lemon/network_simplex.h
author Alpar Juttner <alpar@cs.elte.hu>
Sun, 28 Feb 2010 19:38:29 +0100
changeset 845 a5fc1e1e5039
parent 830 75c97c3786d6
parent 839 f3bc4e9b5f3a
child 862 b6f76c95992e
permissions -rw-r--r--
Merge
kpeter@601
     1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
kpeter@601
     2
 *
kpeter@601
     3
 * This file is a part of LEMON, a generic C++ optimization library.
kpeter@601
     4
 *
kpeter@601
     5
 * Copyright (C) 2003-2009
kpeter@601
     6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
kpeter@601
     7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
kpeter@601
     8
 *
kpeter@601
     9
 * Permission to use, modify and distribute this software is granted
kpeter@601
    10
 * provided that this copyright notice appears in all copies. For
kpeter@601
    11
 * precise terms see the accompanying LICENSE file.
kpeter@601
    12
 *
kpeter@601
    13
 * This software is provided "AS IS" with no warranty of any kind,
kpeter@601
    14
 * express or implied, and with no claim as to its suitability for any
kpeter@601
    15
 * purpose.
kpeter@601
    16
 *
kpeter@601
    17
 */
kpeter@601
    18
kpeter@601
    19
#ifndef LEMON_NETWORK_SIMPLEX_H
kpeter@601
    20
#define LEMON_NETWORK_SIMPLEX_H
kpeter@601
    21
kpeter@663
    22
/// \ingroup min_cost_flow_algs
kpeter@601
    23
///
kpeter@601
    24
/// \file
kpeter@605
    25
/// \brief Network Simplex algorithm for finding a minimum cost flow.
kpeter@601
    26
kpeter@601
    27
#include <vector>
kpeter@601
    28
#include <limits>
kpeter@601
    29
#include <algorithm>
kpeter@601
    30
kpeter@603
    31
#include <lemon/core.h>
kpeter@601
    32
#include <lemon/math.h>
kpeter@601
    33
kpeter@601
    34
namespace lemon {
kpeter@601
    35
kpeter@663
    36
  /// \addtogroup min_cost_flow_algs
kpeter@601
    37
  /// @{
kpeter@601
    38
kpeter@605
    39
  /// \brief Implementation of the primal Network Simplex algorithm
kpeter@601
    40
  /// for finding a \ref min_cost_flow "minimum cost flow".
kpeter@601
    41
  ///
kpeter@605
    42
  /// \ref NetworkSimplex implements the primal Network Simplex algorithm
kpeter@755
    43
  /// for finding a \ref min_cost_flow "minimum cost flow"
kpeter@755
    44
  /// \ref amo93networkflows, \ref dantzig63linearprog,
kpeter@755
    45
  /// \ref kellyoneill91netsimplex.
kpeter@812
    46
  /// This algorithm is a highly efficient specialized version of the
kpeter@812
    47
  /// linear programming simplex method directly for the minimum cost
kpeter@812
    48
  /// flow problem.
kpeter@606
    49
  ///
kpeter@812
    50
  /// In general, %NetworkSimplex is the fastest implementation available
kpeter@812
    51
  /// in LEMON for this problem.
kpeter@812
    52
  /// Moreover, it supports both directions of the supply/demand inequality
kpeter@786
    53
  /// constraints. For more information, see \ref SupplyType.
kpeter@640
    54
  ///
kpeter@640
    55
  /// Most of the parameters of the problem (except for the digraph)
kpeter@640
    56
  /// can be given using separate functions, and the algorithm can be
kpeter@640
    57
  /// executed using the \ref run() function. If some parameters are not
kpeter@640
    58
  /// specified, then default values will be used.
kpeter@601
    59
  ///
kpeter@605
    60
  /// \tparam GR The digraph type the algorithm runs on.
kpeter@812
    61
  /// \tparam V The number type used for flow amounts, capacity bounds
kpeter@786
    62
  /// and supply values in the algorithm. By default, it is \c int.
kpeter@812
    63
  /// \tparam C The number type used for costs and potentials in the
kpeter@786
    64
  /// algorithm. By default, it is the same as \c V.
kpeter@601
    65
  ///
kpeter@812
    66
  /// \warning Both number types must be signed and all input data must
kpeter@608
    67
  /// be integer.
kpeter@601
    68
  ///
kpeter@605
    69
  /// \note %NetworkSimplex provides five different pivot rule
kpeter@609
    70
  /// implementations, from which the most efficient one is used
kpeter@786
    71
  /// by default. For more information, see \ref PivotRule.
kpeter@641
    72
  template <typename GR, typename V = int, typename C = V>
kpeter@601
    73
  class NetworkSimplex
kpeter@601
    74
  {
kpeter@605
    75
  public:
kpeter@601
    76
kpeter@642
    77
    /// The type of the flow amounts, capacity bounds and supply values
kpeter@641
    78
    typedef V Value;
kpeter@642
    79
    /// The type of the arc costs
kpeter@607
    80
    typedef C Cost;
kpeter@605
    81
kpeter@605
    82
  public:
kpeter@605
    83
kpeter@640
    84
    /// \brief Problem type constants for the \c run() function.
kpeter@605
    85
    ///
kpeter@640
    86
    /// Enum type containing the problem type constants that can be
kpeter@640
    87
    /// returned by the \ref run() function of the algorithm.
kpeter@640
    88
    enum ProblemType {
kpeter@640
    89
      /// The problem has no feasible solution (flow).
kpeter@640
    90
      INFEASIBLE,
kpeter@640
    91
      /// The problem has optimal solution (i.e. it is feasible and
kpeter@640
    92
      /// bounded), and the algorithm has found optimal flow and node
kpeter@640
    93
      /// potentials (primal and dual solutions).
kpeter@640
    94
      OPTIMAL,
kpeter@640
    95
      /// The objective function of the problem is unbounded, i.e.
kpeter@640
    96
      /// there is a directed cycle having negative total cost and
kpeter@640
    97
      /// infinite upper bound.
kpeter@640
    98
      UNBOUNDED
kpeter@640
    99
    };
kpeter@640
   100
    
kpeter@640
   101
    /// \brief Constants for selecting the type of the supply constraints.
kpeter@640
   102
    ///
kpeter@640
   103
    /// Enum type containing constants for selecting the supply type,
kpeter@640
   104
    /// i.e. the direction of the inequalities in the supply/demand
kpeter@640
   105
    /// constraints of the \ref min_cost_flow "minimum cost flow problem".
