alpar@209
|
1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*-
|
alpar@40
|
2 |
*
|
alpar@209
|
3 |
* This file is a part of LEMON, a generic C++ optimization library.
|
alpar@40
|
4 |
*
|
alpar@40
|
5 |
* Copyright (C) 2003-2008
|
alpar@40
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
|
alpar@40
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES).
|
alpar@40
|
8 |
*
|
alpar@40
|
9 |
* Permission to use, modify and distribute this software is granted
|
alpar@40
|
10 |
* provided that this copyright notice appears in all copies. For
|
alpar@40
|
11 |
* precise terms see the accompanying LICENSE file.
|
alpar@40
|
12 |
*
|
alpar@40
|
13 |
* This software is provided "AS IS" with no warranty of any kind,
|
alpar@40
|
14 |
* express or implied, and with no claim as to its suitability for any
|
alpar@40
|
15 |
* purpose.
|
alpar@40
|
16 |
*
|
alpar@40
|
17 |
*/
|
alpar@40
|
18 |
|
alpar@40
|
19 |
/**
|
alpar@40
|
20 |
@defgroup datas Data Structures
|
kpeter@50
|
21 |
This group describes the several data structures implemented in LEMON.
|
alpar@40
|
22 |
*/
|
alpar@40
|
23 |
|
alpar@40
|
24 |
/**
|
alpar@40
|
25 |
@defgroup graphs Graph Structures
|
alpar@40
|
26 |
@ingroup datas
|
alpar@40
|
27 |
\brief Graph structures implemented in LEMON.
|
alpar@40
|
28 |
|
alpar@209
|
29 |
The implementation of combinatorial algorithms heavily relies on
|
alpar@209
|
30 |
efficient graph implementations. LEMON offers data structures which are
|
alpar@209
|
31 |
planned to be easily used in an experimental phase of implementation studies,
|
alpar@209
|
32 |
and thereafter the program code can be made efficient by small modifications.
|
alpar@40
|
33 |
|
alpar@40
|
34 |
The most efficient implementation of diverse applications require the
|
alpar@40
|
35 |
usage of different physical graph implementations. These differences
|
alpar@40
|
36 |
appear in the size of graph we require to handle, memory or time usage
|
alpar@40
|
37 |
limitations or in the set of operations through which the graph can be
|
alpar@40
|
38 |
accessed. LEMON provides several physical graph structures to meet
|
alpar@40
|
39 |
the diverging requirements of the possible users. In order to save on
|
alpar@40
|
40 |
running time or on memory usage, some structures may fail to provide
|
kpeter@83
|
41 |
some graph features like arc/edge or node deletion.
|
alpar@40
|
42 |
|
alpar@209
|
43 |
Alteration of standard containers need a very limited number of
|
alpar@209
|
44 |
operations, these together satisfy the everyday requirements.
|
alpar@209
|
45 |
In the case of graph structures, different operations are needed which do
|
alpar@209
|
46 |
not alter the physical graph, but gives another view. If some nodes or
|
kpeter@83
|
47 |
arcs have to be hidden or the reverse oriented graph have to be used, then
|
alpar@209
|
48 |
this is the case. It also may happen that in a flow implementation
|
alpar@209
|
49 |
the residual graph can be accessed by another algorithm, or a node-set
|
alpar@209
|
50 |
is to be shrunk for another algorithm.
|
alpar@209
|
51 |
LEMON also provides a variety of graphs for these requirements called
|
alpar@209
|
52 |
\ref graph_adaptors "graph adaptors". Adaptors cannot be used alone but only
|
alpar@209
|
53 |
in conjunction with other graph representations.
|
alpar@40
|
54 |
|
alpar@40
|
55 |
You are free to use the graph structure that fit your requirements
|
alpar@40
|
56 |
the best, most graph algorithms and auxiliary data structures can be used
|
kpeter@314
|
57 |
with any graph structure.
|
kpeter@314
|
58 |
|
kpeter@314
|
59 |
<b>See also:</b> \ref graph_concepts "Graph Structure Concepts".
|
alpar@40
|
60 |
*/
|
alpar@40
|
61 |
|
alpar@40
|
62 |
/**
|
deba@416
|
63 |
@defgroup graph_adaptors Adaptor Classes for graphs
|
deba@416
|
64 |
@ingroup graphs
|
deba@416
|
65 |
\brief This group contains several adaptor classes for digraphs and graphs
|
deba@416
|
66 |
|
deba@416
|
67 |
The main parts of LEMON are the different graph structures, generic
|
deba@416
|
68 |
graph algorithms, graph concepts which couple these, and graph
|
deba@416
|
69 |
adaptors. While the previous notions are more or less clear, the
|
deba@416
|
70 |
latter one needs further explanation. Graph adaptors are graph classes
|
deba@416
|
71 |
which serve for considering graph structures in different ways.
