.3209 +
  2.3210 +      /// \brief Conversion to \c Node.
  2.3211 +      ///
  2.3212 +      /// Conversion to \c Node.
  2.3213 +      operator Node() const {
  2.3214 +        return _algorithm->_blossom_node_list[_index];
  2.3215 +      }
  2.3216 +
  2.3217 +      /// \brief Increment operator.
  2.3218 +      ///
  2.3219 +      /// Increment operator.
  2.3220 +      BlossomIt& operator++() {
  2.3221 +        ++_index;
  2.3222 +        return *this;
  2.3223 +      }
  2.3224 +
  2.3225 +      /// \brief Validity checking
  2.3226 +      ///
  2.3227 +      /// This function checks whether the iterator is invalid.
  2.3228 +      bool operator==(Invalid) const { return _index == _last; }
  2.3229 +
  2.3230 +      /// \brief Validity checking
  2.3231 +      ///
  2.3232 +      /// This function checks whether the iterator is valid.
  2.3233 +      bool operator!=(Invalid) const { return _index != _last; }
  2.3234 +
  2.3235 +    private:
  2.3236 +      const MaxWeightedPerfectMatching* _algorithm;
  2.3237 +      int _last;
  2.3238 +      int _index;
  2.3239 +    };
  2.3240 +
  2.3241 +    /// @}
  2.3242 +
  2.3243 +  };
  2.3244 +
  2.3245 +} //END OF NAMESPACE LEMON
  2.3246 +
  2.3247 +#endif //LEMON_MAX_MATCHING_H
     3.1 --- a/lemon/max_matching.h	Fri Apr 17 09:54:14 2009 +0200
     3.2 +++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
     3.3 @@ -1,3244 +0,0 @@
     3.4 -/* -*- mode: C++; indent-tabs-mode: nil; -*-
     3.5 - *
     3.6 - * This file is a part of LEMON, a generic C++ optimization library.
     3.7 - *
     3.8 - * Copyright (C) 2003-2009
     3.9 - * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
    3.10 - * (Egervary Research Group on Combinatorial Optimization, EGRES).
    3.11 - *
    3.12 - * Permission to use, modify and distribute this software is granted
    3.13 - * provided that this copyright notice appears in all copies. For
    3.14 - * precise terms see the accompanying LICENSE file.
    3.15 - *
    3.16 - * This software is provided "AS IS" with no warranty of any kind,
    3.17 - * express or implied, and with no claim as to its suitability for any
    3.18 - * purpose.
    3.19 - *
    3.20 - */
    3.21 -
    3.22 -#ifndef LEMON_MAX_MATCHING_H
    3.23 -#define LEMON_MAX_MATCHING_H
    3.24 -
    3.25 -#include <vector>
    3.26 -#include <queue>
    3.27 -#include <set>
    3.28 -#include <limits>
    3.29 -
    3.30 -#include <lemon/core.h>
    3.31 -#include <lemon/unionfind.h>
    3.32 -#include <lemon/bin_heap.h>
    3.33 -#include <lemon/maps.h>
    3.34 -
    3.35 -///\ingroup matching
    3.36 -///\file
    3.37 -///\brief Maximum matching algorithms in general graphs.
    3.38 -
    3.39 -namespace lemon {
    3.40 -
    3.41 -  /// \ingroup matching
    3.42 -  ///
    3.43 -  /// \brief Maximum cardinality matching in general graphs
    3.44 -  ///
    3.45 -  /// This class implements Edmonds' alternating forest matching algorithm
    3.46 -  /// for finding a maximum cardinality matching in a general undirected graph.
    3.47 -  /// It can be started from an arbitrary initial matching 
    3.48 -  /// (the default is the empty one).
    3.49 -  ///
    3.50 -  /// The dual solution of the problem is a map of the nodes to
    3.51 -  /// \ref MaxMatching::Status "Status", having values \c EVEN (or \c D),
    3.52 -  /// \c ODD (or \c A) and \c MATCHED (or \c C) defining the Gallai-Edmonds
    3.53 -  /// decomposition of the graph. The nodes in \c EVEN/D induce a subgraph
    3.54 -  /// with factor-critical components, the nodes in \c ODD/A form the
    3.55 -  /// canonical barrier, and the nodes in \c MATCHED/C induce a graph having
    3.56 -  /// a perfect matching. The number of the factor-critical components
    3.57 -  /// minus the number of barrier nodes is a lower bound on the
    3.58 -  /// unmatched nodes, and the matching is optimal if and only if this bound is
    3.59 -  /// tight. This decomposition can be obtained using \ref status() or
    3.60 -  /// \ref statusMap() after running the algorithm.
    3.61 -  ///
    3.62 -  /// \tparam GR The undirected graph type the algorithm runs on.
    3.63 -  template <typename GR>
    3.64 -  class MaxMatching {
    3.65 -  public:
    3.66 -
    3.67 -    /// The graph type of the algorithm
    3.68 -    typedef GR Graph;
    3.69 -    /// The type of the matching map
    3.70 -    typedef typename Graph::template NodeMap<typename Graph::Arc>
    3.71 -    MatchingMap;
    3.72 -
    3.73 -    ///\brief Status constants for Gallai-Edmonds decomposition.
    3.74 -    ///
    3.75 -    ///These constants are used for indicating the Gallai-Edmonds 
    3.76 -    ///decomposition of a graph. The nodes with status \c EVEN (or \c D)
    3.77 -    ///induce a subgraph with factor-critical components, the nodes with
    3.78 -    ///status \c ODD (or \c A) form the canonical barrier, and the nodes
    3.79 -    ///with status \c MATCHED (or \c C) induce a subgraph having a 
    3.80 -    ///perfect matching.
    3.81 -    enum Status {
    3.82 -      EVEN = 1,       ///< = 1. (\c D is an alias for \c EVEN.)
    3.83 -      D = 1,
    3.84 -      MATCHED = 0,    ///< = 0. (\c C is an alias for \c MATCHED.)
    3.85 -      C = 0,
    3.86 -      ODD = -1,       ///< = -1. (\c A is an alias for \c ODD.)
    3.87 -      A = -1,
    3.88 -      UNMATCHED = -2  ///< = -2.
    3.89 -    };
    3.90 -
    3.91 -    /// The type of the status map
    3.92 -    typedef typename Graph::template NodeMap<Status> StatusMap;
    3.93 -
    3.94 -  private:
    3.95 -
    3.96 -    TEMPLATE_GRAPH_TYPEDEFS(Graph);
    3.97 -
    3.98 -    typedef UnionFindEnum<IntNodeMap> BlossomSet;
    3.99 -    typedef ExtendFindEnum<IntNodeMap> TreeSet;
   3.100 -    typedef RangeMap<Node> NodeIntMap;
   3.101 -    typedef MatchingMap EarMap;
   3.102 -    typedef std::vector<Node> NodeQueue;
   3.103 -
   3.104 -    const Graph& _graph;
   3.105 -    MatchingMap* _matching;
   3.106 -    StatusMap* _status;
   3.107 -
   3.108 -    EarMap* _ear;
   3.109 -
   3.110 -    IntNodeMap* _blossom_set_index;
   3.111 -    BlossomSet* _blossom_set;
   3.112 -    NodeIntMap* _blossom_rep;
   3.113 -
   3.114 -    IntNodeMap* _tree_set_index;
   3.115 -    TreeSet* _tree_set;
   3.116 -
   3.117 -    NodeQueue _node_queue;
   3.118 -    int _process, _postpone, _last;
   3.119 -
   3.120 -    int _node_num;
   3.121 -
   3.122 -  private:
   3.123 -
   3.124 -    void createStructures() {
   3.125 -      _node_num = countNodes(_graph);
   3.126 -      if (!_matching) {
   3.127 -        _matching = new MatchingMap(_graph);
   3.128 -      }
   3.129 -      if (!_status) {
   3.130 -        _status = new StatusMap(_graph);
   3.131 -      }
   3.132 -      if (!_ear) {
   3.133 -        _ear = new EarMap(_graph);
   3.134 -      }
   3.135 -      if (!_blossom_set) {
   3.136 -        _blossom_set_index = new IntNodeMap(_graph);
   3.137 -        _blossom_set = new BlossomSet(*_blossom_set_index);
   3.138 -      }
   3.139 -      if (!_blossom_rep) {
   3.140 -        _blossom_rep = new NodeIntMap(_node_num);
   3.141 -      }
   3.142 -      if (!_tree_set) {
   3.143 -        _tree_set_index = new IntNodeMap(_graph);
   3.144 -        _tree_set = new TreeSet(*_tree_set_index);
   3.145 -      }
   3.146 -      _node_queue.resize(_node_num);
   3.147 -    }
   3.148 -
   3.149 -    void destroyStructures() {
   3.150 -      if (_matching) {
   3.151 -        delete _matching;
   3.152 -      }
   3.153 -      if (_status) {
   3.154 -        delete _status;
   3.155 -      }
   3.156 -      if (_ear) {
   3.157 -        delete _ear;
   3.158 -      }
   3.159 -      if (_blossom_set) {
   3.160 -        delete _blossom_set;
   3.161 -        delete _blossom_set_index;
   3.162 -      }
   3.163 -      if (_blossom_rep) {
   3.164 -        delete _blossom_rep;
   3.165 -      }
   3.166 -      if (_tree_set) {
   3.167 -        delete _tree_set_index;
   3.168 -        delete _tree_set;
   3.169 -      }
   3.170 -    }
   3.171 -
   3.172 -    void processDense(const Node& n) {
   3.173 -      _process = _postpone = _last = 0;
   3.174 -      _node_queue[_last++] = n;
   3.175 -
   3.176 -      while (_process != _last) {
   3.177 -        Node u = _node_queue[_process++];
   3.178 -        for (OutArcIt a(_graph, u); a != INVALID; ++a) {
   3.179 -          Node v = _graph.target(a);
   3.180 -          if ((*_status)[v] == MATCHED) {
   3.181 -            extendOnArc(a);
   3.182 -          } else if ((*_status)[v] == UNMATCHED) {
   3.183 -            augmentOnArc(a);
   3.184 -            return;
   3.185 -          }
   3.186 -        }
   3.187 -      }
   3.188 -
   3.189 -      while (_postpone != _last) {
   3.190 -        Node u = _node_queue[_postpone++];
   3.191 -
   3.192 -        for (OutArcIt a(_graph, u); a != INVALID ; ++a) {
   3.193 -          Node v = _graph.target(a);
   3.194 -
   3.195 -          if ((*_status)[v] == EVEN) {
   3.196 -            if (_blossom_set->find(u) != _blossom_set->find(v)) {
   3.197 -              shrinkOnEdge(a);
   3.198 -            }
   3.199 -          }
   3.200 -
   3.201 -          while (_process != _last) {
   3.202 -            Node w = _node_queue[_process++];
   3.203 -            for (OutArcIt b(_graph, w); b != INVALID; ++b) {
   3.204 -              Node x = _graph.target(b);
   3.205 -              if ((*_status)[x] == MATCHED) {
   3.206 -                extendOnArc(b);
   3.207 -              } else if ((*_status)[x] == UNMATCHED) {
   3.208 -                augmentOnArc(b);
   3.209 -                return;
   3.210 -              }
   3.211 -            }
   3.212 -          }
   3.213 -        }
   3.214 -      }
   3.215 -    }
   3.216 -
   3.217 -    void processSparse(const Node& n) {
   3.218 -      _process = _last = 0;
   3.219 -      _node_queue[_last++] = n;
   3.220 -      while (_process != _last) {
   3.221 -        Node u = _node_queue[_process++];
   3.222 -        for (OutArcIt a(_graph, u); a != INVALID; ++a) {
   3.223 -          Node v = _graph.target(a);
   3.224 -
   3.225 -          if ((*_status)[v] == EVEN) {
   3.226 -            if (_blossom_set->find(u) != _blossom_set->find(v)) {
   3.227 -              shrinkOnEdge(a);
   3.228 -            }
   3.229 -          } else if ((*_status)[v] == MATCHED) {
   3.230 -            extendOnArc(a);
   3.231 -          } else if ((*_status)[v] == UNMATCHED) {
   3.232 -            augmentOnArc(a);
   3.233 -            return;
   3.234 -          }
   3.235 -        }
   3.236 -      }
   3.237 -    }
   3.238 -
   3.239 -    void shrinkOnEdge(const Edge& e) {
   3.240 -      Node nca = INVALID;
   3.241 -
   3.242 -      {
   3.243 -        std::set<Node> left_set, right_set;
   3.244 -
   3.245 -        Node left = (*_blossom_rep)[_blossom_set->find(_graph.u(e))];
   3.246 -        left_set.insert(left);
   3.247 -
   3.248 -        Node right = (*_blossom_rep)[_blossom_set->find(_graph.v(e))];
   3.249 -        right_set.insert(right);
   3.250 -
   3.251 -        while (true) {
   3.252 -          if ((*_matching)[left] == INVALID) break;
   3.253 -          left = _graph.target((*_matching)[left]);
   3.254 -          left = (*_blossom_rep)[_blossom_set->
   3.255 -                                 find(_graph.target((*_ear)[left]))];
   3.256 -          if (right_set.find(left) != right_set.end()) {
   3.257 -            nca = left;
   3.258 -            break;
   3.259 -          }
   3.260 -          left_set.insert(left);
   3.261 -
   3.262 -          if ((*_matching)[right] == INVALID) break;
   3.263 -          right = _graph.target((*_matching)[right]);
   3.264 -          right = (*_blossom_rep)[_blossom_set->
   3.265 -                                  find(_graph.target((*_ear)[right]))];
   3.266 -          if (left_set.find(right) != left_set.end()) {
   3.267 -            nca = right;
   3.268 -            break;
   3.269 -          }
   3.270 -          right_set.insert(right);
   3.271 -        }
   3.272 -
   3.273 -        if (nca == INVALID) {
   3.274 -          if ((*_matching)[left] == INVALID) {
   3.275 -            nca = right;
   3.276 -            while (left_set.find(nca) == left_set.end()) {
   3.277 -              nca = _graph.target((*_matching)[nca]);
   3.278 -              nca =(*_blossom_rep)[_blossom_set->
   3.279 -                                   find(_graph.target((*_ear)[nca]))];
   3.280 -            }
   3.281 -          } else {
   3.282 -            nca = left;
   3.283 -            while (right_set.find(nca) == right_set.end()) {
   3.284 -              nca = _graph.target((*_matching)[nca]);
   3.285 -              nca = (*_blossom_rep)[_blossom_set->
   3.286 -                                   find(_graph.target((*_ear)[nca]))];
   3.287 -            }
   3.288 -          }
   3.289 -        }
   3.290 -      }
   3.291 -
   3.292 -      {
   3.293 -
   3.294 -        Node node = _graph.u(e);
   3.295 -        Arc arc = _graph.direct(e, true);
   3.296 -        Node base = (*_blossom_rep)[_blossom_set->find(node)];
   3.297 -
   3.298 -        while (base != nca) {
   3.299 -          (*_ear)[node] = arc;
   3.300 -
   3.301 -          Node n = node;
   3.302 -          while (n != base) {
   3.303 -            n = _graph.target((*_matching)[n]);
   3.304 -            Arc a = (*_ear)[n];
   3.305 -            n = _graph.target(a);
   3.306 -            (*_ear)[n] = _graph.oppositeArc(a);
   3.307 -          }
   3.308 -          node = _graph.target((*_matching)[base]);
   3.309 -          _tree_set->erase(base);
   3.310 -          _tree_set->erase(node);
   3.311 -          _blossom_set->insert(node, _blossom_set->find(base));
   3.312 -          (*_status)[node] = EVEN;
   3.313 -          _node_queue[_last++] = node;
   3.314 -          arc = _graph.oppositeArc((*_ear)[node]);
   3.315 -          node = _graph.target((*_ear)[node]);
   3.316 -          base = (*_blossom_rep)[_blossom_set->find(node)];
   3.317 -          _blossom_set->join(_graph.target(arc), base);
   3.318 -        }
   3.319 -      }
   3.320 -
   3.321 -      (*_blossom_rep)[_blossom_set->find(nca)] = nca;
   3.322 -
   3.323 -      {
   3.324 -
   3.325 -        Node node = _graph.v(e);
   3.326 -        Arc arc = _graph.direct(e, false);
   3.327 -        Node base = (*_blossom_rep)[_blossom_set->find(node)];
   3.328 -
   3.329 -        while (base != nca) {
   3.330 -          (*_ear)[node] = arc;
   3.331 -
   3.332 -          Node n = node;
   3.333 -          while (n != base) {
   3.334 -            n = _graph.target((*_matching)[n]);
   3.335 -            Arc a = (*_ear)[n];
   3.336 -            n = _graph.target(a);
   3.337 -            (*_ear)[n] = _graph.oppositeArc(a);
   3.338 -          }
   3.339 -          node = _graph.target((*_matching)[base]);
   3.340 -          _tree_set->erase(base);
   3.341 -          _tree_set->erase(node);
   3.342 -          _blossom_set->insert(node, _blossom_set->find(base));
   3.343 -          (*_status)[node] = EVEN;
   3.344 -          _node_queue[_last++] = node;
   3.345 -          arc = _graph.oppositeArc((*_ear)[node]);
   3.346 -          node = _graph.target((*_ear)[node]);
   3.347 -          base = (*_blossom_rep)[_blossom_set->find(node)];
   3.348 -          _blossom_set->join(_graph.target(arc), base);
   3.349 -        }
   3.350 -      }
   3.351 -
   3.352 -      (*_blossom_rep)[_blossom_set->find(nca)] = nca;
   3.353 -    }
   3.354 -
   3.355 -    void extendOnArc(const Arc& a) {
   3.356 -      Node base = _graph.source(a);
   3.357 -      Node odd = _graph.target(a);
   3.358 -
   3.359 -      (*_ear)[odd] = _graph.oppositeArc(a);
   3.360 -      Node even = _graph.target((*_matching)[odd]);
   3.361 -      (*_blossom_rep)[_blossom_set->insert(even)] = even;
   3.362 -      (*_status)[odd] = ODD;
   3.363 -      (*_status)[even] = EVEN;
   3.364 -      int tree = _tree_set->find((*_blossom_rep)[_blossom_set->find(base)]);
   3.365 -      _tree_set->insert(odd, tree);
   3.366 -      _tree_set->insert(even, tree);
   3.367 -      _node_queue[_last++] = even;
   3.368 -
   3.369 -    }
   3.370 -
   3.371 -    void augmentOnArc(const Arc& a) {
   3.372 -      Node even = _graph.source(a);
   3.373 -      Node odd = _graph.target(a);
   3.374 -
   3.375 -      int tree = _tree_set->find((*_blossom_rep)[_blossom_set->find(even)]);
   3.376 -
   3.377 -      (*_matching)[odd] = _graph.oppositeArc(a);
   3.378 -      (*_status)[odd] = MATCHED;
   3.379 -
   3.380 -      Arc arc = (*_matching)[even];
   3.381 -      (*_matching)[even] = a;
   3.382 -
   3.383 -      while (arc != INVALID) {
   3.384 -        odd = _graph.target(arc);
   3.385 -        arc = (*_ear)[odd];
   3.386 -        even = _graph.target(arc);
   3.387 -        (*_matching)[odd] = arc;
   3.388 -        arc = (*_matching)[even];
   3.389 -        (*_matching)[even] = _graph.oppositeArc((*_matching)[odd]);
   3.390 -      }
   3.391 -
   3.392 -      for (typename TreeSet::ItemIt it(*_tree_set, tree);
   3.393 -           it != INVALID; ++it) {
   3.394 -        if ((*_status)[it] == ODD) {
   3.395 -          (*_status)[it] = MATCHED;
   3.396 -        } else {
   3.397 -          int blossom = _blossom_set->find(it);
   3.398 -          for (typename BlossomSet::ItemIt jt(*_blossom_set, blossom);
   3.399 -               jt != INVALID; ++jt) {
   3.400 -            (*_status)[jt] = MATCHED;
   3.401 -          }
   3.402 -          _blossom_set->eraseClass(blossom);
   3.403 -        }
   3.404 -      }
   3.405 -      _tree_set->eraseClass(tree);
   3.406 -
   3.407 -    }
   3.408 -
   3.409 -  public:
   3.410 -
   3.411 -    /// \brief Constructor
   3.412 -    ///
   3.413 -    /// Constructor.
   3.414 -    MaxMatching(const Graph& graph)
   3.415 -      : _graph(graph), _matching(0), _status(0), _ear(0),
   3.416 -        _blossom_set_index(0), _blossom_set(0), _blossom_rep(0),
   3.417 -        _tree_set_index(0), _tree_set(0) {}
   3.418 -
   3.419 -    ~MaxMatching() {
   3.420 -      destroyStructures();
   3.421 -    }
   3.422 -
   3.423 -    /// \name Execution Control
   3.424 -    /// The simplest way to execute the algorithm is to use the
   3.425 -    /// \c run() member function.\n
   3.426 -    /// If you need better control on the execution, you have to call
   3.427 -    /// one of the functions \ref init(), \ref greedyInit() or
   3.428 -    /// \ref matchingInit() first, then you can start the algorithm with
   3.429 -    /// \ref startSparse() or \ref startDense().
   3.430 -
   3.431 -    ///@{
   3.432 -
   3.433 -    /// \brief Set the initial matching to the empty matching.
   3.434 -    ///
   3.435 -    /// This function sets the initial matching to the empty matching.
   3.436 -    void init() {
   3.437 -      createStructures();
   3.438 -      for(NodeIt n(_graph); n != INVALID; ++n) {
   3.439 -        (*_matching)[n] = INVALID;
   3.440 -        (*_status)[n] = UNMATCHED;
   3.441 -      }
   3.442 -    }
   3.443 -
   3.444 -    /// \brief Find an initial matching in a greedy way.
   3.445 -    ///
   3.446 -    /// This function finds an initial matching in a greedy way.
   3.447 -    void greedyInit() {
   3.448 -      createStructures();
   3.449 -      for (NodeIt n(_graph); n != INVALID; ++n) {
   3.450 -        (*_matching)[n] = INVALID;
   3.451 -        (*_status)[n] = UNMATCHED;
   3.452 -      }
   3.453 -      for (NodeIt n(_graph); n != INVALID; ++n) {
   3.454 -        if ((*_matching)[n] == INVALID) {
   3.455 -          for (OutArcIt a(_graph, n); a != INVALID ; ++a) {
   3.456 -            Node v = _graph.target(a);
   3.457 -            if ((*_matching)[v] == INVALID && v != n) {
   3.458 -              (*_matching)[n] = a;
   3.459 -              (*_status)[n] = MATCHED;
   3.460 -              (*_matching)[v] = _graph.oppositeArc(a);
   3.461 -              (*_status)[v] = MATCHED;
   3.462 -              break;
   3.463 -            }
   3.464 -          }
   3.465 -        }
   3.466 -      }
   3.467 -    }
   3.468 -
   3.469 -
   3.470 -    /// \brief Initialize the matching from a map.
   3.471 -    ///
   3.472 -    /// This function initializes the matching from a \c bool valued edge
   3.473 -    /// map. This map should have the property that there are no two incident
   3.474 -    /// edges with \c true value, i.e. it really contains a matching.
   3.475 -    /// \return \c true if the map contains a matching.
   3.476 -    template <typename MatchingMap>
   3.477 -    bool matchingInit(const MatchingMap& matching) {
   3.478 -      createStructures();
   3.479 -
   3.480 -      for (NodeIt n(_graph); n != INVALID; ++n) {
   3.481 -        (*_matching)[n] = INVALID;
   3.482 -        (*_status)[n] = UNMATCHED;
   3.483 -      }
   3.484 -      for(EdgeIt e(_graph); e!=INVALID; ++e) {
   3.485 -        if (matching[e]) {
   3.486 -
   3.487 -          Node u = _graph.u(e);
   3.488 -          if ((*_matching)[u] != INVALID) return false;
   3.489 -          (*_matching)[u] = _graph.direct(e, true);
   3.490 -          (*_status)[u] = MATCHED;
   3.491 -
   3.492 -          Node v = _graph.v(e);
   3.493 -          if ((*_matching)[v] != INVALID) return false;
   3.494 -          (*_matching)[v] = _graph.direct(e, false);
   3.495 -          (*_status)[v] = MATCHED;
   3.496 -        }
   3.497 -      }
   3.498 -      return true;
   3.499 -    }
   3.500 -
   3.501 -    /// \brief Start Edmonds' algorithm
   3.502 -    ///
   3.503 -    /// This function runs the original Edmonds' algorithm.
   3.504 -    ///
   3.505 -    /// \pre \ref Init(), \ref greedyInit() or \ref matchingInit() must be
   3.506 -    /// called before using this function.
   3.507 -    void startSparse() {
   3.508 -      for(NodeIt n(_graph); n != INVALID; ++n) {
   3.509 -        if ((*_status)[n] == UNMATCHED) {
   3.510 -          (*_blossom_rep)[_blossom_set->insert(n)] = n;
   3.511 -          _tree_set->insert(n);
   3.512 -          (*_status)[n] = EVEN;
   3.513 -          processSparse(n);
   3.514 -        }
   3.515 -      }
   3.516 -    }
   3.517 -
   3.518 -    /// \brief Start Edmonds' algorithm with a heuristic improvement 
   3.519 -    /// for dense graphs
   3.520 -    ///
   3.521 -    /// This function runs Edmonds' algorithm with a heuristic of postponing
   3.522 -    /// shrinks, therefore resulting in a faster algorithm for dense graphs.
