lemon/concepts/heap.h
author Alpar Juttner <alpar@cs.elte.hu>
Thu, 10 Dec 2009 17:18:25 +0100
changeset 803 1b89e29c9fc7
parent 709 0747f332c478
child 817 b87f0504cdbe
permissions -rw-r--r--
Merge bugfix #330
alpar@209
     1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
alpar@100
     2
 *
alpar@209
     3
 * This file is a part of LEMON, a generic C++ optimization library.
alpar@100
     4
 *
alpar@440
     5
 * Copyright (C) 2003-2009
alpar@100
     6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
alpar@100
     7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
alpar@100
     8
 *
alpar@100
     9
 * Permission to use, modify and distribute this software is granted
alpar@100
    10
 * provided that this copyright notice appears in all copies. For
alpar@100
    11
 * precise terms see the accompanying LICENSE file.
alpar@100
    12
 *
alpar@100
    13
 * This software is provided "AS IS" with no warranty of any kind,
alpar@100
    14
 * express or implied, and with no claim as to its suitability for any
alpar@100
    15
 * purpose.
alpar@100
    16
 *
alpar@100
    17
 */
alpar@100
    18
kpeter@709
    19
#ifndef LEMON_CONCEPTS_HEAP_H
kpeter@709
    20
#define LEMON_CONCEPTS_HEAP_H
kpeter@709
    21
alpar@100
    22
///\ingroup concept
alpar@100
    23
///\file
kpeter@113
    24
///\brief The concept of heaps.
alpar@100
    25
deba@220
    26
#include <lemon/core.h>
deba@519
    27
#include <lemon/concept_check.h>
alpar@100
    28
alpar@100
    29
namespace lemon {
kpeter@113
    30
alpar@100
    31
  namespace concepts {
kpeter@113
    32
alpar@100
    33
    /// \addtogroup concept
alpar@100
    34
    /// @{
alpar@100
    35
kpeter@113
    36
    /// \brief The heap concept.
alpar@100
    37
    ///
kpeter@709
    38
    /// This concept class describes the main interface of heaps.
kpeter@710
    39
    /// The various \ref heaps "heap structures" are efficient
kpeter@709
    40
    /// implementations of the abstract data type \e priority \e queue.
kpeter@709
    41
    /// They store items with specified values called \e priorities
kpeter@709
    42
    /// in such a way that finding and removing the item with minimum
kpeter@709
    43
    /// priority are efficient. The basic operations are adding and
kpeter@709
    44
    /// erasing items, changing the priority of an item, etc.
kpeter@559
    45
    ///
kpeter@709
    46
    /// Heaps are crucial in several algorithms, such as Dijkstra and Prim.
kpeter@709
    47
    /// Any class that conforms to this concept can be used easily in such
kpeter@709
    48
    /// algorithms.
kpeter@709
    49
    ///
kpeter@709
    50
    /// \tparam PR Type of the priorities of the items.
kpeter@709
    51
    /// \tparam IM A read-writable item map with \c int values, used
kpeter@559
    52
    /// internally to handle the cross references.
kpeter@709
    53
    /// \tparam CMP A functor class for comparing the priorities.
kpeter@559
    54
    /// The default is \c std::less<PR>.
kpeter@559
    55
#ifdef DOXYGEN
kpeter@709
    56
    template <typename PR, typename IM, typename CMP>
kpeter@559
    57
#else
kpeter@709
    58
    template <typename PR, typename IM, typename CMP = std::less<PR> >
kpeter@559
    59
#endif
alpar@100
    60
    class Heap {
alpar@100
    61
    public:
alpar@100
    62
kpeter@559
    63
      /// Type of the item-int map.
kpeter@559
    64
      typedef IM ItemIntMap;
kpeter@559
    65
      /// Type of the priorities.
kpeter@559
    66
      typedef PR Prio;
kpeter@113
    67
      /// Type of the items stored in the heap.