|
deba@416
|
72 |
|
deba@416
|
73 |
A short example makes this much clearer. Suppose that we have an
|
deba@416
|
74 |
instance \c g of a directed graph type say ListDigraph and an algorithm
|
deba@416
|
75 |
\code
|
deba@416
|
76 |
template <typename Digraph>
|
deba@416
|
77 |
int algorithm(const Digraph&);
|
deba@416
|
78 |
\endcode
|
deba@416
|
79 |
is needed to run on the reverse oriented graph. It may be expensive
|
deba@416
|
80 |
(in time or in memory usage) to copy \c g with the reversed
|
deba@416
|
81 |
arcs. In this case, an adaptor class is used, which (according
|
deba@416
|
82 |
to LEMON digraph concepts) works as a digraph. The adaptor uses the
|
deba@416
|
83 |
original digraph structure and digraph operations when methods of the
|
deba@416
|
84 |
reversed oriented graph are called. This means that the adaptor have
|
deba@416
|
85 |
minor memory usage, and do not perform sophisticated algorithmic
|
deba@416
|
86 |
actions. The purpose of it is to give a tool for the cases when a
|
deba@416
|
87 |
graph have to be used in a specific alteration. If this alteration is
|
deba@416
|
88 |
obtained by a usual construction like filtering the arc-set or
|
deba@416
|
89 |
considering a new orientation, then an adaptor is worthwhile to use.
|
deba@416
|
90 |
To come back to the reverse oriented graph, in this situation
|
deba@416
|
91 |
\code
|
deba@416
|
92 |
template<typename Digraph> class ReverseDigraph;
|
deba@416
|
93 |
\endcode
|
deba@416
|
94 |
template class can be used. The code looks as follows
|
deba@416
|
95 |
\code
|
deba@416
|
96 |
ListDigraph g;
|
deba@416
|
97 |
ReverseDigraph<ListGraph> rg(g);
|
deba@416
|
98 |
int result = algorithm(rg);
|
deba@416
|
99 |
\endcode
|
deba@416
|
100 |
After running the algorithm, the original graph \c g is untouched.
|
deba@416
|
101 |
This techniques gives rise to an elegant code, and based on stable
|
deba@416
|
102 |
graph adaptors, complex algorithms can be implemented easily.
|
deba@416
|
103 |
|
deba@416
|
104 |
In flow, circulation and bipartite matching problems, the residual
|
deba@416
|
105 |
graph is of particular importance. Combining an adaptor implementing
|
deba@416
|
106 |
this, shortest path algorithms and minimum mean cycle algorithms,
|
deba@416
|
107 |
a range of weighted and cardinality optimization algorithms can be
|
deba@416
|
108 |
obtained. For other examples, the interested user is referred to the
|
deba@416
|
109 |
detailed documentation of particular adaptors.
|
deba@416
|
110 |
|
deba@416
|
111 |
The behavior of graph adaptors can be very different. Some of them keep
|
deba@416
|
112 |
capabilities of the original graph while in other cases this would be
|
deba@416
|
113 |
meaningless. This means that the concepts that they are models of depend
|
deba@416
|
114 |
on the graph adaptor, and the wrapped graph(s).
|
deba@416
|
115 |
If an arc of \c rg is deleted, this is carried out by deleting the
|
deba@416
|
116 |
corresponding arc of \c g, thus the adaptor modifies the original graph.
|
deba@416
|
117 |
|
deba@416
|
118 |
But for a residual graph, this operation has no sense.
|
deba@416
|
119 |
Let us stand one more example here to simplify your work.
|
deba@416
|
120 |
RevGraphAdaptor has constructor
|
deba@416
|
121 |
\code
|
deba@416
|
122 |
ReverseDigraph(Digraph& digraph);
|
deba@416
|
123 |
\endcode
|
deba@416
|
124 |
This means that in a situation, when a <tt>const ListDigraph&</tt>
|
deba@416
|
125 |
reference to a graph is given, then it have to be instantiated with
|
deba@416
|
126 |
<tt>Digraph=const ListDigraph</tt>.
|
deba@416
|
127 |
\code
|
deba@416
|
128 |
int algorithm1(const ListDigraph& g) {
|
deba@416
|
129 |
RevGraphAdaptor<const ListDigraph> rg(g);
|
deba@416
|
130 |
return algorithm2(rg);
|
deba@416
|
131 |
}
|
deba@416
|
132 |
\endcode
|
deba@416
|
133 |
*/
|
deba@416
|
134 |
|
deba@416
|
135 |
/**
|
kpeter@50
|
136 |
@defgroup semi_adaptors Semi-Adaptor Classes for Graphs
|
alpar@40
|
137 |
@ingroup graphs
|
alpar@40
|
138 |
\brief Graph types between real graphs and graph adaptors.
|
alpar@40
|
139 |
|
kpeter@50
|
140 |
This group describes some graph types between real graphs and graph adaptors.
|
alpar@209
|
141 |
These classes wrap graphs to give new functionality as the adaptors do it.
|
kpeter@50
|
142 |
On the other hand they are not light-weight structures as the adaptors.
|
alpar@40
|
143 |
*/
|
alpar@40
|
144 |
|
alpar@40
|
145 |
/**
|
alpar@209
|
146 |
@defgroup maps Maps
|
alpar@40
|
147 |
@ingroup datas
|
kpeter@50
|
148 |
\brief Map structures implemented in LEMON.
|
alpar@40
|
149 |
|
kpeter@50
|
150 |
This group describes the map structures implemented in LEMON.
|
kpeter@50
|
151 |
|
kpeter@314
|
152 |
LEMON provides several special purpose maps and map adaptors that e.g. combine
|
alpar@40
|
153 |
new maps from existing ones.
|
kpeter@314
|
154 |
|
kpeter@314
|
155 |
<b>See also:</b> \ref map_concepts "Map Concepts".
