doc/groups.dox
author Alpar Juttner <alpar@cs.elte.hu>
Tue, 02 Dec 2008 10:31:20 +0000
changeset 408 69f33ef03334
parent 388 0a3ec097a76c
child 418 ad483acf1654
permissions -rw-r--r--
Merge
alpar@209
     1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
alpar@40
     2
 *
alpar@209
     3
 * This file is a part of LEMON, a generic C++ optimization library.
alpar@40
     4
 *
alpar@40
     5
 * Copyright (C) 2003-2008
alpar@40
     6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
alpar@40
     7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
alpar@40
     8
 *
alpar@40
     9
 * Permission to use, modify and distribute this software is granted
alpar@40
    10
 * provided that this copyright notice appears in all copies. For
alpar@40
    11
 * precise terms see the accompanying LICENSE file.
alpar@40
    12
 *
alpar@40
    13
 * This software is provided "AS IS" with no warranty of any kind,
alpar@40
    14
 * express or implied, and with no claim as to its suitability for any
alpar@40
    15
 * purpose.
alpar@40
    16
 *
alpar@40
    17
 */
alpar@40
    18
kpeter@406
    19
namespace lemon {
kpeter@406
    20
alpar@40
    21
/**
alpar@40
    22
@defgroup datas Data Structures
kpeter@50
    23
This group describes the several data structures implemented in LEMON.
alpar@40
    24
*/
alpar@40
    25
alpar@40
    26
/**
alpar@40
    27
@defgroup graphs Graph Structures
alpar@40
    28
@ingroup datas
alpar@40
    29
\brief Graph structures implemented in LEMON.
alpar@40
    30
alpar@209
    31
The implementation of combinatorial algorithms heavily relies on
alpar@209
    32
efficient graph implementations. LEMON offers data structures which are
alpar@209
    33
planned to be easily used in an experimental phase of implementation studies,
alpar@209
    34
and thereafter the program code can be made efficient by small modifications.
alpar@40
    35
alpar@40
    36
The most efficient implementation of diverse applications require the
alpar@40
    37
usage of different physical graph implementations. These differences
alpar@40
    38
appear in the size of graph we require to handle, memory or time usage
alpar@40
    39
limitations or in the set of operations through which the graph can be
alpar@40
    40
accessed.  LEMON provides several physical graph structures to meet
alpar@40
    41
the diverging requirements of the possible users.  In order to save on
alpar@40
    42
running time or on memory usage, some structures may fail to provide
kpeter@83
    43
some graph features like arc/edge or node deletion.
alpar@40
    44
alpar@209
    45
Alteration of standard containers need a very limited number of
alpar@209
    46
operations, these together satisfy the everyday requirements.
alpar@209
    47
In the case of graph structures, different operations are needed which do
alpar@209
    48
not alter the physical graph, but gives another view. If some nodes or
kpeter@83
    49
arcs have to be hidden or the reverse oriented graph have to be used, then
alpar@209
    50
this is the case. It also may happen that in a flow implementation
alpar@209
    51
the residual graph can be accessed by another algorithm, or a node-set
alpar@209
    52
is to be shrunk for another algorithm.
alpar@209
    53
LEMON also provides a variety of graphs for these requirements called
alpar@209
    54
\ref graph_adaptors "graph adaptors". Adaptors cannot be used alone but only
alpar@209
    55
in conjunction with other graph representations.
alpar@40
    56
alpar@40
    57
You are free to use the graph structure that fit your requirements
alpar@40
    58
the best, most graph algorithms and auxiliary data structures can be used
kpeter@314
    59
with any graph structure.
kpeter@314
    60
kpeter@314
    61
<b>See also:</b> \ref graph_concepts "Graph Structure Concepts".
alpar@40
    62
*/
alpar@40
    63
alpar@40
    64
/**
kpeter@50
    65
@defgroup semi_adaptors Semi-Adaptor Classes for Graphs
alpar@40
    66
@ingroup graphs
alpar@40
    67
\brief Graph types between real graphs and graph adaptors.
alpar@40
    68
kpeter@50
    69
This group describes some graph types between real graphs and graph adaptors.
alpar@209
    70
These classes wrap graphs to give new functionality as the adaptors do it.
kpeter@50
    71
On the other hand they are not light-weight structures as the adaptors.