kpeter@640
   106
    ///
kpeter@663
   107
    /// The default supply type is \c GEQ, the \c LEQ type can be
kpeter@663
   108
    /// selected using \ref supplyType().
kpeter@663
   109
    /// The equality form is a special case of both supply types.
kpeter@640
   110
    enum SupplyType {
kpeter@640
   111
      /// This option means that there are <em>"greater or equal"</em>
kpeter@663
   112
      /// supply/demand constraints in the definition of the problem.
kpeter@640
   113
      GEQ,
kpeter@640
   114
      /// This option means that there are <em>"less or equal"</em>
kpeter@663
   115
      /// supply/demand constraints in the definition of the problem.
kpeter@663
   116
      LEQ
kpeter@640
   117
    };
kpeter@640
   118
    
kpeter@640
   119
    /// \brief Constants for selecting the pivot rule.
kpeter@640
   120
    ///
kpeter@640
   121
    /// Enum type containing constants for selecting the pivot rule for
kpeter@640
   122
    /// the \ref run() function.
kpeter@640
   123
    ///
kpeter@605
   124
    /// \ref NetworkSimplex provides five different pivot rule
kpeter@605
   125
    /// implementations that significantly affect the running time
kpeter@605
   126
    /// of the algorithm.
kpeter@786
   127
    /// By default, \ref BLOCK_SEARCH "Block Search" is used, which
kpeter@605
   128
    /// proved to be the most efficient and the most robust on various
kpeter@812
   129
    /// test inputs.
kpeter@786
   130
    /// However, another pivot rule can be selected using the \ref run()
kpeter@605
   131
    /// function with the proper parameter.
kpeter@605
   132
    enum PivotRule {
kpeter@605
   133
kpeter@786
   134
      /// The \e First \e Eligible pivot rule.
kpeter@605
   135
      /// The next eligible arc is selected in a wraparound fashion
kpeter@605
   136
      /// in every iteration.
kpeter@605
   137
      FIRST_ELIGIBLE,
kpeter@605
   138
kpeter@786
   139
      /// The \e Best \e Eligible pivot rule.
kpeter@605
   140
      /// The best eligible arc is selected in every iteration.
kpeter@605
   141
      BEST_ELIGIBLE,
kpeter@605
   142
kpeter@786
   143
      /// The \e Block \e Search pivot rule.
kpeter@605
   144
      /// A specified number of arcs are examined in every iteration
kpeter@605
   145
      /// in a wraparound fashion and the best eligible arc is selected
kpeter@605
   146
      /// from this block.
kpeter@605
   147
      BLOCK_SEARCH,
kpeter@605
   148
kpeter@786
   149
      /// The \e Candidate \e List pivot rule.
kpeter@605
   150
      /// In a major iteration a candidate list is built from eligible arcs
kpeter@605
   151
      /// in a wraparound fashion and in the following minor iterations
kpeter@605
   152
      /// the best eligible arc is selected from this list.
kpeter@605
   153
      CANDIDATE_LIST,
kpeter@605
   154
kpeter@786
   155
      /// The \e Altering \e Candidate \e List pivot rule.
kpeter@605
   156
      /// It is a modified version of the Candidate List method.
kpeter@605
   157
      /// It keeps only the several best eligible arcs from the former
kpeter@605
   158
      /// candidate list and extends this list in every iteration.
kpeter@605
   159
      ALTERING_LIST
kpeter@605
   160
    };
kpeter@609
   161
    
kpeter@605
   162
  private:
kpeter@605
   163
kpeter@605
   164
    TEMPLATE_DIGRAPH_TYPEDEFS(GR);
kpeter@605
   165
kpeter@601
   166
    typedef std::vector<int> IntVector;
kpeter@642
   167
    typedef std::vector<Value> ValueVector;
kpeter@607
   168
    typedef std::vector<Cost> CostVector;
kpeter@839
   169
    typedef std::vector<char> BoolVector;
kpeter@839
   170
    // Note: vector<char> is used instead of vector<bool> for efficiency reasons
kpeter@601
   171
kpeter@601
   172
    // State constants for arcs
kpeter@601
   173
    enum ArcStateEnum {
kpeter@601
   174
      STATE_UPPER = -1,
kpeter@601
   175
      STATE_TREE  =  0,
kpeter@601
   176
      STATE_LOWER =  1
kpeter@601
   177
    };
kpeter@601
   178
kpeter@601
   179
  private:
kpeter@601
   180
kpeter@605
   181
    // Data related to the underlying digraph
kpeter@605
   182
    const GR &_graph;
kpeter@605
   183
    int _node_num;
kpeter@605
   184
    int _arc_num;
kpeter@663
   185
    int _all_arc_num;
kpeter@663
   186
    int _search_arc_num;
kpeter@605
   187
kpeter@605
   188
    // Parameters of the problem
kpeter@642
   189
    bool _have_lower;
kpeter@640
   190
    SupplyType _stype;
kpeter@641
   191
    Value _sum_supply;
kpeter@601
   192
kpeter@605
   193
    // Data structures for storing the digraph
kpeter@603
   194
    IntNodeMap _node_id;
kpeter@642
   195
    IntArcMap _arc_id;
kpeter@603
   196
    IntVector _source;
kpeter@603
   197
    IntVector _target;
kpeter@830
   198
    bool _arc_mixing;
kpeter@603
   199
kpeter@605
   200
    // Node and arc data
kpeter@642
   201
    ValueVector _lower;
kpeter@642
   202
    ValueVector _upper;
kpeter@642
   203
    ValueVector _cap;
kpeter@607
   204
    CostVector _cost;
kpeter@642
   205
    ValueVector _supply;
kpeter@642
   206
    ValueVector _flow;
kpeter@607
   207
    CostVector _pi;
kpeter@601
   208
kpeter@603
   209
    // Data for storing the spanning tree structure
kpeter@601
   210
    IntVector _parent;
kpeter@601
   211
    IntVector _pred;
kpeter@601
   212
    IntVector _thread;
kpeter@604
   213
    IntVector _rev_thread;
kpeter@604
   214
    IntVector _succ_num;
kpeter@604
   215
    IntVector _last_succ;
kpeter@604
   216
    IntVector _dirty_revs;
kpeter@839
   217
    BoolVector _forward;
kpeter@839
   218
    BoolVector _state;
kpeter@601
   219
    int _root;
kpeter@601
   220
kpeter@601
   221
    // Temporary data used in the current pivot iteration
kpeter@603
   222
    int in_arc, join, u_in, v_in, u_out, v_out;
kpeter@603
   223
    int first, second, right, last;
kpeter@601
   224
    int stem, par_stem, new_stem;
kpeter@641
   225
    Value delta;
kpeter@811
   226
    
kpeter@811
   227
    const Value MAX;
kpeter@601
   228
kpeter@640
   229
  public:
kpeter@640
   230
  
kpeter@640
   231
    /// \brief Constant for infinite upper bounds (capacities).