|
alpar@40
|
156 |
*/
|
alpar@40
|
157 |
|
alpar@40
|
158 |
/**
|
alpar@209
|
159 |
@defgroup graph_maps Graph Maps
|
alpar@40
|
160 |
@ingroup maps
|
kpeter@83
|
161 |
\brief Special graph-related maps.
|
alpar@40
|
162 |
|
kpeter@50
|
163 |
This group describes maps that are specifically designed to assign
|
kpeter@83
|
164 |
values to the nodes and arcs of graphs.
|
alpar@40
|
165 |
*/
|
alpar@40
|
166 |
|
alpar@40
|
167 |
/**
|
alpar@40
|
168 |
\defgroup map_adaptors Map Adaptors
|
alpar@40
|
169 |
\ingroup maps
|
alpar@40
|
170 |
\brief Tools to create new maps from existing ones
|
alpar@40
|
171 |
|
kpeter@50
|
172 |
This group describes map adaptors that are used to create "implicit"
|
kpeter@50
|
173 |
maps from other maps.
|
alpar@40
|
174 |
|
kpeter@83
|
175 |
Most of them are \ref lemon::concepts::ReadMap "read-only maps".
|
kpeter@83
|
176 |
They can make arithmetic and logical operations between one or two maps
|
kpeter@83
|
177 |
(negation, shifting, addition, multiplication, logical 'and', 'or',
|
kpeter@83
|
178 |
'not' etc.) or e.g. convert a map to another one of different Value type.
|
alpar@40
|
179 |
|
kpeter@50
|
180 |
The typical usage of this classes is passing implicit maps to
|
alpar@40
|
181 |
algorithms. If a function type algorithm is called then the function
|
alpar@40
|
182 |
type map adaptors can be used comfortable. For example let's see the
|
kpeter@314
|
183 |
usage of map adaptors with the \c graphToEps() function.
|
alpar@40
|
184 |
\code
|
alpar@40
|
185 |
Color nodeColor(int deg) {
|
alpar@40
|
186 |
if (deg >= 2) {
|
alpar@40
|
187 |
return Color(0.5, 0.0, 0.5);
|
alpar@40
|
188 |
} else if (deg == 1) {
|
alpar@40
|
189 |
return Color(1.0, 0.5, 1.0);
|
alpar@40
|
190 |
} else {
|
alpar@40
|
191 |
return Color(0.0, 0.0, 0.0);
|
alpar@40
|
192 |
}
|
alpar@40
|
193 |
}
|
alpar@209
|
194 |
|
kpeter@83
|
195 |
Digraph::NodeMap<int> degree_map(graph);
|
alpar@209
|
196 |
|
kpeter@314
|
197 |
graphToEps(graph, "graph.eps")
|
alpar@40
|
198 |
.coords(coords).scaleToA4().undirected()
|
kpeter@83
|
199 |
.nodeColors(composeMap(functorToMap(nodeColor), degree_map))
|
alpar@40
|
200 |
.run();
|
alpar@209
|
201 |
\endcode
|
kpeter@83
|
202 |
The \c functorToMap() function makes an \c int to \c Color map from the
|
kpeter@314
|
203 |
\c nodeColor() function. The \c composeMap() compose the \c degree_map
|
kpeter@83
|
204 |
and the previously created map. The composed map is a proper function to
|
kpeter@83
|
205 |
get the color of each node.
|
alpar@40
|
206 |
|
alpar@40
|
207 |
The usage with class type algorithms is little bit harder. In this
|
alpar@40
|
208 |
case the function type map adaptors can not be used, because the
|
kpeter@50
|
209 |
function map adaptors give back temporary objects.
|
alpar@40
|
210 |
\code
|
kpeter@83
|
211 |
Digraph graph;
|
kpeter@83
|
212 |
|
kpeter@83
|
213 |
typedef Digraph::ArcMap<double> DoubleArcMap;
|
kpeter@83
|
214 |
DoubleArcMap length(graph);
|
kpeter@83
|
215 |
DoubleArcMap speed(graph);
|
kpeter@83
|
216 |
|
kpeter@83
|
217 |
typedef DivMap<DoubleArcMap, DoubleArcMap> TimeMap;
|
alpar@40
|
218 |
TimeMap time(length, speed);
|
alpar@209
|
219 |
|
kpeter@83
|
220 |
Dijkstra<Digraph, TimeMap> dijkstra(graph, time);
|
alpar@40
|
221 |
dijkstra.run(source, target);
|
alpar@40
|
222 |
\endcode
|
kpeter@83
|
223 |
We have a length map and a maximum speed map on the arcs of a digraph.
|
kpeter@83
|
224 |
The minimum time to pass the arc can be calculated as the division of
|
kpeter@83
|
225 |
the two maps which can be done implicitly with the \c DivMap template
|
alpar@40
|
226 |
class. We use the implicit minimum time map as the length map of the
|
alpar@40
|
227 |
\c Dijkstra algorithm.
|
alpar@40
|
228 |
*/
|
alpar@40
|
229 |
|
alpar@40
|
230 |
/**
|
alpar@209
|
231 |
@defgroup matrices Matrices
|
alpar@40
|
232 |
@ingroup datas
|
kpeter@50
|
233 |
\brief Two dimensional data storages implemented in LEMON.