   3.523 -    ///
   3.524 -    /// \pre \ref Init(), \ref greedyInit() or \ref matchingInit() must be
   3.525 -    /// called before using this function.
   3.526 -    void startDense() {
   3.527 -      for(NodeIt n(_graph); n != INVALID; ++n) {
   3.528 -        if ((*_status)[n] == UNMATCHED) {
   3.529 -          (*_blossom_rep)[_blossom_set->insert(n)] = n;
   3.530 -          _tree_set->insert(n);
   3.531 -          (*_status)[n] = EVEN;
   3.532 -          processDense(n);
   3.533 -        }
   3.534 -      }
   3.535 -    }
   3.536 -
   3.537 -
   3.538 -    /// \brief Run Edmonds' algorithm
   3.539 -    ///
   3.540 -    /// This function runs Edmonds' algorithm. An additional heuristic of 
   3.541 -    /// postponing shrinks is used for relatively dense graphs 
   3.542 -    /// (for which <tt>m>=2*n</tt> holds).
   3.543 -    void run() {
   3.544 -      if (countEdges(_graph) < 2 * countNodes(_graph)) {
   3.545 -        greedyInit();
   3.546 -        startSparse();
   3.547 -      } else {
   3.548 -        init();
   3.549 -        startDense();
   3.550 -      }
   3.551 -    }
   3.552 -
   3.553 -    /// @}
   3.554 -
   3.555 -    /// \name Primal Solution
   3.556 -    /// Functions to get the primal solution, i.e. the maximum matching.
   3.557 -
   3.558 -    /// @{
   3.559 -
   3.560 -    /// \brief Return the size (cardinality) of the matching.
   3.561 -    ///
   3.562 -    /// This function returns the size (cardinality) of the current matching. 
   3.563 -    /// After run() it returns the size of the maximum matching in the graph.
   3.564 -    int matchingSize() const {
   3.565 -      int size = 0;
   3.566 -      for (NodeIt n(_graph); n != INVALID; ++n) {
   3.567 -        if ((*_matching)[n] != INVALID) {
   3.568 -          ++size;
   3.569 -        }
   3.570 -      }
   3.571 -      return size / 2;
   3.572 -    }
   3.573 -
   3.574 -    /// \brief Return \c true if the given edge is in the matching.
   3.575 -    ///
   3.576 -    /// This function returns \c true if the given edge is in the current 
   3.577 -    /// matching.
   3.578 -    bool matching(const Edge& edge) const {
   3.579 -      return edge == (*_matching)[_graph.u(edge)];
   3.580 -    }
   3.581 -
   3.582 -    /// \brief Return the matching arc (or edge) incident to the given node.
   3.583 -    ///
   3.584 -    /// This function returns the matching arc (or edge) incident to the
   3.585 -    /// given node in the current matching or \c INVALID if the node is 
   3.586 -    /// not covered by the matching.
   3.587 -    Arc matching(const Node& n) const {
   3.588 -      return (*_matching)[n];
   3.589 -    }
   3.590 -
   3.591 -    /// \brief Return a const reference to the matching map.
   3.592 -    ///
   3.593 -    /// This function returns a const reference to a node map that stores
   3.594 -    /// the matching arc (or edge) incident to each node.
   3.595 -    const MatchingMap& matchingMap() const {
   3.596 -      return *_matching;
   3.597 -    }
   3.598 -
   3.599 -    /// \brief Return the mate of the given node.
   3.600 -    ///
   3.601 -    /// This function returns the mate of the given node in the current 
   3.602 -    /// matching or \c INVALID if the node is not covered by the matching.
   3.603 -    Node mate(const Node& n) const {
   3.604 -      return (*_matching)[n] != INVALID ?
   3.605 -        _graph.target((*_matching)[n]) : INVALID;
   3.606 -    }
   3.607 -
   3.608 -    /// @}
   3.609 -
   3.610 -    /// \name Dual Solution
   3.611 -    /// Functions to get the dual solution, i.e. the Gallai-Edmonds 
   3.612 -    /// decomposition.
   3.613 -
   3.614 -    /// @{
   3.615 -
   3.616 -    /// \brief Return the status of the given node in the Edmonds-Gallai
   3.617 -    /// decomposition.
   3.618 -    ///
   3.619 -    /// This function returns the \ref Status "status" of the given node
   3.620 -    /// in the Edmonds-Gallai decomposition.
   3.621 -    Status status(const Node& n) const {
   3.622 -      return (*_status)[n];
   3.623 -    }
   3.624 -
   3.625 -    /// \brief Return a const reference to the status map, which stores
   3.626 -    /// the Edmonds-Gallai decomposition.
   3.627 -    ///
   3.628 -    /// This function returns a const reference to a node map that stores the
   3.629 -    /// \ref Status "status" of each node in the Edmonds-Gallai decomposition.
   3.630 -    const StatusMap& statusMap() const {
   3.631 -      return *_status;
   3.632 -    }
   3.633 -
   3.634 -    /// \brief Return \c true if the given node is in the barrier.
   3.635 -    ///
   3.636 -    /// This function returns \c true if the given node is in the barrier.
   3.637 -    bool barrier(const Node& n) const {
   3.638 -      return (*_status)[n] == ODD;
   3.639 -    }
   3.640 -
   3.641 -    /// @}
   3.642 -
   3.643 -  };
   3.644 -
   3.645 -  /// \ingroup matching
   3.646 -  ///
   3.647 -  /// \brief Weighted matching in general graphs
   3.648 -  ///
   3.649 -  /// This class provides an efficient implementation of Edmond's
   3.650 -  /// maximum weighted matching algorithm. The implementation is based
   3.651 -  /// on extensive use of priority queues and provides
   3.652 -  /// \f$O(nm\log n)\f$ time complexity.
   3.653 -  ///
   3.654 -  /// The maximum weighted matching problem is to find a subset of the 
   3.655 -  /// edges in an undirected graph with maximum overall weight for which 
   3.656 -  /// each node has at most one incident edge.
   3.657 -  /// It can be formulated with the following linear program.
   3.658 -  /// \f[ \sum_{e \in \delta(u)}x_e \le 1 \quad \forall u\in V\f]
   3.659 -  /** \f[ \sum_{e \in \gamma(B)}x_e \le \frac{\vert B \vert - 1}{2}
   3.660 -      \quad \forall B\in\mathcal{O}\f] */
   3.661 -  /// \f[x_e \ge 0\quad \forall e\in E\f]
   3.662 -  /// \f[\max \sum_{e\in E}x_ew_e\f]
   3.663 -  /// where \f$\delta(X)\f$ is the set of edges incident to a node in
   3.664 -  /// \f$X\f$, \f$\gamma(X)\f$ is the set of edges with both ends in
   3.665 -  /// \f$X\f$ and \f$\mathcal{O}\f$ is the set of odd cardinality
   3.666 -  /// subsets of the nodes.
   3.667 -  ///
   3.668 -  /// The algorithm calculates an optimal matching and a proof of the
   3.669 -  /// optimality. The solution of the dual problem can be used to check
   3.670 -  /// the result of the algorithm. The dual linear problem is the
   3.671 -  /// following.
   3.672 -  /** \f[ y_u + y_v + \sum_{B \in \mathcal{O}, uv \in \gamma(B)}
   3.673 -      z_B \ge w_{uv} \quad \forall uv\in E\f] */
   3.674 -  /// \f[y_u \ge 0 \quad \forall u \in V\f]
   3.675 -  /// \f[z_B \ge 0 \quad \forall B \in \mathcal{O}\f]
   3.676 -  /** \f[\min \sum_{u \in V}y_u + \sum_{B \in \mathcal{O}}
   3.677 -      \frac{\vert B \vert - 1}{2}z_B\f] */
   3.678 -  ///
   3.679 -  /// The algorithm can be executed with the run() function. 
   3.680 -  /// After it the matching (the primal solution) and the dual solution
   3.681 -  /// can be obtained using the query functions and the 
   3.682 -  /// \ref MaxWeightedMatching::BlossomIt "BlossomIt" nested class, 
   3.683 -  /// which is able to iterate on the nodes of a blossom. 
   3.684 -  /// If the value type is integer, then the dual solution is multiplied
   3.685 -  /// by \ref MaxWeightedMatching::dualScale "4".
   3.686 -  ///
   3.687 -  /// \tparam GR The undirected graph type the algorithm runs on.
   3.688 -  /// \tparam WM The type edge weight map. The default type is 
   3.689 -  /// \ref concepts::Graph::EdgeMap "GR::EdgeMap<int>".
   3.690 -#ifdef DOXYGEN
   3.691 -  template <typename GR, typename WM>
   3.692 -#else
   3.693 -  template <typename GR,
   3.694 -            typename WM = typename GR::template EdgeMap<int> >
   3.695 -#endif
   3.696 -  class MaxWeightedMatching {
   3.697 -  public:
   3.698 -
   3.699 -    /// The graph type of the algorithm
   3.700 -    typedef GR Graph;
   3.701 -    /// The type of the edge weight map
   3.702 -    typedef WM WeightMap;
   3.703 -    /// The value type of the edge weights
   3.704 -    typedef typename WeightMap::Value Value;
   3.705 -
   3.706 -    /// The type of the matching map
   3.707 -    typedef typename Graph::template NodeMap<typename Graph::Arc>
   3.708 -    MatchingMap;
   3.709 -
   3.710 -    /// \brief Scaling factor for dual solution
   3.711 -    ///
   3.712 -    /// Scaling factor for dual solution. It is equal to 4 or 1
   3.713 -    /// according to the value type.
   3.714 -    static const int dualScale =
   3.715 -      std::numeric_limits<Value>::is_integer ? 4 : 1;
   3.716 -
   3.717 -  private:
   3.718 -
   3.719 -    TEMPLATE_GRAPH_TYPEDEFS(Graph);
   3.720 -
   3.721 -    typedef typename Graph::template NodeMap<Value> NodePotential;
   3.722 -    typedef std::vector<Node> BlossomNodeList;
   3.723 -
   3.724 -    struct BlossomVariable {
   3.725 -      int begin, end;
   3.726 -      Value value;
   3.727 -
   3.728 -      BlossomVariable(int _begin, int _end, Value _value)
   3.729 -        : begin(_begin), end(_end), value(_value) {}
   3.730 -
   3.731 -    };
   3.732 -
   3.733 -    typedef std::vector<BlossomVariable> BlossomPotential;
   3.734 -
   3.735 -    const Graph& _graph;
   3.736 -    const WeightMap& _weight;
   3.737 -
   3.738 -    MatchingMap* _matching;
   3.739 -
   3.740 -    NodePotential* _node_potential;
   3.741 -
   3.742 -    BlossomPotential _blossom_potential;
   3.743 -    BlossomNodeList _blossom_node_list;
   3.744 -
   3.745 -    int _node_num;
   3.746 -    int _blossom_num;
   3.747 -
   3.748 -    typedef RangeMap<int> IntIntMap;
   3.749 -
   3.750 -    enum Status {
   3.751 -      EVEN = -1, MATCHED = 0, ODD = 1, UNMATCHED = -2
   3.752 -    };
   3.753 -
   3.754 -    typedef HeapUnionFind<Value, IntNodeMap> BlossomSet;
   3.755 -    struct BlossomData {
   3.756 -      int tree;
   3.757 -      Status status;
   3.758 -      Arc pred, next;
   3.759 -      Value pot, offset;
   3.760 -      Node base;
   3.761 -    };
   3.762 -
   3.763 -    IntNodeMap *_blossom_index;
   3.764 -    BlossomSet *_blossom_set;
   3.765 -    RangeMap<BlossomData>* _blossom_data;
   3.766 -
   3.767 -    IntNodeMap *_node_index;
   3.768 -    IntArcMap *_node_heap_index;
   3.769 -
   3.770 -    struct NodeData {
   3.771 -
   3.772 -      NodeData(IntArcMap& node_heap_index)
   3.773 -        : heap(node_heap_index) {}
   3.774 -
   3.775 -      int blossom;
   3.776 -      Value pot;
   3.777 -      BinHeap<Value, IntArcMap> heap;
   3.778 -      std::map<int, Arc> heap_index;
   3.779 -
   3.780 -      int tree;
   3.781 -    };
   3.782 -
   3.783 -    RangeMap<NodeData>* _node_data;
   3.784 -
   3.785 -    typedef ExtendFindEnum<IntIntMap> TreeSet;
   3.786 -
   3.787 -    IntIntMap *_tree_set_index;
   3.788 -    TreeSet *_tree_set;
   3.789 -
   3.790 -    IntNodeMap *_delta1_index;
   3.791 -    BinHeap<Value, IntNodeMap> *_delta1;
   3.792 -
   3.793 -    IntIntMap *_delta2_index;
   3.794 -    BinHeap<Value, IntIntMap> *_delta2;
   3.795 -
   3.796 -    IntEdgeMap *_delta3_index;
   3.797 -    BinHeap<Value, IntEdgeMap> *_delta3;
   3.798 -
   3.799 -    IntIntMap *_delta4_index;
   3.800 -    BinHeap<Value, IntIntMap> *_delta4;
   3.801 -
   3.802 -    Value _delta_sum;
   3.803 -
   3.804 -    void createStructures() {
   3.805 -      _node_num = countNodes(_graph);
   3.806 -      _blossom_num = _node_num * 3 / 2;
   3.807 -
   3.808 -      if (!_matching) {
   3.809 -        _matching = new MatchingMap(_graph);
   3.810 -      }
   3.811 -      if (!_node_potential) {
   3.812 -        _node_potential = new NodePotential(_graph);
   3.813 -      }
   3.814 -      if (!_blossom_set) {
   3.815 -        _blossom_index = new IntNodeMap(_graph);
   3.816 -        _blossom_set = new BlossomSet(*_blossom_index);
   3.817 -        _blossom_data = new RangeMap<BlossomData>(_blossom_num);
   3.818 -      }
   3.819 -
   3.820 -      if (!_node_index) {
   3.821 -        _node_index = new IntNodeMap(_graph);
   3.822 -        _node_heap_index = new IntArcMap(_graph);
   3.823 -        _node_data = new RangeMap<NodeData>(_node_num,
   3.824 -                                              NodeData(*_node_heap_index));
   3.825 -      }
   3.826 -
   3.827 -      if (!_tree_set) {
   3.828 -        _tree_set_index = new IntIntMap(_blossom_num);
   3.829 -        _tree_set = new TreeSet(*_tree_set_index);
   3.830 -      }
   3.831 -      if (!_delta1) {
   3.832 -        _delta1_index = new IntNodeMap(_graph);
   3.833 -        _delta1 = new BinHeap<Value, IntNodeMap>(*_delta1_index);
   3.834 -      }
   3.835 -      if (!_delta2) {
   3.836 -        _delta2_index = new IntIntMap(_blossom_num);
   3.837 -        _delta2 = new BinHeap<Value, IntIntMap>(*_delta2_index);
   3.838 -      }
   3.839 -      if (!_delta3) {
   3.840 -        _delta3_index = new IntEdgeMap(_graph);
   3.841 -        _delta3 = new BinHeap<Value, IntEdgeMap>(*_delta3_index);
   3.842 -      }
   3.843 -      if (!_delta4) {
   3.844 -        _delta4_index = new IntIntMap(_blossom_num);
   3.845 -        _delta4 = new BinHeap<Value, IntIntMap>(*_delta4_index);
   3.846 -      }
   3.847 -    }
   3.848 -
   3.849 -    void destroyStructures() {
   3.850 -      _node_num = countNodes(_graph);
   3.851 -      _blossom_num = _node_num * 3 / 2;
   3.852 -
   3.853 -      if (_matching) {
   3.854 -        delete _matching;
   3.855 -      }
   3.856 -      if (_node_potential) {
   3.857 -        delete _node_potential;
   3.858 -      }
   3.859 -      if (_blossom_set) {
   3.860 -        delete _blossom_index;
   3.861 -        delete _blossom_set;
   3.862 -        delete _blossom_data;
   3.863 -      }
   3.864 -
   3.865 -      if (_node_index) {
   3.866 -        delete _node_index;
   3.867 -        delete _node_heap_index;
   3.868 -        delete _node_data;
   3.869 -      }
   3.870 -
   3.871 -      if (_tree_set) {
   3.872 -        delete _tree_set_index;
   3.873 -        delete _tree_set;
   3.874 -      }
   3.875 -      if (_delta1) {
   3.876 -        delete _delta1_index;
   3.877 -        delete _delta1;
   3.878 -      }
   3.879 -      if (_delta2) {
   3.880 -        delete _delta2_index;
   3.881 -        delete _delta2;
   3.882 -      }
   3.883 -      if (_delta3) {
   3.884 -        delete _delta3_index;
   3.885 -        delete _delta3;
   3.886 -      }
   3.887 -      if (_delta4) {
   3.888 -        delete _delta4_index;
   3.889 -        delete _delta4;
   3.890 -      }
   3.891 -    }
   3.892 -
   3.893 -    void matchedToEven(int blossom, int tree) {
   3.894 -      if (_delta2->state(blossom) == _delta2->IN_HEAP) {
   3.895 -        _delta2->erase(blossom);
   3.896 -      }
   3.897 -
   3.898 -      if (!_blossom_set->trivial(blossom)) {
   3.899 -        (*_blossom_data)[blossom].pot -=
   3.900 -          2 * (_delta_sum - (*_blossom_data)[blossom].offset);
   3.901 -      }
   3.902 -
   3.903 -      for (typename BlossomSet::ItemIt n(*_blossom_set, blossom);
   3.904 -           n != INVALID; ++n) {
   3.905 -
   3.906 -        _blossom_set->increase(n, std::numeric_limits<Value>::max());
   3.907 -        int ni = (*_node_index)[n];
   3.908 -
   3.909 -        (*_node_data)[ni].heap.clear();
   3.910 -        (*_node_data)[ni].heap_index.clear();
   3.911 -
   3.912 -        (*_node_data)[ni].pot += _delta_sum - (*_blossom_data)[blossom].offset;
   3.913 -
   3.914 -        _delta1->push(n, (*_node_data)[ni].pot);
   3.915 -
   3.916 -        for (InArcIt e(_graph, n); e != INVALID; ++e) {
   3.917 -          Node v = _graph.source(e);
   3.918 -          int vb = _blossom_set->find(v);
   3.919 -          int vi = (*_node_index)[v];
   3.920 -
   3.921 -          Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot -
   3.922 -            dualScale * _weight[e];
   3.923 -
   3.924 -          if ((*_blossom_data)[vb].status == EVEN) {
   3.925 -            if (_delta3->state(e) != _delta3->IN_HEAP && blossom != vb) {
   3.926 -              _delta3->push(e, rw / 2);
   3.927 -            }
   3.928 -          } else if ((*_blossom_data)[vb].status == UNMATCHED) {
   3.929 -            if (_delta3->state(e) != _delta3->IN_HEAP) {
   3.930 -              _delta3->push(e, rw);
   3.931 -            }
   3.932 -          } else {
   3.933 -            typename std::map<int, Arc>::iterator it =
   3.934 -              (*_node_data)[vi].heap_index.find(tree);
   3.935 -
   3.936 -            if (it != (*_node_data)[vi].heap_index.end()) {
   3.937 -              if ((*_node_data)[vi].heap[it->second] > rw) {
   3.938 -                (*_node_data)[vi].heap.replace(it->second, e);
   3.939 -                (*_node_data)[vi].heap.decrease(e, rw);
   3.940 -                it->second = e;
   3.941 -              }
   3.942 -            } else {
   3.943 -              (*_node_data)[vi].heap.push(e, rw);
   3.944 -              (*_node_data)[vi].heap_index.insert(std::make_pair(tree, e));
   3.945 -            }
   3.946 -
   3.947 -            if ((*_blossom_set)[v] > (*_node_data)[vi].heap.prio()) {
   3.948 -              _blossom_set->decrease(v, (*_node_data)[vi].heap.prio());
   3.949 -
   3.950 -              if ((*_blossom_data)[vb].status == MATCHED) {
   3.951 -                if (_delta2->state(vb) != _delta2->IN_HEAP) {
   3.952 -                  _delta2->push(vb, _blossom_set->classPrio(vb) -
   3.953 -                               (*_blossom_data)[vb].offset);
   3.954 -                } else if ((*_delta2)[vb] > _blossom_set->classPrio(vb) -
   3.955 -                           (*_blossom_data)[vb].offset){
   3.956 -                  _delta2->decrease(vb, _blossom_set->classPrio(vb) -
   3.957 -                                   (*_blossom_data)[vb].offset);
   3.958 -                }
   3.959 -              }
   3.960 -            }
   3.961 -          }
   3.962 -        }
   3.963 -      }
   3.964 -      (*_blossom_data)[blossom].offset = 0;
   3.965 -    }
   3.966 -
   3.967 -    void matchedToOdd(int blossom) {
   3.968 -      if (_delta2->state(blossom) == _delta2->IN_HEAP) {
   3.969 -        _delta2->erase(blossom);
   3.970 -      }
   3.971 -      (*_blossom_data)[blossom].offset += _delta_sum;
   3.972 -      if (!_blossom_set->trivial(blossom)) {
   3.973 -        _delta4->push(blossom, (*_blossom_data)[blossom].pot / 2 +
   3.974 -                     (*_blossom_data)[blossom].offset);
   3.975 -      }
   3.976 -    }
   3.977 -
   3.978 -    void evenToMatched(int blossom, int tree) {
   3.979 -      if (!_blossom_set->trivial(blossom)) {
   3.980 -        (*_blossom_data)[blossom].pot += 2 * _delta_sum;
   3.981 -      }
   3.982 -
   3.983 -      for (typename BlossomSet::ItemIt n(*_blossom_set, blossom);
   3.984 -           n != INVALID; ++n) {
   3.985 -        int ni = (*_node_index)[n];
   3.986 -        (*_node_data)[ni].pot -= _delta_sum;
   3.987 -
   3.988 -        _delta1->erase(n);
   3.989 -
   3.990 -        for (InArcIt e(_graph, n); e != INVALID; ++e) {
   3.991 -          Node v = _graph.source(e);
   3.992 -          int vb = _blossom_set->find(v);
   3.993 -          int vi = (*_node_index)[v];
   3.994 -
   3.995 -          Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot -
   3.996 -            dualScale * _weight[e];
   3.997 -
   3.998 -          if (vb == blossom) {
   3.999 -            if (_delta3->state(e) == _delta3->IN_HEAP) {
  3.1000 -              _delta3->erase(e);
  3.1001 -            }
  3.1002 -          } else if ((*_blossom_data)[vb].status == EVEN) {
  3.1003 -
  3.1004 -            if (_delta3->state(e) == _delta3->IN_HEAP) {
  3.1005 -              _delta3->erase(e);
  3.1006 -            }
  3.1007 -
  3.1008 -            int vt = _tree_set->find(vb);
  3.1009 -
  3.1010 -            if (vt != tree) {
  3.1011 -
  3.1012 -              Arc r = _graph.oppositeArc(e);
  3.1013 -
  3.1014 -              typename std::map<int, Arc>::iterator it =
  3.1015 -                (*_node_data)[ni].heap_index.find(vt);
  3.1016 -
  3.1017 -              if (it != (*_node_data)[ni].heap_index.end()) {
  3.1018 -                if ((*_node_data)[ni].heap[it->second] > rw) {
  3.1019 -                  (*_node_data)[ni].heap.replace(it->second, r);
  3.1020 -                  (*_node_data)[ni].heap.decrease(r, rw);
  3.1021 -                  it->second = r;
  3.1022 -                }
  3.1023 -              } else {
  3.1024 -                (*_node_data)[ni].heap.push(r, rw);
  3.1025 -                (*_node_data)[ni].heap_index.insert(std::make_pair(vt, r));
  3.1026 -              }
  3.1027 -
  3.1028 -              if ((*_blossom_set)[n] > (*_node_data)[ni].heap.prio()) {
  3.1029 -                _blossom_set->decrease(n, (*_node_data)[ni].heap.prio());
  3.1030 -
  3.1031 -                if (_delta2->state(blossom) != _delta2->IN_HEAP) {
  3.1032 -                  _delta2->push(blossom, _blossom_set->classPrio(blossom) -
  3.1033 -                               (*_blossom_data)[blossom].offset);
  3.1034 -                } else if ((*_delta2)[blossom] >
  3.1035 -                           _blossom_set->classPrio(blossom) -
  3.1036 -                           (*_blossom_data)[blossom].offset){
  3.1037 -                  _delta2->decrease(blossom, _blossom_set->classPrio(blossom) -
  3.1038 -                                   (*_blossom_data)[blossom].offset);
  3.1039 -                }
  3.1040 -              }
  3.1041 -            }
  3.1042 -
  3.1043 -          } else if ((*_blossom_data)[vb].status == UNMATCHED) {
  3.1044 -            if (_delta3->state(e) == _delta3->IN_HEAP) {
  3.1045 -              _delta3->erase(e);
  3.1046 -            }
  3.1047 -          } else {
  3.1048 -
  3.1049 -            typename std::map<int, Arc>::iterator it =
  3.1050 -              (*_node_data)[vi].heap_index.find(tree);
  3.1051 -
  3.1052 -            if (it != (*_node_data)[vi].heap_index.end()) {
  3.1053 -              (*_node_data)[vi].heap.erase(it->second);
  3.1054 -              (*_node_data)[vi].heap_index.erase(it);
  3.1055 -              if ((*_node_data)[vi].heap.empty()) {
  3.1056 -                _blossom_set->increase(v, std::numeric_limits<Value>::max());
  3.1057 -              } else if ((*_blossom_set)[v] < (*_node_data)[vi].heap.prio()) {
  3.1058 -                _blossom_set->increase(v, (*_node_data)[vi].heap.prio());
  3.1059 -              }
  3.1060 -
  3.1061 -              if ((*_blossom_data)[vb].status == MATCHED) {
  3.1062 -                if (_blossom_set->classPrio(vb) ==
  3.1063 -                    std::numeric_limits<Value>::max()) {
  3.1064 -                  _delta2->erase(vb);
  3.1065 -                } else if ((*_delta2)[vb] < _blossom_set->classPrio(vb) -
  3.1066 -                           (*_blossom_data)[vb].offset) {
  3.1067 -                  _delta2->increase(vb, _blossom_set->classPrio(vb) -
  3.1068 -                                   (*_blossom_data)[vb].offset);
  3.1069 -                }
  3.1070 -              }
  3.1071 -            }
  3.1072 -          }
  3.1073 -        }
  3.1074 -      }
  3.1075 -    }
  3.1076 -
  3.1077 -    void oddToMatched(int blossom) {
  3.1078 -      (*_blossom_data)[blossom].offset -= _delta_sum;
  3.1079 -
  3.1080 -      if (_blossom_set->classPrio(blossom) !=
  3.1081 -          std::numeric_limits<Value>::max()) {
  3.1082 -        _delta2->push(blossom, _blossom_set->classPrio(blossom) -
  3.1083 -                       (*_blossom_data)[blossom].offset);
  3.1084 -      }
  3.1085 -
  3.1086 -      if (!_blossom_set->trivial(blossom)) {
  3.1087 -        _delta4->erase(blossom);
  3.1088 -      }
  3.1089 -    }
  3.1090 -
  3.1091 -    void oddToEven(int blossom, int tree) {
  3.1092 -      if (!_blossom_set->trivial(blossom)) {
  3.1093 -        _delta4->erase(blossom);
  3.1094 -        (*_blossom_data)[blossom].pot -=
  3.1095 -          2 * (2 * _delta_sum - (*_blossom_data)[blossom].offset);
  3.1096 -      }
  3.1097 -
  3.1098 -      for (typename BlossomSet::ItemIt n(*_blossom_set, blossom);
  3.1099 -           n != INVALID; ++n) {
  3.1100 -        int ni = (*_node_index)[n];
  3.1101 -
  3.1102 -        _blossom_set->increase(n, std::numeric_limits<Value>::max());