kpeter@640
   232
    ///
kpeter@640
   233
    /// Constant for infinite upper bounds (capacities).
kpeter@641
   234
    /// It is \c std::numeric_limits<Value>::infinity() if available,
kpeter@641
   235
    /// \c std::numeric_limits<Value>::max() otherwise.
kpeter@641
   236
    const Value INF;
kpeter@640
   237
kpeter@601
   238
  private:
kpeter@601
   239
kpeter@605
   240
    // Implementation of the First Eligible pivot rule
kpeter@601
   241
    class FirstEligiblePivotRule
kpeter@601
   242
    {
kpeter@601
   243
    private:
kpeter@601
   244
kpeter@601
   245
      // References to the NetworkSimplex class
kpeter@601
   246
      const IntVector  &_source;
kpeter@601
   247
      const IntVector  &_target;
kpeter@607
   248
      const CostVector &_cost;
kpeter@839
   249
      const BoolVector &_state;
kpeter@607
   250
      const CostVector &_pi;
kpeter@601
   251
      int &_in_arc;
kpeter@663
   252
      int _search_arc_num;
kpeter@601
   253
kpeter@601
   254
      // Pivot rule data
kpeter@601
   255
      int _next_arc;
kpeter@601
   256
kpeter@601
   257
    public:
kpeter@601
   258
kpeter@605
   259
      // Constructor
kpeter@601
   260
      FirstEligiblePivotRule(NetworkSimplex &ns) :
kpeter@603
   261
        _source(ns._source), _target(ns._target),
kpeter@601
   262
        _cost(ns._cost), _state(ns._state), _pi(ns._pi),
kpeter@663
   263
        _in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num),
kpeter@663
   264
        _next_arc(0)
kpeter@601
   265
      {}
kpeter@601
   266
kpeter@605
   267
      // Find next entering arc
kpeter@601
   268
      bool findEnteringArc() {
kpeter@607
   269
        Cost c;
kpeter@839
   270
        for (int e = _next_arc; e != _search_arc_num; ++e) {
kpeter@601
   271
          c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
kpeter@601
   272
          if (c < 0) {
kpeter@601
   273
            _in_arc = e;
kpeter@601
   274
            _next_arc = e + 1;
kpeter@601
   275
            return true;
kpeter@601
   276
          }
kpeter@601
   277
        }
kpeter@839
   278
        for (int e = 0; e != _next_arc; ++e) {
kpeter@601
   279
          c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
kpeter@601
   280
          if (c < 0) {
kpeter@601
   281
            _in_arc = e;
kpeter@601
   282
            _next_arc = e + 1;
kpeter@601
   283
            return true;
kpeter@601
   284
          }
kpeter@601
   285
        }
kpeter@601
   286
        return false;
kpeter@601
   287
      }
kpeter@601
   288
kpeter@601
   289
    }; //class FirstEligiblePivotRule
kpeter@601
   290
kpeter@601
   291
kpeter@605
   292
    // Implementation of the Best Eligible pivot rule
kpeter@601
   293
    class BestEligiblePivotRule
kpeter@601
   294
    {
kpeter@601
   295
    private:
kpeter@601
   296
kpeter@601
   297
      // References to the NetworkSimplex class
kpeter@601
   298
      const IntVector  &_source;
kpeter@601
   299
      const IntVector  &_target;
kpeter@607
   300
      const CostVector &_cost;
kpeter@839
   301
      const BoolVector &_state;
kpeter@607
   302
      const CostVector &_pi;
kpeter@601
   303
      int &_in_arc;
kpeter@663
   304
      int _search_arc_num;
kpeter@601
   305
kpeter@601
   306
    public:
kpeter@601
   307
kpeter@605
   308
      // Constructor
kpeter@601
   309
      BestEligiblePivotRule(NetworkSimplex &ns) :
kpeter@603
   310
        _source(ns._source), _target(ns._target),
kpeter@601
   311
        _cost(ns._cost), _state(ns._state), _pi(ns._pi),
kpeter@663
   312
        _in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num)
kpeter@601
   313
      {}
kpeter@601
   314
kpeter@605
   315
      // Find next entering arc
kpeter@601
   316
      bool findEnteringArc() {
kpeter@607
   317
        Cost c, min = 0;
kpeter@839
   318
        for (int e = 0; e != _search_arc_num; ++e) {
kpeter@601
   319
          c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
kpeter@601
   320
          if (c < min) {
kpeter@601
   321
            min = c;
kpeter@601
   322
            _in_arc = e;
kpeter@601
   323
          }
kpeter@601
   324
        }
kpeter@601
   325
        return min < 0;
kpeter@601
   326
      }
kpeter@601
   327
kpeter@601
   328
    }; //class BestEligiblePivotRule
kpeter@601
   329
kpeter@601
   330
kpeter@605
   331
    // Implementation of the Block Search pivot rule
kpeter@601
   332
    class BlockSearchPivotRule
kpeter@601
   333
    {
kpeter@601
   334
    private:
kpeter@601
   335
kpeter@601
   336
      // References to the NetworkSimplex class
kpeter@601
   337
      const IntVector  &_source;
kpeter@601
   338
      const IntVector  &_target;
kpeter@607
   339
      const CostVector &_cost;
kpeter@839
   340
      const BoolVector &_state;
kpeter@607
   341
      const CostVector &_pi;
kpeter@601
   342
      int &_in_arc;
kpeter@663
   343
      int _search_arc_num;
kpeter@601
   344
kpeter@601
   345
      // Pivot rule data
kpeter@601
   346
      int _block_size;
kpeter@601
   347
      int _next_arc;
kpeter@601
   348
kpeter@601
   349
    public:
kpeter@601
   350
kpeter@605
   351
      // Constructor
kpeter@601
   352
      BlockSearchPivotRule(NetworkSimplex &ns) :
kpeter@603
   353
        _source(ns._source), _target(ns._target),
kpeter@601
   354
        _cost(ns._cost), _state(ns._state), _pi(ns._pi),
kpeter@663
   355
        _in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num),
kpeter@663
   356
        _next_arc(0)
kpeter@601
   357
      {
kpeter@601
   358
        // The main parameters of the pivot rule
kpeter@839
   359
        const double BLOCK_SIZE_FACTOR = 1.0;
kpeter@601
   360
        const int MIN_BLOCK_SIZE = 10;
kpeter@601
   361
alpar@612
   362
        _block_size = std::max( int(BLOCK_SIZE_FACTOR *
kpeter@663
   363
                                    std::sqrt(double(_search_arc_num))),
kpeter@601
   364
                                MIN_BLOCK_SIZE );
kpeter@601
   365
      }
kpeter@601
   366
kpeter@605
   367
      // Find next entering arc
kpeter@601
   368
      bool findEnteringArc() {
kpeter@607
   369
        Cost c, min = 0;
kpeter@601
   370
        int cnt = _block_size;