|
alpar@40
|
234 |
|
kpeter@50
|
235 |
This group describes two dimensional data storages implemented in LEMON.
|
alpar@40
|
236 |
*/
|
alpar@40
|
237 |
|
alpar@40
|
238 |
/**
|
alpar@40
|
239 |
@defgroup paths Path Structures
|
alpar@40
|
240 |
@ingroup datas
|
kpeter@318
|
241 |
\brief %Path structures implemented in LEMON.
|
alpar@40
|
242 |
|
kpeter@50
|
243 |
This group describes the path structures implemented in LEMON.
|
alpar@40
|
244 |
|
kpeter@50
|
245 |
LEMON provides flexible data structures to work with paths.
|
kpeter@50
|
246 |
All of them have similar interfaces and they can be copied easily with
|
kpeter@50
|
247 |
assignment operators and copy constructors. This makes it easy and
|
alpar@40
|
248 |
efficient to have e.g. the Dijkstra algorithm to store its result in
|
alpar@40
|
249 |
any kind of path structure.
|
alpar@40
|
250 |
|
alpar@40
|
251 |
\sa lemon::concepts::Path
|
alpar@40
|
252 |
*/
|
alpar@40
|
253 |
|
alpar@40
|
254 |
/**
|
alpar@40
|
255 |
@defgroup auxdat Auxiliary Data Structures
|
alpar@40
|
256 |
@ingroup datas
|
kpeter@50
|
257 |
\brief Auxiliary data structures implemented in LEMON.
|
alpar@40
|
258 |
|
kpeter@50
|
259 |
This group describes some data structures implemented in LEMON in
|
alpar@40
|
260 |
order to make it easier to implement combinatorial algorithms.
|
alpar@40
|
261 |
*/
|
alpar@40
|
262 |
|
alpar@40
|
263 |
/**
|
alpar@40
|
264 |
@defgroup algs Algorithms
|
alpar@40
|
265 |
\brief This group describes the several algorithms
|
alpar@40
|
266 |
implemented in LEMON.
|
alpar@40
|
267 |
|
alpar@40
|
268 |
This group describes the several algorithms
|
alpar@40
|
269 |
implemented in LEMON.
|
alpar@40
|
270 |
*/
|
alpar@40
|
271 |
|
alpar@40
|
272 |
/**
|
alpar@40
|
273 |
@defgroup search Graph Search
|
alpar@40
|
274 |
@ingroup algs
|
kpeter@50
|
275 |
\brief Common graph search algorithms.
|
alpar@40
|
276 |
|
alpar@209
|
277 |
This group describes the common graph search algorithms like
|
kpeter@314
|
278 |
Breadth-First Search (BFS) and Depth-First Search (DFS).
|
alpar@40
|
279 |
*/
|
alpar@40
|
280 |
|
alpar@40
|
281 |
/**
|
kpeter@314
|
282 |
@defgroup shortest_path Shortest Path Algorithms
|
alpar@40
|
283 |
@ingroup algs
|
kpeter@50
|
284 |
\brief Algorithms for finding shortest paths.
|
alpar@40
|
285 |
|
kpeter@50
|
286 |
This group describes the algorithms for finding shortest paths in graphs.
|
alpar@40
|
287 |
*/
|
alpar@40
|
288 |
|
alpar@209
|
289 |
/**
|
kpeter@314
|
290 |
@defgroup max_flow Maximum Flow Algorithms
|
alpar@209
|
291 |
@ingroup algs
|
kpeter@50
|
292 |
\brief Algorithms for finding maximum flows.
|
alpar@40
|
293 |
|
alpar@40
|
294 |
This group describes the algorithms for finding maximum flows and
|
alpar@40
|
295 |
feasible circulations.
|
alpar@40
|
296 |
|
kpeter@50
|
297 |
The maximum flow problem is to find a flow between a single source and
|
kpeter@50
|
298 |
a single target that is maximum. Formally, there is a \f$G=(V,A)\f$
|
alpar@40
|
299 |
directed graph, an \f$c_a:A\rightarrow\mathbf{R}^+_0\f$ capacity
|
alpar@40
|
300 |
function and given \f$s, t \in V\f$ source and target node. The
|
kpeter@50
|
301 |
maximum flow is the \f$f_a\f$ solution of the next optimization problem:
|
alpar@40
|
302 |
|
alpar@40
|
303 |
\f[ 0 \le f_a \le c_a \f]
|
alpar@210
|
304 |
\f[ \sum_{v\in\delta^{-}(u)}f_{vu}=\sum_{v\in\delta^{+}(u)}f_{uv}
|
alpar@210
|
305 |
\qquad \forall u \in V \setminus \{s,t\}\f]
|
alpar@40
|
306 |
\f[ \max \sum_{v\in\delta^{+}(s)}f_{uv} - \sum_{v\in\delta^{-}(s)}f_{vu}\f]
|
alpar@40
|
307 |
|
kpeter@50
|
308 |
LEMON contains several algorithms for solving maximum flow problems:
|
alpar@209
|
309 |
- \ref lemon::EdmondsKarp "Edmonds-Karp"
|
alpar@40
|
310 |
- \ref lemon::Preflow "Goldberg's Preflow algorithm"
|
kpeter@50
|
311 |
- \ref lemon::DinitzSleatorTarjan "Dinitz's blocking flow algorithm with dynamic trees"
|
alpar@40
|
312 |
- \ref lemon::GoldbergTarjan "Preflow algorithm with dynamic trees"
|
alpar@40
|
313 |
|
kpeter@50
|
314 |
In most cases the \ref lemon::Preflow "Preflow" algorithm provides the
|
alpar@40
|
315 |
fastest method to compute the maximum flow. All impelementations
|
kpeter@50
|
316 |
provides functions to query the minimum cut, which is the dual linear
|
kpeter@50
|
317 |
programming problem of the maximum flow.