  3.1103 -
  3.1104 -        (*_node_data)[ni].heap.clear();
  3.1105 -        (*_node_data)[ni].heap_index.clear();
  3.1106 -        (*_node_data)[ni].pot +=
  3.1107 -          2 * _delta_sum - (*_blossom_data)[blossom].offset;
  3.1108 -
  3.1109 -        _delta1->push(n, (*_node_data)[ni].pot);
  3.1110 -
  3.1111 -        for (InArcIt e(_graph, n); e != INVALID; ++e) {
  3.1112 -          Node v = _graph.source(e);
  3.1113 -          int vb = _blossom_set->find(v);
  3.1114 -          int vi = (*_node_index)[v];
  3.1115 -
  3.1116 -          Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot -
  3.1117 -            dualScale * _weight[e];
  3.1118 -
  3.1119 -          if ((*_blossom_data)[vb].status == EVEN) {
  3.1120 -            if (_delta3->state(e) != _delta3->IN_HEAP && blossom != vb) {
  3.1121 -              _delta3->push(e, rw / 2);
  3.1122 -            }
  3.1123 -          } else if ((*_blossom_data)[vb].status == UNMATCHED) {
  3.1124 -            if (_delta3->state(e) != _delta3->IN_HEAP) {
  3.1125 -              _delta3->push(e, rw);
  3.1126 -            }
  3.1127 -          } else {
  3.1128 -
  3.1129 -            typename std::map<int, Arc>::iterator it =
  3.1130 -              (*_node_data)[vi].heap_index.find(tree);
  3.1131 -
  3.1132 -            if (it != (*_node_data)[vi].heap_index.end()) {
  3.1133 -              if ((*_node_data)[vi].heap[it->second] > rw) {
  3.1134 -                (*_node_data)[vi].heap.replace(it->second, e);
  3.1135 -                (*_node_data)[vi].heap.decrease(e, rw);
  3.1136 -                it->second = e;
  3.1137 -              }
  3.1138 -            } else {
  3.1139 -              (*_node_data)[vi].heap.push(e, rw);
  3.1140 -              (*_node_data)[vi].heap_index.insert(std::make_pair(tree, e));
  3.1141 -            }
  3.1142 -
  3.1143 -            if ((*_blossom_set)[v] > (*_node_data)[vi].heap.prio()) {
  3.1144 -              _blossom_set->decrease(v, (*_node_data)[vi].heap.prio());
  3.1145 -
  3.1146 -              if ((*_blossom_data)[vb].status == MATCHED) {
  3.1147 -                if (_delta2->state(vb) != _delta2->IN_HEAP) {
  3.1148 -                  _delta2->push(vb, _blossom_set->classPrio(vb) -
  3.1149 -                               (*_blossom_data)[vb].offset);
  3.1150 -                } else if ((*_delta2)[vb] > _blossom_set->classPrio(vb) -
  3.1151 -                           (*_blossom_data)[vb].offset) {
  3.1152 -                  _delta2->decrease(vb, _blossom_set->classPrio(vb) -
  3.1153 -                                   (*_blossom_data)[vb].offset);
  3.1154 -                }
  3.1155 -              }
  3.1156 -            }
  3.1157 -          }
  3.1158 -        }
  3.1159 -      }
  3.1160 -      (*_blossom_data)[blossom].offset = 0;
  3.1161 -    }
  3.1162 -
  3.1163 -
  3.1164 -    void matchedToUnmatched(int blossom) {
  3.1165 -      if (_delta2->state(blossom) == _delta2->IN_HEAP) {
  3.1166 -        _delta2->erase(blossom);
  3.1167 -      }
  3.1168 -
  3.1169 -      for (typename BlossomSet::ItemIt n(*_blossom_set, blossom);
  3.1170 -           n != INVALID; ++n) {
  3.1171 -        int ni = (*_node_index)[n];
  3.1172 -
  3.1173 -        _blossom_set->increase(n, std::numeric_limits<Value>::max());
  3.1174 -
  3.1175 -        (*_node_data)[ni].heap.clear();
  3.1176 -        (*_node_data)[ni].heap_index.clear();
  3.1177 -
  3.1178 -        for (OutArcIt e(_graph, n); e != INVALID; ++e) {
  3.1179 -          Node v = _graph.target(e);
  3.1180 -          int vb = _blossom_set->find(v);
  3.1181 -          int vi = (*_node_index)[v];
  3.1182 -
  3.1183 -          Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot -
  3.1184 -            dualScale * _weight[e];
  3.1185 -
  3.1186 -          if ((*_blossom_data)[vb].status == EVEN) {
  3.1187 -            if (_delta3->state(e) != _delta3->IN_HEAP) {
  3.1188 -              _delta3->push(e, rw);
  3.1189 -            }
  3.1190 -          }
  3.1191 -        }
  3.1192 -      }
  3.1193 -    }
  3.1194 -
  3.1195 -    void unmatchedToMatched(int blossom) {
  3.1196 -      for (typename BlossomSet::ItemIt n(*_blossom_set, blossom);
  3.1197 -           n != INVALID; ++n) {
  3.1198 -        int ni = (*_node_index)[n];
  3.1199 -
  3.1200 -        for (InArcIt e(_graph, n); e != INVALID; ++e) {
  3.1201 -          Node v = _graph.source(e);
  3.1202 -          int vb = _blossom_set->find(v);
  3.1203 -          int vi = (*_node_index)[v];
  3.1204 -
  3.1205 -          Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot -
  3.1206 -            dualScale * _weight[e];
  3.1207 -
  3.1208 -          if (vb == blossom) {
  3.1209 -            if (_delta3->state(e) == _delta3->IN_HEAP) {
  3.1210 -              _delta3->erase(e);
  3.1211 -            }
  3.1212 -          } else if ((*_blossom_data)[vb].status == EVEN) {
  3.1213 -
  3.1214 -            if (_delta3->state(e) == _delta3->IN_HEAP) {
  3.1215 -              _delta3->erase(e);
  3.1216 -            }
  3.1217 -
  3.1218 -            int vt = _tree_set->find(vb);
  3.1219 -
  3.1220 -            Arc r = _graph.oppositeArc(e);
  3.1221 -
  3.1222 -            typename std::map<int, Arc>::iterator it =
  3.1223 -              (*_node_data)[ni].heap_index.find(vt);
  3.1224 -
  3.1225 -            if (it != (*_node_data)[ni].heap_index.end()) {
  3.1226 -              if ((*_node_data)[ni].heap[it->second] > rw) {
  3.1227 -                (*_node_data)[ni].heap.replace(it->second, r);
  3.1228 -                (*_node_data)[ni].heap.decrease(r, rw);
  3.1229 -                it->second = r;
  3.1230 -              }
  3.1231 -            } else {
  3.1232 -              (*_node_data)[ni].heap.push(r, rw);
  3.1233 -              (*_node_data)[ni].heap_index.insert(std::make_pair(vt, r));
  3.1234 -            }
  3.1235 -
  3.1236 -            if ((*_blossom_set)[n] > (*_node_data)[ni].heap.prio()) {
  3.1237 -              _blossom_set->decrease(n, (*_node_data)[ni].heap.prio());
  3.1238 -
  3.1239 -              if (_delta2->state(blossom) != _delta2->IN_HEAP) {
  3.1240 -                _delta2->push(blossom, _blossom_set->classPrio(blossom) -
  3.1241 -                             (*_blossom_data)[blossom].offset);
  3.1242 -              } else if ((*_delta2)[blossom] > _blossom_set->classPrio(blossom)-
  3.1243 -                         (*_blossom_data)[blossom].offset){
  3.1244 -                _delta2->decrease(blossom, _blossom_set->classPrio(blossom) -
  3.1245 -                                 (*_blossom_data)[blossom].offset);
  3.1246 -              }
  3.1247 -            }
  3.1248 -
  3.1249 -          } else if ((*_blossom_data)[vb].status == UNMATCHED) {
  3.1250 -            if (_delta3->state(e) == _delta3->IN_HEAP) {
  3.1251 -              _delta3->erase(e);
  3.1252 -            }
  3.1253 -          }
  3.1254 -        }
  3.1255 -      }
  3.1256 -    }
  3.1257 -
  3.1258 -    void alternatePath(int even, int tree) {
  3.1259 -      int odd;
  3.1260 -
  3.1261 -      evenToMatched(even, tree);
  3.1262 -      (*_blossom_data)[even].status = MATCHED;
  3.1263 -
  3.1264 -      while ((*_blossom_data)[even].pred != INVALID) {
  3.1265 -        odd = _blossom_set->find(_graph.target((*_blossom_data)[even].pred));
  3.1266 -        (*_blossom_data)[odd].status = MATCHED;
  3.1267 -        oddToMatched(odd);
  3.1268 -        (*_blossom_data)[odd].next = (*_blossom_data)[odd].pred;
  3.1269 -
  3.1270 -        even = _blossom_set->find(_graph.target((*_blossom_data)[odd].pred));
  3.1271 -        (*_blossom_data)[even].status = MATCHED;
  3.1272 -        evenToMatched(even, tree);
  3.1273 -        (*_blossom_data)[even].next =
  3.1274 -          _graph.oppositeArc((*_blossom_data)[odd].pred);
  3.1275 -      }
  3.1276 -
  3.1277 -    }
  3.1278 -
  3.1279 -    void destroyTree(int tree) {
  3.1280 -      for (TreeSet::ItemIt b(*_tree_set, tree); b != INVALID; ++b) {
  3.1281 -        if ((*_blossom_data)[b].status == EVEN) {
  3.1282 -          (*_blossom_data)[b].status = MATCHED;
  3.1283 -          evenToMatched(b, tree);
  3.1284 -        } else if ((*_blossom_data)[b].status == ODD) {
  3.1285 -          (*_blossom_data)[b].status = MATCHED;
  3.1286 -          oddToMatched(b);
  3.1287 -        }
  3.1288 -      }
  3.1289 -      _tree_set->eraseClass(tree);
  3.1290 -    }
  3.1291 -
  3.1292 -
  3.1293 -    void unmatchNode(const Node& node) {
  3.1294 -      int blossom = _blossom_set->find(node);
  3.1295 -      int tree = _tree_set->find(blossom);
  3.1296 -
  3.1297 -      alternatePath(blossom, tree);
  3.1298 -      destroyTree(tree);
  3.1299 -
  3.1300 -      (*_blossom_data)[blossom].status = UNMATCHED;
  3.1301 -      (*_blossom_data)[blossom].base = node;
  3.1302 -      matchedToUnmatched(blossom);
  3.1303 -    }
  3.1304 -
  3.1305 -
  3.1306 -    void augmentOnEdge(const Edge& edge) {
  3.1307 -
  3.1308 -      int left = _blossom_set->find(_graph.u(edge));
  3.1309 -      int right = _blossom_set->find(_graph.v(edge));
  3.1310 -
  3.1311 -      if ((*_blossom_data)[left].status == EVEN) {
  3.1312 -        int left_tree = _tree_set->find(left);
  3.1313 -        alternatePath(left, left_tree);
  3.1314 -        destroyTree(left_tree);
  3.1315 -      } else {
  3.1316 -        (*_blossom_data)[left].status = MATCHED;
  3.1317 -        unmatchedToMatched(left);
  3.1318 -      }
  3.1319 -
  3.1320 -      if ((*_blossom_data)[right].status == EVEN) {
  3.1321 -        int right_tree = _tree_set->find(right);
  3.1322 -        alternatePath(right, right_tree);
  3.1323 -        destroyTree(right_tree);
  3.1324 -      } else {
  3.1325 -        (*_blossom_data)[right].status = MATCHED;
  3.1326 -        unmatchedToMatched(right);
  3.1327 -      }
  3.1328 -
  3.1329 -      (*_blossom_data)[left].next = _graph.direct(edge, true);
  3.1330 -      (*_blossom_data)[right].next = _graph.direct(edge, false);
  3.1331 -    }
  3.1332 -
  3.1333 -    void extendOnArc(const Arc& arc) {
  3.1334 -      int base = _blossom_set->find(_graph.target(arc));
  3.1335 -      int tree = _tree_set->find(base);
  3.1336 -
  3.1337 -      int odd = _blossom_set->find(_graph.source(arc));
  3.1338 -      _tree_set->insert(odd, tree);
  3.1339 -      (*_blossom_data)[odd].status = ODD;
  3.1340 -      matchedToOdd(odd);
  3.1341 -      (*_blossom_data)[odd].pred = arc;
  3.1342 -
  3.1343 -      int even = _blossom_set->find(_graph.target((*_blossom_data)[odd].next));
  3.1344 -      (*_blossom_data)[even].pred = (*_blossom_data)[even].next;
  3.1345 -      _tree_set->insert(even, tree);
  3.1346 -      (*_blossom_data)[even].status = EVEN;
  3.1347 -      matchedToEven(even, tree);
  3.1348 -    }
  3.1349 -
  3.1350 -    void shrinkOnEdge(const Edge& edge, int tree) {
  3.1351 -      int nca = -1;
  3.1352 -      std::vector<int> left_path, right_path;
  3.1353 -
  3.1354 -      {
  3.1355 -        std::set<int> left_set, right_set;
  3.1356 -        int left = _blossom_set->find(_graph.u(edge));
  3.1357 -        left_path.push_back(left);
  3.1358 -        left_set.insert(left);
  3.1359 -
  3.1360 -        int right = _blossom_set->find(_graph.v(edge));
  3.1361 -        right_path.push_back(right);
  3.1362 -        right_set.insert(right);
  3.1363 -
  3.1364 -        while (true) {
  3.1365 -
  3.1366 -          if ((*_blossom_data)[left].pred == INVALID) break;
  3.1367 -
  3.1368 -          left =
  3.1369 -            _blossom_set->find(_graph.target((*_blossom_data)[left].pred));
  3.1370 -          left_path.push_back(left);
  3.1371 -          left =
  3.1372 -            _blossom_set->find(_graph.target((*_blossom_data)[left].pred));
  3.1373 -          left_path.push_back(left);
  3.1374 -
  3.1375 -          left_set.insert(left);
  3.1376 -
  3.1377 -          if (right_set.find(left) != right_set.end()) {
  3.1378 -            nca = left;
  3.1379 -            break;
  3.1380 -          }
  3.1381 -
  3.1382 -          if ((*_blossom_data)[right].pred == INVALID) break;
  3.1383 -
  3.1384 -          right =
  3.1385 -            _blossom_set->find(_graph.target((*_blossom_data)[right].pred));
  3.1386 -          right_path.push_back(right);
  3.1387 -          right =
  3.1388 -            _blossom_set->find(_graph.target((*_blossom_data)[right].pred));
  3.1389 -          right_path.push_back(right);
  3.1390 -
  3.1391 -          right_set.insert(right);
  3.1392 -
  3.1393 -          if (left_set.find(right) != left_set.end()) {
  3.1394 -            nca = right;
  3.1395 -            break;
  3.1396 -          }
  3.1397 -
  3.1398 -        }
  3.1399 -
  3.1400 -        if (nca == -1) {
  3.1401 -          if ((*_blossom_data)[left].pred == INVALID) {
  3.1402 -            nca = right;
  3.1403 -            while (left_set.find(nca) == left_set.end()) {
  3.1404 -              nca =
  3.1405 -                _blossom_set->find(_graph.target((*_blossom_data)[nca].pred));
  3.1406 -              right_path.push_back(nca);
  3.1407 -              nca =
  3.1408 -                _blossom_set->find(_graph.target((*_blossom_data)[nca].pred));
  3.1409 -              right_path.push_back(nca);
  3.1410 -            }
  3.1411 -          } else {
  3.1412 -            nca = left;
  3.1413 -            while (right_set.find(nca) == right_set.end()) {
  3.1414 -              nca =
  3.1415 -                _blossom_set->find(_graph.target((*_blossom_data)[nca].pred));
  3.1416 -              left_path.push_back(nca);
  3.1417 -              nca =
  3.1418 -                _blossom_set->find(_graph.target((*_blossom_data)[nca].pred));
  3.1419 -              left_path.push_back(nca);
  3.1420 -            }
  3.1421 -          }
  3.1422 -        }
  3.1423 -      }
  3.1424 -
  3.1425 -      std::vector<int> subblossoms;
  3.1426 -      Arc prev;
  3.1427 -
  3.1428 -      prev = _graph.direct(edge, true);
  3.1429 -      for (int i = 0; left_path[i] != nca; i += 2) {
  3.1430 -        subblossoms.push_back(left_path[i]);
  3.1431 -        (*_blossom_data)[left_path[i]].next = prev;
  3.1432 -        _tree_set->erase(left_path[i]);
  3.1433 -
  3.1434 -        subblossoms.push_back(left_path[i + 1]);
  3.1435 -        (*_blossom_data)[left_path[i + 1]].status = EVEN;
  3.1436 -        oddToEven(left_path[i + 1], tree);
  3.1437 -        _tree_set->erase(left_path[i + 1]);
  3.1438 -        prev = _graph.oppositeArc((*_blossom_data)[left_path[i + 1]].pred);
  3.1439 -      }
  3.1440 -
  3.1441 -      int k = 0;
  3.1442 -      while (right_path[k] != nca) ++k;
  3.1443 -
  3.1444 -      subblossoms.push_back(nca);
  3.1445 -      (*_blossom_data)[nca].next = prev;
  3.1446 -
  3.1447 -      for (int i = k - 2; i >= 0; i -= 2) {
  3.1448 -        subblossoms.push_back(right_path[i + 1]);
  3.1449 -        (*_blossom_data)[right_path[i + 1]].status = EVEN;
  3.1450 -        oddToEven(right_path[i + 1], tree);
  3.1451 -        _tree_set->erase(right_path[i + 1]);
  3.1452 -
  3.1453 -        (*_blossom_data)[right_path[i + 1]].next =
  3.1454 -          (*_blossom_data)[right_path[i + 1]].pred;
  3.1455 -
  3.1456 -        subblossoms.push_back(right_path[i]);
  3.1457 -        _tree_set->erase(right_path[i]);
  3.1458 -      }
  3.1459 -
  3.1460 -      int surface =
  3.1461 -        _blossom_set->join(subblossoms.begin(), subblossoms.end());
  3.1462 -
  3.1463 -      for (int i = 0; i < int(subblossoms.size()); ++i) {
  3.1464 -        if (!_blossom_set->trivial(subblossoms[i])) {
  3.1465 -          (*_blossom_data)[subblossoms[i]].pot += 2 * _delta_sum;
  3.1466 -        }
  3.1467 -        (*_blossom_data)[subblossoms[i]].status = MATCHED;
  3.1468 -      }
  3.1469 -
  3.1470 -      (*_blossom_data)[surface].pot = -2 * _delta_sum;
  3.1471 -      (*_blossom_data)[surface].offset = 0;
  3.1472 -      (*_blossom_data)[surface].status = EVEN;
  3.1473 -      (*_blossom_data)[surface].pred = (*_blossom_data)[nca].pred;
  3.1474 -      (*_blossom_data)[surface].next = (*_blossom_data)[nca].pred;
  3.1475 -
  3.1476 -      _tree_set->insert(surface, tree);
  3.1477 -      _tree_set->erase(nca);
  3.1478 -    }
  3.1479 -
  3.1480 -    void splitBlossom(int blossom) {
  3.1481 -      Arc next = (*_blossom_data)[blossom].next;
  3.1482 -      Arc pred = (*_blossom_data)[blossom].pred;
  3.1483 -
  3.1484 -      int tree = _tree_set->find(blossom);
  3.1485 -
  3.1486 -      (*_blossom_data)[blossom].status = MATCHED;
  3.1487 -      oddToMatched(blossom);
  3.1488 -      if (_delta2->state(blossom) == _delta2->IN_HEAP) {
  3.1489 -        _delta2->erase(blossom);
  3.1490 -      }
  3.1491 -
  3.1492 -      std::vector<int> subblossoms;
  3.1493 -      _blossom_set->split(blossom, std::back_inserter(subblossoms));
  3.1494 -
  3.1495 -      Value offset = (*_blossom_data)[blossom].offset;
  3.1496 -      int b = _blossom_set->find(_graph.source(pred));
  3.1497 -      int d = _blossom_set->find(_graph.source(next));
  3.1498 -
  3.1499 -      int ib = -1, id = -1;
  3.1500 -      for (int i = 0; i < int(subblossoms.size()); ++i) {
  3.1501 -        if (subblossoms[i] == b) ib = i;
  3.1502 -        if (subblossoms[i] == d) id = i;
  3.1503 -
  3.1504 -        (*_blossom_data)[subblossoms[i]].offset = offset;
  3.1505 -        if (!_blossom_set->trivial(subblossoms[i])) {
  3.1506 -          (*_blossom_data)[subblossoms[i]].pot -= 2 * offset;
  3.1507 -        }
  3.1508 -        if (_blossom_set->classPrio(subblossoms[i]) !=
  3.1509 -            std::numeric_limits<Value>::max()) {
  3.1510 -          _delta2->push(subblossoms[i],
  3.1511 -                        _blossom_set->classPrio(subblossoms[i]) -
  3.1512 -                        (*_blossom_data)[subblossoms[i]].offset);
  3.1513 -        }
  3.1514 -      }
  3.1515 -
  3.1516 -      if (id > ib ? ((id - ib) % 2 == 0) : ((ib - id) % 2 == 1)) {
  3.1517 -        for (int i = (id + 1) % subblossoms.size();
  3.1518 -             i != ib; i = (i + 2) % subblossoms.size()) {
  3.1519 -          int sb = subblossoms[i];
  3.1520 -          int tb = subblossoms[(i + 1) % subblossoms.size()];
  3.1521 -          (*_blossom_data)[sb].next =
  3.1522 -            _graph.oppositeArc((*_blossom_data)[tb].next);
  3.1523 -        }
  3.1524 -
  3.1525 -        for (int i = ib; i != id; i = (i + 2) % subblossoms.size()) {
  3.1526 -          int sb = subblossoms[i];
  3.1527 -          int tb = subblossoms[(i + 1) % subblossoms.size()];
  3.1528 -          int ub = subblossoms[(i + 2) % subblossoms.size()];
  3.1529 -
  3.1530 -          (*_blossom_data)[sb].status = ODD;
  3.1531 -          matchedToOdd(sb);
  3.1532 -          _tree_set->insert(sb, tree);
  3.1533 -          (*_blossom_data)[sb].pred = pred;
  3.1534 -          (*_blossom_data)[sb].next =
  3.1535 -                           _graph.oppositeArc((*_blossom_data)[tb].next);
  3.1536 -
  3.1537 -          pred = (*_blossom_data)[ub].next;
  3.1538 -
  3.1539 -          (*_blossom_data)[tb].status = EVEN;
  3.1540 -          matchedToEven(tb, tree);
  3.1541 -          _tree_set->insert(tb, tree);
  3.1542 -          (*_blossom_data)[tb].pred = (*_blossom_data)[tb].next;
  3.1543 -        }
  3.1544 -
  3.1545 -        (*_blossom_data)[subblossoms[id]].status = ODD;
  3.1546 -        matchedToOdd(subblossoms[id]);
  3.1547 -        _tree_set->insert(subblossoms[id], tree);
  3.1548 -        (*_blossom_data)[subblossoms[id]].next = next;
  3.1549 -        (*_blossom_data)[subblossoms[id]].pred = pred;
  3.1550 -
  3.1551 -      } else {
  3.1552 -
  3.1553 -        for (int i = (ib + 1) % subblossoms.size();
  3.1554 -             i != id; i = (i + 2) % subblossoms.size()) {
  3.1555 -          int sb = subblossoms[i];
  3.1556 -          int tb = subblossoms[(i + 1) % subblossoms.size()];
  3.1557 -          (*_blossom_data)[sb].next =
  3.1558 -            _graph.oppositeArc((*_blossom_data)[tb].next);
  3.1559 -        }
  3.1560 -
  3.1561 -        for (int i = id; i != ib; i = (i + 2) % subblossoms.size()) {
  3.1562 -          int sb = subblossoms[i];
  3.1563 -          int tb = subblossoms[(i + 1) % subblossoms.size()];
  3.1564 -          int ub = subblossoms[(i + 2) % subblossoms.size()];
  3.1565 -
  3.1566 -          (*_blossom_data)[sb].status = ODD;
  3.1567 -          matchedToOdd(sb);
  3.1568 -          _tree_set->insert(sb, tree);
  3.1569 -          (*_blossom_data)[sb].next = next;
  3.1570 -          (*_blossom_data)[sb].pred =
  3.1571 -            _graph.oppositeArc((*_blossom_data)[tb].next);
  3.1572 -
  3.1573 -          (*_blossom_data)[tb].status = EVEN;
  3.1574 -          matchedToEven(tb, tree);
  3.1575 -          _tree_set->insert(tb, tree);
  3.1576 -          (*_blossom_data)[tb].pred =
  3.1577 -            (*_blossom_data)[tb].next =
  3.1578 -            _graph.oppositeArc((*_blossom_data)[ub].next);
  3.1579 -          next = (*_blossom_data)[ub].next;
  3.1580 -        }
  3.1581 -
  3.1582 -        (*_blossom_data)[subblossoms[ib]].status = ODD;
  3.1583 -        matchedToOdd(subblossoms[ib]);
  3.1584 -        _tree_set->insert(subblossoms[ib], tree);
  3.1585 -        (*_blossom_data)[subblossoms[ib]].next = next;
  3.1586 -        (*_blossom_data)[subblossoms[ib]].pred = pred;
  3.1587 -      }
  3.1588 -      _tree_set->erase(blossom);
  3.1589 -    }
  3.1590 -
  3.1591 -    void extractBlossom(int blossom, const Node& base, const Arc& matching) {
  3.1592 -      if (_blossom_set->trivial(blossom)) {
  3.1593 -        int bi = (*_node_index)[base];
  3.1594 -        Value pot = (*_node_data)[bi].pot;
  3.1595 -
  3.1596 -        (*_matching)[base] = matching;
  3.1597 -        _blossom_node_list.push_back(base);
  3.1598 -        (*_node_potential)[base] = pot;
  3.1599 -      } else {
  3.1600 -
  3.1601 -        Value pot = (*_blossom_data)[blossom].pot;
  3.1602 -        int bn = _blossom_node_list.size();
  3.1603 -
  3.1604 -        std::vector<int> subblossoms;
  3.1605 -        _blossom_set->split(blossom, std::back_inserter(subblossoms));
  3.1606 -        int b = _blossom_set->find(base);
  3.1607 -        int ib = -1;
  3.1608 -        for (int i = 0; i < int(subblossoms.size()); ++i) {
  3.1609 -          if (subblossoms[i] == b) { ib = i; break; }
  3.1610 -        }
  3.1611 -
  3.1612 -        for (int i = 1; i < int(subblossoms.size()); i += 2) {
  3.1613 -          int sb = subblossoms[(ib + i) % subblossoms.size()];
  3.1614 -          int tb = subblossoms[(ib + i + 1) % subblossoms.size()];
  3.1615 -
  3.1616 -          Arc m = (*_blossom_data)[tb].next;
  3.1617 -          extractBlossom(sb, _graph.target(m), _graph.oppositeArc(m));
  3.1618 -          extractBlossom(tb, _graph.source(m), m);
  3.1619 -        }
  3.1620 -        extractBlossom(subblossoms[ib], base, matching);
  3.1621 -
  3.1622 -        int en = _blossom_node_list.size();
  3.1623 -
  3.1624 -        _blossom_potential.push_back(BlossomVariable(bn, en, pot));
  3.1625 -      }
  3.1626 -    }
  3.1627 -
  3.1628 -    void extractMatching() {
  3.1629 -      std::vector<int> blossoms;
  3.1630 -      for (typename BlossomSet::ClassIt c(*_blossom_set); c != INVALID; ++c) {
  3.1631 -        blossoms.push_back(c);
  3.1632 -      }
  3.1633 -
  3.1634 -      for (int i = 0; i < int(blossoms.size()); ++i) {
  3.1635 -        if ((*_blossom_data)[blossoms[i]].status == MATCHED) {
  3.1636 -
  3.1637 -          Value offset = (*_blossom_data)[blossoms[i]].offset;
  3.1638 -          (*_blossom_data)[blossoms[i]].pot += 2 * offset;
  3.1639 -          for (typename BlossomSet::ItemIt n(*_blossom_set, blossoms[i]);
  3.1640 -               n != INVALID; ++n) {
  3.1641 -            (*_node_data)[(*_node_index)[n]].pot -= offset;
  3.1642 -          }
  3.1643 -
  3.1644 -          Arc matching = (*_blossom_data)[blossoms[i]].next;
  3.1645 -          Node base = _graph.source(matching);
  3.1646 -          extractBlossom(blossoms[i], base, matching);
  3.1647 -        } else {
  3.1648 -          Node base = (*_blossom_data)[blossoms[i]].base;
  3.1649 -          extractBlossom(blossoms[i], base, INVALID);
  3.1650 -        }
  3.1651 -      }
  3.1652 -    }
  3.1653 -
  3.1654 -  public:
  3.1655 -
  3.1656 -    /// \brief Constructor
  3.1657 -    ///
  3.1658 -    /// Constructor.