kpeter@727
   371
        int e;
kpeter@839
   372
        for (e = _next_arc; e != _search_arc_num; ++e) {
kpeter@601
   373
          c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
kpeter@601
   374
          if (c < min) {
kpeter@601
   375
            min = c;
kpeter@727
   376
            _in_arc = e;
kpeter@601
   377
          }
kpeter@601
   378
          if (--cnt == 0) {
kpeter@727
   379
            if (min < 0) goto search_end;
kpeter@601
   380
            cnt = _block_size;
kpeter@601
   381
          }
kpeter@601
   382
        }
kpeter@839
   383
        for (e = 0; e != _next_arc; ++e) {
kpeter@727
   384
          c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
kpeter@727
   385
          if (c < min) {
kpeter@727
   386
            min = c;
kpeter@727
   387
            _in_arc = e;
kpeter@727
   388
          }
kpeter@727
   389
          if (--cnt == 0) {
kpeter@727
   390
            if (min < 0) goto search_end;
kpeter@727
   391
            cnt = _block_size;
kpeter@601
   392
          }
kpeter@601
   393
        }
kpeter@601
   394
        if (min >= 0) return false;
kpeter@727
   395
kpeter@727
   396
      search_end:
kpeter@601
   397
        _next_arc = e;
kpeter@601
   398
        return true;
kpeter@601
   399
      }
kpeter@601
   400
kpeter@601
   401
    }; //class BlockSearchPivotRule
kpeter@601
   402
kpeter@601
   403
kpeter@605
   404
    // Implementation of the Candidate List pivot rule
kpeter@601
   405
    class CandidateListPivotRule
kpeter@601
   406
    {
kpeter@601
   407
    private:
kpeter@601
   408
kpeter@601
   409
      // References to the NetworkSimplex class
kpeter@601
   410
      const IntVector  &_source;
kpeter@601
   411
      const IntVector  &_target;
kpeter@607
   412
      const CostVector &_cost;
kpeter@839
   413
      const BoolVector &_state;
kpeter@607
   414
      const CostVector &_pi;
kpeter@601
   415
      int &_in_arc;
kpeter@663
   416
      int _search_arc_num;
kpeter@601
   417
kpeter@601
   418
      // Pivot rule data
kpeter@601
   419
      IntVector _candidates;
kpeter@601
   420
      int _list_length, _minor_limit;
kpeter@601
   421
      int _curr_length, _minor_count;
kpeter@601
   422
      int _next_arc;
kpeter@601
   423
kpeter@601
   424
    public:
kpeter@601
   425
kpeter@601
   426
      /// Constructor
kpeter@601
   427
      CandidateListPivotRule(NetworkSimplex &ns) :
kpeter@603
   428
        _source(ns._source), _target(ns._target),
kpeter@601
   429
        _cost(ns._cost), _state(ns._state), _pi(ns._pi),
kpeter@663
   430
        _in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num),
kpeter@663
   431
        _next_arc(0)
kpeter@601
   432
      {
kpeter@601
   433
        // The main parameters of the pivot rule
kpeter@727
   434
        const double LIST_LENGTH_FACTOR = 0.25;
kpeter@601
   435
        const int MIN_LIST_LENGTH = 10;
kpeter@601
   436
        const double MINOR_LIMIT_FACTOR = 0.1;
kpeter@601
   437
        const int MIN_MINOR_LIMIT = 3;
kpeter@601
   438
alpar@612
   439
        _list_length = std::max( int(LIST_LENGTH_FACTOR *
kpeter@663
   440
                                     std::sqrt(double(_search_arc_num))),
kpeter@601
   441
                                 MIN_LIST_LENGTH );
kpeter@601
   442
        _minor_limit = std::max( int(MINOR_LIMIT_FACTOR * _list_length),
kpeter@601
   443
                                 MIN_MINOR_LIMIT );
kpeter@601
   444
        _curr_length = _minor_count = 0;
kpeter@601
   445
        _candidates.resize(_list_length);
kpeter@601
   446
      }
kpeter@601
   447
kpeter@601
   448
      /// Find next entering arc
kpeter@601
   449
      bool findEnteringArc() {
kpeter@607
   450
        Cost min, c;
kpeter@727
   451
        int e;
kpeter@601
   452
        if (_curr_length > 0 && _minor_count < _minor_limit) {
kpeter@601
   453
          // Minor iteration: select the best eligible arc from the
kpeter@601
   454
          // current candidate list
kpeter@601
   455
          ++_minor_count;
kpeter@601
   456
          min = 0;
kpeter@601
   457
          for (int i = 0; i < _curr_length; ++i) {
kpeter@601
   458
            e = _candidates[i];
kpeter@601
   459
            c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
kpeter@601
   460
            if (c < min) {
kpeter@601
   461
              min = c;
kpeter@727
   462
              _in_arc = e;
kpeter@601
   463
            }
kpeter@727
   464
            else if (c >= 0) {
kpeter@601
   465
              _candidates[i--] = _candidates[--_curr_length];
kpeter@601
   466
            }
kpeter@601
   467
          }
kpeter@727
   468
          if (min < 0) return true;
kpeter@601
   469
        }
kpeter@601
   470
kpeter@601
   471
        // Major iteration: build a new candidate list
kpeter@601
   472
        min = 0;
kpeter@601
   473
        _curr_length = 0;
kpeter@839
   474
        for (e = _next_arc; e != _search_arc_num; ++e) {
kpeter@601
   475
          c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
kpeter@601
   476
          if (c < 0) {
kpeter@601
   477
            _candidates[_curr_length++] = e;
kpeter@601
   478
            if (c < min) {
kpeter@601
   479
              min = c;
kpeter@727
   480
              _in_arc = e;
kpeter@601
   481
            }
kpeter@727
   482
            if (_curr_length == _list_length) goto search_end;
kpeter@601
   483
          }
kpeter@601
   484
        }
kpeter@839
   485
        for (e = 0; e != _next_arc; ++e) {
kpeter@727
   486
          c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
kpeter@727
   487
          if (c < 0) {
kpeter@727
   488
            _candidates[_curr_length++] = e;
kpeter@727
   489
            if (c < min) {
kpeter@727
   490
              min = c;
kpeter@727
   491
              _in_arc = e;
kpeter@601
   492
            }
kpeter@727
   493
            if (_curr_length == _list_length) goto search_end;
kpeter@601
   494
          }
kpeter@601
   495
        }
kpeter@601
   496
        if (_curr_length == 0) return false;
kpeter@727
   497
      
kpeter@727
   498
      search_end:        
kpeter@601
   499
        _minor_count = 1;