kpeter@113
    68
      typedef typename ItemIntMap::Key Item;
alpar@100
    69
kpeter@113
    70
      /// \brief Type to represent the states of the items.
alpar@100
    71
      ///
kpeter@113
    72
      /// Each item has a state associated to it. It can be "in heap",
kpeter@709
    73
      /// "pre-heap" or "post-heap". The latter two are indifferent from the
kpeter@709
    74
      /// heap's point of view, but may be useful to the user.
alpar@100
    75
      ///
kpeter@559
    76
      /// The item-int map must be initialized in such way that it assigns
kpeter@559
    77
      /// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap.
alpar@100
    78
      enum State {
kpeter@584
    79
        IN_HEAP = 0,    ///< = 0. The "in heap" state constant.
kpeter@709
    80
        PRE_HEAP = -1,  ///< = -1. The "pre-heap" state constant.
kpeter@709
    81
        POST_HEAP = -2  ///< = -2. The "post-heap" state constant.
alpar@100
    82
      };
alpar@209
    83
kpeter@709
    84
      /// \brief Constructor.
alpar@100
    85
      ///
kpeter@709
    86
      /// Constructor.
kpeter@113
    87
      /// \param map A map that assigns \c int values to keys of type
kpeter@113
    88
      /// \c Item. It is used internally by the heap implementations to
kpeter@113
    89
      /// handle the cross references. The assigned value must be
kpeter@709
    90
      /// \c PRE_HEAP (<tt>-1</tt>) for each item.
kpeter@113
    91
      explicit Heap(ItemIntMap &map) {}
alpar@100
    92
kpeter@709
    93
      /// \brief Constructor.
kpeter@709
    94
      ///
kpeter@709
    95
      /// Constructor.
kpeter@709
    96
      /// \param map A map that assigns \c int values to keys of type
kpeter@709
    97
      /// \c Item. It is used internally by the heap implementations to
kpeter@709
    98
      /// handle the cross references. The assigned value must be
kpeter@709
    99
      /// \c PRE_HEAP (<tt>-1</tt>) for each item.
kpeter@709
   100
      /// \param comp The function object used for comparing the priorities.
kpeter@709
   101
      explicit Heap(ItemIntMap &map, const CMP &comp) {}
kpeter@709
   102
alpar@100
   103
      /// \brief The number of items stored in the heap.
alpar@100
   104
      ///
kpeter@709
   105
      /// This function returns the number of items stored in the heap.
alpar@100
   106
      int size() const { return 0; }
alpar@100
   107
kpeter@709
   108
      /// \brief Check if the heap is empty.
alpar@100
   109
      ///
kpeter@709
   110
      /// This function returns \c true if the heap is empty.
alpar@100
   111
      bool empty() const { return false; }
alpar@100
   112
kpeter@709
   113
      /// \brief Make the heap empty.
alpar@100
   114
      ///
kpeter@709
   115
      /// This functon makes the heap empty.
kpeter@709
   116
      /// It does not change the cross reference map. If you want to reuse
kpeter@709
   117
      /// a heap that is not surely empty, you should first clear it and
kpeter@709
   118
      /// then you should set the cross reference map to \c PRE_HEAP
kpeter@709
   119
      /// for each item.
kpeter@709
   120
      void clear() {}
alpar@100
   121
kpeter@709
   122
      /// \brief Insert an item into the heap with the given priority.
alpar@209
   123
      ///
kpeter@709
   124
      /// This function inserts the given item into the heap with the
kpeter@709
   125
      /// given priority.
alpar@100
   126
      /// \param i The item to insert.
alpar@100
   127
      /// \param p The priority of the item.
kpeter@709
   128
      /// \pre \e i must not be stored in the heap.
alpar@100
   129
      void push(const Item &i, const Prio &p) {}
alpar@100
   130
kpeter@709
   131
      /// \brief Return the item having minimum priority.
alpar@100
   132
      ///
kpeter@709
   133
      /// This function returns the item having minimum priority.