alpar@40
    72
*/
alpar@40
    73
alpar@40
    74
/**
alpar@209
    75
@defgroup maps Maps
alpar@40
    76
@ingroup datas
kpeter@50
    77
\brief Map structures implemented in LEMON.
alpar@40
    78
kpeter@50
    79
This group describes the map structures implemented in LEMON.
kpeter@50
    80
kpeter@314
    81
LEMON provides several special purpose maps and map adaptors that e.g. combine
alpar@40
    82
new maps from existing ones.
kpeter@314
    83
kpeter@314
    84
<b>See also:</b> \ref map_concepts "Map Concepts".
alpar@40
    85
*/
alpar@40
    86
alpar@40
    87
/**
alpar@209
    88
@defgroup graph_maps Graph Maps
alpar@40
    89
@ingroup maps
kpeter@83
    90
\brief Special graph-related maps.
alpar@40
    91
kpeter@50
    92
This group describes maps that are specifically designed to assign
kpeter@406
    93
values to the nodes and arcs/edges of graphs.
kpeter@406
    94
kpeter@406
    95
If you are looking for the standard graph maps (\c NodeMap, \c ArcMap,
kpeter@406
    96
\c EdgeMap), see the \ref graph_concepts "Graph Structure Concepts".
alpar@40
    97
*/
alpar@40
    98
alpar@40
    99
/**
alpar@40
   100
\defgroup map_adaptors Map Adaptors
alpar@40
   101
\ingroup maps
alpar@40
   102
\brief Tools to create new maps from existing ones
alpar@40
   103
kpeter@50
   104
This group describes map adaptors that are used to create "implicit"
kpeter@50
   105
maps from other maps.
alpar@40
   106
kpeter@406
   107
Most of them are \ref concepts::ReadMap "read-only maps".
kpeter@83
   108
They can make arithmetic and logical operations between one or two maps
kpeter@83
   109
(negation, shifting, addition, multiplication, logical 'and', 'or',
kpeter@83
   110
'not' etc.) or e.g. convert a map to another one of different Value type.
alpar@40
   111
kpeter@50
   112
The typical usage of this classes is passing implicit maps to
alpar@40
   113
algorithms.  If a function type algorithm is called then the function
alpar@40
   114
type map adaptors can be used comfortable. For example let's see the
kpeter@314
   115
usage of map adaptors with the \c graphToEps() function.
alpar@40
   116
\code
alpar@40
   117
  Color nodeColor(int deg) {
alpar@40
   118
    if (deg >= 2) {
alpar@40
   119
      return Color(0.5, 0.0, 0.5);
alpar@40
   120
    } else if (deg == 1) {
alpar@40
   121
      return Color(1.0, 0.5, 1.0);
alpar@40
   122
    } else {
alpar@40
   123
      return Color(0.0, 0.0, 0.0);
alpar@40
   124
    }
alpar@40
   125
  }
alpar@209
   126
kpeter@83
   127
  Digraph::NodeMap<int> degree_map(graph);
alpar@209
   128
kpeter@314
   129
  graphToEps(graph, "graph.eps")
alpar@40
   130
    .coords(coords).scaleToA4().undirected()
kpeter@83
   131
    .nodeColors(composeMap(functorToMap(nodeColor), degree_map))
alpar@40
   132
    .run();
alpar@209
   133
\endcode
kpeter@83
   134
The \c functorToMap() function makes an \c int to \c Color map from the
kpeter@314
   135
\c nodeColor() function. The \c composeMap() compose the \c degree_map
kpeter@83
   136
and the previously created map. The composed map is a proper function to
kpeter@83
   137
get the color of each node.
alpar@40
   138
alpar@40
   139
The usage with class type algorithms is little bit harder. In this
alpar@40
   140
case the function type map adaptors can not be used, because the
kpeter@50
   141
function map adaptors give back temporary objects.
alpar@40
   142
\code
kpeter@83
   143
  Digraph graph;
kpeter@83
   144
kpeter@83
   145
  typedef Digraph::ArcMap<double> DoubleArcMap;
kpeter@83
   146
  DoubleArcMap length(graph);
kpeter@83
   147
  DoubleArcMap speed(graph);
kpeter@83
   148
kpeter@83
   149
  typedef DivMap<DoubleArcMap, DoubleArcMap> TimeMap;
alpar@40
   150
  TimeMap time(length, speed);
alpar@209
   151
kpeter@83
   152
  Dijkstra<Digraph, TimeMap> dijkstra(graph, time);
alpar@40
   153
  dijkstra.run(source, target);
alpar@40
   154
\endcode
kpeter@83
   155
We have a length map and a maximum speed map on the arcs of a digraph.