kpeter@601
   500
        _next_arc = e;
kpeter@601
   501
        return true;
kpeter@601
   502
      }
kpeter@601
   503
kpeter@601
   504
    }; //class CandidateListPivotRule
kpeter@601
   505
kpeter@601
   506
kpeter@605
   507
    // Implementation of the Altering Candidate List pivot rule
kpeter@601
   508
    class AlteringListPivotRule
kpeter@601
   509
    {
kpeter@601
   510
    private:
kpeter@601
   511
kpeter@601
   512
      // References to the NetworkSimplex class
kpeter@601
   513
      const IntVector  &_source;
kpeter@601
   514
      const IntVector  &_target;
kpeter@607
   515
      const CostVector &_cost;
kpeter@839
   516
      const BoolVector &_state;
kpeter@607
   517
      const CostVector &_pi;
kpeter@601
   518
      int &_in_arc;
kpeter@663
   519
      int _search_arc_num;
kpeter@601
   520
kpeter@601
   521
      // Pivot rule data
kpeter@601
   522
      int _block_size, _head_length, _curr_length;
kpeter@601
   523
      int _next_arc;
kpeter@601
   524
      IntVector _candidates;
kpeter@607
   525
      CostVector _cand_cost;
kpeter@601
   526
kpeter@601
   527
      // Functor class to compare arcs during sort of the candidate list
kpeter@601
   528
      class SortFunc
kpeter@601
   529
      {
kpeter@601
   530
      private:
kpeter@607
   531
        const CostVector &_map;
kpeter@601
   532
      public:
kpeter@607
   533
        SortFunc(const CostVector &map) : _map(map) {}
kpeter@601
   534
        bool operator()(int left, int right) {
kpeter@601
   535
          return _map[left] > _map[right];
kpeter@601
   536
        }
kpeter@601
   537
      };
kpeter@601
   538
kpeter@601
   539
      SortFunc _sort_func;
kpeter@601
   540
kpeter@601
   541
    public:
kpeter@601
   542
kpeter@605
   543
      // Constructor
kpeter@601
   544
      AlteringListPivotRule(NetworkSimplex &ns) :
kpeter@603
   545
        _source(ns._source), _target(ns._target),
kpeter@601
   546
        _cost(ns._cost), _state(ns._state), _pi(ns._pi),
kpeter@663
   547
        _in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num),
kpeter@663
   548
        _next_arc(0), _cand_cost(ns._search_arc_num), _sort_func(_cand_cost)
kpeter@601
   549
      {
kpeter@601
   550
        // The main parameters of the pivot rule
kpeter@727
   551
        const double BLOCK_SIZE_FACTOR = 1.0;
kpeter@601
   552
        const int MIN_BLOCK_SIZE = 10;
kpeter@601
   553
        const double HEAD_LENGTH_FACTOR = 0.1;
kpeter@601
   554
        const int MIN_HEAD_LENGTH = 3;
kpeter@601
   555
alpar@612
   556
        _block_size = std::max( int(BLOCK_SIZE_FACTOR *
kpeter@663
   557
                                    std::sqrt(double(_search_arc_num))),
kpeter@601
   558
                                MIN_BLOCK_SIZE );
kpeter@601
   559
        _head_length = std::max( int(HEAD_LENGTH_FACTOR * _block_size),
kpeter@601
   560
                                 MIN_HEAD_LENGTH );
kpeter@601
   561
        _candidates.resize(_head_length + _block_size);
kpeter@601
   562
        _curr_length = 0;
kpeter@601
   563
      }
kpeter@601
   564
kpeter@605
   565
      // Find next entering arc
kpeter@601
   566
      bool findEnteringArc() {
kpeter@601
   567
        // Check the current candidate list
kpeter@601
   568
        int e;
kpeter@839
   569
        for (int i = 0; i != _curr_length; ++i) {
kpeter@601
   570
          e = _candidates[i];
kpeter@601
   571
          _cand_cost[e] = _state[e] *
kpeter@601
   572
            (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
kpeter@601
   573
          if (_cand_cost[e] >= 0) {
kpeter@601
   574
            _candidates[i--] = _candidates[--_curr_length];
kpeter@601
   575
          }
kpeter@601
   576
        }
kpeter@601
   577
kpeter@601
   578
        // Extend the list
kpeter@601
   579
        int cnt = _block_size;
kpeter@601
   580
        int limit = _head_length;
kpeter@601
   581
kpeter@839
   582
        for (e = _next_arc; e != _search_arc_num; ++e) {
kpeter@601
   583
          _cand_cost[e] = _state[e] *
kpeter@601
   584
            (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
kpeter@601
   585
          if (_cand_cost[e] < 0) {
kpeter@601
   586
            _candidates[_curr_length++] = e;
kpeter@601
   587
          }
kpeter@601
   588
          if (--cnt == 0) {
kpeter@727
   589
            if (_curr_length > limit) goto search_end;
kpeter@601
   590
            limit = 0;
kpeter@601
   591
            cnt = _block_size;
kpeter@601
   592
          }
kpeter@601
   593
        }
kpeter@839
   594
        for (e = 0; e != _next_arc; ++e) {
kpeter@727
   595
          _cand_cost[e] = _state[e] *
kpeter@727
   596
            (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
kpeter@727
   597
          if (_cand_cost[e] < 0) {
kpeter@727
   598
            _candidates[_curr_length++] = e;
kpeter@727
   599
          }
kpeter@727
   600
          if (--cnt == 0) {
kpeter@727
   601
            if (_curr_length > limit) goto search_end;
kpeter@727
   602
            limit = 0;
kpeter@727
   603
            cnt = _block_size;
kpeter@601
   604
          }
kpeter@601
   605
        }
kpeter@601
   606
        if (_curr_length == 0) return false;
kpeter@727
   607
        
kpeter@727
   608
      search_end:
kpeter@601
   609
kpeter@601
   610
        // Make heap of the candidate list (approximating a partial sort)
kpeter@601
   611
        make_heap( _candidates.begin(), _candidates.begin() + _curr_length,
kpeter@601
   612
                   _sort_func );
kpeter@601
   613
kpeter@601
   614
        // Pop the first element of the heap
kpeter@601
   615
        _in_arc = _candidates[0];
kpeter@727
   616
        _next_arc = e;
kpeter@601
   617
        pop_heap( _candidates.begin(), _candidates.begin() + _curr_length,
kpeter@601
   618
                  _sort_func );
kpeter@601
   619
        _curr_length = std::min(_head_length, _curr_length - 1);
kpeter@601
   620
        return true;
kpeter@601
   621
      }
kpeter@601
   622
kpeter@601
   623
    }; //class AlteringListPivotRule
kpeter@601
   624
kpeter@601
   625
  public:
kpeter@601
   626
kpeter@605
   627
    /// \brief Constructor.