  3.1659 -    MaxWeightedMatching(const Graph& graph, const WeightMap& weight)
  3.1660 -      : _graph(graph), _weight(weight), _matching(0),
  3.1661 -        _node_potential(0), _blossom_potential(), _blossom_node_list(),
  3.1662 -        _node_num(0), _blossom_num(0),
  3.1663 -
  3.1664 -        _blossom_index(0), _blossom_set(0), _blossom_data(0),
  3.1665 -        _node_index(0), _node_heap_index(0), _node_data(0),
  3.1666 -        _tree_set_index(0), _tree_set(0),
  3.1667 -
  3.1668 -        _delta1_index(0), _delta1(0),
  3.1669 -        _delta2_index(0), _delta2(0),
  3.1670 -        _delta3_index(0), _delta3(0),
  3.1671 -        _delta4_index(0), _delta4(0),
  3.1672 -
  3.1673 -        _delta_sum() {}
  3.1674 -
  3.1675 -    ~MaxWeightedMatching() {
  3.1676 -      destroyStructures();
  3.1677 -    }
  3.1678 -
  3.1679 -    /// \name Execution Control
  3.1680 -    /// The simplest way to execute the algorithm is to use the
  3.1681 -    /// \ref run() member function.
  3.1682 -
  3.1683 -    ///@{
  3.1684 -
  3.1685 -    /// \brief Initialize the algorithm
  3.1686 -    ///
  3.1687 -    /// This function initializes the algorithm.
  3.1688 -    void init() {
  3.1689 -      createStructures();
  3.1690 -
  3.1691 -      for (ArcIt e(_graph); e != INVALID; ++e) {
  3.1692 -        (*_node_heap_index)[e] = BinHeap<Value, IntArcMap>::PRE_HEAP;
  3.1693 -      }
  3.1694 -      for (NodeIt n(_graph); n != INVALID; ++n) {
  3.1695 -        (*_delta1_index)[n] = _delta1->PRE_HEAP;
  3.1696 -      }
  3.1697 -      for (EdgeIt e(_graph); e != INVALID; ++e) {
  3.1698 -        (*_delta3_index)[e] = _delta3->PRE_HEAP;
  3.1699 -      }
  3.1700 -      for (int i = 0; i < _blossom_num; ++i) {
  3.1701 -        (*_delta2_index)[i] = _delta2->PRE_HEAP;
  3.1702 -        (*_delta4_index)[i] = _delta4->PRE_HEAP;
  3.1703 -      }
  3.1704 -
  3.1705 -      int index = 0;
  3.1706 -      for (NodeIt n(_graph); n != INVALID; ++n) {
  3.1707 -        Value max = 0;
  3.1708 -        for (OutArcIt e(_graph, n); e != INVALID; ++e) {
  3.1709 -          if (_graph.target(e) == n) continue;
  3.1710 -          if ((dualScale * _weight[e]) / 2 > max) {
  3.1711 -            max = (dualScale * _weight[e]) / 2;
  3.1712 -          }
  3.1713 -        }
  3.1714 -        (*_node_index)[n] = index;
  3.1715 -        (*_node_data)[index].pot = max;
  3.1716 -        _delta1->push(n, max);
  3.1717 -        int blossom =
  3.1718 -          _blossom_set->insert(n, std::numeric_limits<Value>::max());
  3.1719 -
  3.1720 -        _tree_set->insert(blossom);
  3.1721 -
  3.1722 -        (*_blossom_data)[blossom].status = EVEN;
  3.1723 -        (*_blossom_data)[blossom].pred = INVALID;
  3.1724 -        (*_blossom_data)[blossom].next = INVALID;
  3.1725 -        (*_blossom_data)[blossom].pot = 0;
  3.1726 -        (*_blossom_data)[blossom].offset = 0;
  3.1727 -        ++index;
  3.1728 -      }
  3.1729 -      for (EdgeIt e(_graph); e != INVALID; ++e) {
  3.1730 -        int si = (*_node_index)[_graph.u(e)];
  3.1731 -        int ti = (*_node_index)[_graph.v(e)];
  3.1732 -        if (_graph.u(e) != _graph.v(e)) {
  3.1733 -          _delta3->push(e, ((*_node_data)[si].pot + (*_node_data)[ti].pot -
  3.1734 -                            dualScale * _weight[e]) / 2);
  3.1735 -        }
  3.1736 -      }
  3.1737 -    }
  3.1738 -
  3.1739 -    /// \brief Start the algorithm
  3.1740 -    ///
  3.1741 -    /// This function starts the algorithm.
  3.1742 -    ///
  3.1743 -    /// \pre \ref init() must be called before using this function.
  3.1744 -    void start() {
  3.1745 -      enum OpType {
  3.1746 -        D1, D2, D3, D4
  3.1747 -      };
  3.1748 -
  3.1749 -      int unmatched = _node_num;
  3.1750 -      while (unmatched > 0) {
  3.1751 -        Value d1 = !_delta1->empty() ?
  3.1752 -          _delta1->prio() : std::numeric_limits<Value>::max();
  3.1753 -
  3.1754 -        Value d2 = !_delta2->empty() ?
  3.1755 -          _delta2->prio() : std::numeric_limits<Value>::max();
  3.1756 -
  3.1757 -        Value d3 = !_delta3->empty() ?
  3.1758 -          _delta3->prio() : std::numeric_limits<Value>::max();
  3.1759 -
  3.1760 -        Value d4 = !_delta4->empty() ?
  3.1761 -          _delta4->prio() : std::numeric_limits<Value>::max();
  3.1762 -
  3.1763 -        _delta_sum = d1; OpType ot = D1;
  3.1764 -        if (d2 < _delta_sum) { _delta_sum = d2; ot = D2; }
  3.1765 -        if (d3 < _delta_sum) { _delta_sum = d3; ot = D3; }
  3.1766 -        if (d4 < _delta_sum) { _delta_sum = d4; ot = D4; }
  3.1767 -
  3.1768 -
  3.1769 -        switch (ot) {
  3.1770 -        case D1:
  3.1771 -          {
  3.1772 -            Node n = _delta1->top();
  3.1773 -            unmatchNode(n);
  3.1774 -            --unmatched;
  3.1775 -          }
  3.1776 -          break;
  3.1777 -        case D2:
  3.1778 -          {
  3.1779 -            int blossom = _delta2->top();
  3.1780 -            Node n = _blossom_set->classTop(blossom);
  3.1781 -            Arc e = (*_node_data)[(*_node_index)[n]].heap.top();
  3.1782 -            extendOnArc(e);
  3.1783 -          }
  3.1784 -          break;
  3.1785 -        case D3:
  3.1786 -          {
  3.1787 -            Edge e = _delta3->top();
  3.1788 -
  3.1789 -            int left_blossom = _blossom_set->find(_graph.u(e));
  3.1790 -            int right_blossom = _blossom_set->find(_graph.v(e));
  3.1791 -
  3.1792 -            if (left_blossom == right_blossom) {
  3.1793 -              _delta3->pop();
  3.1794 -            } else {
  3.1795 -              int left_tree;
  3.1796 -              if ((*_blossom_data)[left_blossom].status == EVEN) {
  3.1797 -                left_tree = _tree_set->find(left_blossom);
  3.1798 -              } else {
  3.1799 -                left_tree = -1;
  3.1800 -                ++unmatched;
  3.1801 -              }
  3.1802 -              int right_tree;
  3.1803 -              if ((*_blossom_data)[right_blossom].status == EVEN) {
  3.1804 -                right_tree = _tree_set->find(right_blossom);
  3.1805 -              } else {
  3.1806 -                right_tree = -1;
  3.1807 -                ++unmatched;
  3.1808 -              }
  3.1809 -
  3.1810 -              if (left_tree == right_tree) {
  3.1811 -                shrinkOnEdge(e, left_tree);
  3.1812 -              } else {
  3.1813 -                augmentOnEdge(e);
  3.1814 -                unmatched -= 2;
  3.1815 -              }
  3.1816 -            }
  3.1817 -          } break;
  3.1818 -        case D4:
  3.1819 -          splitBlossom(_delta4->top());
  3.1820 -          break;
  3.1821 -        }
  3.1822 -      }
  3.1823 -      extractMatching();
  3.1824 -    }
  3.1825 -
  3.1826 -    /// \brief Run the algorithm.
  3.1827 -    ///
  3.1828 -    /// This method runs the \c %MaxWeightedMatching algorithm.
  3.1829 -    ///
  3.1830 -    /// \note mwm.run() is just a shortcut of the following code.
  3.1831 -    /// \code
  3.1832 -    ///   mwm.init();
  3.1833 -    ///   mwm.start();
  3.1834 -    /// \endcode
  3.1835 -    void run() {
  3.1836 -      init();
  3.1837 -      start();
  3.1838 -    }
  3.1839 -
  3.1840 -    /// @}
  3.1841 -
  3.1842 -    /// \name Primal Solution
  3.1843 -    /// Functions to get the primal solution, i.e. the maximum weighted 
  3.1844 -    /// matching.\n
  3.1845 -    /// Either \ref run() or \ref start() function should be called before
  3.1846 -    /// using them.
  3.1847 -
  3.1848 -    /// @{
  3.1849 -
  3.1850 -    /// \brief Return the weight of the matching.
  3.1851 -    ///
  3.1852 -    /// This function returns the weight of the found matching.
  3.1853 -    ///
  3.1854 -    /// \pre Either run() or start() must be called before using this function.
  3.1855 -    Value matchingWeight() const {
  3.1856 -      Value sum = 0;
  3.1857 -      for (NodeIt n(_graph); n != INVALID; ++n) {
  3.1858 -        if ((*_matching)[n] != INVALID) {
  3.1859 -          sum += _weight[(*_matching)[n]];
  3.1860 -        }
  3.1861 -      }
  3.1862 -      return sum /= 2;
  3.1863 -    }
  3.1864 -
  3.1865 -    /// \brief Return the size (cardinality) of the matching.
  3.1866 -    ///
  3.1867 -    /// This function returns the size (cardinality) of the found matching.
  3.1868 -    ///
  3.1869 -    /// \pre Either run() or start() must be called before using this function.
  3.1870 -    int matchingSize() const {
  3.1871 -      int num = 0;
  3.1872 -      for (NodeIt n(_graph); n != INVALID; ++n) {
  3.1873 -        if ((*_matching)[n] != INVALID) {
  3.1874 -          ++num;
  3.1875 -        }
  3.1876 -      }
  3.1877 -      return num /= 2;
  3.1878 -    }
  3.1879 -
  3.1880 -    /// \brief Return \c true if the given edge is in the matching.
  3.1881 -    ///
  3.1882 -    /// This function returns \c true if the given edge is in the found 
  3.1883 -    /// matching.
  3.1884 -    ///
  3.1885 -    /// \pre Either run() or start() must be called before using this function.
  3.1886 -    bool matching(const Edge& edge) const {
  3.1887 -      return edge == (*_matching)[_graph.u(edge)];
  3.1888 -    }
  3.1889 -
  3.1890 -    /// \brief Return the matching arc (or edge) incident to the given node.
  3.1891 -    ///
  3.1892 -    /// This function returns the matching arc (or edge) incident to the
  3.1893 -    /// given node in the found matching or \c INVALID if the node is 
  3.1894 -    /// not covered by the matching.
  3.1895 -    ///
  3.1896 -    /// \pre Either run() or start() must be called before using this function.
  3.1897 -    Arc matching(const Node& node) const {
  3.1898 -      return (*_matching)[node];
  3.1899 -    }
  3.1900 -
  3.1901 -    /// \brief Return a const reference to the matching map.
  3.1902 -    ///
  3.1903 -    /// This function returns a const reference to a node map that stores
  3.1904 -    /// the matching arc (or edge) incident to each node.
  3.1905 -    const MatchingMap& matchingMap() const {
  3.1906 -      return *_matching;
  3.1907 -    }
  3.1908 -
  3.1909 -    /// \brief Return the mate of the given node.
  3.1910 -    ///
  3.1911 -    /// This function returns the mate of the given node in the found 
  3.1912 -    /// matching or \c INVALID if the node is not covered by the matching.
  3.1913 -    ///
  3.1914 -    /// \pre Either run() or start() must be called before using this function.
  3.1915 -    Node mate(const Node& node) const {
  3.1916 -      return (*_matching)[node] != INVALID ?
  3.1917 -        _graph.target((*_matching)[node]) : INVALID;
  3.1918 -    }
  3.1919 -
  3.1920 -    /// @}
  3.1921 -
  3.1922 -    /// \name Dual Solution
  3.1923 -    /// Functions to get the dual solution.\n
  3.1924 -    /// Either \ref run() or \ref start() function should be called before
  3.1925 -    /// using them.
  3.1926 -
  3.1927 -    /// @{
  3.1928 -
  3.1929 -    /// \brief Return the value of the dual solution.
  3.1930 -    ///
  3.1931 -    /// This function returns the value of the dual solution. 
  3.1932 -    /// It should be equal to the primal value scaled by \ref dualScale 
  3.1933 -    /// "dual scale".
  3.1934 -    ///
  3.1935 -    /// \pre Either run() or start() must be called before using this function.
  3.1936 -    Value dualValue() const {
  3.1937 -      Value sum = 0;
  3.1938 -      for (NodeIt n(_graph); n != INVALID; ++n) {
  3.1939 -        sum += nodeValue(n);
  3.1940 -      }
  3.1941 -      for (int i = 0; i < blossomNum(); ++i) {
  3.1942 -        sum += blossomValue(i) * (blossomSize(i) / 2);
  3.1943 -      }
  3.1944 -      return sum;
  3.1945 -    }
  3.1946 -
  3.1947 -    /// \brief Return the dual value (potential) of the given node.
  3.1948 -    ///
  3.1949 -    /// This function returns the dual value (potential) of the given node.
  3.1950 -    ///
  3.1951 -    /// \pre Either run() or start() must be called before using this function.
  3.1952 -    Value nodeValue(const Node& n) const {
  3.1953 -      return (*_node_potential)[n];
  3.1954 -    }
  3.1955 -
  3.1956 -    /// \brief Return the number of the blossoms in the basis.
  3.1957 -    ///
  3.1958 -    /// This function returns the number of the blossoms in the basis.
  3.1959 -    ///
  3.1960 -    /// \pre Either run() or start() must be called before using this function.
  3.1961 -    /// \see BlossomIt
  3.1962 -    int blossomNum() const {
  3.1963 -      return _blossom_potential.size();
  3.1964 -    }
  3.1965 -
  3.1966 -    /// \brief Return the number of the nodes in the given blossom.
  3.1967 -    ///
  3.1968 -    /// This function returns the number of the nodes in the given blossom.
  3.1969 -    ///
  3.1970 -    /// \pre Either run() or start() must be called before using this function.
  3.1971 -    /// \see BlossomIt
  3.1972 -    int blossomSize(int k) const {
  3.1973 -      return _blossom_potential[k].end - _blossom_potential[k].begin;
  3.1974 -    }
  3.1975 -
  3.1976 -    /// \brief Return the dual value (ptential) of the given blossom.
  3.1977 -    ///
  3.1978 -    /// This function returns the dual value (ptential) of the given blossom.
  3.1979 -    ///
  3.1980 -    /// \pre Either run() or start() must be called before using this function.
  3.1981 -    Value blossomValue(int k) const {
  3.1982 -      return _blossom_potential[k].value;
  3.1983 -    }
  3.1984 -
  3.1985 -    /// \brief Iterator for obtaining the nodes of a blossom.
  3.1986 -    ///
  3.1987 -    /// This class provides an iterator for obtaining the nodes of the 
  3.1988 -    /// given blossom. It lists a subset of the nodes.
  3.1989 -    /// Before using this iterator, you must allocate a 
  3.1990 -    /// MaxWeightedMatching class and execute it.
  3.1991 -    class BlossomIt {
  3.1992 -    public:
  3.1993 -
  3.1994 -      /// \brief Constructor.
  3.1995 -      ///
  3.1996 -      /// Constructor to get the nodes of the given variable.
  3.1997 -      ///
  3.1998 -      /// \pre Either \ref MaxWeightedMatching::run() "algorithm.run()" or 
  3.1999 -      /// \ref MaxWeightedMatching::start() "algorithm.start()" must be 
  3.2000 -      /// called before initializing this iterator.
  3.2001 -      BlossomIt(const MaxWeightedMatching& algorithm, int variable)
  3.2002 -        : _algorithm(&algorithm)
  3.2003 -      {
  3.2004 -        _index = _algorithm->_blossom_potential[variable].begin;
  3.2005 -        _last = _algorithm->_blossom_potential[variable].end;
  3.2006 -      }
  3.2007 -
  3.2008 -      /// \brief Conversion to \c Node.
  3.2009 -      ///
  3.2010 -      /// Conversion to \c Node.
  3.2011 -      operator Node() const {
  3.2012 -        return _algorithm->_blossom_node_list[_index];
  3.2013 -      }
  3.2014 -
  3.2015 -      /// \brief Increment operator.
  3.2016 -      ///
  3.2017 -      /// Increment operator.
  3.2018 -      BlossomIt& operator++() {
  3.2019 -        ++_index;
  3.2020 -        return *this;
  3.2021 -      }
  3.2022 -
  3.2023 -      /// \brief Validity checking
  3.2024 -      ///
  3.2025 -      /// Checks whether the iterator is invalid.
  3.2026 -      bool operator==(Invalid) const { return _index == _last; }
  3.2027 -
  3.2028 -      /// \brief Validity checking
  3.2029 -      ///
  3.2030 -      /// Checks whether the iterator is valid.
  3.2031 -      bool operator!=(Invalid) const { return _index != _last; }
  3.2032 -
  3.2033 -    private:
  3.2034 -      const MaxWeightedMatching* _algorithm;
  3.2035 -      int _last;
  3.2036 -      int _index;
  3.2037 -    };
  3.2038 -
  3.2039 -    /// @}
  3.2040 -
  3.2041 -  };
  3.2042 -
  3.2043 -  /// \ingroup matching
  3.2044 -  ///
  3.2045 -  /// \brief Weighted perfect matching in general graphs
  3.2046 -  ///
  3.2047 -  /// This class provides an efficient implementation of Edmond's
  3.2048 -  /// maximum weighted perfect matching algorithm. The implementation
  3.2049 -  /// is based on extensive use of priority queues and provides
  3.2050 -  /// \f$O(nm\log n)\f$ time complexity.
  3.2051 -  ///
  3.2052 -  /// The maximum weighted perfect matching problem is to find a subset of 
  3.2053 -  /// the edges in an undirected graph with maximum overall weight for which 
  3.2054 -  /// each node has exactly one incident edge.
  3.2055 -  /// It can be formulated with the following linear program.
  3.2056 -  /// \f[ \sum_{e \in \delta(u)}x_e = 1 \quad \forall u\in V\f]
  3.2057 -  /** \f[ \sum_{e \in \gamma(B)}x_e \le \frac{\vert B \vert - 1}{2}
  3.2058 -      \quad \forall B\in\mathcal{O}\f] */
  3.2059 -  /// \f[x_e \ge 0\quad \forall e\in E\f]
  3.2060 -  /// \f[\max \sum_{e\in E}x_ew_e\f]
  3.2061 -  /// where \f$\delta(X)\f$ is the set of edges incident to a node in
  3.2062 -  /// \f$X\f$, \f$\gamma(X)\f$ is the set of edges with both ends in
  3.2063 -  /// \f$X\f$ and \f$\mathcal{O}\f$ is the set of odd cardinality
  3.2064 -  /// subsets of the nodes.