kpeter@83
   156
The minimum time to pass the arc can be calculated as the division of
kpeter@83
   157
the two maps which can be done implicitly with the \c DivMap template
alpar@40
   158
class. We use the implicit minimum time map as the length map of the
alpar@40
   159
\c Dijkstra algorithm.
alpar@40
   160
*/
alpar@40
   161
alpar@40
   162
/**
alpar@209
   163
@defgroup matrices Matrices
alpar@40
   164
@ingroup datas
kpeter@50
   165
\brief Two dimensional data storages implemented in LEMON.
alpar@40
   166
kpeter@50
   167
This group describes two dimensional data storages implemented in LEMON.
alpar@40
   168
*/
alpar@40
   169
alpar@40
   170
/**
alpar@40
   171
@defgroup paths Path Structures
alpar@40
   172
@ingroup datas
kpeter@318
   173
\brief %Path structures implemented in LEMON.
alpar@40
   174
kpeter@50
   175
This group describes the path structures implemented in LEMON.
alpar@40
   176
kpeter@50
   177
LEMON provides flexible data structures to work with paths.
kpeter@50
   178
All of them have similar interfaces and they can be copied easily with
kpeter@50
   179
assignment operators and copy constructors. This makes it easy and
alpar@40
   180
efficient to have e.g. the Dijkstra algorithm to store its result in
alpar@40
   181
any kind of path structure.
alpar@40
   182
alpar@40
   183
\sa lemon::concepts::Path
alpar@40
   184
*/
alpar@40
   185
alpar@40
   186
/**
alpar@40
   187
@defgroup auxdat Auxiliary Data Structures
alpar@40
   188
@ingroup datas
kpeter@50
   189
\brief Auxiliary data structures implemented in LEMON.
alpar@40
   190
kpeter@50
   191
This group describes some data structures implemented in LEMON in
alpar@40
   192
order to make it easier to implement combinatorial algorithms.
alpar@40
   193
*/
alpar@40
   194
alpar@40
   195
/**
alpar@40
   196
@defgroup algs Algorithms
alpar@40
   197
\brief This group describes the several algorithms
alpar@40
   198
implemented in LEMON.
alpar@40
   199
alpar@40
   200
This group describes the several algorithms
alpar@40
   201
implemented in LEMON.
alpar@40
   202
*/
alpar@40
   203
alpar@40
   204
/**
alpar@40
   205
@defgroup search Graph Search
alpar@40
   206
@ingroup algs
kpeter@50
   207
\brief Common graph search algorithms.
alpar@40
   208
kpeter@406
   209
This group describes the common graph search algorithms, namely
kpeter@406
   210
\e breadth-first \e search (BFS) and \e depth-first \e search (DFS).
alpar@40
   211
*/
alpar@40
   212
alpar@40
   213
/**
kpeter@314
   214
@defgroup shortest_path Shortest Path Algorithms
alpar@40
   215
@ingroup algs
kpeter@50
   216
\brief Algorithms for finding shortest paths.
alpar@40
   217
kpeter@406
   218
This group describes the algorithms for finding shortest paths in digraphs.
kpeter@406
   219
kpeter@406
   220
 - \ref Dijkstra algorithm for finding shortest paths from a source node
kpeter@406
   221
   when all arc lengths are non-negative.
kpeter@406
   222
 - \ref BellmanFord "Bellman-Ford" algorithm for finding shortest paths
kpeter@406
   223
   from a source node when arc lenghts can be either positive or negative,
kpeter@406
   224
   but the digraph should not contain directed cycles with negative total
kpeter@406
   225
   length.
kpeter@406
   226
 - \ref FloydWarshall "Floyd-Warshall" and \ref Johnson "Johnson" algorithms
kpeter@406
   227
   for solving the \e all-pairs \e shortest \e paths \e problem when arc
kpeter@406
   228
   lenghts can be either positive or negative, but the digraph should
kpeter@406
   229
   not contain directed cycles with negative total length.