kpeter@601
   628
    ///
kpeter@609
   629
    /// The constructor of the class.
kpeter@601
   630
    ///
kpeter@603
   631
    /// \param graph The digraph the algorithm runs on.
kpeter@728
   632
    /// \param arc_mixing Indicate if the arcs have to be stored in a
kpeter@728
   633
    /// mixed order in the internal data structure. 
kpeter@728
   634
    /// In special cases, it could lead to better overall performance,
kpeter@728
   635
    /// but it is usually slower. Therefore it is disabled by default.
kpeter@728
   636
    NetworkSimplex(const GR& graph, bool arc_mixing = false) :
kpeter@642
   637
      _graph(graph), _node_id(graph), _arc_id(graph),
kpeter@830
   638
      _arc_mixing(arc_mixing),
kpeter@811
   639
      MAX(std::numeric_limits<Value>::max()),
kpeter@641
   640
      INF(std::numeric_limits<Value>::has_infinity ?
kpeter@811
   641
          std::numeric_limits<Value>::infinity() : MAX)
kpeter@605
   642
    {
kpeter@812
   643
      // Check the number types
kpeter@641
   644
      LEMON_ASSERT(std::numeric_limits<Value>::is_signed,
kpeter@640
   645
        "The flow type of NetworkSimplex must be signed");
kpeter@640
   646
      LEMON_ASSERT(std::numeric_limits<Cost>::is_signed,
kpeter@640
   647
        "The cost type of NetworkSimplex must be signed");
kpeter@642
   648
        
kpeter@830
   649
      // Reset data structures
kpeter@729
   650
      reset();
kpeter@601
   651
    }
kpeter@601
   652
kpeter@609
   653
    /// \name Parameters
kpeter@609
   654
    /// The parameters of the algorithm can be specified using these
kpeter@609
   655
    /// functions.
kpeter@609
   656
kpeter@609
   657
    /// @{
kpeter@609
   658
kpeter@605
   659
    /// \brief Set the lower bounds on the arcs.
kpeter@605
   660
    ///
kpeter@605
   661
    /// This function sets the lower bounds on the arcs.
kpeter@640
   662
    /// If it is not used before calling \ref run(), the lower bounds
kpeter@640
   663
    /// will be set to zero on all arcs.
kpeter@605
   664
    ///
kpeter@605
   665
    /// \param map An arc map storing the lower bounds.
kpeter@641
   666
    /// Its \c Value type must be convertible to the \c Value type
kpeter@605
   667
    /// of the algorithm.
kpeter@605
   668
    ///
kpeter@605
   669
    /// \return <tt>(*this)</tt>
kpeter@640
   670
    template <typename LowerMap>
kpeter@640
   671
    NetworkSimplex& lowerMap(const LowerMap& map) {
kpeter@642
   672
      _have_lower = true;
kpeter@605
   673
      for (ArcIt a(_graph); a != INVALID; ++a) {
kpeter@642
   674
        _lower[_arc_id[a]] = map[a];
kpeter@605
   675
      }
kpeter@605
   676
      return *this;
kpeter@605
   677
    }
kpeter@605
   678
kpeter@605
   679
    /// \brief Set the upper bounds (capacities) on the arcs.
kpeter@605
   680
    ///
kpeter@605
   681
    /// This function sets the upper bounds (capacities) on the arcs.
kpeter@640
   682
    /// If it is not used before calling \ref run(), the upper bounds
kpeter@640
   683
    /// will be set to \ref INF on all arcs (i.e. the flow value will be
kpeter@812
   684
    /// unbounded from above).
kpeter@605
   685
    ///
kpeter@605
   686
    /// \param map An arc map storing the upper bounds.
kpeter@641
   687
    /// Its \c Value type must be convertible to the \c Value type
kpeter@605
   688
    /// of the algorithm.
kpeter@605
   689
    ///
kpeter@605
   690
    /// \return <tt>(*this)</tt>
kpeter@640
   691
    template<typename UpperMap>
kpeter@640
   692
    NetworkSimplex& upperMap(const UpperMap& map) {
kpeter@605
   693
      for (ArcIt a(_graph); a != INVALID; ++a) {
kpeter@642
   694
        _upper[_arc_id[a]] = map[a];
kpeter@605
   695
      }
kpeter@605
   696
      return *this;
kpeter@605
   697
    }
kpeter@605
   698
kpeter@605
   699
    /// \brief Set the costs of the arcs.
kpeter@605
   700
    ///
kpeter@605
   701
    /// This function sets the costs of the arcs.
kpeter@605
   702
    /// If it is not used before calling \ref run(), the costs
kpeter@605
   703
    /// will be set to \c 1 on all arcs.
kpeter@605
   704
    ///
kpeter@605
   705
    /// \param map An arc map storing the costs.