  3.2065 -  ///
  3.2066 -  /// The algorithm calculates an optimal matching and a proof of the
  3.2067 -  /// optimality. The solution of the dual problem can be used to check
  3.2068 -  /// the result of the algorithm. The dual linear problem is the
  3.2069 -  /// following.
  3.2070 -  /** \f[ y_u + y_v + \sum_{B \in \mathcal{O}, uv \in \gamma(B)}z_B \ge
  3.2071 -      w_{uv} \quad \forall uv\in E\f] */
  3.2072 -  /// \f[z_B \ge 0 \quad \forall B \in \mathcal{O}\f]
  3.2073 -  /** \f[\min \sum_{u \in V}y_u + \sum_{B \in \mathcal{O}}
  3.2074 -      \frac{\vert B \vert - 1}{2}z_B\f] */
  3.2075 -  ///
  3.2076 -  /// The algorithm can be executed with the run() function. 
  3.2077 -  /// After it the matching (the primal solution) and the dual solution
  3.2078 -  /// can be obtained using the query functions and the 
  3.2079 -  /// \ref MaxWeightedPerfectMatching::BlossomIt "BlossomIt" nested class, 
  3.2080 -  /// which is able to iterate on the nodes of a blossom. 
  3.2081 -  /// If the value type is integer, then the dual solution is multiplied
  3.2082 -  /// by \ref MaxWeightedMatching::dualScale "4".
  3.2083 -  ///
  3.2084 -  /// \tparam GR The undirected graph type the algorithm runs on.
  3.2085 -  /// \tparam WM The type edge weight map. The default type is 
  3.2086 -  /// \ref concepts::Graph::EdgeMap "GR::EdgeMap<int>".
  3.2087 -#ifdef DOXYGEN
  3.2088 -  template <typename GR, typename WM>
  3.2089 -#else
  3.2090 -  template <typename GR,
  3.2091 -            typename WM = typename GR::template EdgeMap<int> >
  3.2092 -#endif
  3.2093 -  class MaxWeightedPerfectMatching {
  3.2094 -  public:
  3.2095 -
  3.2096 -    /// The graph type of the algorithm
  3.2097 -    typedef GR Graph;
  3.2098 -    /// The type of the edge weight map
  3.2099 -    typedef WM WeightMap;
  3.2100 -    /// The value type of the edge weights
  3.2101 -    typedef typename WeightMap::Value Value;
  3.2102 -
  3.2103 -    /// \brief Scaling factor for dual solution
  3.2104 -    ///
  3.2105 -    /// Scaling factor for dual solution, it is equal to 4 or 1
  3.2106 -    /// according to the value type.
  3.2107 -    static const int dualScale =
  3.2108 -      std::numeric_limits<Value>::is_integer ? 4 : 1;
  3.2109 -
  3.2110 -    /// The type of the matching map
  3.2111 -    typedef typename Graph::template NodeMap<typename Graph::Arc>
  3.2112 -    MatchingMap;
  3.2113 -
  3.2114 -  private:
  3.2115 -
  3.2116 -    TEMPLATE_GRAPH_TYPEDEFS(Graph);
  3.2117 -
  3.2118 -    typedef typename Graph::template NodeMap<Value> NodePotential;
  3.2119 -    typedef std::vector<Node> BlossomNodeList;
  3.2120 -
  3.2121 -    struct BlossomVariable {
  3.2122 -      int begin, end;
  3.2123 -      Value value;
  3.2124 -
  3.2125 -      BlossomVariable(int _begin, int _end, Value _value)
  3.2126 -        : begin(_begin), end(_end), value(_value) {}
  3.2127 -
  3.2128 -    };
  3.2129 -
  3.2130 -    typedef std::vector<BlossomVariable> BlossomPotential;
  3.2131 -
  3.2132 -    const Graph& _graph;
  3.2133 -    const WeightMap& _weight;
  3.2134 -
  3.2135 -    MatchingMap* _matching;
  3.2136 -
  3.2137 -    NodePotential* _node_potential;
  3.2138 -
  3.2139 -    BlossomPotential _blossom_potential;
  3.2140 -    BlossomNodeList _blossom_node_list;
  3.2141 -
  3.2142 -    int _node_num;
  3.2143 -    int _blossom_num;
  3.2144 -
  3.2145 -    typedef RangeMap<int> IntIntMap;
  3.2146 -
  3.2147 -    enum Status {
  3.2148 -      EVEN = -1, MATCHED = 0, ODD = 1
  3.2149 -    };
  3.2150 -
  3.2151 -    typedef HeapUnionFind<Value, IntNodeMap> BlossomSet;
  3.2152 -    struct BlossomData {
  3.2153 -      int tree;
  3.2154 -      Status status;
  3.2155 -      Arc pred, next;
  3.2156 -      Value pot, offset;
  3.2157 -    };
  3.2158 -
  3.2159 -    IntNodeMap *_blossom_index;
  3.2160 -    BlossomSet *_blossom_set;
  3.2161 -    RangeMap<BlossomData>* _blossom_data;
  3.2162 -
  3.2163 -    IntNodeMap *_node_index;
  3.2164 -    IntArcMap *_node_heap_index;
  3.2165 -
  3.2166 -    struct NodeData {
  3.2167 -
  3.2168 -      NodeData(IntArcMap& node_heap_index)
  3.2169 -        : heap(node_heap_index) {}
  3.2170 -
  3.2171 -      int blossom;
  3.2172 -      Value pot;
  3.2173 -      BinHeap<Value, IntArcMap> heap;
  3.2174 -      std::map<int, Arc> heap_index;
  3.2175 -
  3.2176 -      int tree;
  3.2177 -    };
  3.2178 -
  3.2179 -    RangeMap<NodeData>* _node_data;
  3.2180 -
  3.2181 -    typedef ExtendFindEnum<IntIntMap> TreeSet;
  3.2182 -
  3.2183 -    IntIntMap *_tree_set_index;
  3.2184 -    TreeSet *_tree_set;
  3.2185 -
  3.2186 -    IntIntMap *_delta2_index;
  3.2187 -    BinHeap<Value, IntIntMap> *_delta2;
  3.2188 -
  3.2189 -    IntEdgeMap *_delta3_index;
  3.2190 -    BinHeap<Value, IntEdgeMap> *_delta3;
  3.2191 -
  3.2192 -    IntIntMap *_delta4_index;
  3.2193 -    BinHeap<Value, IntIntMap> *_delta4;
  3.2194 -
  3.2195 -    Value _delta_sum;
  3.2196 -
  3.2197 -    void createStructures() {
  3.2198 -      _node_num = countNodes(_graph);
  3.2199 -      _blossom_num = _node_num * 3 / 2;
  3.2200 -
  3.2201 -      if (!_matching) {
  3.2202 -        _matching = new MatchingMap(_graph);
  3.2203 -      }
  3.2204 -      if (!_node_potential) {
  3.2205 -        _node_potential = new NodePotential(_graph);
  3.2206 -      }
  3.2207 -      if (!_blossom_set) {
  3.2208 -        _blossom_index = new IntNodeMap(_graph);
  3.2209 -        _blossom_set = new BlossomSet(*_blossom_index);
  3.2210 -        _blossom_data = new RangeMap<BlossomData>(_blossom_num);
  3.2211 -      }
  3.2212 -
  3.2213 -      if (!_node_index) {
  3.2214 -        _node_index = new IntNodeMap(_graph);
  3.2215 -        _node_heap_index = new IntArcMap(_graph);
  3.2216 -        _node_data = new RangeMap<NodeData>(_node_num,
  3.2217 -                                            NodeData(*_node_heap_index));
  3.2218 -      }
  3.2219 -
  3.2220 -      if (!_tree_set) {
  3.2221 -        _tree_set_index = new IntIntMap(_blossom_num);
  3.2222 -        _tree_set = new TreeSet(*_tree_set_index);
  3.2223 -      }
  3.2224 -      if (!_delta2) {
  3.2225 -        _delta2_index = new IntIntMap(_blossom_num);
  3.2226 -        _delta2 = new BinHeap<Value, IntIntMap>(*_delta2_index);
  3.2227 -      }
  3.2228 -      if (!_delta3) {
  3.2229 -        _delta3_index = new IntEdgeMap(_graph);
  3.2230 -        _delta3 = new BinHeap<Value, IntEdgeMap>(*_delta3_index);
  3.2231 -      }
  3.2232 -      if (!_delta4) {
  3.2233 -        _delta4_index = new IntIntMap(_blossom_num);
  3.2234 -        _delta4 = new BinHeap<Value, IntIntMap>(*_delta4_index);
  3.2235 -      }
  3.2236 -    }
  3.2237 -
  3.2238 -    void destroyStructures() {
  3.2239 -      _node_num = countNodes(_graph);
  3.2240 -      _blossom_num = _node_num * 3 / 2;
  3.2241 -
  3.2242 -      if (_matching) {
  3.2243 -        delete _matching;
  3.2244 -      }
  3.2245 -      if (_node_potential) {
  3.2246 -        delete _node_potential;
  3.2247 -      }
  3.2248 -      if (_blossom_set) {
  3.2249 -        delete _blossom_index;
  3.2250 -        delete _blossom_set;
  3.2251 -        delete _blossom_data;
  3.2252 -      }
  3.2253 -
  3.2254 -      if (_node_index) {
  3.2255 -        delete _node_index;
  3.2256 -        delete _node_heap_index;
  3.2257 -        delete _node_data;
  3.2258 -      }
  3.2259 -
  3.2260 -      if (_tree_set) {
  3.2261 -        delete _tree_set_index;
  3.2262 -        delete _tree_set;
  3.2263 -      }
  3.2264 -      if (_delta2) {
  3.2265 -        delete _delta2_index;
  3.2266 -        delete _delta2;
  3.2267 -      }
  3.2268 -      if (_delta3) {
  3.2269 -        delete _delta3_index;
  3.2270 -        delete _delta3;
  3.2271 -      }
  3.2272 -      if (_delta4) {
  3.2273 -        delete _delta4_index;
  3.2274 -        delete _delta4;
  3.2275 -      }
  3.2276 -    }
  3.2277 -
  3.2278 -    void matchedToEven(int blossom, int tree) {
  3.2279 -      if (_delta2->state(blossom) == _delta2->IN_HEAP) {
  3.2280 -        _delta2->erase(blossom);
  3.2281 -      }
  3.2282 -
  3.2283 -      if (!_blossom_set->trivial(blossom)) {
  3.2284 -        (*_blossom_data)[blossom].pot -=
  3.2285 -          2 * (_delta_sum - (*_blossom_data)[blossom].offset);
  3.2286 -      }
  3.2287 -
  3.2288 -      for (typename BlossomSet::ItemIt n(*_blossom_set, blossom);
  3.2289 -           n != INVALID; ++n) {
  3.2290 -
  3.2291 -        _blossom_set->increase(n, std::numeric_limits<Value>::max());
  3.2292 -        int ni = (*_node_index)[n];
  3.2293 -
  3.2294 -        (*_node_data)[ni].heap.clear();
  3.2295 -        (*_node_data)[ni].heap_index.clear();
  3.2296 -
  3.2297 -        (*_node_data)[ni].pot += _delta_sum - (*_blossom_data)[blossom].offset;
  3.2298 -
  3.2299 -        for (InArcIt e(_graph, n); e != INVALID; ++e) {
  3.2300 -          Node v = _graph.source(e);
  3.2301 -          int vb = _blossom_set->find(v);
  3.2302 -          int vi = (*_node_index)[v];
  3.2303 -
  3.2304 -          Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot -
  3.2305 -            dualScale * _weight[e];
  3.2306 -
  3.2307 -          if ((*_blossom_data)[vb].status == EVEN) {
  3.2308 -            if (_delta3->state(e) != _delta3->IN_HEAP && blossom != vb) {
  3.2309 -              _delta3->push(e, rw / 2);
  3.2310 -            }
  3.2311 -          } else {
  3.2312 -            typename std::map<int, Arc>::iterator it =
  3.2313 -              (*_node_data)[vi].heap_index.find(tree);
  3.2314 -
  3.2315 -            if (it != (*_node_data)[vi].heap_index.end()) {
  3.2316 -              if ((*_node_data)[vi].heap[it->second] > rw) {
  3.2317 -                (*_node_data)[vi].heap.replace(it->second, e);
  3.2318 -                (*_node_data)[vi].heap.decrease(e, rw);
  3.2319 -                it->second = e;
  3.2320 -              }
  3.2321 -            } else {
  3.2322 -              (*_node_data)[vi].heap.push(e, rw);
  3.2323 -              (*_node_data)[vi].heap_index.insert(std::make_pair(tree, e));
  3.2324 -            }
  3.2325 -
  3.2326 -            if ((*_blossom_set)[v] > (*_node_data)[vi].heap.prio()) {
  3.2327 -              _blossom_set->decrease(v, (*_node_data)[vi].heap.prio());
  3.2328 -
  3.2329 -              if ((*_blossom_data)[vb].status == MATCHED) {
  3.2330 -                if (_delta2->state(vb) != _delta2->IN_HEAP) {
  3.2331 -                  _delta2->push(vb, _blossom_set->classPrio(vb) -
  3.2332 -                               (*_blossom_data)[vb].offset);
  3.2333 -                } else if ((*_delta2)[vb] > _blossom_set->classPrio(vb) -
  3.2334 -                           (*_blossom_data)[vb].offset){
  3.2335 -                  _delta2->decrease(vb, _blossom_set->classPrio(vb) -
  3.2336 -                                   (*_blossom_data)[vb].offset);
  3.2337 -                }
  3.2338 -              }
  3.2339 -            }
  3.2340 -          }
  3.2341 -        }
  3.2342 -      }
  3.2343 -      (*_blossom_data)[blossom].offset = 0;
  3.2344 -    }
  3.2345 -
  3.2346 -    void matchedToOdd(int blossom) {
  3.2347 -      if (_delta2->state(blossom) == _delta2->IN_HEAP) {
  3.2348 -        _delta2->erase(blossom);
  3.2349 -      }
  3.2350 -      (*_blossom_data)[blossom].offset += _delta_sum;
  3.2351 -      if (!_blossom_set->trivial(blossom)) {
  3.2352 -        _delta4->push(blossom, (*_blossom_data)[blossom].pot / 2 +
  3.2353 -                     (*_blossom_data)[blossom].offset);
  3.2354 -      }
  3.2355 -    }
  3.2356 -
  3.2357 -    void evenToMatched(int blossom, int tree) {
  3.2358 -      if (!_blossom_set->trivial(blossom)) {
  3.2359 -        (*_blossom_data)[blossom].pot += 2 * _delta_sum;
  3.2360 -      }
  3.2361 -
  3.2362 -      for (typename BlossomSet::ItemIt n(*_blossom_set, blossom);
  3.2363 -           n != INVALID; ++n) {
  3.2364 -        int ni = (*_node_index)[n];
  3.2365 -        (*_node_data)[ni].pot -= _delta_sum;
  3.2366 -
  3.2367 -        for (InArcIt e(_graph, n); e != INVALID; ++e) {
  3.2368 -          Node v = _graph.source(e);
  3.2369 -          int vb = _blossom_set->find(v);
  3.2370 -          int vi = (*_node_index)[v];
  3.2371 -
  3.2372 -          Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot -
  3.2373 -            dualScale * _weight[e];
  3.2374 -
  3.2375 -          if (vb == blossom) {
  3.2376 -            if (_delta3->state(e) == _delta3->IN_HEAP) {
  3.2377 -              _delta3->erase(e);
  3.2378 -            }
  3.2379 -          } else if ((*_blossom_data)[vb].status == EVEN) {
  3.2380 -
  3.2381 -            if (_delta3->state(e) == _delta3->IN_HEAP) {
  3.2382 -              _delta3->erase(e);
  3.2383 -            }
  3.2384 -
  3.2385 -            int vt = _tree_set->find(vb);
  3.2386 -
  3.2387 -            if (vt != tree) {
  3.2388 -
  3.2389 -              Arc r = _graph.oppositeArc(e);
  3.2390 -
  3.2391 -              typename std::map<int, Arc>::iterator it =
  3.2392 -                (*_node_data)[ni].heap_index.find(vt);
  3.2393 -
  3.2394 -              if (it != (*_node_data)[ni].heap_index.end()) {
  3.2395 -                if ((*_node_data)[ni].heap[it->second] > rw) {
  3.2396 -                  (*_node_data)[ni].heap.replace(it->second, r);
  3.2397 -                  (*_node_data)[ni].heap.decrease(r, rw);
  3.2398 -                  it->second = r;
  3.2399 -                }
  3.2400 -              } else {
  3.2401 -                (*_node_data)[ni].heap.push(r, rw);
  3.2402 -                (*_node_data)[ni].heap_index.insert(std::make_pair(vt, r));
  3.2403 -              }
  3.2404 -
  3.2405 -              if ((*_blossom_set)[n] > (*_node_data)[ni].heap.prio()) {
  3.2406 -                _blossom_set->decrease(n, (*_node_data)[ni].heap.prio());
  3.2407 -
  3.2408 -                if (_delta2->state(blossom) != _delta2->IN_HEAP) {
  3.2409 -                  _delta2->push(blossom, _blossom_set->classPrio(blossom) -
  3.2410 -                               (*_blossom_data)[blossom].offset);
  3.2411 -                } else if ((*_delta2)[blossom] >
  3.2412 -                           _blossom_set->classPrio(blossom) -
  3.2413 -                           (*_blossom_data)[blossom].offset){
  3.2414 -                  _delta2->decrease(blossom, _blossom_set->classPrio(blossom) -
  3.2415 -                                   (*_blossom_data)[blossom].offset);
  3.2416 -                }
  3.2417 -              }
  3.2418 -            }
  3.2419 -          } else {
  3.2420 -
  3.2421 -            typename std::map<int, Arc>::iterator it =
  3.2422 -              (*_node_data)[vi].heap_index.find(tree);
  3.2423 -
  3.2424 -            if (it != (*_node_data)[vi].heap_index.end()) {
  3.2425 -              (*_node_data)[vi].heap.erase(it->second);
  3.2426 -              (*_node_data)[vi].heap_index.erase(it);
  3.2427 -              if ((*_node_data)[vi].heap.empty()) {
  3.2428 -                _blossom_set->increase(v, std::numeric_limits<Value>::max());
  3.2429 -              } else if ((*_blossom_set)[v] < (*_node_data)[vi].heap.prio()) {
  3.2430 -                _blossom_set->increase(v, (*_node_data)[vi].heap.prio());
  3.2431 -              }
  3.2432 -
  3.2433 -              if ((*_blossom_data)[vb].status == MATCHED) {
  3.2434 -                if (_blossom_set->classPrio(vb) ==
  3.2435 -                    std::numeric_limits<Value>::max()) {
  3.2436 -                  _delta2->erase(vb);
  3.2437 -                } else if ((*_delta2)[vb] < _blossom_set->classPrio(vb) -
  3.2438 -                           (*_blossom_data)[vb].offset) {
  3.2439 -                  _delta2->increase(vb, _blossom_set->classPrio(vb) -
  3.2440 -                                   (*_blossom_data)[vb].offset);
  3.2441 -                }
  3.2442 -              }
  3.2443 -            }
  3.2444 -          }
  3.2445 -        }
  3.2446 -      }
  3.2447 -    }
  3.2448 -
  3.2449 -    void oddToMatched(int blossom) {
  3.2450 -      (*_blossom_data)[blossom].offset -= _delta_sum;
  3.2451 -
  3.2452 -      if (_blossom_set->classPrio(blossom) !=
  3.2453 -          std::numeric_limits<Value>::max()) {
  3.2454 -        _delta2->push(blossom, _blossom_set->classPrio(blossom) -
  3.2455 -                       (*_blossom_data)[blossom].offset);
  3.2456 -      }
  3.2457 -
  3.2458 -      if (!_blossom_set->trivial(blossom)) {
  3.2459 -        _delta4->erase(blossom);
  3.2460 -      }
  3.2461 -    }
  3.2462 -
  3.2463 -    void oddToEven(int blossom, int tree) {
  3.2464 -      if (!_blossom_set->trivial(blossom)) {
  3.2465 -        _delta4->erase(blossom);
  3.2466 -        (*_blossom_data)[blossom].pot -=
  3.2467 -          2 * (2 * _delta_sum - (*_blossom_data)[blossom].offset);
  3.2468 -      }
  3.2469 -
  3.2470 -      for (typename BlossomSet::ItemIt n(*_blossom_set, blossom);
  3.2471 -           n != INVALID; ++n) {
  3.2472 -        int ni = (*_node_index)[n];
  3.2473 -
  3.2474 -        _blossom_set->increase(n, std::numeric_limits<Value>::max());
  3.2475 -
  3.2476 -        (*_node_data)[ni].heap.clear();
  3.2477 -        (*_node_data)[ni].heap_index.clear();
  3.2478 -        (*_node_data)[ni].pot +=
  3.2479 -          2 * _delta_sum - (*_blossom_data)[blossom].offset;
  3.2480 -
  3.2481 -        for (InArcIt e(_graph, n); e != INVALID; ++e) {
  3.2482 -          Node v = _graph.source(e);
  3.2483 -          int vb = _blossom_set->find(v);
  3.2484 -          int vi = (*_node_index)[v];
  3.2485 -
  3.2486 -          Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot -
  3.2487 -            dualScale * _weight[e];
  3.2488 -
  3.2489 -          if ((*_blossom_data)[vb].status == EVEN) {
  3.2490 -            if (_delta3->state(e) != _delta3->IN_HEAP && blossom != vb) {
  3.2491 -              _delta3->push(e, rw / 2);
  3.2492 -            }
  3.2493 -          } else {
  3.2494 -
  3.2495 -            typename std::map<int, Arc>::iterator it =
  3.2496 -              (*_node_data)[vi].heap_index.find(tree);
  3.2497 -
  3.2498 -            if (it != (*_node_data)[vi].heap_index.end()) {
  3.2499 -              if ((*_node_data)[vi].heap[it->second] > rw) {
  3.2500 -                (*_node_data)[vi].heap.replace(it->second, e);
  3.2501 -                (*_node_data)[vi].heap.decrease(e, rw);
  3.2502 -                it->second = e;
  3.2503 -              }
  3.2504 -            } else {
  3.2505 -              (*_node_data)[vi].heap.push(e, rw);
  3.2506 -              (*_node_data)[vi].heap_index.insert(std::make_pair(tree, e));
  3.2507 -            }
  3.2508 -
  3.2509 -            if ((*_blossom_set)[v] > (*_node_data)[vi].heap.prio()) {
  3.2510 -              _blossom_set->decrease(v, (*_node_data)[vi].heap.prio());
  3.2511 -
  3.2512 -              if ((*_blossom_data)[vb].status == MATCHED) {
  3.2513 -                if (_delta2->state(vb) != _delta2->IN_HEAP) {
  3.2514 -                  _delta2->push(vb, _blossom_set->classPrio(vb) -
  3.2515 -                               (*_blossom_data)[vb].offset);
  3.2516 -                } else if ((*_delta2)[vb] > _blossom_set->classPrio(vb) -
  3.2517 -                           (*_blossom_data)[vb].offset) {
  3.2518 -                  _delta2->decrease(vb, _blossom_set->classPrio(vb) -
  3.2519 -                                   (*_blossom_data)[vb].offset);
  3.2520 -                }
  3.2521 -              }
  3.2522 -            }
  3.2523 -          }
  3.2524 -        }
  3.2525 -      }
  3.2526 -      (*_blossom_data)[blossom].offset = 0;
  3.2527 -    }
  3.2528 -
  3.2529 -    void alternatePath(int even, int tree) {
  3.2530 -      int odd;
  3.2531 -
  3.2532 -      evenToMatched(even, tree);
  3.2533 -      (*_blossom_data)[even].status = MATCHED;
  3.2534 -
  3.2535 -      while ((*_blossom_data)[even].pred != INVALID) {
  3.2536 -        odd = _blossom_set->find(_graph.target((*_blossom_data)[even].pred));
  3.2537 -        (*_blossom_data)[odd].status = MATCHED;
  3.2538 -        oddToMatched(odd);
  3.2539 -        (*_blossom_data)[odd].next = (*_blossom_data)[odd].pred;
  3.2540 -
  3.2541 -        even = _blossom_set->find(_graph.target((*_blossom_data)[odd].pred));
  3.2542 -        (*_blossom_data)[even].status = MATCHED;
  3.2543 -        evenToMatched(even, tree);
  3.2544 -        (*_blossom_data)[even].next =
  3.2545 -          _graph.oppositeArc((*_blossom_data)[odd].pred);
  3.2546 -      }
  3.2547 -
  3.2548 -    }
  3.2549 -
  3.2550 -    void destroyTree(int tree) {
  3.2551 -      for (TreeSet::ItemIt b(*_tree_set, tree); b != INVALID; ++b) {
  3.2552 -        if ((*_blossom_data)[b].status == EVEN) {
  3.2553 -          (*_blossom_data)[b].status = MATCHED;
  3.2554 -          evenToMatched(b, tree);
  3.2555 -        } else if ((*_blossom_data)[b].status == ODD) {
  3.2556 -          (*_blossom_data)[b].status = MATCHED;