|
alpar@40
|
318 |
*/
|
alpar@40
|
319 |
|
alpar@40
|
320 |
/**
|
kpeter@314
|
321 |
@defgroup min_cost_flow Minimum Cost Flow Algorithms
|
alpar@40
|
322 |
@ingroup algs
|
alpar@40
|
323 |
|
kpeter@50
|
324 |
\brief Algorithms for finding minimum cost flows and circulations.
|
alpar@40
|
325 |
|
alpar@40
|
326 |
This group describes the algorithms for finding minimum cost flows and
|
alpar@209
|
327 |
circulations.
|
alpar@40
|
328 |
*/
|
alpar@40
|
329 |
|
alpar@40
|
330 |
/**
|
kpeter@314
|
331 |
@defgroup min_cut Minimum Cut Algorithms
|
alpar@209
|
332 |
@ingroup algs
|
alpar@40
|
333 |
|
kpeter@50
|
334 |
\brief Algorithms for finding minimum cut in graphs.
|
alpar@40
|
335 |
|
alpar@40
|
336 |
This group describes the algorithms for finding minimum cut in graphs.
|
alpar@40
|
337 |
|
alpar@40
|
338 |
The minimum cut problem is to find a non-empty and non-complete
|
alpar@40
|
339 |
\f$X\f$ subset of the vertices with minimum overall capacity on
|
alpar@40
|
340 |
outgoing arcs. Formally, there is \f$G=(V,A)\f$ directed graph, an
|
alpar@40
|
341 |
\f$c_a:A\rightarrow\mathbf{R}^+_0\f$ capacity function. The minimum
|
kpeter@50
|
342 |
cut is the \f$X\f$ solution of the next optimization problem:
|
alpar@40
|
343 |
|
alpar@210
|
344 |
\f[ \min_{X \subset V, X\not\in \{\emptyset, V\}}
|
alpar@210
|
345 |
\sum_{uv\in A, u\in X, v\not\in X}c_{uv}\f]
|
alpar@40
|
346 |
|
kpeter@50
|
347 |
LEMON contains several algorithms related to minimum cut problems:
|
alpar@40
|
348 |
|
kpeter@50
|
349 |
- \ref lemon::HaoOrlin "Hao-Orlin algorithm" to calculate minimum cut
|
alpar@209
|
350 |
in directed graphs
|
kpeter@50
|
351 |
- \ref lemon::NagamochiIbaraki "Nagamochi-Ibaraki algorithm" to
|
alpar@40
|
352 |
calculate minimum cut in undirected graphs
|
kpeter@50
|
353 |
- \ref lemon::GomoryHuTree "Gomory-Hu tree computation" to calculate all
|
alpar@40
|
354 |
pairs minimum cut in undirected graphs
|
alpar@40
|
355 |
|
alpar@40
|
356 |
If you want to find minimum cut just between two distinict nodes,
|
alpar@40
|
357 |
please see the \ref max_flow "Maximum Flow page".
|
alpar@40
|
358 |
*/
|
alpar@40
|
359 |
|
alpar@40
|
360 |
/**
|
kpeter@314
|
361 |
@defgroup graph_prop Connectivity and Other Graph Properties
|
alpar@40
|
362 |
@ingroup algs
|
kpeter@50
|
363 |
\brief Algorithms for discovering the graph properties
|
alpar@40
|
364 |
|
kpeter@50
|
365 |
This group describes the algorithms for discovering the graph properties
|
kpeter@50
|
366 |
like connectivity, bipartiteness, euler property, simplicity etc.
|
alpar@40
|
367 |
|
alpar@40
|
368 |
\image html edge_biconnected_components.png
|
alpar@40
|
369 |
\image latex edge_biconnected_components.eps "bi-edge-connected components" width=\textwidth
|
alpar@40
|
370 |
*/
|
alpar@40
|
371 |
|
alpar@40
|
372 |
/**
|
kpeter@314
|
373 |
@defgroup planar Planarity Embedding and Drawing
|
alpar@40
|
374 |
@ingroup algs
|
kpeter@50
|
375 |
\brief Algorithms for planarity checking, embedding and drawing
|
alpar@40
|
376 |
|
alpar@210
|
377 |
This group describes the algorithms for planarity checking,
|
alpar@210
|
378 |
embedding and drawing.
|
alpar@40
|
379 |
|
alpar@40
|
380 |
\image html planar.png
|
alpar@40
|
381 |
\image latex planar.eps "Plane graph" width=\textwidth
|
alpar@40
|
382 |
*/
|
alpar@40
|
383 |
|
alpar@40
|
384 |
/**
|
kpeter@314
|
385 |
@defgroup matching Matching Algorithms
|
alpar@40
|
386 |
@ingroup algs
|
kpeter@50
|
387 |
\brief Algorithms for finding matchings in graphs and bipartite graphs.