kpeter@406
   230
 - \ref Suurballe A successive shortest path algorithm for finding
kpeter@406
   231
   arc-disjoint paths between two nodes having minimum total length.
alpar@40
   232
*/
alpar@40
   233
alpar@209
   234
/**
kpeter@314
   235
@defgroup max_flow Maximum Flow Algorithms
alpar@209
   236
@ingroup algs
kpeter@50
   237
\brief Algorithms for finding maximum flows.
alpar@40
   238
alpar@40
   239
This group describes the algorithms for finding maximum flows and
alpar@40
   240
feasible circulations.
alpar@40
   241
kpeter@406
   242
The \e maximum \e flow \e problem is to find a flow of maximum value between
kpeter@406
   243
a single source and a single target. Formally, there is a \f$G=(V,A)\f$
kpeter@406
   244
digraph, a \f$cap:A\rightarrow\mathbf{R}^+_0\f$ capacity function and
kpeter@406
   245
\f$s, t \in V\f$ source and target nodes.
kpeter@406
   246
A maximum flow is an \f$f:A\rightarrow\mathbf{R}^+_0\f$ solution of the
kpeter@406
   247
following optimization problem.
alpar@40
   248
kpeter@406
   249
\f[ \max\sum_{a\in\delta_{out}(s)}f(a) - \sum_{a\in\delta_{in}(s)}f(a) \f]
kpeter@406
   250
\f[ \sum_{a\in\delta_{out}(v)} f(a) = \sum_{a\in\delta_{in}(v)} f(a)
kpeter@406
   251
    \qquad \forall v\in V\setminus\{s,t\} \f]
kpeter@406
   252
\f[ 0 \leq f(a) \leq cap(a) \qquad \forall a\in A \f]
alpar@40
   253
kpeter@50
   254
LEMON contains several algorithms for solving maximum flow problems:
kpeter@406
   255
- \ref EdmondsKarp Edmonds-Karp algorithm.
kpeter@406
   256
- \ref Preflow Goldberg-Tarjan's preflow push-relabel algorithm.
kpeter@406
   257
- \ref DinitzSleatorTarjan Dinitz's blocking flow algorithm with dynamic trees.
kpeter@406
   258
- \ref GoldbergTarjan Preflow push-relabel algorithm with dynamic trees.
alpar@40
   259
kpeter@406
   260
In most cases the \ref Preflow "Preflow" algorithm provides the
kpeter@406
   261
fastest method for computing a maximum flow. All implementations
kpeter@406
   262
provides functions to also query the minimum cut, which is the dual
kpeter@406
   263
problem of the maximum flow.
alpar@40
   264
*/
alpar@40
   265
alpar@40
   266
/**
kpeter@314
   267
@defgroup min_cost_flow Minimum Cost Flow Algorithms
alpar@40
   268
@ingroup algs
alpar@40
   269
kpeter@50
   270
\brief Algorithms for finding minimum cost flows and circulations.
alpar@40
   271
alpar@40
   272
This group describes the algorithms for finding minimum cost flows and
alpar@209
   273
circulations.
kpeter@406
   274
kpeter@406
   275
The \e minimum \e cost \e flow \e problem is to find a feasible flow of
kpeter@406
   276
minimum total cost from a set of supply nodes to a set of demand nodes
kpeter@406
   277
in a network with capacity constraints and arc costs.
kpeter@406
   278
Formally, let \f$G=(V,A)\f$ be a digraph,
kpeter@406
   279
\f$lower, upper: A\rightarrow\mathbf{Z}^+_0\f$ denote the lower and
kpeter@406
   280
upper bounds for the flow values on the arcs,
kpeter@406
   281
\f$cost: A\rightarrow\mathbf{Z}^+_0\f$ denotes the cost per unit flow
kpeter@406
   282
on the arcs, and
kpeter@406
   283
\f$supply: V\rightarrow\mathbf{Z}\f$ denotes the supply/demand values
kpeter@406
   284
of the nodes.
kpeter@406
   285
A minimum cost flow is an \f$f:A\rightarrow\mathbf{R}^+_0\f$ solution of
kpeter@406
   286
the following optimization problem.