  3.2557 -          oddToMatched(b);
  3.2558 -        }
  3.2559 -      }
  3.2560 -      _tree_set->eraseClass(tree);
  3.2561 -    }
  3.2562 -
  3.2563 -    void augmentOnEdge(const Edge& edge) {
  3.2564 -
  3.2565 -      int left = _blossom_set->find(_graph.u(edge));
  3.2566 -      int right = _blossom_set->find(_graph.v(edge));
  3.2567 -
  3.2568 -      int left_tree = _tree_set->find(left);
  3.2569 -      alternatePath(left, left_tree);
  3.2570 -      destroyTree(left_tree);
  3.2571 -
  3.2572 -      int right_tree = _tree_set->find(right);
  3.2573 -      alternatePath(right, right_tree);
  3.2574 -      destroyTree(right_tree);
  3.2575 -
  3.2576 -      (*_blossom_data)[left].next = _graph.direct(edge, true);
  3.2577 -      (*_blossom_data)[right].next = _graph.direct(edge, false);
  3.2578 -    }
  3.2579 -
  3.2580 -    void extendOnArc(const Arc& arc) {
  3.2581 -      int base = _blossom_set->find(_graph.target(arc));
  3.2582 -      int tree = _tree_set->find(base);
  3.2583 -
  3.2584 -      int odd = _blossom_set->find(_graph.source(arc));
  3.2585 -      _tree_set->insert(odd, tree);
  3.2586 -      (*_blossom_data)[odd].status = ODD;
  3.2587 -      matchedToOdd(odd);
  3.2588 -      (*_blossom_data)[odd].pred = arc;
  3.2589 -
  3.2590 -      int even = _blossom_set->find(_graph.target((*_blossom_data)[odd].next));
  3.2591 -      (*_blossom_data)[even].pred = (*_blossom_data)[even].next;
  3.2592 -      _tree_set->insert(even, tree);
  3.2593 -      (*_blossom_data)[even].status = EVEN;
  3.2594 -      matchedToEven(even, tree);
  3.2595 -    }
  3.2596 -
  3.2597 -    void shrinkOnEdge(const Edge& edge, int tree) {
  3.2598 -      int nca = -1;
  3.2599 -      std::vector<int> left_path, right_path;
  3.2600 -
  3.2601 -      {
  3.2602 -        std::set<int> left_set, right_set;
  3.2603 -        int left = _blossom_set->find(_graph.u(edge));
  3.2604 -        left_path.push_back(left);
  3.2605 -        left_set.insert(left);
  3.2606 -
  3.2607 -        int right = _blossom_set->find(_graph.v(edge));
  3.2608 -        right_path.push_back(right);
  3.2609 -        right_set.insert(right);
  3.2610 -
  3.2611 -        while (true) {
  3.2612 -
  3.2613 -          if ((*_blossom_data)[left].pred == INVALID) break;
  3.2614 -
  3.2615 -          left =
  3.2616 -            _blossom_set->find(_graph.target((*_blossom_data)[left].pred));
  3.2617 -          left_path.push_back(left);
  3.2618 -          left =
  3.2619 -            _blossom_set->find(_graph.target((*_blossom_data)[left].pred));
  3.2620 -          left_path.push_back(left);
  3.2621 -
  3.2622 -          left_set.insert(left);
  3.2623 -
  3.2624 -          if (right_set.find(left) != right_set.end()) {
  3.2625 -            nca = left;
  3.2626 -            break;
  3.2627 -          }
  3.2628 -
  3.2629 -          if ((*_blossom_data)[right].pred == INVALID) break;
  3.2630 -
  3.2631 -          right =
  3.2632 -            _blossom_set->find(_graph.target((*_blossom_data)[right].pred));
  3.2633 -          right_path.push_back(right);
  3.2634 -          right =
  3.2635 -            _blossom_set->find(_graph.target((*_blossom_data)[right].pred));
  3.2636 -          right_path.push_back(right);
  3.2637 -
  3.2638 -          right_set.insert(right);
  3.2639 -
  3.2640 -          if (left_set.find(right) != left_set.end()) {
  3.2641 -            nca = right;
  3.2642 -            break;
  3.2643 -          }
  3.2644 -
  3.2645 -        }
  3.2646 -
  3.2647 -        if (nca == -1) {
  3.2648 -          if ((*_blossom_data)[left].pred == INVALID) {
  3.2649 -            nca = right;
  3.2650 -            while (left_set.find(nca) == left_set.end()) {
  3.2651 -              nca =
  3.2652 -                _blossom_set->find(_graph.target((*_blossom_data)[nca].pred));
  3.2653 -              right_path.push_back(nca);
  3.2654 -              nca =
  3.2655 -                _blossom_set->find(_graph.target((*_blossom_data)[nca].pred));
  3.2656 -              right_path.push_back(nca);
  3.2657 -            }
  3.2658 -          } else {
  3.2659 -            nca = left;
  3.2660 -            while (right_set.find(nca) == right_set.end()) {
  3.2661 -              nca =
  3.2662 -                _blossom_set->find(_graph.target((*_blossom_data)[nca].pred));
  3.2663 -              left_path.push_back(nca);
  3.2664 -              nca =
  3.2665 -                _blossom_set->find(_graph.target((*_blossom_data)[nca].pred));
  3.2666 -              left_path.push_back(nca);
  3.2667 -            }
  3.2668 -          }
  3.2669 -        }
  3.2670 -      }
  3.2671 -
  3.2672 -      std::vector<int> subblossoms;
  3.2673 -      Arc prev;
  3.2674 -
  3.2675 -      prev = _graph.direct(edge, true);
  3.2676 -      for (int i = 0; left_path[i] != nca; i += 2) {
  3.2677 -        subblossoms.push_back(left_path[i]);
  3.2678 -        (*_blossom_data)[left_path[i]].next = prev;
  3.2679 -        _tree_set->erase(left_path[i]);
  3.2680 -
  3.2681 -        subblossoms.push_back(left_path[i + 1]);
  3.2682 -        (*_blossom_data)[left_path[i + 1]].status = EVEN;
  3.2683 -        oddToEven(left_path[i + 1], tree);
  3.2684 -        _tree_set->erase(left_path[i + 1]);
  3.2685 -        prev = _graph.oppositeArc((*_blossom_data)[left_path[i + 1]].pred);
  3.2686 -      }
  3.2687 -
  3.2688 -      int k = 0;
  3.2689 -      while (right_path[k] != nca) ++k;
  3.2690 -
  3.2691 -      subblossoms.push_back(nca);
  3.2692 -      (*_blossom_data)[nca].next = prev;
  3.2693 -
  3.2694 -      for (int i = k - 2; i >= 0; i -= 2) {
  3.2695 -        subblossoms.push_back(right_path[i + 1]);
  3.2696 -        (*_blossom_data)[right_path[i + 1]].status = EVEN;
  3.2697 -        oddToEven(right_path[i + 1], tree);
  3.2698 -        _tree_set->erase(right_path[i + 1]);
  3.2699 -
  3.2700 -        (*_blossom_data)[right_path[i + 1]].next =
  3.2701 -          (*_blossom_data)[right_path[i + 1]].pred;
  3.2702 -
  3.2703 -        subblossoms.push_back(right_path[i]);
  3.2704 -        _tree_set->erase(right_path[i]);
  3.2705 -      }
  3.2706 -
  3.2707 -      int surface =
  3.2708 -        _blossom_set->join(subblossoms.begin(), subblossoms.end());
  3.2709 -
  3.2710 -      for (int i = 0; i < int(subblossoms.size()); ++i) {
  3.2711 -        if (!_blossom_set->trivial(subblossoms[i])) {
  3.2712 -          (*_blossom_data)[subblossoms[i]].pot += 2 * _delta_sum;
  3.2713 -        }
  3.2714 -        (*_blossom_data)[subblossoms[i]].status = MATCHED;
  3.2715 -      }
  3.2716 -
  3.2717 -      (*_blossom_data)[surface].pot = -2 * _delta_sum;
  3.2718 -      (*_blossom_data)[surface].offset = 0;
  3.2719 -      (*_blossom_data)[surface].status = EVEN;
  3.2720 -      (*_blossom_data)[surface].pred = (*_blossom_data)[nca].pred;
  3.2721 -      (*_blossom_data)[surface].next = (*_blossom_data)[nca].pred;
  3.2722 -
  3.2723 -      _tree_set->insert(surface, tree);
  3.2724 -      _tree_set->erase(nca);
  3.2725 -    }
  3.2726 -
  3.2727 -    void splitBlossom(int blossom) {
  3.2728 -      Arc next = (*_blossom_data)[blossom].next;
  3.2729 -      Arc pred = (*_blossom_data)[blossom].pred;
  3.2730 -
  3.2731 -      int tree = _tree_set->find(blossom);
  3.2732 -
  3.2733 -      (*_blossom_data)[blossom].status = MATCHED;
  3.2734 -      oddToMatched(blossom);
  3.2735 -      if (_delta2->state(blossom) == _delta2->IN_HEAP) {
  3.2736 -        _delta2->erase(blossom);
  3.2737 -      }
  3.2738 -
  3.2739 -      std::vector<int> subblossoms;
  3.2740 -      _blossom_set->split(blossom, std::back_inserter(subblossoms));
  3.2741 -
  3.2742 -      Value offset = (*_blossom_data)[blossom].offset;
  3.2743 -      int b = _blossom_set->find(_graph.source(pred));
  3.2744 -      int d = _blossom_set->find(_graph.source(next));
  3.2745 -
  3.2746 -      int ib = -1, id = -1;
  3.2747 -      for (int i = 0; i < int(subblossoms.size()); ++i) {
  3.2748 -        if (subblossoms[i] == b) ib = i;
  3.2749 -        if (subblossoms[i] == d) id = i;
  3.2750 -
  3.2751 -        (*_blossom_data)[subblossoms[i]].offset = offset;
  3.2752 -        if (!_blossom_set->trivial(subblossoms[i])) {
  3.2753 -          (*_blossom_data)[subblossoms[i]].pot -= 2 * offset;
  3.2754 -        }
  3.2755 -        if (_blossom_set->classPrio(subblossoms[i]) !=
  3.2756 -            std::numeric_limits<Value>::max()) {
  3.2757 -          _delta2->push(subblossoms[i],
  3.2758 -                        _blossom_set->classPrio(subblossoms[i]) -
  3.2759 -                        (*_blossom_data)[subblossoms[i]].offset);
  3.2760 -        }
  3.2761 -      }
  3.2762 -
  3.2763 -      if (id > ib ? ((id - ib) % 2 == 0) : ((ib - id) % 2 == 1)) {
  3.2764 -        for (int i = (id + 1) % subblossoms.size();
  3.2765 -             i != ib; i = (i + 2) % subblossoms.size()) {
  3.2766 -          int sb = subblossoms[i];
  3.2767 -          int tb = subblossoms[(i + 1) % subblossoms.size()];
  3.2768 -          (*_blossom_data)[sb].next =
  3.2769 -            _graph.oppositeArc((*_blossom_data)[tb].next);
  3.2770 -        }
  3.2771 -
  3.2772 -        for (int i = ib; i != id; i = (i + 2) % subblossoms.size()) {
  3.2773 -          int sb = subblossoms[i];
  3.2774 -          int tb = subblossoms[(i + 1) % subblossoms.size()];
  3.2775 -          int ub = subblossoms[(i + 2) % subblossoms.size()];
  3.2776 -
  3.2777 -          (*_blossom_data)[sb].status = ODD;
  3.2778 -          matchedToOdd(sb);
  3.2779 -          _tree_set->insert(sb, tree);
  3.2780 -          (*_blossom_data)[sb].pred = pred;
  3.2781 -          (*_blossom_data)[sb].next =
  3.2782 -                           _graph.oppositeArc((*_blossom_data)[tb].next);
  3.2783 -
  3.2784 -          pred = (*_blossom_data)[ub].next;
  3.2785 -
  3.2786 -          (*_blossom_data)[tb].status = EVEN;
  3.2787 -          matchedToEven(tb, tree);
  3.2788 -          _tree_set->insert(tb, tree);
  3.2789 -          (*_blossom_data)[tb].pred = (*_blossom_data)[tb].next;
  3.2790 -        }
  3.2791 -
  3.2792 -        (*_blossom_data)[subblossoms[id]].status = ODD;
  3.2793 -        matchedToOdd(subblossoms[id]);
  3.2794 -        _tree_set->insert(subblossoms[id], tree);
  3.2795 -        (*_blossom_data)[subblossoms[id]].next = next;
  3.2796 -        (*_blossom_data)[subblossoms[id]].pred = pred;
  3.2797 -
  3.2798 -      } else {
  3.2799 -
  3.2800 -        for (int i = (ib + 1) % subblossoms.size();
  3.2801 -             i != id; i = (i + 2) % subblossoms.size()) {
  3.2802 -          int sb = subblossoms[i];
  3.2803 -          int tb = subblossoms[(i + 1) % subblossoms.size()];
  3.2804 -          (*_blossom_data)[sb].next =
  3.2805 -            _graph.oppositeArc((*_blossom_data)[tb].next);
  3.2806 -        }
  3.2807 -
  3.2808 -        for (int i = id; i != ib; i = (i + 2) % subblossoms.size()) {
  3.2809 -          int sb = subblossoms[i];
  3.2810 -          int tb = subblossoms[(i + 1) % subblossoms.size()];
  3.2811 -          int ub = subblossoms[(i + 2) % subblossoms.size()];
  3.2812 -
  3.2813 -          (*_blossom_data)[sb].status = ODD;
  3.2814 -          matchedToOdd(sb);
  3.2815 -          _tree_set->insert(sb, tree);
  3.2816 -          (*_blossom_data)[sb].next = next;
  3.2817 -          (*_blossom_data)[sb].pred =
  3.2818 -            _graph.oppositeArc((*_blossom_data)[tb].next);
  3.2819 -
  3.2820 -          (*_blossom_data)[tb].status = EVEN;
  3.2821 -          matchedToEven(tb, tree);
  3.2822 -          _tree_set->insert(tb, tree);
  3.2823 -          (*_blossom_data)[tb].pred =
  3.2824 -            (*_blossom_data)[tb].next =
  3.2825 -            _graph.oppositeArc((*_blossom_data)[ub].next);
  3.2826 -          next = (*_blossom_data)[ub].next;
  3.2827 -        }
  3.2828 -
  3.2829 -        (*_blossom_data)[subblossoms[ib]].status = ODD;
  3.2830 -        matchedToOdd(subblossoms[ib]);
  3.2831 -        _tree_set->insert(subblossoms[ib], tree);
  3.2832 -        (*_blossom_data)[subblossoms[ib]].next = next;
  3.2833 -        (*_blossom_data)[subblossoms[ib]].pred = pred;
  3.2834 -      }
  3.2835 -      _tree_set->erase(blossom);
  3.2836 -    }
  3.2837 -
  3.2838 -    void extractBlossom(int blossom, const Node& base, const Arc& matching) {
  3.2839 -      if (_blossom_set->trivial(blossom)) {
  3.2840 -        int bi = (*_node_index)[base];
  3.2841 -        Value pot = (*_node_data)[bi].pot;
  3.2842 -
  3.2843 -        (*_matching)[base] = matching;
  3.2844 -        _blossom_node_list.push_back(base);
  3.2845 -        (*_node_potential)[base] = pot;
  3.2846 -      } else {
  3.2847 -
  3.2848 -        Value pot = (*_blossom_data)[blossom].pot;
  3.2849 -        int bn = _blossom_node_list.size();
  3.2850 -
  3.2851 -        std::vector<int> subblossoms;
  3.2852 -        _blossom_set->split(blossom, std::back_inserter(subblossoms));
  3.2853 -        int b = _blossom_set->find(base);
  3.2854 -        int ib = -1;
  3.2855 -        for (int i = 0; i < int(subblossoms.size()); ++i) {
  3.2856 -          if (subblossoms[i] == b) { ib = i; break; }
  3.2857 -        }
  3.2858 -
  3.2859 -        for (int i = 1; i < int(subblossoms.size()); i += 2) {
  3.2860 -          int sb = subblossoms[(ib + i) % subblossoms.size()];
  3.2861 -          int tb = subblossoms[(ib + i + 1) % subblossoms.size()];
  3.2862 -
  3.2863 -          Arc m = (*_blossom_data)[tb].next;
  3.2864 -          extractBlossom(sb, _graph.target(m), _graph.oppositeArc(m));
  3.2865 -          extractBlossom(tb, _graph.source(m), m);
  3.2866 -        }
  3.2867 -        extractBlossom(subblossoms[ib], base, matching);
  3.2868 -
  3.2869 -        int en = _blossom_node_list.size();
  3.2870 -
  3.2871 -        _blossom_potential.push_back(BlossomVariable(bn, en, pot));
  3.2872 -      }
  3.2873 -    }
  3.2874 -
  3.2875 -    void extractMatching() {
  3.2876 -      std::vector<int> blossoms;
  3.2877 -      for (typename BlossomSet::ClassIt c(*_blossom_set); c != INVALID; ++c) {
  3.2878 -        blossoms.push_back(c);
  3.2879 -      }
  3.2880 -
  3.2881 -      for (int i = 0; i < int(blossoms.size()); ++i) {
  3.2882 -
  3.2883 -        Value offset = (*_blossom_data)[blossoms[i]].offset;
  3.2884 -        (*_blossom_data)[blossoms[i]].pot += 2 * offset;
  3.2885 -        for (typename BlossomSet::ItemIt n(*_blossom_set, blossoms[i]);
  3.2886 -             n != INVALID; ++n) {
  3.2887 -          (*_node_data)[(*_node_index)[n]].pot -= offset;
  3.2888 -        }
  3.2889 -
  3.2890 -        Arc matching = (*_blossom_data)[blossoms[i]].next;
  3.2891 -        Node base = _graph.source(matching);
  3.2892 -        extractBlossom(blossoms[i], base, matching);
  3.2893 -      }
  3.2894 -    }
  3.2895 -
  3.2896 -  public:
  3.2897 -
  3.2898 -    /// \brief Constructor
  3.2899 -    ///
  3.2900 -    /// Constructor.
  3.2901 -    MaxWeightedPerfectMatching(const Graph& graph, const WeightMap& weight)
  3.2902 -      : _graph(graph), _weight(weight), _matching(0),
  3.2903 -        _node_potential(0), _blossom_potential(), _blossom_node_list(),
  3.2904 -        _node_num(0), _blossom_num(0),
  3.2905 -
  3.2906 -        _blossom_index(0), _blossom_set(0), _blossom_data(0),
  3.2907 -        _node_index(0), _node_heap_index(0), _node_data(0),
  3.2908 -        _tree_set_index(0), _tree_set(0),
  3.2909 -
  3.2910 -        _delta2_index(0), _delta2(0),
  3.2911 -        _delta3_index(0), _delta3(0),
  3.2912 -        _delta4_index(0), _delta4(0),
  3.2913 -
  3.2914 -        _delta_sum() {}
  3.2915 -
  3.2916 -    ~MaxWeightedPerfectMatching() {
  3.2917 -      destroyStructures();
  3.2918 -    }
  3.2919 -
  3.2920 -    /// \name Execution Control
  3.2921 -    /// The simplest way to execute the algorithm is to use the
  3.2922 -    /// \ref run() member function.
  3.2923 -
  3.2924 -    ///@{
  3.2925 -
  3.2926 -    /// \brief Initialize the algorithm
  3.2927 -    ///
  3.2928 -    /// This function initializes the algorithm.
  3.2929 -    void init() {
  3.2930 -      createStructures();
  3.2931 -
  3.2932 -      for (ArcIt e(_graph); e != INVALID; ++e) {
  3.2933 -        (*_node_heap_index)[e] = BinHeap<Value, IntArcMap>::PRE_HEAP;
  3.2934 -      }
  3.2935 -      for (EdgeIt e(_graph); e != INVALID; ++e) {
  3.2936 -        (*_delta3_index)[e] = _delta3->PRE_HEAP;
  3.2937 -      }
  3.2938 -      for (int i = 0; i < _blossom_num; ++i) {
  3.2939 -        (*_delta2_index)[i] = _delta2->PRE_HEAP;
  3.2940 -        (*_delta4_index)[i] = _delta4->PRE_HEAP;
  3.2941 -      }
  3.2942 -
  3.2943 -      int index = 0;
  3.2944 -      for (NodeIt n(_graph); n != INVALID; ++n) {
  3.2945 -        Value max = - std::numeric_limits<Value>::max();
  3.2946 -        for (OutArcIt e(_graph, n); e != INVALID; ++e) {
  3.2947 -          if (_graph.target(e) == n) continue;
  3.2948 -          if ((dualScale * _weight[e]) / 2 > max) {
  3.2949 -            max = (dualScale * _weight[e]) / 2;
  3.2950 -          }
  3.2951 -        }
  3.2952 -        (*_node_index)[n] = index;
  3.2953 -        (*_node_data)[index].pot = max;
  3.2954 -        int blossom =
  3.2955 -          _blossom_set->insert(n, std::numeric_limits<Value>::max());
  3.2956 -
  3.2957 -        _tree_set->insert(blossom);
  3.2958 -
  3.2959 -        (*_blossom_data)[blossom].status = EVEN;
  3.2960 -        (*_blossom_data)[blossom].pred = INVALID;
  3.2961 -        (*_blossom_data)[blossom].next = INVALID;
  3.2962 -        (*_blossom_data)[blossom].pot = 0;
  3.2963 -        (*_blossom_data)[blossom].offset = 0;
  3.2964 -        ++index;
  3.2965 -      }
  3.2966 -      for (EdgeIt e(_graph); e != INVALID; ++e) {
  3.2967 -        int si = (*_node_index)[_graph.u(e)];
  3.2968 -        int ti = (*_node_index)[_graph.v(e)];
  3.2969 -        if (_graph.u(e) != _graph.v(e)) {
  3.2970 -          _delta3->push(e, ((*_node_data)[si].pot + (*_node_data)[ti].pot -
  3.2971 -                            dualScale * _weight[e]) / 2);
  3.2972 -        }
  3.2973 -      }
  3.2974 -    }
  3.2975 -
  3.2976 -    /// \brief Start the algorithm
  3.2977 -    ///
  3.2978 -    /// This function starts the algorithm.
  3.2979 -    ///
  3.2980 -    /// \pre \ref init() must be called before using this function.
  3.2981 -    bool start() {
  3.2982 -      enum OpType {
  3.2983 -        D2, D3, D4
  3.2984 -      };
  3.2985 -
  3.2986 -      int unmatched = _node_num;
  3.2987 -      while (unmatched > 0) {
  3.2988 -        Value d2 = !_delta2->empty() ?
  3.2989 -          _delta2->prio() : std::numeric_limits<Value>::max();
  3.2990 -
  3.2991 -        Value d3 = !_delta3->empty() ?
  3.2992 -          _delta3->prio() : std::numeric_limits<Value>::max();
  3.2993 -
  3.2994 -        Value d4 = !_delta4->empty() ?
  3.2995 -          _delta4->prio() : std::numeric_limits<Value>::max();
  3.2996 -
  3.2997 -        _delta_sum = d2; OpType ot = D2;
  3.2998 -        if (d3 < _delta_sum) { _delta_sum = d3; ot = D3; }
  3.2999 -        if (d4 < _delta_sum) { _delta_sum = d4; ot = D4; }
  3.3000 -
  3.3001 -        if (_delta_sum == std::numeric_limits<Value>::max()) {
  3.3002 -          return false;
  3.3003 -        }
  3.3004 -
  3.3005 -        switch (ot) {
  3.3006 -        case D2:
  3.3007 -          {
  3.3008 -            int blossom = _delta2->top();
  3.3009 -            Node n = _blossom_set->classTop(blossom);
  3.3010 -            Arc e = (*_node_data)[(*_node_index)[n]].heap.top();
  3.3011 -            extendOnArc(e);
  3.3012 -          }
  3.3013 -          break;
  3.3014 -        case D3:
  3.3015 -          {
  3.3016 -            Edge e = _delta3->top();
  3.3017 -
  3.3018 -            int left_blossom = _blossom_set->find(_graph.u(e));
  3.3019 -            int right_blossom = _blossom_set->find(_graph.v(e));
  3.3020 -
  3.3021 -            if (left_blossom == right_blossom) {
  3.3022 -              _delta3->pop();
  3.3023 -            } else {
  3.3024 -              int left_tree = _tree_set->find(left_blossom);
  3.3025 -              int right_tree = _tree_set->find(right_blossom);
  3.3026 -
  3.3027 -              if (left_tree == right_tree) {
  3.3028 -                shrinkOnEdge(e, left_tree);
  3.3029 -              } else {
  3.3030 -                augmentOnEdge(e);
  3.3031 -                unmatched -= 2;
  3.3032 -              }
  3.3033 -            }
  3.3034 -          } break;
  3.3035 -        case D4:
  3.3036 -          splitBlossom(_delta4->top());
  3.3037 -          break;
  3.3038 -        }
  3.3039 -      }
  3.3040 -      extractMatching();
  3.3041 -      return true;
  3.3042 -    }
  3.3043 -
  3.3044 -    /// \brief Run the algorithm.
  3.3045 -    ///
  3.3046 -    /// This method runs the \c %MaxWeightedPerfectMatching algorithm.
  3.3047 -    ///
  3.3048 -    /// \note mwpm.run() is just a shortcut of the following code.