|
alpar@40
|
388 |
|
kpeter@50
|
389 |
This group contains algorithm objects and functions to calculate
|
alpar@40
|
390 |
matchings in graphs and bipartite graphs. The general matching problem is
|
kpeter@83
|
391 |
finding a subset of the arcs which does not shares common endpoints.
|
alpar@209
|
392 |
|
alpar@40
|
393 |
There are several different algorithms for calculate matchings in
|
alpar@40
|
394 |
graphs. The matching problems in bipartite graphs are generally
|
alpar@40
|
395 |
easier than in general graphs. The goal of the matching optimization
|
alpar@40
|
396 |
can be the finding maximum cardinality, maximum weight or minimum cost
|
alpar@40
|
397 |
matching. The search can be constrained to find perfect or
|
alpar@40
|
398 |
maximum cardinality matching.
|
alpar@40
|
399 |
|
ladanyi@236
|
400 |
LEMON contains the next algorithms:
|
alpar@209
|
401 |
- \ref lemon::MaxBipartiteMatching "MaxBipartiteMatching" Hopcroft-Karp
|
alpar@209
|
402 |
augmenting path algorithm for calculate maximum cardinality matching in
|
alpar@40
|
403 |
bipartite graphs
|
alpar@209
|
404 |
- \ref lemon::PrBipartiteMatching "PrBipartiteMatching" Push-Relabel
|
alpar@209
|
405 |
algorithm for calculate maximum cardinality matching in bipartite graphs
|
alpar@209
|
406 |
- \ref lemon::MaxWeightedBipartiteMatching "MaxWeightedBipartiteMatching"
|
alpar@209
|
407 |
Successive shortest path algorithm for calculate maximum weighted matching
|
alpar@40
|
408 |
and maximum weighted bipartite matching in bipartite graph
|
alpar@209
|
409 |
- \ref lemon::MinCostMaxBipartiteMatching "MinCostMaxBipartiteMatching"
|
alpar@209
|
410 |
Successive shortest path algorithm for calculate minimum cost maximum
|
alpar@40
|
411 |
matching in bipartite graph
|
alpar@40
|
412 |
- \ref lemon::MaxMatching "MaxMatching" Edmond's blossom shrinking algorithm
|
alpar@40
|
413 |
for calculate maximum cardinality matching in general graph
|
alpar@40
|
414 |
- \ref lemon::MaxWeightedMatching "MaxWeightedMatching" Edmond's blossom
|
alpar@40
|
415 |
shrinking algorithm for calculate maximum weighted matching in general
|
alpar@40
|
416 |
graph
|
alpar@40
|
417 |
- \ref lemon::MaxWeightedPerfectMatching "MaxWeightedPerfectMatching"
|
alpar@40
|
418 |
Edmond's blossom shrinking algorithm for calculate maximum weighted
|
alpar@40
|
419 |
perfect matching in general graph
|
alpar@40
|
420 |
|
alpar@40
|
421 |
\image html bipartite_matching.png
|
alpar@40
|
422 |
\image latex bipartite_matching.eps "Bipartite Matching" width=\textwidth
|
alpar@40
|
423 |
*/
|
alpar@40
|
424 |
|
alpar@40
|
425 |
/**
|
kpeter@314
|
426 |
@defgroup spantree Minimum Spanning Tree Algorithms
|
alpar@40
|
427 |
@ingroup algs
|
kpeter@50
|
428 |
\brief Algorithms for finding a minimum cost spanning tree in a graph.
|
alpar@40
|
429 |
|
kpeter@50
|
430 |
This group describes the algorithms for finding a minimum cost spanning
|
alpar@40
|
431 |
tree in a graph
|
alpar@40
|
432 |
*/
|
alpar@40
|
433 |
|
alpar@40
|
434 |
/**
|
kpeter@314
|
435 |
@defgroup auxalg Auxiliary Algorithms
|
alpar@40
|
436 |
@ingroup algs
|
kpeter@50
|
437 |
\brief Auxiliary algorithms implemented in LEMON.
|
alpar@40
|
438 |
|
kpeter@50
|
439 |
This group describes some algorithms implemented in LEMON
|
kpeter@50
|
440 |
in order to make it easier to implement complex algorithms.
|
alpar@40
|
441 |
*/
|
alpar@40
|
442 |
|
alpar@40
|
443 |
/**
|
kpeter@314
|
444 |
@defgroup approx Approximation Algorithms
|
kpeter@314
|
445 |
@ingroup algs
|
kpeter@50
|
446 |
\brief Approximation algorithms.
|
alpar@40
|
447 |
|
kpeter@50
|
448 |
This group describes the approximation and heuristic algorithms
|
kpeter@50
|
449 |
implemented in LEMON.
|
alpar@40
|
450 |
*/
|
alpar@40
|
451 |
|
alpar@40
|
452 |
/**
|
alpar@40
|
453 |
@defgroup gen_opt_group General Optimization Tools
|
alpar@40
|
454 |
\brief This group describes some general optimization frameworks
|
alpar@40
|
455 |
implemented in LEMON.
|
alpar@40
|
456 |
|
alpar@40
|
457 |
This group describes some general optimization frameworks
|
alpar@40
|
458 |
implemented in LEMON.