kpeter@406
   287
kpeter@406
   288
\f[ \min\sum_{a\in A} f(a) cost(a) \f]
kpeter@406
   289
\f[ \sum_{a\in\delta_{out}(v)} f(a) - \sum_{a\in\delta_{in}(v)} f(a) =
kpeter@406
   290
    supply(v) \qquad \forall v\in V \f]
kpeter@406
   291
\f[ lower(a) \leq f(a) \leq upper(a) \qquad \forall a\in A \f]
kpeter@406
   292
kpeter@406
   293
LEMON contains several algorithms for solving minimum cost flow problems:
kpeter@406
   294
 - \ref CycleCanceling Cycle-canceling algorithms.
kpeter@406
   295
 - \ref CapacityScaling Successive shortest path algorithm with optional
kpeter@406
   296
   capacity scaling.
kpeter@406
   297
 - \ref CostScaling Push-relabel and augment-relabel algorithms based on
kpeter@406
   298
   cost scaling.
kpeter@406
   299
 - \ref NetworkSimplex Primal network simplex algorithm with various
kpeter@406
   300
   pivot strategies.
alpar@40
   301
*/
alpar@40
   302
alpar@40
   303
/**
kpeter@314
   304
@defgroup min_cut Minimum Cut Algorithms
alpar@209
   305
@ingroup algs
alpar@40
   306
kpeter@50
   307
\brief Algorithms for finding minimum cut in graphs.
alpar@40
   308
alpar@40
   309
This group describes the algorithms for finding minimum cut in graphs.
alpar@40
   310
kpeter@406
   311
The \e minimum \e cut \e problem is to find a non-empty and non-complete
kpeter@406
   312
\f$X\f$ subset of the nodes with minimum overall capacity on
kpeter@406
   313
outgoing arcs. Formally, there is a \f$G=(V,A)\f$ digraph, a
kpeter@406
   314
\f$cap: A\rightarrow\mathbf{R}^+_0\f$ capacity function. The minimum
kpeter@50
   315
cut is the \f$X\f$ solution of the next optimization problem:
alpar@40
   316
alpar@210
   317
\f[ \min_{X \subset V, X\not\in \{\emptyset, V\}}
kpeter@406
   318
    \sum_{uv\in A, u\in X, v\not\in X}cap(uv) \f]
alpar@40
   319
kpeter@50
   320
LEMON contains several algorithms related to minimum cut problems:
alpar@40
   321
kpeter@406
   322
- \ref HaoOrlin "Hao-Orlin algorithm" for calculating minimum cut
kpeter@406
   323
  in directed graphs.
kpeter@406
   324
- \ref NagamochiIbaraki "Nagamochi-Ibaraki algorithm" for
kpeter@406
   325
  calculating minimum cut in undirected graphs.
kpeter@406
   326
- \ref GomoryHuTree "Gomory-Hu tree computation" for calculating
kpeter@406
   327
  all-pairs minimum cut in undirected graphs.
alpar@40
   328
alpar@40
   329
If you want to find minimum cut just between two distinict nodes,
kpeter@406
   330
see the \ref max_flow "maximum flow problem".
alpar@40
   331
*/
alpar@40
   332
alpar@40
   333
/**
kpeter@314
   334
@defgroup graph_prop Connectivity and Other Graph Properties
alpar@40
   335
@ingroup algs
kpeter@50
   336
\brief Algorithms for discovering the graph properties
alpar@40
   337
kpeter@50
   338
This group describes the algorithms for discovering the graph properties
kpeter@50
   339
like connectivity, bipartiteness, euler property, simplicity etc.
alpar@40
   340
alpar@40
   341
\image html edge_biconnected_components.png
alpar@40
   342
\image latex edge_biconnected_components.eps "bi-edge-connected components" width=\textwidth
alpar@40
   343
*/
alpar@40
   344
alpar@40
   345
/**
kpeter@314
   346
@defgroup planar Planarity Embedding and Drawing
alpar@40
   347
@ingroup algs
kpeter@50
   348
\brief Algorithms for planarity checking, embedding and drawing
alpar@40
   349
alpar@210
   350
This group describes the algorithms for planarity checking,
alpar@210
   351
embedding and drawing.
alpar@40
   352
alpar@40
   353
\image html planar.png
alpar@40
   354
\image latex planar.eps "Plane graph" width=\textwidth
alpar@40
   355
*/
alpar@40
   356
alpar@40
   357
/**
kpeter@314
   358
@defgroup matching Matching Algorithms
alpar@40
   359
@ingroup algs
kpeter@50
   360
\brief Algorithms for finding matchings in graphs and bipartite graphs.