kpeter@607
   706
    /// Its \c Value type must be convertible to the \c Cost type
kpeter@605
   707
    /// of the algorithm.
kpeter@605
   708
    ///
kpeter@605
   709
    /// \return <tt>(*this)</tt>
kpeter@640
   710
    template<typename CostMap>
kpeter@640
   711
    NetworkSimplex& costMap(const CostMap& map) {
kpeter@605
   712
      for (ArcIt a(_graph); a != INVALID; ++a) {
kpeter@642
   713
        _cost[_arc_id[a]] = map[a];
kpeter@605
   714
      }
kpeter@605
   715
      return *this;
kpeter@605
   716
    }
kpeter@605
   717
kpeter@605
   718
    /// \brief Set the supply values of the nodes.
kpeter@605
   719
    ///
kpeter@605
   720
    /// This function sets the supply values of the nodes.
kpeter@605
   721
    /// If neither this function nor \ref stSupply() is used before
kpeter@605
   722
    /// calling \ref run(), the supply of each node will be set to zero.
kpeter@605
   723
    ///
kpeter@605
   724
    /// \param map A node map storing the supply values.
kpeter@641
   725
    /// Its \c Value type must be convertible to the \c Value type
kpeter@605
   726
    /// of the algorithm.
kpeter@605
   727
    ///
kpeter@605
   728
    /// \return <tt>(*this)</tt>
kpeter@640
   729
    template<typename SupplyMap>
kpeter@640
   730
    NetworkSimplex& supplyMap(const SupplyMap& map) {
kpeter@605
   731
      for (NodeIt n(_graph); n != INVALID; ++n) {
kpeter@642
   732
        _supply[_node_id[n]] = map[n];
kpeter@605
   733
      }
kpeter@605
   734
      return *this;
kpeter@605
   735
    }
kpeter@605
   736
kpeter@605
   737
    /// \brief Set single source and target nodes and a supply value.
kpeter@605
   738
    ///
kpeter@605
   739
    /// This function sets a single source node and a single target node
kpeter@605
   740
    /// and the required flow value.
kpeter@605
   741
    /// If neither this function nor \ref supplyMap() is used before
kpeter@605
   742
    /// calling \ref run(), the supply of each node will be set to zero.
kpeter@605
   743
    ///
kpeter@640
   744
    /// Using this function has the same effect as using \ref supplyMap()
kpeter@640
   745
    /// with such a map in which \c k is assigned to \c s, \c -k is
kpeter@640
   746
    /// assigned to \c t and all other nodes have zero supply value.
kpeter@640
   747
    ///
kpeter@605
   748
    /// \param s The source node.
kpeter@605
   749
    /// \param t The target node.
kpeter@605
   750
    /// \param k The required amount of flow from node \c s to node \c t
kpeter@605
   751
    /// (i.e. the supply of \c s and the demand of \c t).
kpeter@605
   752
    ///
kpeter@605
   753
    /// \return <tt>(*this)</tt>
kpeter@641
   754
    NetworkSimplex& stSupply(const Node& s, const Node& t, Value k) {
kpeter@642
   755
      for (int i = 0; i != _node_num; ++i) {
kpeter@642
   756
        _supply[i] = 0;
kpeter@642
   757
      }
kpeter@642
   758
      _supply[_node_id[s]] =  k;
kpeter@642
   759
      _supply[_node_id[t]] = -k;
kpeter@605
   760
      return *this;
kpeter@605
   761
    }
kpeter@609
   762
    
kpeter@640
   763
    /// \brief Set the type of the supply constraints.
kpeter@609
   764
    ///
kpeter@640
   765
    /// This function sets the type of the supply/demand constraints.
kpeter@640
   766
    /// If it is not used before calling \ref run(), the \ref GEQ supply
kpeter@609
   767
    /// type will be used.
kpeter@609
   768
    ///
kpeter@786
   769
    /// For more information, see \ref SupplyType.
kpeter@609
   770
    ///
kpeter@609
   771
    /// \return <tt>(*this)</tt>
kpeter@640
   772
    NetworkSimplex& supplyType(SupplyType supply_type) {
kpeter@640
   773
      _stype = supply_type;
kpeter@609
   774
      return *this;
kpeter@609
   775
    }
kpeter@605
   776
kpeter@609
   777
    /// @}
kpeter@601
   778
kpeter@605
   779
    /// \name Execution Control
kpeter@605
   780
    /// The algorithm can be executed using \ref run().
kpeter@605
   781
kpeter@601
   782
    /// @{
kpeter@601
   783
kpeter@601
   784
    /// \brief Run the algorithm.
kpeter@601
   785
    ///
kpeter@601
   786
    /// This function runs the algorithm.
kpeter@609
   787
    /// The paramters can be specified using functions \ref lowerMap(),
kpeter@640
   788
    /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(), 
kpeter@642
   789
    /// \ref supplyType().
kpeter@609
   790
    /// For example,
kpeter@605
   791
    /// \code
kpeter@605
   792
    ///   NetworkSimplex<ListDigraph> ns(graph);
kpeter@640
   793
    ///   ns.lowerMap(lower).upperMap(upper).costMap(cost)
kpeter@605
   794
    ///     .supplyMap(sup).run();
kpeter@605
   795
    /// \endcode
kpeter@601
   796
    ///
kpeter@830
   797
    /// This function can be called more than once. All the given parameters
kpeter@830
   798
    /// are kept for the next call, unless \ref resetParams() or \ref reset()
kpeter@830
   799
    /// is used, thus only the modified parameters have to be set again.
kpeter@830
   800
    /// If the underlying digraph was also modified after the construction
kpeter@830
   801
    /// of the class (or the last \ref reset() call), then the \ref reset()
kpeter@830
   802
    /// function must be called.
kpeter@606
   803
    ///
kpeter@605
   804
    /// \param pivot_rule The pivot rule that will be used during the
kpeter@786
   805
    /// algorithm. For more information, see \ref PivotRule.
kpeter@601
   806
    ///
kpeter@640
   807
    /// \return \c INFEASIBLE if no feasible flow exists,
kpeter@640
   808
    /// \n \c OPTIMAL if the problem has optimal solution
kpeter@640
   809
    /// (i.e. it is feasible and bounded), and the algorithm has found
kpeter@640
   810
    /// optimal flow and node potentials (primal and dual solutions),
kpeter@640
   811
    /// \n \c UNBOUNDED if the objective function of the problem is
kpeter@640
   812
    /// unbounded, i.e. there is a directed cycle having negative total
kpeter@640
   813
    /// cost and infinite upper bound.