  3.3049 -    /// \code
  3.3050 -    ///   mwpm.init();
  3.3051 -    ///   mwpm.start();
  3.3052 -    /// \endcode
  3.3053 -    bool run() {
  3.3054 -      init();
  3.3055 -      return start();
  3.3056 -    }
  3.3057 -
  3.3058 -    /// @}
  3.3059 -
  3.3060 -    /// \name Primal Solution
  3.3061 -    /// Functions to get the primal solution, i.e. the maximum weighted 
  3.3062 -    /// perfect matching.\n
  3.3063 -    /// Either \ref run() or \ref start() function should be called before
  3.3064 -    /// using them.
  3.3065 -
  3.3066 -    /// @{
  3.3067 -
  3.3068 -    /// \brief Return the weight of the matching.
  3.3069 -    ///
  3.3070 -    /// This function returns the weight of the found matching.
  3.3071 -    ///
  3.3072 -    /// \pre Either run() or start() must be called before using this function.
  3.3073 -    Value matchingWeight() const {
  3.3074 -      Value sum = 0;
  3.3075 -      for (NodeIt n(_graph); n != INVALID; ++n) {
  3.3076 -        if ((*_matching)[n] != INVALID) {
  3.3077 -          sum += _weight[(*_matching)[n]];
  3.3078 -        }
  3.3079 -      }
  3.3080 -      return sum /= 2;
  3.3081 -    }
  3.3082 -
  3.3083 -    /// \brief Return \c true if the given edge is in the matching.
  3.3084 -    ///
  3.3085 -    /// This function returns \c true if the given edge is in the found 
  3.3086 -    /// matching.
  3.3087 -    ///
  3.3088 -    /// \pre Either run() or start() must be called before using this function.
  3.3089 -    bool matching(const Edge& edge) const {
  3.3090 -      return static_cast<const Edge&>((*_matching)[_graph.u(edge)]) == edge;
  3.3091 -    }
  3.3092 -
  3.3093 -    /// \brief Return the matching arc (or edge) incident to the given node.
  3.3094 -    ///
  3.3095 -    /// This function returns the matching arc (or edge) incident to the
  3.3096 -    /// given node in the found matching or \c INVALID if the node is 
  3.3097 -    /// not covered by the matching.
  3.3098 -    ///
  3.3099 -    /// \pre Either run() or start() must be called before using this function.
  3.3100 -    Arc matching(const Node& node) const {
  3.3101 -      return (*_matching)[node];
  3.3102 -    }
  3.3103 -
  3.3104 -    /// \brief Return a const reference to the matching map.
  3.3105 -    ///
  3.3106 -    /// This function returns a const reference to a node map that stores
  3.3107 -    /// the matching arc (or edge) incident to each node.
  3.3108 -    const MatchingMap& matchingMap() const {
  3.3109 -      return *_matching;
  3.3110 -    }
  3.3111 -
  3.3112 -    /// \brief Return the mate of the given node.
  3.3113 -    ///
  3.3114 -    /// This function returns the mate of the given node in the found 
  3.3115 -    /// matching or \c INVALID if the node is not covered by the matching.
  3.3116 -    ///
  3.3117 -    /// \pre Either run() or start() must be called before using this function.
  3.3118 -    Node mate(const Node& node) const {
  3.3119 -      return _graph.target((*_matching)[node]);
  3.3120 -    }
  3.3121 -
  3.3122 -    /// @}
  3.3123 -
  3.3124 -    /// \name Dual Solution
  3.3125 -    /// Functions to get the dual solution.\n
  3.3126 -    /// Either \ref run() or \ref start() function should be called before
  3.3127 -    /// using them.
  3.3128 -
  3.3129 -    /// @{
  3.3130 -
  3.3131 -    /// \brief Return the value of the dual solution.
  3.3132 -    ///
  3.3133 -    /// This function returns the value of the dual solution. 
  3.3134 -    /// It should be equal to the primal value scaled by \ref dualScale 
  3.3135 -    /// "dual scale".
  3.3136 -    ///
  3.3137 -    /// \pre Either run() or start() must be called before using this function.
  3.3138 -    Value dualValue() const {
  3.3139 -      Value sum = 0;
  3.3140 -      for (NodeIt n(_graph); n != INVALID; ++n) {
  3.3141 -        sum += nodeValue(n);
  3.3142 -      }
  3.3143 -      for (int i = 0; i < blossomNum(); ++i) {
  3.3144 -        sum += blossomValue(i) * (blossomSize(i) / 2);
  3.3145 -      }
  3.3146 -      return sum;
  3.3147 -    }
  3.3148 -
  3.3149 -    /// \brief Return the dual value (potential) of the given node.
  3.3150 -    ///
  3.3151 -    /// This function returns the dual value (potential) of the given node.
  3.3152 -    ///
  3.3153 -    /// \pre Either run() or start() must be called before using this function.
  3.3154 -    Value nodeValue(const Node& n) const {
  3.3155 -      return (*_node_potential)[n];
  3.3156 -    }
  3.3157 -
  3.3158 -    /// \brief Return the number of the blossoms in the basis.
  3.3159 -    ///
  3.3160 -    /// This function returns the number of the blossoms in the basis.
  3.3161 -    ///
  3.3162 -    /// \pre Either run() or start() must be called before using this function.
  3.3163 -    /// \see BlossomIt
  3.3164 -    int blossomNum() const {
  3.3165 -      return _blossom_potential.size();
  3.3166 -    }
  3.3167 -
  3.3168 -    /// \brief Return the number of the nodes in the given blossom.
  3.3169 -    ///
  3.3170 -    /// This function returns the number of the nodes in the given blossom.
  3.3171 -    ///
  3.3172 -    /// \pre Either run() or start() must be called before using this function.
  3.3173 -    /// \see BlossomIt
  3.3174 -    int blossomSize(int k) const {
  3.3175 -      return _blossom_potential[k].end - _blossom_potential[k].begin;
  3.3176 -    }
  3.3177 -
  3.3178 -    /// \brief Return the dual value (ptential) of the given blossom.
  3.3179 -    ///
  3.3180 -    /// This function returns the dual value (ptential) of the given blossom.
  3.3181 -    ///
  3.3182 -    /// \pre Either run() or start() must be called before using this function.
  3.3183 -    Value blossomValue(int k) const {
  3.3184 -      return _blossom_potential[k].value;
  3.3185 -    }
  3.3186 -
  3.3187 -    /// \brief Iterator for obtaining the nodes of a blossom.
  3.3188 -    ///
  3.3189 -    /// This class provides an iterator for obtaining the nodes of the 
  3.3190 -    /// given blossom. It lists a subset of the nodes.
  3.3191 -    /// Before using this iterator, you must allocate a 
  3.3192 -    /// MaxWeightedPerfectMatching class and execute it.
  3.3193 -    class BlossomIt {
  3.3194 -    public:
  3.3195 -
  3.3196 -      /// \brief Constructor.
  3.3197 -      ///
  3.3198 -      /// Constructor to get the nodes of the given variable.
  3.3199 -      ///
  3.3200 -      /// \pre Either \ref MaxWeightedPerfectMatching::run() "algorithm.run()" 
  3.3201 -      /// or \ref MaxWeightedPerfectMatching::start() "algorithm.start()" 
  3.3202 -      /// must be called before initializing this iterator.
  3.3203 -      BlossomIt(const MaxWeightedPerfectMatching& algorithm, int variable)
  3.3204 -        : _algorithm(&algorithm)
  3.3205 -      {
  3.3206 -        _index = _algorithm->_blossom_potential[variable].begin;
  3.3207 -        _last = _algorithm->_blossom_potential[variable].end;
  3.3208 -      }
  3.3209 -
  3.3210 -      /// \brief Conversion to \c Node.
  3.3211 -      ///
  3.3212 -      /// Conversion to \c Node.
  3.3213 -      operator Node() const {
  3.3214 -        return _algorithm->_blossom_node_list[_index];
  3.3215 -      }
  3.3216 -
  3.3217 -      /// \brief Increment operator.
  3.3218 -      ///
  3.3219 -      /// Increment operator.
  3.3220 -      BlossomIt& operator++() {
  3.3221 -        ++_index;
  3.3222 -        return *this;
  3.3223 -      }
  3.3224 -
  3.3225 -      /// \brief Validity checking
  3.3226 -      ///
  3.3227 -      /// This function checks whether the iterator is invalid.
  3.3228 -      bool operator==(Invalid) const { return _index == _last; }
  3.3229 -
  3.3230 -      /// \brief Validity checking
  3.3231 -      ///
  3.3232 -      /// This function checks whether the iterator is valid.
  3.3233 -      bool operator!=(Invalid) const { return _index != _last; }
  3.3234 -
  3.3235 -    private:
  3.3236 -      const MaxWeightedPerfectMatching* _algorithm;
  3.3237 -      int _last;
  3.3238 -      int _index;
  3.3239 -    };
  3.3240 -
  3.3241 -    /// @}
  3.3242 -
  3.3243 -  };
  3.3244 -
  3.3245 -} //END OF NAMESPACE LEMON
  3.3246 -
  3.3247 -#endif //LEMON_MAX_MATCHING_H
     4.1 --- a/test/CMakeLists.txt	Fri Apr 17 09:54:14 2009 +0200
     4.2 +++ b/test/CMakeLists.txt	Fri Apr 17 09:58:50 2009 +0200
     4.3 @@ -29,7 +29,7 @@
     4.4    heap_test
     4.5    kruskal_test
     4.6    maps_test
     4.7 -  max_matching_test
     4.8 +  matching_test
     4.9    min_cost_arborescence_test
    4.10    path_test
    4.11    preflow_test
     5.1 --- a/test/Makefile.am	Fri Apr 17 09:54:14 2009 +0200
     5.2 +++ b/test/Makefile.am	Fri Apr 17 09:58:50 2009 +0200
     5.3 @@ -25,7 +25,7 @@
     5.4  	test/heap_test \
     5.5  	test/kruskal_test \
     5.6  	test/maps_test \
     5.7 -	test/max_matching_test \
     5.8 +	test/matching_test \
     5.9  	test/min_cost_arborescence_test \
    5.10  	test/path_test \
    5.11  	test/preflow_test \
    5.12 @@ -70,7 +70,7 @@
    5.13  test_lp_test_SOURCES = test/lp_test.cc
    5.14  test_maps_test_SOURCES = test/maps_test.cc
    5.15  test_mip_test_SOURCES = test/mip_test.cc
    5.16 -test_max_matching_test_SOURCES = test/max_matching_test.cc
    5.17 +test_matching_test_SOURCES = test/matching_test.cc
    5.18  test_min_cost_arborescence_test_SOURCES = test/min_cost_arborescence_test.cc
    5.19  test_path_test_SOURCES = test/path_test.cc
    5.20  test_preflow_test_SOURCES = test/preflow_test.cc
     6.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     6.2 +++ b/test/matching_test.cc	Fri Apr 17 09:58:50 2009 +0200
     6.3 @@ -0,0 +1,424 @@
     6.4 +/* -*- mode: C++; indent-tabs-mode: nil; -*-
     6.5 + *
     6.6 + * This file is a part of LEMON, a generic C++ optimization library.
     6.7 + *
     6.8 + * Copyright (C) 2003-2009
     6.9 + * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
    6.10 + * (Egervary Research Group on Combinatorial Optimization, EGRES).
    6.11 + *
    6.12 + * Permission to use, modify and distribute this software is granted
    6.13 + * provided that this copyright notice appears in all copies. For
    6.14 + * precise terms see the accompanying LICENSE file.
    6.15 + *
    6.16 + * This software is provided "AS IS" with no warranty of any kind,
    6.17 + * express or implied, and with no claim as to its suitability for any
    6.18 + * purpose.
    6.19 + *
    6.20 + */
    6.21 +
    6.22 +#include <iostream>
    6.23 +#include <sstream>
    6.24 +#include <vector>
    6.25 +#include <queue>
    6.26 +#include <cstdlib>
    6.27 +
    6.28 +#include <lemon/matching.h>
    6.29 +#include <lemon/smart_graph.h>
    6.30 +#include <lemon/concepts/graph.h>
    6.31 +#include <lemon/concepts/maps.h>
    6.32 +#include <lemon/lgf_reader.h>
    6.33 +#include <lemon/math.h>
    6.34 +
    6.35 +#include "test_tools.h"
    6.36 +
    6.37 +using namespace std;
    6.38 +using namespace lemon;
    6.39 +
    6.40 +GRAPH_TYPEDEFS(SmartGraph);
    6.41 +
    6.42 +
    6.43 +const int lgfn = 3;
    6.44 +const std::string lgf[lgfn] = {
    6.45 +  "@nodes\n"
    6.46 +  "label\n"
    6.47 +  "0\n"
    6.48 +  "1\n"
    6.49 +  "2\n"
    6.50 +  "3\n"
    6.51 +  "4\n"
    6.52 +  "5\n"
    6.53 +  "6\n"
    6.54 +  "7\n"
    6.55 +  "@edges\n"
    6.56 +  "     label  weight\n"
    6.57 +  "7 4  0      984\n"
    6.58 +  "0 7  1      73\n"
    6.59 +  "7 1  2      204\n"
    6.60 +  "2 3  3      583\n"
    6.61 +  "2 7  4      565\n"
    6.62 +  "2 1  5      582\n"
    6.63 +  "0 4  6      551\n"
    6.64 +  "2 5  7      385\n"
    6.65 +  "1 5  8      561\n"
    6.66 +  "5 3  9      484\n"
    6.67 +  "7 5  10     904\n"
    6.68 +  "3 6  11     47\n"
    6.69 +  "7 6  12     888\n"
    6.70 +  "3 0  13     747\n"
    6.71 +  "6 1  14     310\n",
    6.72 +
    6.73 +  "@nodes\n"
    6.74 +  "label\n"
    6.75 +  "0\n"
    6.76 +  "1\n"
    6.77 +  "2\n"
    6.78 +  "3\n"
    6.79 +  "4\n"
    6.80 +  "5\n"
    6.81 +  "6\n"
    6.82 +  "7\n"
    6.83 +  "@edges\n"
    6.84 +  "     label  weight\n"
    6.85 +  "2 5  0      710\n"
    6.86 +  "0 5  1      241\n"
    6.87 +  "2 4  2      856\n"
    6.88 +  "2 6  3      762\n"
    6.89 +  "4 1  4      747\n"
    6.90 +  "6 1  5      962\n"
    6.91 +  "4 7  6      723\n"
    6.92 +  "1 7  7      661\n"
    6.93 +  "2 3  8      376\n"
    6.94 +  "1 0  9      416\n"
    6.95 +  "6 7  10     391\n",
    6.96 +
    6.97 +  "@nodes\n"
    6.98 +  "label\n"
    6.99 +  "0\n"
   6.100 +  "1\n"
   6.101 +  "2\n"
   6.102 +  "3\n"
   6.103 +  "4\n"
   6.104 +  "5\n"
   6.105 +  "6\n"
   6.106 +  "7\n"
   6.107 +  "@edges\n"
   6.108 +  "     label  weight\n"
   6.109 +  "6 2  0      553\n"
   6.110 +  "0 7  1      653\n"
   6.111 +  "6 3  2      22\n"
   6.112 +  "4 7  3      846\n"
   6.113 +  "7 2  4      981\n"
   6.114 +  "7 6  5      250\n"
   6.115 +  "5 2  6      539\n",
   6.116 +};
   6.117 +
   6.118 +void checkMaxMatchingCompile()
   6.119 +{
   6.120 +  typedef concepts::Graph Graph;
   6.121 +  typedef Graph::Node Node;
   6.122 +  typedef Graph::Edge Edge;
   6.123 +  typedef Graph::EdgeMap<bool> MatMap;
   6.124 +
   6.125 +  Graph g;
   6.126 +  Node n;
   6.127 +  Edge e;
   6.128 +  MatMap mat(g);
   6.129 +
   6.130 +  MaxMatching<Graph> mat_test(g);
   6.131 +  const MaxMatching<Graph>&
   6.132 +    const_mat_test = mat_test;
   6.133 +
   6.134 +  mat_test.init();
   6.135 +  mat_test.greedyInit();
   6.136 +  mat_test.matchingInit(mat);
   6.137 +  mat_test.startSparse();
   6.138 +  mat_test.startDense();
   6.139 +  mat_test.run();
   6.140 +  
   6.141 +  const_mat_test.matchingSize();
   6.142 +  const_mat_test.matching(e);
   6.143 +  const_mat_test.matching(n);
   6.144 +  const MaxMatching<Graph>::MatchingMap& mmap =
   6.145 +    const_mat_test.matchingMap();
   6.146 +  e = mmap[n];
   6.147 +  const_mat_test.mate(n);
   6.148 +
   6.149 +  MaxMatching<Graph>::Status stat = 
   6.150 +    const_mat_test.status(n);
   6.151 +  const MaxMatching<Graph>::StatusMap& smap =
   6.152 +    const_mat_test.statusMap();
   6.153 +  stat = smap[n];
   6.154 +  const_mat_test.barrier(n);
   6.155 +}
   6.156 +
   6.157 +void checkMaxWeightedMatchingCompile()
   6.158 +{
   6.159 +  typedef concepts::Graph Graph;
   6.160 +  typedef Graph::Node Node;
   6.161 +  typedef Graph::Edge Edge;
   6.162 +  typedef Graph::EdgeMap<int> WeightMap;
   6.163 +
   6.164 +  Graph g;
   6.165 +  Node n;
   6.166 +  Edge e;
   6.167 +  WeightMap w(g);
   6.168 +
   6.169 +  MaxWeightedMatching<Graph> mat_test(g, w);
   6.170 +  const MaxWeightedMatching<Graph>&
   6.171 +    const_mat_test = mat_test;
   6.172 +
   6.173 +  mat_test.init();
   6.174 +  mat_test.start();
   6.175 +  mat_test.run();
   6.176 +  
   6.177 +  const_mat_test.matchingWeight();
   6.178 +  const_mat_test.matchingSize();
   6.179 +  const_mat_test.matching(e);
   6.180 +  const_mat_test.matching(n);
   6.181 +  const MaxWeightedMatching<Graph>::MatchingMap& mmap =
   6.182 +    const_mat_test.matchingMap();
   6.183 +  e = mmap[n];
   6.184 +  const_mat_test.mate(n);
   6.185 +  
   6.186 +  int k = 0;
   6.187 +  const_mat_test.dualValue();
   6.188 +  const_mat_test.nodeValue(n);
   6.189 +  const_mat_test.blossomNum();
   6.190 +  const_mat_test.blossomSize(k);
   6.191 +  const_mat_test.blossomValue(k);
   6.192 +}
   6.193 +
   6.194 +void checkMaxWeightedPerfectMatchingCompile()
   6.195 +{
   6.196 +  typedef concepts::Graph Graph;
   6.197 +  typedef Graph::Node Node;
   6.198 +  typedef Graph::Edge Edge;
   6.199 +  typedef Graph::EdgeMap<int> WeightMap;
   6.200 +
   6.201 +  Graph g;
   6.202 +  Node n;
   6.203 +  Edge e;
   6.204 +  WeightMap w(g);
   6.205 +
   6.206 +  MaxWeightedPerfectMatching<Graph> mat_test(g, w);
   6.207 +  const MaxWeightedPerfectMatching<Graph>&
   6.208 +    const_mat_test = mat_test;
   6.209 +
   6.210 +  mat_test.init();
   6.211 +  mat_test.start();
   6.212 +  mat_test.run();
   6.213 +  
   6.214 +  const_mat_test.matchingWeight();
   6.215 +  const_mat_test.matching(e);
   6.216 +  const_mat_test.matching(n);
   6.217 +  const MaxWeightedPerfectMatching<Graph>::MatchingMap& mmap =
   6.218 +    const_mat_test.matchingMap();
   6.219 +  e = mmap[n];
   6.220 +  const_mat_test.mate(n);
   6.221 +  
   6.222 +  int k = 0;
   6.223 +  const_mat_test.dualValue();
   6.224 +  const_mat_test.nodeValue(n);
   6.225 +  const_mat_test.blossomNum();
   6.226 +  const_mat_test.blossomSize(k);
   6.227 +  const_mat_test.blossomValue(k);
   6.228 +}
   6.229 +
   6.230 +void checkMatching(const SmartGraph& graph,
   6.231 +                   const MaxMatching<SmartGraph>& mm) {
   6.232 +  int num = 0;
   6.233 +
   6.234 +  IntNodeMap comp_index(graph);
   6.235 +  UnionFind<IntNodeMap> comp(comp_index);
   6.236 +
   6.237 +  int barrier_num = 0;
   6.238 +
   6.239 +  for (NodeIt n(graph); n != INVALID; ++n) {
   6.240 +    check(mm.status(n) == MaxMatching<SmartGraph>::EVEN ||
   6.241 +          mm.matching(n) != INVALID, "Wrong Gallai-Edmonds decomposition");
   6.242 +    if (mm.status(n) == MaxMatching<SmartGraph>::ODD) {
   6.243 +      ++barrier_num;
   6.244 +    } else {
   6.245 +      comp.insert(n);
   6.246 +    }
   6.247 +  }
   6.248 +
   6.249 +  for (EdgeIt e(graph); e != INVALID; ++e) {
   6.250 +    if (mm.matching(e)) {
   6.251 +      check(e == mm.matching(graph.u(e)), "Wrong matching");
   6.252 +      check(e == mm.matching(graph.v(e)), "Wrong matching");
   6.253 +      ++num;
   6.254 +    }
   6.255 +    check(mm.status(graph.u(e)) != MaxMatching<SmartGraph>::EVEN ||
   6.256 +          mm.status(graph.v(e)) != MaxMatching<SmartGraph>::MATCHED,
   6.257 +          "Wrong Gallai-Edmonds decomposition");
   6.258 +
   6.259 +    check(mm.status(graph.v(e)) != MaxMatching<SmartGraph>::EVEN ||
   6.260 +          mm.status(graph.u(e)) != MaxMatching<SmartGraph>::MATCHED,
   6.261 +          "Wrong Gallai-Edmonds decomposition");
   6.262 +
   6.263 +    if (mm.status(graph.u(e)) != MaxMatching<SmartGraph>::ODD &&
   6.264 +        mm.status(graph.v(e)) != MaxMatching<SmartGraph>::ODD) {
   6.265 +      comp.join(graph.u(e), graph.v(e));
   6.266 +    }
   6.267 +  }
   6.268 +
   6.269 +  std::set<int> comp_root;
   6.270 +  int odd_comp_num = 0;
   6.271 +  for (NodeIt n(graph); n != INVALID; ++n) {
   6.272 +    if (mm.status(n) != MaxMatching<SmartGraph>::ODD) {
   6.273 +      int root = comp.find(n);
   6.274 +      if (comp_root.find(root) == comp_root.end()) {
   6.275 +        comp_root.insert(root);
   6.276 +        if (comp.size(n) % 2 == 1) {
   6.277 +          ++odd_comp_num;
   6.278 +        }
   6.279 +      }
   6.280 +    }
   6.281 +  }
   6.282 +
   6.283 +  check(mm.matchingSize() == num, "Wrong matching");
   6.284 +  check(2 * num == countNodes(graph) - (odd_comp_num - barrier_num),
   6.285 +         "Wrong matching");
   6.286 +  return;
   6.287 +}
   6.288 +
   6.289 +void checkWeightedMatching(const SmartGraph& graph,
   6.290 +                   const SmartGraph::EdgeMap<int>& weight,
   6.291 +                   const MaxWeightedMatching<SmartGraph>& mwm) {
   6.292 +  for (SmartGraph::EdgeIt e(graph); e != INVALID; ++e) {
   6.293 +    if (graph.u(e) == graph.v(e)) continue;
   6.294 +    int rw = mwm.nodeValue(graph.u(e)) + mwm.nodeValue(graph.v(e));
   6.295 +
   6.296 +    for (int i = 0; i < mwm.blossomNum(); ++i) {
   6.297 +      bool s = false, t = false;
   6.298 +      for (MaxWeightedMatching<SmartGraph>::BlossomIt n(mwm, i);
   6.299 +           n != INVALID; ++n) {
   6.300 +        if (graph.u(e) == n) s = true;
   6.301 +        if (graph.v(e) == n) t = true;
   6.302 +      }
   6.303 +      if (s == true && t == true) {
   6.304 +        rw += mwm.blossomValue(i);
   6.305 +      }
   6.306 +    }
   6.307 +    rw -= weight[e] * mwm.dualScale;
   6.308 +
   6.309 +    check(rw >= 0, "Negative reduced weight");
   6.310 +    check(rw == 0 || !mwm.matching(e),
   6.311 +          "Non-zero reduced weight on matching edge");
   6.312 +  }
   6.313 +
   6.314 +  int pv = 0;
   6.315 +  for (SmartGraph::NodeIt n(graph); n != INVALID; ++n) {
   6.316 +    if (mwm.matching(n) != INVALID) {
   6.317 +      check(mwm.nodeValue(n) >= 0, "Invalid node value");
   6.318 +      pv += weight[mwm.matching(n)];
   6.319 +      SmartGraph::Node o = graph.target(mwm.matching(n));
   6.320 +      check(mwm.mate(n) == o, "Invalid matching");
   6.321 +      check(mwm.matching(n) == graph.oppositeArc(mwm.matching(o)),
   6.322 +            "Invalid matching");
   6.323 +    } else {
   6.324 +      check(mwm.mate(n) == INVALID, "Invalid matching");
   6.325 +      check(mwm.nodeValue(n) == 0, "Invalid matching");
   6.326 +    }
   6.327 +  }
   6.328 +
   6.329 +  int dv = 0;
   6.330 +  for (SmartGraph::NodeIt n(graph); n != INVALID; ++n) {
   6.331 +    dv += mwm.nodeValue(n);
   6.332 +  }
   6.333 +
   6.334 +  for (int i = 0; i < mwm.blossomNum(); ++i) {
   6.335 +    check(mwm.blossomValue(i) >= 0, "Invalid blossom value");
   6.336 +    check(mwm.blossomSize(i) % 2 == 1, "Even blossom size");
   6.337 +    dv += mwm.blossomValue(i) * ((mwm.blossomSize(i) - 1) / 2);
   6.338 +  }
   6.339 +
   6.340 +  check(pv * mwm.dualScale == dv * 2, "Wrong duality");
   6.341 +
   6.342 +  return;
   6.343 +}
   6.344 +
   6.345 +void checkWeightedPerfectMatching(const SmartGraph& graph,
   6.346 +                          const SmartGraph::EdgeMap<int>& weight,
   6.347 +                          const MaxWeightedPerfectMatching<SmartGraph>& mwpm) {
   6.348 +  for (SmartGraph::EdgeIt e(graph); e != INVALID; ++e) {
   6.349 +    if (graph.u(e) == graph.v(e)) continue;
   6.350 +    int rw = mwpm.nodeValue(graph.u(e)) + mwpm.nodeValue(graph.v(e));
   6.351 +
   6.352 +    for (int i = 0; i < mwpm.blossomNum(); ++i) {
   6.353 +      bool s = false, t = false;
   6.354 +      for (MaxWeightedPerfectMatching<SmartGraph>::BlossomIt n(mwpm, i);
   6.355 +           n != INVALID; ++n) {
   6.356 +        if (graph.u(e) == n) s = true;
   6.357 +        if (graph.v(e) == n) t = true;
   6.358 +      }
   6.359 +      if (s == true && t == true) {
   6.360 +        rw += mwpm.blossomValue(i);
   6.361 +      }
   6.362 +    }
   6.363 +    rw -= weight[e] * mwpm.dualScale;
   6.364 +
   6.365 +    check(rw >= 0, "Negative reduced weight");
   6.366 +    check(rw == 0 || !mwpm.matching(e),
   6.367 +          "Non-zero reduced weight on matching edge");
   6.368 +  }
   6.369 +
   6.370 +  int pv = 0;
   6.371 +  for (SmartGraph::NodeIt n(graph); n != INVALID; ++n) {
   6.372 +    check(mwpm.matching(n) != INVALID, "Non perfect");
   6.373 +    pv += weight[mwpm.matching(n)];
   6.374 +    SmartGraph::Node o = graph.target(mwpm.matching(n));
   6.375 +    check(mwpm.mate(n) == o, "Invalid matching");
   6.376 +    check(mwpm.matching(n) == graph.oppositeArc(mwpm.matching(o)),
   6.377 +          "Invalid matching");
   6.378 +  }
   6.379 +
   6.380 +  int dv = 0;
   6.381 +  for (SmartGraph::NodeIt n(graph); n != INVALID; ++n) {
   6.382 +    dv += mwpm.nodeValue(n);
   6.383 +  }
   6.384 +
   6.385 +  for (int i = 0; i < mwpm.blossomNum(); ++i) {
   6.386 +    check(mwpm.blossomValue(i) >= 0, "Invalid blossom value");
   6.387 +    check(mwpm.blossomSize(i) % 2 == 1, "Even blossom size");
   6.388 +    dv += mwpm.blossomValue(i) * ((mwpm.blossomSize(i) - 1) / 2);
   6.389 +  }
   6.390 +
   6.391 +  check(pv * mwpm.dualScale == dv * 2, "Wrong duality");
   6.392 +
   6.393 +  return;
   6.394 +}
   6.395 +
   6.396 +
   6.397 +int main() {
   6.398 +
   6.399 +  for (int i = 0; i < lgfn; ++i) {
   6.400 +    SmartGraph graph;
   6.401 +    SmartGraph::EdgeMap<int> weight(graph);
   6.402 +
   6.403 +    istringstream lgfs(lgf[i]);
   6.404 +    graphReader(graph, lgfs).