alpar@40
   361
kpeter@50
   362
This group contains algorithm objects and functions to calculate
alpar@40
   363
matchings in graphs and bipartite graphs. The general matching problem is
kpeter@83
   364
finding a subset of the arcs which does not shares common endpoints.
alpar@209
   365
alpar@40
   366
There are several different algorithms for calculate matchings in
alpar@40
   367
graphs.  The matching problems in bipartite graphs are generally
alpar@40
   368
easier than in general graphs. The goal of the matching optimization
kpeter@406
   369
can be finding maximum cardinality, maximum weight or minimum cost
alpar@40
   370
matching. The search can be constrained to find perfect or
alpar@40
   371
maximum cardinality matching.
alpar@40
   372
kpeter@406
   373
The matching algorithms implemented in LEMON:
kpeter@406
   374
- \ref MaxBipartiteMatching Hopcroft-Karp augmenting path algorithm
kpeter@406
   375
  for calculating maximum cardinality matching in bipartite graphs.
kpeter@406
   376
- \ref PrBipartiteMatching Push-relabel algorithm
kpeter@406
   377
  for calculating maximum cardinality matching in bipartite graphs.
kpeter@406
   378
- \ref MaxWeightedBipartiteMatching
kpeter@406
   379
  Successive shortest path algorithm for calculating maximum weighted
kpeter@406
   380
  matching and maximum weighted bipartite matching in bipartite graphs.
kpeter@406
   381
- \ref MinCostMaxBipartiteMatching
kpeter@406
   382
  Successive shortest path algorithm for calculating minimum cost maximum
kpeter@406
   383
  matching in bipartite graphs.
kpeter@406
   384
- \ref MaxMatching Edmond's blossom shrinking algorithm for calculating
kpeter@406
   385
  maximum cardinality matching in general graphs.
kpeter@406
   386
- \ref MaxWeightedMatching Edmond's blossom shrinking algorithm for calculating
kpeter@406
   387
  maximum weighted matching in general graphs.
kpeter@406
   388
- \ref MaxWeightedPerfectMatching
kpeter@406
   389
  Edmond's blossom shrinking algorithm for calculating maximum weighted
kpeter@406
   390
  perfect matching in general graphs.
alpar@40
   391
alpar@40
   392
\image html bipartite_matching.png
alpar@40
   393
\image latex bipartite_matching.eps "Bipartite Matching" width=\textwidth
alpar@40
   394
*/
alpar@40
   395
alpar@40
   396
/**
kpeter@314
   397
@defgroup spantree Minimum Spanning Tree Algorithms
alpar@40
   398
@ingroup algs
kpeter@50
   399
\brief Algorithms for finding a minimum cost spanning tree in a graph.
alpar@40
   400
kpeter@50
   401
This group describes the algorithms for finding a minimum cost spanning
kpeter@406
   402
tree in a graph.
alpar@40
   403
*/
alpar@40
   404
alpar@40
   405
/**
kpeter@314
   406
@defgroup auxalg Auxiliary Algorithms
alpar@40
   407
@ingroup algs
kpeter@50
   408
\brief Auxiliary algorithms implemented in LEMON.
alpar@40
   409
kpeter@50
   410
This group describes some algorithms implemented in LEMON
kpeter@50
   411
in order to make it easier to implement complex algorithms.
alpar@40
   412
*/
alpar@40
   413
alpar@40
   414
/**
kpeter@314
   415
@defgroup approx Approximation Algorithms
kpeter@314
   416
@ingroup algs
kpeter@50
   417
\brief Approximation algorithms.
alpar@40
   418
kpeter@50
   419
This group describes the approximation and heuristic algorithms
kpeter@50
   420
implemented in LEMON.
alpar@40
   421
*/
alpar@40
   422
alpar@40
   423
/**
alpar@40
   424
@defgroup gen_opt_group General Optimization Tools
alpar@40
   425
\brief This group describes some general optimization frameworks
alpar@40
   426
implemented in LEMON.
alpar@40
   427
alpar@40
   428
This group describes some general optimization frameworks
alpar@40
   429
implemented in LEMON.