|
alpar@40
|
459 |
*/
|
alpar@40
|
460 |
|
alpar@40
|
461 |
/**
|
kpeter@314
|
462 |
@defgroup lp_group Lp and Mip Solvers
|
alpar@40
|
463 |
@ingroup gen_opt_group
|
alpar@40
|
464 |
\brief Lp and Mip solver interfaces for LEMON.
|
alpar@40
|
465 |
|
alpar@40
|
466 |
This group describes Lp and Mip solver interfaces for LEMON. The
|
alpar@40
|
467 |
various LP solvers could be used in the same manner with this
|
alpar@40
|
468 |
interface.
|
alpar@40
|
469 |
*/
|
alpar@40
|
470 |
|
alpar@209
|
471 |
/**
|
kpeter@314
|
472 |
@defgroup lp_utils Tools for Lp and Mip Solvers
|
alpar@40
|
473 |
@ingroup lp_group
|
kpeter@50
|
474 |
\brief Helper tools to the Lp and Mip solvers.
|
alpar@40
|
475 |
|
alpar@40
|
476 |
This group adds some helper tools to general optimization framework
|
alpar@40
|
477 |
implemented in LEMON.
|
alpar@40
|
478 |
*/
|
alpar@40
|
479 |
|
alpar@40
|
480 |
/**
|
alpar@40
|
481 |
@defgroup metah Metaheuristics
|
alpar@40
|
482 |
@ingroup gen_opt_group
|
alpar@40
|
483 |
\brief Metaheuristics for LEMON library.
|
alpar@40
|
484 |
|
kpeter@50
|
485 |
This group describes some metaheuristic optimization tools.
|
alpar@40
|
486 |
*/
|
alpar@40
|
487 |
|
alpar@40
|
488 |
/**
|
alpar@209
|
489 |
@defgroup utils Tools and Utilities
|
kpeter@50
|
490 |
\brief Tools and utilities for programming in LEMON
|
alpar@40
|
491 |
|
kpeter@50
|
492 |
Tools and utilities for programming in LEMON.
|
alpar@40
|
493 |
*/
|
alpar@40
|
494 |
|
alpar@40
|
495 |
/**
|
alpar@40
|
496 |
@defgroup gutils Basic Graph Utilities
|
alpar@40
|
497 |
@ingroup utils
|
kpeter@50
|
498 |
\brief Simple basic graph utilities.
|
alpar@40
|
499 |
|
alpar@40
|
500 |
This group describes some simple basic graph utilities.
|
alpar@40
|
501 |
*/
|
alpar@40
|
502 |
|
alpar@40
|
503 |
/**
|
alpar@40
|
504 |
@defgroup misc Miscellaneous Tools
|
alpar@40
|
505 |
@ingroup utils
|
kpeter@50
|
506 |
\brief Tools for development, debugging and testing.
|
kpeter@50
|
507 |
|
kpeter@50
|
508 |
This group describes several useful tools for development,
|
alpar@40
|
509 |
debugging and testing.
|
alpar@40
|
510 |
*/
|
alpar@40
|
511 |
|
alpar@40
|
512 |
/**
|
kpeter@314
|
513 |
@defgroup timecount Time Measuring and Counting
|
alpar@40
|
514 |
@ingroup misc
|
kpeter@50
|
515 |
\brief Simple tools for measuring the performance of algorithms.
|
kpeter@50
|
516 |
|
kpeter@50
|
517 |
This group describes simple tools for measuring the performance
|
alpar@40
|
518 |
of algorithms.
|
alpar@40
|
519 |
*/
|
alpar@40
|
520 |
|
alpar@40
|
521 |
/**
|
alpar@40
|
522 |
@defgroup exceptions Exceptions
|
alpar@40
|
523 |
@ingroup utils
|
kpeter@50
|
524 |
\brief Exceptions defined in LEMON.
|
kpeter@50
|
525 |
|
kpeter@50
|
526 |
This group describes the exceptions defined in LEMON.
|
alpar@40
|
527 |
*/
|
alpar@40
|
528 |
|
alpar@40
|
529 |
/**
|
alpar@40
|
530 |
@defgroup io_group Input-Output
|
kpeter@50
|
531 |
\brief Graph Input-Output methods
|
alpar@40
|
532 |
|
alpar@209
|
533 |
This group describes the tools for importing and exporting graphs
|
kpeter@314
|
534 |
and graph related data. Now it supports the \ref lgf-format
|
kpeter@314
|
535 |
"LEMON Graph Format", the \c DIMACS format and the encapsulated
|
kpeter@314
|
536 |
postscript (EPS) format.
|
alpar@40
|
537 |
*/
|
alpar@40
|
538 |
|
alpar@40
|
539 |
/**
|
kpeter@351
|
540 |
@defgroup lemon_io LEMON Graph Format
|
alpar@40
|
541 |
@ingroup io_group
|
kpeter@314
|
542 |
\brief Reading and writing LEMON Graph Format.
|
alpar@40
|
543 |
|
alpar@210
|
544 |
This group describes methods for reading and writing
|
ladanyi@236
|
545 |
\ref lgf-format "LEMON Graph Format".
|
alpar@40
|
546 |
*/
|
alpar@40
|
547 |
|
alpar@40
|
548 |
/**
|
kpeter@314
|
549 |
@defgroup eps_io Postscript Exporting
|
alpar@40
|
550 |
@ingroup io_group
|
alpar@40
|
551 |
\brief General \c EPS drawer and graph exporter
|
alpar@40
|
552 |
|
kpeter@50
|
553 |
This group describes general \c EPS drawing methods and special
|
alpar@209
|
554 |
graph exporting tools.