   6.405 +      edgeMap("weight", weight).run();
   6.406 +
   6.407 +    MaxMatching<SmartGraph> mm(graph);
   6.408 +    mm.run();
   6.409 +    checkMatching(graph, mm);
   6.410 +
   6.411 +    MaxWeightedMatching<SmartGraph> mwm(graph, weight);
   6.412 +    mwm.run();
   6.413 +    checkWeightedMatching(graph, weight, mwm);
   6.414 +
   6.415 +    MaxWeightedPerfectMatching<SmartGraph> mwpm(graph, weight);
   6.416 +    bool perfect = mwpm.run();
   6.417 +
   6.418 +    check(perfect == (mm.matchingSize() * 2 == countNodes(graph)),
   6.419 +          "Perfect matching found");
   6.420 +
   6.421 +    if (perfect) {
   6.422 +      checkWeightedPerfectMatching(graph, weight, mwpm);
   6.423 +    }
   6.424 +  }
   6.425 +
   6.426 +  return 0;
   6.427 +}
     7.1 --- a/test/max_matching_test.cc	Fri Apr 17 09:54:14 2009 +0200
     7.2 +++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
     7.3 @@ -1,424 +0,0 @@
     7.4 -/* -*- mode: C++; indent-tabs-mode: nil; -*-
     7.5 - *
     7.6 - * This file is a part of LEMON, a generic C++ optimization library.
     7.7 - *
     7.8 - * Copyright (C) 2003-2009
     7.9 - * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
    7.10 - * (Egervary Research Group on Combinatorial Optimization, EGRES).
    7.11 - *
    7.12 - * Permission to use, modify and distribute this software is granted
    7.13 - * provided that this copyright notice appears in all copies. For
    7.14 - * precise terms see the accompanying LICENSE file.
    7.15 - *
    7.16 - * This software is provided "AS IS" with no warranty of any kind,
    7.17 - * express or implied, and with no claim as to its suitability for any
    7.18 - * purpose.
    7.19 - *
    7.20 - */
    7.21 -
    7.22 -#include <iostream>
    7.23 -#include <sstream>
    7.24 -#include <vector>
    7.25 -#include <queue>
    7.26 -#include <cstdlib>
    7.27 -
    7.28 -#include <lemon/max_matching.h>
    7.29 -#include <lemon/smart_graph.h>
    7.30 -#include <lemon/concepts/graph.h>
    7.31 -#include <lemon/concepts/maps.h>
    7.32 -#include <lemon/lgf_reader.h>
    7.33 -#include <lemon/math.h>
    7.34 -
    7.35 -#include "test_tools.h"
    7.36 -
    7.37 -using namespace std;
    7.38 -using namespace lemon;
    7.39 -
    7.40 -GRAPH_TYPEDEFS(SmartGraph);
    7.41 -
    7.42 -
    7.43 -const int lgfn = 3;
    7.44 -const std::string lgf[lgfn] = {
    7.45 -  "@nodes\n"
    7.46 -  "label\n"
    7.47 -  "0\n"
    7.48 -  "1\n"
    7.49 -  "2\n"
    7.50 -  "3\n"
    7.51 -  "4\n"
    7.52 -  "5\n"
    7.53 -  "6\n"
    7.54 -  "7\n"
    7.55 -  "@edges\n"
    7.56 -  "     label  weight\n"
    7.57 -  "7 4  0      984\n"
    7.58 -  "0 7  1      73\n"
    7.59 -  "7 1  2      204\n"
    7.60 -  "2 3  3      583\n"
    7.61 -  "2 7  4      565\n"
    7.62 -  "2 1  5      582\n"
    7.63 -  "0 4  6      551\n"
    7.64 -  "2 5  7      385\n"
    7.65 -  "1 5  8      561\n"
    7.66 -  "5 3  9      484\n"
    7.67 -  "7 5  10     904\n"
    7.68 -  "3 6  11     47\n"
    7.69 -  "7 6  12     888\n"
    7.70 -  "3 0  13     747\n"
    7.71 -  "6 1  14     310\n",
    7.72 -
    7.73 -  "@nodes\n"
    7.74 -  "label\n"
    7.75 -  "0\n"
    7.76 -  "1\n"
    7.77 -  "2\n"
    7.78 -  "3\n"
    7.79 -  "4\n"
    7.80 -  "5\n"
    7.81 -  "6\n"
    7.82 -  "7\n"
    7.83 -  "@edges\n"
    7.84 -  "     label  weight\n"
    7.85 -  "2 5  0      710\n"
    7.86 -  "0 5  1      241\n"
    7.87 -  "2 4  2      856\n"
    7.88 -  "2 6  3      762\n"
    7.89 -  "4 1  4      747\n"
    7.90 -  "6 1  5      962\n"
    7.91 -  "4 7  6      723\n"
    7.92 -  "1 7  7      661\n"
    7.93 -  "2 3  8      376\n"
    7.94 -  "1 0  9      416\n"
    7.95 -  "6 7  10     391\n",
    7.96 -
    7.97 -  "@nodes\n"
    7.98 -  "label\n"
    7.99 -  "0\n"
   7.100 -  "1\n"
   7.101 -  "2\n"
   7.102 -  "3\n"
   7.103 -  "4\n"
   7.104 -  "5\n"
   7.105 -  "6\n"
   7.106 -  "7\n"
   7.107 -  "@edges\n"
   7.108 -  "     label  weight\n"
   7.109 -  "6 2  0      553\n"
   7.110 -  "0 7  1      653\n"
   7.111 -  "6 3  2      22\n"
   7.112 -  "4 7  3      846\n"
   7.113 -  "7 2  4      981\n"
   7.114 -  "7 6  5      250\n"
   7.115 -  "5 2  6      539\n",
   7.116 -};
   7.117 -
   7.118 -void checkMaxMatchingCompile()
   7.119 -{
   7.120 -  typedef concepts::Graph Graph;
   7.121 -  typedef Graph::Node Node;
   7.122 -  typedef Graph::Edge Edge;
   7.123 -  typedef Graph::EdgeMap<bool> MatMap;
   7.124 -
   7.125 -  Graph g;
   7.126 -  Node n;
   7.127 -  Edge e;
   7.128 -  MatMap mat(g);
   7.129 -
   7.130 -  MaxMatching<Graph> mat_test(g);
   7.131 -  const MaxMatching<Graph>&
   7.132 -    const_mat_test = mat_test;
   7.133 -
   7.134 -  mat_test.init();
   7.135 -  mat_test.greedyInit();
   7.136 -  mat_test.matchingInit(mat);
   7.137 -  mat_test.startSparse();
   7.138 -  mat_test.startDense();
   7.139 -  mat_test.run();
   7.140 -  
   7.141 -  const_mat_test.matchingSize();
   7.142 -  const_mat_test.matching(e);
   7.143 -  const_mat_test.matching(n);
   7.144 -  const MaxMatching<Graph>::MatchingMap& mmap =
   7.145 -    const_mat_test.matchingMap();
   7.146 -  e = mmap[n];
   7.147 -  const_mat_test.mate(n);
   7.148 -
   7.149 -  MaxMatching<Graph>::Status stat = 
   7.150 -    const_mat_test.status(n);
   7.151 -  const MaxMatching<Graph>::StatusMap& smap =
   7.152 -    const_mat_test.statusMap();
   7.153 -  stat = smap[n];
   7.154 -  const_mat_test.barrier(n);
   7.155 -}
   7.156 -
   7.157 -void checkMaxWeightedMatchingCompile()
   7.158 -{
   7.159 -  typedef concepts::Graph Graph;
   7.160 -  typedef Graph::Node Node;
   7.161 -  typedef Graph::Edge Edge;
   7.162 -  typedef Graph::EdgeMap<int> WeightMap;
   7.163 -
   7.164 -  Graph g;
   7.165 -  Node n;
   7.166 -  Edge e;
   7.167 -  WeightMap w(g);
   7.168 -
   7.169 -  MaxWeightedMatching<Graph> mat_test(g, w);
   7.170 -  const MaxWeightedMatching<Graph>&
   7.171 -    const_mat_test = mat_test;
   7.172 -
   7.173 -  mat_test.init();
   7.174 -  mat_test.start();
   7.175 -  mat_test.run();
   7.176 -  
   7.177 -  const_mat_test.matchingWeight();
   7.178 -  const_mat_test.matchingSize();
   7.179 -  const_mat_test.matching(e);
   7.180 -  const_mat_test.matching(n);
   7.181 -  const MaxWeightedMatching<Graph>::MatchingMap& mmap =
   7.182 -    const_mat_test.matchingMap();
   7.183 -  e = mmap[n];
   7.184 -  const_mat_test.mate(n);
   7.185 -  
   7.186 -  int k = 0;
   7.187 -  const_mat_test.dualValue();
   7.188 -  const_mat_test.nodeValue(n);
   7.189 -  const_mat_test.blossomNum();
   7.190 -  const_mat_test.blossomSize(k);
   7.191 -  const_mat_test.blossomValue(k);
   7.192 -}
   7.193 -
   7.194 -void checkMaxWeightedPerfectMatchingCompile()
   7.195 -{
   7.196 -  typedef concepts::Graph Graph;
   7.197 -  typedef Graph::Node Node;
   7.198 -  typedef Graph::Edge Edge;
   7.199 -  typedef Graph::EdgeMap<int> WeightMap;
   7.200 -
   7.201 -  Graph g;
   7.202 -  Node n;
   7.203 -  Edge e;
   7.204 -  WeightMap w(g);
   7.205 -
   7.206 -  MaxWeightedPerfectMatching<Graph> mat_test(g, w);
   7.207 -  const MaxWeightedPerfectMatching<Graph>&
   7.208 -    const_mat_test = mat_test;
   7.209 -
   7.210 -  mat_test.init();
   7.211 -  mat_test.start();
   7.212 -  mat_test.run();
   7.213 -  
   7.214 -  const_mat_test.matchingWeight();
   7.215 -  const_mat_test.matching(e);
   7.216 -  const_mat_test.matching(n);
   7.217 -  const MaxWeightedPerfectMatching<Graph>::MatchingMap& mmap =
   7.218 -    const_mat_test.matchingMap();
   7.219 -  e = mmap[n];
   7.220 -  const_mat_test.mate(n);
   7.221 -  
   7.222 -  int k = 0;
   7.223 -  const_mat_test.dualValue();
   7.224 -  const_mat_test.nodeValue(n);
   7.225 -  const_mat_test.blossomNum();
   7.226 -  const_mat_test.blossomSize(k);
   7.227 -  const_mat_test.blossomValue(k);
   7.228 -}
   7.229 -
   7.230 -void checkMatching(const SmartGraph& graph,
   7.231 -                   const MaxMatching<SmartGraph>& mm) {
   7.232 -  int num = 0;
   7.233 -
   7.234 -  IntNodeMap comp_index(graph);
   7.235 -  UnionFind<IntNodeMap> comp(comp_index);
   7.236 -
   7.237 -  int barrier_num = 0;
   7.238 -
   7.239 -  for (NodeIt n(graph); n != INVALID; ++n) {
   7.240 -    check(mm.status(n) == MaxMatching<SmartGraph>::EVEN ||
   7.241 -          mm.matching(n) != INVALID, "Wrong Gallai-Edmonds decomposition");
   7.242 -    if (mm.status(n) == MaxMatching<SmartGraph>::ODD) {
   7.243 -      ++barrier_num;
   7.244 -    } else {
   7.245 -      comp.insert(n);
   7.246 -    }
   7.247 -  }
   7.248 -
   7.249 -  for (EdgeIt e(graph); e != INVALID; ++e) {
   7.250 -    if (mm.matching(e)) {
   7.251 -      check(e == mm.matching(graph.u(e)), "Wrong matching");
   7.252 -      check(e == mm.matching(graph.v(e)), "Wrong matching");
   7.253 -      ++num;
   7.254 -    }
   7.255 -    check(mm.status(graph.u(e)) != MaxMatching<SmartGraph>::EVEN ||
   7.256 -          mm.status(graph.v(e)) != MaxMatching<SmartGraph>::MATCHED,
   7.257 -          "Wrong Gallai-Edmonds decomposition");
   7.258 -
   7.259 -    check(mm.status(graph.v(e)) != MaxMatching<SmartGraph>::EVEN ||
   7.260 -          mm.status(graph.u(e)) != MaxMatching<SmartGraph>::MATCHED,
   7.261 -          "Wrong Gallai-Edmonds decomposition");
   7.262 -
   7.263 -    if (mm.status(graph.u(e)) != MaxMatching<SmartGraph>::ODD &&
   7.264 -        mm.status(graph.v(e)) != MaxMatching<SmartGraph>::ODD) {
   7.265 -      comp.join(graph.u(e), graph.v(e));
   7.266 -    }
   7.267 -  }
   7.268 -
   7.269 -  std::set<int> comp_root;
   7.270 -  int odd_comp_num = 0;
   7.271 -  for (NodeIt n(graph); n != INVALID; ++n) {
   7.272 -    if (mm.status(n) != MaxMatching<SmartGraph>::ODD) {
   7.273 -      int root = comp.find(n);
   7.274 -      if (comp_root.find(root) == comp_root.end()) {
   7.275 -        comp_root.insert(root);
   7.276 -        if (comp.size(n) % 2 == 1) {
   7.277 -          ++odd_comp_num;
   7.278 -        }
   7.279 -      }
   7.280 -    }
   7.281 -  }
   7.282 -
   7.283 -  check(mm.matchingSize() == num, "Wrong matching");
   7.284 -  check(2 * num == countNodes(graph) - (odd_comp_num - barrier_num),
   7.285 -         "Wrong matching");
   7.286 -  return;
   7.287 -}
   7.288 -
   7.289 -void checkWeightedMatching(const SmartGraph& graph,
   7.290 -                   const SmartGraph::EdgeMap<int>& weight,
   7.291 -                   const MaxWeightedMatching<SmartGraph>& mwm) {
   7.292 -  for (SmartGraph::EdgeIt e(graph); e != INVALID; ++e) {
   7.293 -    if (graph.u(e) == graph.v(e)) continue;
   7.294 -    int rw = mwm.nodeValue(graph.u(e)) + mwm.nodeValue(graph.v(e));
   7.295 -
   7.296 -    for (int i = 0; i < mwm.blossomNum(); ++i) {
   7.297 -      bool s = false, t = false;
   7.298 -      for (MaxWeightedMatching<SmartGraph>::BlossomIt n(mwm, i);
   7.299 -           n != INVALID; ++n) {
   7.300 -        if (graph.u(e) == n) s = true;
   7.301 -        if (graph.v(e) == n) t = true;
   7.302 -      }
   7.303 -      if (s == true && t == true) {
   7.304 -        rw += mwm.blossomValue(i);
   7.305 -      }
   7.306 -    }
   7.307 -    rw -= weight[e] * mwm.dualScale;
   7.308 -
   7.309 -    check(rw >= 0, "Negative reduced weight");
   7.310 -    check(rw == 0 || !mwm.matching(e),
   7.311 -          "Non-zero reduced weight on matching edge");
   7.312 -  }
   7.313 -
   7.314 -  int pv = 0;
   7.315 -  for (SmartGraph::NodeIt n(graph); n != INVALID; ++n) {
   7.316 -    if (mwm.matching(n) != INVALID) {
   7.317 -      check(mwm.nodeValue(n) >= 0, "Invalid node value");
   7.318 -      pv += weight[mwm.matching(n)];
   7.319 -      SmartGraph::Node o = graph.target(mwm.matching(n));
   7.320 -      check(mwm.mate(n) == o, "Invalid matching");
   7.321 -      check(mwm.matching(n) == graph.oppositeArc(mwm.matching(o)),
   7.322 -            "Invalid matching");
   7.323 -    } else {
   7.324 -      check(mwm.mate(n) == INVALID, "Invalid matching");
   7.325 -      check(mwm.nodeValue(n) == 0, "Invalid matching");
   7.326 -    }
   7.327 -  }
   7.328 -
   7.329 -  int dv = 0;
   7.330 -  for (SmartGraph::NodeIt n(graph); n != INVALID; ++n) {
   7.331 -    dv += mwm.nodeValue(n);
   7.332 -  }
   7.333 -
   7.334 -  for (int i = 0; i < mwm.blossomNum(); ++i) {
   7.335 -    check(mwm.blossomValue(i) >= 0, "Invalid blossom value");
   7.336 -    check(mwm.blossomSize(i) % 2 == 1, "Even blossom size");
   7.337 -    dv += mwm.blossomValue(i) * ((mwm.blossomSize(i) - 1) / 2);
   7.338 -  }
   7.339 -
   7.340 -  check(pv * mwm.dualScale == dv * 2, "Wrong duality");
   7.341 -
   7.342 -  return;
   7.343 -}
   7.344 -
   7.345 -void checkWeightedPerfectMatching(const SmartGraph& graph,
   7.346 -                          const SmartGraph::EdgeMap<int>& weight,
   7.347 -                          const MaxWeightedPerfectMatching<SmartGraph>& mwpm) {
   7.348 -  for (SmartGraph::EdgeIt e(graph); e != INVALID; ++e) {
   7.349 -    if (graph.u(e) == graph.v(e)) continue;
   7.350 -    int rw = mwpm.nodeValue(graph.u(e)) + mwpm.nodeValue(graph.v(e));
   7.351 -
   7.352 -    for (int i = 0; i < mwpm.blossomNum(); ++i) {
   7.353 -      bool s = false, t = false;
   7.354 -      for (MaxWeightedPerfectMatching<SmartGraph>::BlossomIt n(mwpm, i);
   7.355 -           n != INVALID; ++n) {
   7.356 -        if (graph.u(e) == n) s = true;
   7.357 -        if (graph.v(e) == n) t = true;
   7.358 -      }
   7.359 -      if (s == true && t == true) {
   7.360 -        rw += mwpm.blossomValue(i);
   7.361 -      }
   7.362 -    }
   7.363 -    rw -= weight[e] * mwpm.dualScale;
   7.364 -
   7.365 -    check(rw >= 0, "Negative reduced weight");
   7.366 -    check(rw == 0 || !mwpm.matching(e),
   7.367 -          "Non-zero reduced weight on matching edge");
   7.368 -  }
   7.369 -
   7.370 -  int pv = 0;
   7.371 -  for (SmartGraph::NodeIt n(graph); n != INVALID; ++n) {
   7.372 -    check(mwpm.matching(n) != INVALID, "Non perfect");
   7.373 -    pv += weight[mwpm.matching(n)];
   7.374 -    SmartGraph::Node o = graph.target(mwpm.matching(n));
   7.375 -    check(mwpm.mate(n) == o, "Invalid matching");
   7.376 -    check(mwpm.matching(n) == graph.oppositeArc(mwpm.matching(o)),
   7.377 -          "Invalid matching");
   7.378 -  }
   7.379 -
   7.380 -  int dv = 0;
   7.381 -  for (SmartGraph::NodeIt n(graph); n != INVALID; ++n) {
   7.382 -    dv += mwpm.nodeValue(n);
   7.383 -  }
   7.384 -
   7.385 -  for (int i = 0; i < mwpm.blossomNum(); ++i) {
   7.386 -    check(mwpm.blossomValue(i) >= 0, "Invalid blossom value");
   7.387 -    check(mwpm.blossomSize(i) % 2 == 1, "Even blossom size");
   7.388 -    dv += mwpm.blossomValue(i) * ((mwpm.blossomSize(i) - 1) / 2);
   7.389 -  }
   7.390 -
   7.391 -  check(pv * mwpm.dualScale == dv * 2, "Wrong duality");
   7.392 -
   7.393 -  return;
   7.394 -}
   7.395 -
   7.396 -
   7.397 -int main() {
   7.398 -
   7.399 -  for (int i = 0; i < lgfn; ++i) {
   7.400 -    SmartGraph graph;
   7.401 -    SmartGraph::EdgeMap<int> weight(graph);
   7.402 -
   7.403 -    istringstream lgfs(lgf[i]);
   7.404 -    graphReader(graph, lgfs).
   7.405 -      edgeMap("weight", weight).run();
   7.406 -
   7.407 -    MaxMatching<SmartGraph> mm(graph);
   7.408 -    mm.run();
   7.409 -    checkMatching(graph, mm);
   7.410 -
   7.411 -    MaxWeightedMatching<SmartGraph> mwm(graph, weight);
   7.412 -    mwm.run();
   7.413 -    checkWeightedMatching(graph, weight, mwm);
   7.414 -
   7.415 -    MaxWeightedPerfectMatching<SmartGraph> mwpm(graph, weight);
   7.416 -    bool perfect = mwpm.run();
   7.417 -
   7.418 -    check(perfect == (mm.matchingSize() * 2 == countNodes(graph)),
   7.419 -          "Perfect matching found");
   7.420 -
   7.421 -    if (perfect) {
   7.422 -      checkWeightedPerfectMatching(graph, weight, mwpm);
   7.423 -    }
   7.424 -  }
   7.425 -
   7.426 -  return 0;
   7.427 -}
     8.1 --- a/tools/dimacs-solver.cc	Fri Apr 17 09:54:14 2009 +0200
     8.2 +++ b/tools/dimacs-solver.cc	Fri Apr 17 09:58:50 2009 +0200
     8.3 @@ -42,7 +42,7 @@
     8.4  
     8.5  #include <lemon/dijkstra.h>
     8.6  #include <lemon/preflow.h>
     8.7 -#include <lemon/max_matching.h>
     8.8 +#include <lemon/matching.h>
     8.9  
    8.10  using namespace lemon;
    8.11  typedef SmartDigraph Digraph;