alpar@40
   430
*/
alpar@40
   431
alpar@40
   432
/**
kpeter@314
   433
@defgroup lp_group Lp and Mip Solvers
alpar@40
   434
@ingroup gen_opt_group
alpar@40
   435
\brief Lp and Mip solver interfaces for LEMON.
alpar@40
   436
alpar@40
   437
This group describes Lp and Mip solver interfaces for LEMON. The
alpar@40
   438
various LP solvers could be used in the same manner with this
alpar@40
   439
interface.
alpar@40
   440
*/
alpar@40
   441
alpar@209
   442
/**
kpeter@314
   443
@defgroup lp_utils Tools for Lp and Mip Solvers
alpar@40
   444
@ingroup lp_group
kpeter@50
   445
\brief Helper tools to the Lp and Mip solvers.
alpar@40
   446
alpar@40
   447
This group adds some helper tools to general optimization framework
alpar@40
   448
implemented in LEMON.
alpar@40
   449
*/
alpar@40
   450
alpar@40
   451
/**
alpar@40
   452
@defgroup metah Metaheuristics
alpar@40
   453
@ingroup gen_opt_group
alpar@40
   454
\brief Metaheuristics for LEMON library.
alpar@40
   455
kpeter@50
   456
This group describes some metaheuristic optimization tools.
alpar@40
   457
*/
alpar@40
   458
alpar@40
   459
/**
alpar@209
   460
@defgroup utils Tools and Utilities
kpeter@50
   461
\brief Tools and utilities for programming in LEMON
alpar@40
   462
kpeter@50
   463
Tools and utilities for programming in LEMON.
alpar@40
   464
*/
alpar@40
   465
alpar@40
   466
/**
alpar@40
   467
@defgroup gutils Basic Graph Utilities
alpar@40
   468
@ingroup utils
kpeter@50
   469
\brief Simple basic graph utilities.
alpar@40
   470
alpar@40
   471
This group describes some simple basic graph utilities.
alpar@40
   472
*/
alpar@40
   473
alpar@40
   474
/**
alpar@40
   475
@defgroup misc Miscellaneous Tools
alpar@40
   476
@ingroup utils
kpeter@50
   477
\brief Tools for development, debugging and testing.
kpeter@50
   478
kpeter@50
   479
This group describes several useful tools for development,
alpar@40
   480
debugging and testing.
alpar@40
   481
*/
alpar@40
   482
alpar@40
   483
/**
kpeter@314
   484
@defgroup timecount Time Measuring and Counting
alpar@40
   485
@ingroup misc
kpeter@50
   486
\brief Simple tools for measuring the performance of algorithms.
kpeter@50
   487
kpeter@50
   488
This group describes simple tools for measuring the performance
alpar@40
   489
of algorithms.
alpar@40
   490
*/
alpar@40
   491
alpar@40
   492
/**
alpar@40
   493
@defgroup exceptions Exceptions
alpar@40
   494
@ingroup utils
kpeter@50
   495
\brief Exceptions defined in LEMON.
kpeter@50
   496
kpeter@50
   497
This group describes the exceptions defined in LEMON.
alpar@40
   498
*/
alpar@40
   499
alpar@40
   500
/**
alpar@40
   501
@defgroup io_group Input-Output
kpeter@50
   502
\brief Graph Input-Output methods
alpar@40
   503
alpar@209
   504
This group describes the tools for importing and exporting graphs
kpeter@314
   505
and graph related data. Now it supports the \ref lgf-format
kpeter@314
   506
"LEMON Graph Format", the \c DIMACS format and the encapsulated
kpeter@314
   507
postscript (EPS) format.
alpar@40
   508
*/
alpar@40
   509
alpar@40
   510
/**
kpeter@351
   511
@defgroup lemon_io LEMON Graph Format
alpar@40
   512
@ingroup io_group
kpeter@314
   513
\brief Reading and writing LEMON Graph Format.
alpar@40
   514
alpar@210
   515
This group describes methods for reading and writing
ladanyi@236
   516
\ref lgf-format "LEMON Graph Format".
alpar@40
   517
*/
alpar@40
   518
alpar@40
   519
/**
kpeter@314
   520
@defgroup eps_io Postscript Exporting
alpar@40
   521
@ingroup io_group
alpar@40
   522
\brief General \c EPS drawer and graph exporter
alpar@40
   523
kpeter@50
   524
This group describes general \c EPS drawing methods and special
alpar@209
   525
graph exporting tools.