|
alpar@40
|
555 |
*/
|
alpar@40
|
556 |
|
alpar@40
|
557 |
/**
|
kpeter@388
|
558 |
@defgroup dimacs_group DIMACS format
|
kpeter@388
|
559 |
@ingroup io_group
|
kpeter@388
|
560 |
\brief Read and write files in DIMACS format
|
kpeter@388
|
561 |
|
kpeter@388
|
562 |
Tools to read a digraph from or write it to a file in DIMACS format data.
|
kpeter@388
|
563 |
*/
|
kpeter@388
|
564 |
|
kpeter@388
|
565 |
/**
|
kpeter@351
|
566 |
@defgroup nauty_group NAUTY Format
|
kpeter@351
|
567 |
@ingroup io_group
|
kpeter@351
|
568 |
\brief Read \e Nauty format
|
kpeter@388
|
569 |
|
kpeter@351
|
570 |
Tool to read graphs from \e Nauty format data.
|
kpeter@351
|
571 |
*/
|
kpeter@351
|
572 |
|
kpeter@351
|
573 |
/**
|
alpar@40
|
574 |
@defgroup concept Concepts
|
alpar@40
|
575 |
\brief Skeleton classes and concept checking classes
|
alpar@40
|
576 |
|
alpar@40
|
577 |
This group describes the data/algorithm skeletons and concept checking
|
alpar@40
|
578 |
classes implemented in LEMON.
|
alpar@40
|
579 |
|
alpar@40
|
580 |
The purpose of the classes in this group is fourfold.
|
alpar@209
|
581 |
|
kpeter@318
|
582 |
- These classes contain the documentations of the %concepts. In order
|
alpar@40
|
583 |
to avoid document multiplications, an implementation of a concept
|
alpar@40
|
584 |
simply refers to the corresponding concept class.
|
alpar@40
|
585 |
|
alpar@40
|
586 |
- These classes declare every functions, <tt>typedef</tt>s etc. an
|
kpeter@318
|
587 |
implementation of the %concepts should provide, however completely
|
alpar@40
|
588 |
without implementations and real data structures behind the
|
alpar@40
|
589 |
interface. On the other hand they should provide nothing else. All
|
alpar@40
|
590 |
the algorithms working on a data structure meeting a certain concept
|
alpar@40
|
591 |
should compile with these classes. (Though it will not run properly,
|
alpar@40
|
592 |
of course.) In this way it is easily to check if an algorithm
|
alpar@40
|
593 |
doesn't use any extra feature of a certain implementation.
|
alpar@40
|
594 |
|
alpar@40
|
595 |
- The concept descriptor classes also provide a <em>checker class</em>
|
kpeter@50
|
596 |
that makes it possible to check whether a certain implementation of a
|
alpar@40
|
597 |
concept indeed provides all the required features.
|
alpar@40
|
598 |
|
alpar@40
|
599 |
- Finally, They can serve as a skeleton of a new implementation of a concept.
|
alpar@40
|
600 |
*/
|
alpar@40
|
601 |
|
alpar@40
|
602 |
/**
|
alpar@40
|
603 |
@defgroup graph_concepts Graph Structure Concepts
|
alpar@40
|
604 |
@ingroup concept
|
alpar@40
|
605 |
\brief Skeleton and concept checking classes for graph structures
|
alpar@40
|
606 |
|
kpeter@50
|
607 |
This group describes the skeletons and concept checking classes of LEMON's
|
alpar@40
|
608 |
graph structures and helper classes used to implement these.
|
alpar@40
|
609 |
*/
|
alpar@40
|
610 |
|
kpeter@314
|
611 |
/**
|
kpeter@314
|
612 |
@defgroup map_concepts Map Concepts
|
kpeter@314
|
613 |
@ingroup concept
|
kpeter@314
|
614 |
\brief Skeleton and concept checking classes for maps
|
kpeter@314
|
615 |
|
kpeter@314
|
616 |
This group describes the skeletons and concept checking classes of maps.
|
alpar@40
|
617 |
*/
|
alpar@40
|
618 |
|
alpar@40
|
619 |
/**
|
alpar@40
|
620 |
\anchor demoprograms
|
alpar@40
|
621 |
|
alpar@40
|
622 |
@defgroup demos Demo programs
|
alpar@40
|
623 |
|
alpar@40
|
624 |
Some demo programs are listed here. Their full source codes can be found in
|
alpar@40
|
625 |
the \c demo subdirectory of the source tree.
|
alpar@40
|
626 |
|
alpar@41
|
627 |
It order to compile them, use <tt>--enable-demo</tt> configure option when
|
alpar@41
|
628 |
build the library.
|
alpar@40
|
629 |
*/
|
alpar@40
|
630 |
|
alpar@40
|
631 |
/**
|
alpar@40
|
632 |
@defgroup tools Standalone utility applications
|
alpar@40
|
633 |
|
alpar@209
|
634 |
Some utility applications are listed here.
|
alpar@40
|
635 |
|
alpar@40
|
636 |
The standard compilation procedure (<tt>./configure;make</tt>) will compile
|
alpar@209
|
637 |
them, as well.
|
alpar@40
|
638 |
*/
|
alpar@40
|
639 |
|