kpeter@113
   134
      /// \pre The heap must be non-empty.
alpar@100
   135
      Item top() const {}
alpar@100
   136
kpeter@113
   137
      /// \brief The minimum priority.
alpar@100
   138
      ///
kpeter@709
   139
      /// This function returns the minimum priority.
kpeter@113
   140
      /// \pre The heap must be non-empty.
alpar@100
   141
      Prio prio() const {}
alpar@100
   142
kpeter@709
   143
      /// \brief Remove the item having minimum priority.
alpar@100
   144
      ///
kpeter@709
   145
      /// This function removes the item having minimum priority.
kpeter@113
   146
      /// \pre The heap must be non-empty.
alpar@100
   147
      void pop() {}
alpar@100
   148
kpeter@709
   149
      /// \brief Remove the given item from the heap.
alpar@100
   150
      ///
kpeter@709
   151
      /// This function removes the given item from the heap if it is
kpeter@709
   152
      /// already stored.
alpar@209
   153
      /// \param i The item to delete.
kpeter@709
   154
      /// \pre \e i must be in the heap.
alpar@100
   155
      void erase(const Item &i) {}
alpar@100
   156
kpeter@709
   157
      /// \brief The priority of the given item.
alpar@100
   158
      ///
kpeter@709
   159
      /// This function returns the priority of the given item.
kpeter@559
   160
      /// \param i The item.
kpeter@709
   161
      /// \pre \e i must be in the heap.
alpar@100
   162
      Prio operator[](const Item &i) const {}
alpar@100
   163
kpeter@709
   164
      /// \brief Set the priority of an item or insert it, if it is
kpeter@113
   165
      /// not stored in the heap.
alpar@100
   166
      ///
kpeter@113
   167
      /// This method sets the priority of the given item if it is
kpeter@709
   168
      /// already stored in the heap. Otherwise it inserts the given
kpeter@709
   169
      /// item into the heap with the given priority.
kpeter@113
   170
      ///
alpar@100
   171
      /// \param i The item.
alpar@100
   172
      /// \param p The priority.
alpar@100
   173
      void set(const Item &i, const Prio &p) {}
alpar@209
   174
kpeter@709
   175
      /// \brief Decrease the priority of an item to the given value.
alpar@100
   176
      ///
kpeter@709
   177
      /// This function decreases the priority of an item to the given value.
alpar@100
   178
      /// \param i The item.
alpar@100
   179
      /// \param p The priority.
kpeter@709
   180
      /// \pre \e i must be stored in the heap with priority at least \e p.
alpar@100
   181
      void decrease(const Item &i, const Prio &p) {}
alpar@100
   182
kpeter@709
   183
      /// \brief Increase the priority of an item to the given value.
alpar@100
   184
      ///
kpeter@709
   185
      /// This function increases the priority of an item to the given value.
alpar@100
   186
      /// \param i The item.
alpar@100
   187
      /// \param p The priority.
kpeter@709
   188
      /// \pre \e i must be stored in the heap with priority at most \e p.
alpar@100
   189
      void increase(const Item &i, const Prio &p) {}
alpar@100
   190
kpeter@709
   191
      /// \brief Return the state of an item.
alpar@100
   192
      ///
kpeter@113
   193
      /// This method returns \c PRE_HEAP if the given item has never
kpeter@113
   194
      /// been in the heap, \c IN_HEAP if it is in the heap at the moment,
kpeter@113
   195
      /// and \c POST_HEAP otherwise.
kpeter@113
   196
      /// In the latter case it is possible that the item will get back
kpeter@113
   197
      /// to the heap again.
alpar@100
   198
      /// \param i The item.
alpar@100
   199
      State state(const Item &i) const {}
alpar@100
   200
kpeter@709
   201
      /// \brief Set the state of an item in the heap.
alpar@100
   202
      ///
kpeter@709
   203
      /// This function sets the state of the given item in the heap.