alpar@40
   526
*/
alpar@40
   527
alpar@40
   528
/**
kpeter@388
   529
@defgroup dimacs_group DIMACS format
kpeter@388
   530
@ingroup io_group
kpeter@388
   531
\brief Read and write files in DIMACS format
kpeter@388
   532
kpeter@388
   533
Tools to read a digraph from or write it to a file in DIMACS format data.
kpeter@388
   534
*/
kpeter@388
   535
kpeter@388
   536
/**
kpeter@351
   537
@defgroup nauty_group NAUTY Format
kpeter@351
   538
@ingroup io_group
kpeter@351
   539
\brief Read \e Nauty format
kpeter@388
   540
kpeter@351
   541
Tool to read graphs from \e Nauty format data.
kpeter@351
   542
*/
kpeter@351
   543
kpeter@351
   544
/**
alpar@40
   545
@defgroup concept Concepts
alpar@40
   546
\brief Skeleton classes and concept checking classes
alpar@40
   547
alpar@40
   548
This group describes the data/algorithm skeletons and concept checking
alpar@40
   549
classes implemented in LEMON.
alpar@40
   550
alpar@40
   551
The purpose of the classes in this group is fourfold.
alpar@209
   552
kpeter@318
   553
- These classes contain the documentations of the %concepts. In order
alpar@40
   554
  to avoid document multiplications, an implementation of a concept
alpar@40
   555
  simply refers to the corresponding concept class.
alpar@40
   556
alpar@40
   557
- These classes declare every functions, <tt>typedef</tt>s etc. an
kpeter@318
   558
  implementation of the %concepts should provide, however completely
alpar@40
   559
  without implementations and real data structures behind the
alpar@40
   560
  interface. On the other hand they should provide nothing else. All
alpar@40
   561
  the algorithms working on a data structure meeting a certain concept
alpar@40
   562
  should compile with these classes. (Though it will not run properly,
alpar@40
   563
  of course.) In this way it is easily to check if an algorithm
alpar@40
   564
  doesn't use any extra feature of a certain implementation.
alpar@40
   565
alpar@40
   566
- The concept descriptor classes also provide a <em>checker class</em>
kpeter@50
   567
  that makes it possible to check whether a certain implementation of a
alpar@40
   568
  concept indeed provides all the required features.
alpar@40
   569
alpar@40
   570
- Finally, They can serve as a skeleton of a new implementation of a concept.
alpar@40
   571
*/
alpar@40
   572
alpar@40
   573
/**
alpar@40
   574
@defgroup graph_concepts Graph Structure Concepts
alpar@40
   575
@ingroup concept
alpar@40
   576
\brief Skeleton and concept checking classes for graph structures
alpar@40
   577
kpeter@50
   578
This group describes the skeletons and concept checking classes of LEMON's
alpar@40
   579
graph structures and helper classes used to implement these.
alpar@40
   580
*/
alpar@40
   581
kpeter@314
   582
/**
kpeter@314
   583
@defgroup map_concepts Map Concepts
kpeter@314
   584
@ingroup concept
kpeter@314
   585
\brief Skeleton and concept checking classes for maps
kpeter@314
   586
kpeter@314
   587
This group describes the skeletons and concept checking classes of maps.
alpar@40
   588
*/
alpar@40
   589
alpar@40
   590
/**
alpar@40
   591
\anchor demoprograms
alpar@40
   592
kpeter@406
   593
@defgroup demos Demo Programs
alpar@40
   594
alpar@40
   595
Some demo programs are listed here. Their full source codes can be found in
alpar@40
   596
the \c demo subdirectory of the source tree.
alpar@40
   597
alpar@41
   598
It order to compile them, use <tt>--enable-demo</tt> configure option when
alpar@41
   599
build the library.
alpar@40
   600
*/
alpar@40
   601
alpar@40
   602
/**
kpeter@406
   603
@defgroup tools Standalone Utility Applications
alpar@40
   604
alpar@209
   605
Some utility applications are listed here.
alpar@40
   606
alpar@40
   607
The standard compilation procedure (<tt>./configure;make</tt>) will compile
alpar@209
   608
them, as well.
alpar@40
   609
*/
alpar@40
   610
kpeter@406
   611
}