kpeter@709
   204
      /// It can be used to manually clear the heap when it is important
kpeter@709
   205
      /// to achive better time complexity.
alpar@100
   206
      /// \param i The item.
kpeter@113
   207
      /// \param st The state. It should not be \c IN_HEAP.
alpar@100
   208
      void state(const Item& i, State st) {}
alpar@100
   209
alpar@100
   210
alpar@100
   211
      template <typename _Heap>
alpar@100
   212
      struct Constraints {
alpar@100
   213
      public:
alpar@209
   214
        void constraints() {
alpar@209
   215
          typedef typename _Heap::Item OwnItem;
alpar@209
   216
          typedef typename _Heap::Prio OwnPrio;
alpar@209
   217
          typedef typename _Heap::State OwnState;
kpeter@113
   218
alpar@209
   219
          Item item;
alpar@209
   220
          Prio prio;
alpar@209
   221
          item=Item();
alpar@209
   222
          prio=Prio();
alpar@209
   223
          ignore_unused_variable_warning(item);
alpar@209
   224
          ignore_unused_variable_warning(prio);
alpar@100
   225
alpar@209
   226
          OwnItem own_item;
alpar@209
   227
          OwnPrio own_prio;
alpar@209
   228
          OwnState own_state;
alpar@209
   229
          own_item=Item();
alpar@209
   230
          own_prio=Prio();
alpar@209
   231
          ignore_unused_variable_warning(own_item);
alpar@209
   232
          ignore_unused_variable_warning(own_prio);
alpar@209
   233
          ignore_unused_variable_warning(own_state);
alpar@100
   234
alpar@209
   235
          _Heap heap1(map);
alpar@209
   236
          _Heap heap2 = heap1;
alpar@209
   237
          ignore_unused_variable_warning(heap1);
alpar@209
   238
          ignore_unused_variable_warning(heap2);
alpar@100
   239
alpar@209
   240
          int s = heap.size();
alpar@209
   241
          ignore_unused_variable_warning(s);
alpar@209
   242
          bool e = heap.empty();
alpar@209
   243
          ignore_unused_variable_warning(e);
alpar@100
   244
alpar@209
   245
          prio = heap.prio();
alpar@209
   246
          item = heap.top();
alpar@209
   247
          prio = heap[item];
alpar@209
   248
          own_prio = heap.prio();
alpar@209
   249
          own_item = heap.top();
alpar@209
   250
          own_prio = heap[own_item];
alpar@100
   251
alpar@209
   252
          heap.push(item, prio);
alpar@209
   253
          heap.push(own_item, own_prio);
alpar@209
   254
          heap.pop();
alpar@100
   255
alpar@209
   256
          heap.set(item, prio);
alpar@209
   257
          heap.decrease(item, prio);
alpar@209
   258
          heap.increase(item, prio);
alpar@209
   259
          heap.set(own_item, own_prio);
alpar@209
   260
          heap.decrease(own_item, own_prio);
alpar@209
   261
          heap.increase(own_item, own_prio);
alpar@100
   262
alpar@209
   263
          heap.erase(item);
alpar@209
   264
          heap.erase(own_item);
alpar@209
   265
          heap.clear();
alpar@100
   266
alpar@209
   267
          own_state = heap.state(own_item);
alpar@209
   268
          heap.state(own_item, own_state);
alpar@100
   269
alpar@209
   270
          own_state = _Heap::PRE_HEAP;
alpar@209
   271
          own_state = _Heap::IN_HEAP;
alpar@209
   272
          own_state = _Heap::POST_HEAP;
alpar@209
   273
        }
alpar@209
   274
alpar@209
   275
        _Heap& heap;
alpar@209
   276
        ItemIntMap& map;
alpar@100
   277
      };
alpar@100
   278
    };
alpar@100
   279
alpar@100
   280
    /// @}
alpar@100
   281
  } // namespace lemon
alpar@100
   282
}
deba@529
   283
#endif