kpeter@640
   814
    ///
kpeter@640
   815
    /// \see ProblemType, PivotRule
kpeter@830
   816
    /// \see resetParams(), reset()
kpeter@640
   817
    ProblemType run(PivotRule pivot_rule = BLOCK_SEARCH) {
kpeter@640
   818
      if (!init()) return INFEASIBLE;
kpeter@640
   819
      return start(pivot_rule);
kpeter@601
   820
    }
kpeter@601
   821
kpeter@606
   822
    /// \brief Reset all the parameters that have been given before.
kpeter@606
   823
    ///
kpeter@606
   824
    /// This function resets all the paramaters that have been given
kpeter@609
   825
    /// before using functions \ref lowerMap(), \ref upperMap(),
kpeter@642
   826
    /// \ref costMap(), \ref supplyMap(), \ref stSupply(), \ref supplyType().
kpeter@606
   827
    ///
kpeter@830
   828
    /// It is useful for multiple \ref run() calls. Basically, all the given
kpeter@830
   829
    /// parameters are kept for the next \ref run() call, unless
kpeter@830
   830
    /// \ref resetParams() or \ref reset() is used.
kpeter@830
   831
    /// If the underlying digraph was also modified after the construction
kpeter@830
   832
    /// of the class or the last \ref reset() call, then the \ref reset()
kpeter@830
   833
    /// function must be used, otherwise \ref resetParams() is sufficient.
kpeter@606
   834
    ///
kpeter@606
   835
    /// For example,
kpeter@606
   836
    /// \code
kpeter@606
   837
    ///   NetworkSimplex<ListDigraph> ns(graph);
kpeter@606
   838
    ///
kpeter@606
   839
    ///   // First run
kpeter@640
   840
    ///   ns.lowerMap(lower).upperMap(upper).costMap(cost)
kpeter@606
   841
    ///     .supplyMap(sup).run();
kpeter@606
   842
    ///
kpeter@830
   843
    ///   // Run again with modified cost map (resetParams() is not called,
kpeter@606
   844
    ///   // so only the cost map have to be set again)
kpeter@606
   845
    ///   cost[e] += 100;
kpeter@606
   846
    ///   ns.costMap(cost).run();
kpeter@606
   847
    ///
kpeter@830
   848
    ///   // Run again from scratch using resetParams()
kpeter@606
   849
    ///   // (the lower bounds will be set to zero on all arcs)
kpeter@830
   850
    ///   ns.resetParams();
kpeter@640
   851
    ///   ns.upperMap(capacity).costMap(cost)
kpeter@606
   852
    ///     .supplyMap(sup).run();
kpeter@606
   853
    /// \endcode
kpeter@606
   854
    ///
kpeter@606
   855
    /// \return <tt>(*this)</tt>
kpeter@830
   856
    ///
kpeter@830
   857
    /// \see reset(), run()
kpeter@830
   858
    NetworkSimplex& resetParams() {
kpeter@642
   859
      for (int i = 0; i != _node_num; ++i) {
kpeter@642
   860
        _supply[i] = 0;
kpeter@642
   861
      }
kpeter@642
   862
      for (int i = 0; i != _arc_num; ++i) {
kpeter@642
   863
        _lower[i] = 0;
kpeter@642
   864
        _upper[i] = INF;
kpeter@642
   865
        _cost[i] = 1;
kpeter@642
   866
      }
kpeter@642
   867
      _have_lower = false;
kpeter@640
   868
      _stype = GEQ;
kpeter@606
   869
      return *this;
kpeter@606
   870
    }
kpeter@606
   871
kpeter@830
   872
    /// \brief Reset the internal data structures and all the parameters
kpeter@830
   873
    /// that have been given before.
kpeter@830
   874
    ///
kpeter@830
   875
    /// This function resets the internal data structures and all the
kpeter@830
   876
    /// paramaters that have been given before using functions \ref lowerMap(),
kpeter@830
   877
    /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(),
kpeter@830
   878
    /// \ref supplyType().
kpeter@830
   879
    ///
kpeter@830
   880
    /// It is useful for multiple \ref run() calls. Basically, all the given
kpeter@830
   881
    /// parameters are kept for the next \ref run() call, unless
kpeter@830
   882
    /// \ref resetParams() or \ref reset() is used.
kpeter@830
   883
    /// If the underlying digraph was also modified after the construction
kpeter@830
   884
    /// of the class or the last \ref reset() call, then the \ref reset()
kpeter@830
   885
    /// function must be used, otherwise \ref resetParams() is sufficient.
kpeter@830
   886
    ///
kpeter@830
   887
    /// See \ref resetParams() for examples.
kpeter@830
   888
    ///
kpeter@830
   889
    /// \return <tt>(*this)</tt>
kpeter@830
   890
    ///
kpeter@830
   891
    /// \see resetParams(), run()
kpeter@830
   892
    NetworkSimplex& reset() {
kpeter@830
   893
      // Resize vectors
kpeter@830
   894
      _node_num = countNodes(_graph);
kpeter@830
   895
      _arc_num = countArcs(_graph);
kpeter@830
   896
      int all_node_num = _node_num + 1;
kpeter@830
   897
      int max_arc_num = _arc_num + 2 * _node_num;
kpeter@830
   898
kpeter@830
   899
      _source.resize(max_arc_num);
kpeter@830
   900
      _target.resize(max_arc_num);
kpeter@830
   901
kpeter@830
   902
      _lower.resize(_arc_num);
kpeter@830
   903
      _upper.resize(_arc_num);
kpeter@830
   904
      _cap.resize(max_arc_num);
kpeter@830
   905
      _cost.resize(max_arc_num);
kpeter@830
   906
      _supply.resize(all_node_num);
kpeter@830
   907
      _flow.resize(max_arc_num);
kpeter@830
   908
      _pi.resize(all_node_num);
kpeter@830
   909
kpeter@830
   910
      _parent.resize(all_node_num);
kpeter@830
   911
      _pred.resize(all_node_num);
kpeter@830
   912
      _forward.resize(all_node_num);
kpeter@830
   913
      _thread.resize(all_node_num);
kpeter@830
   914
      _rev_thread.resize(all_node_num);
kpeter@830
   915
      _succ_num.resize(all_node_num);
kpeter@830
   916
      _last_succ.resize(all_node_num);
kpeter@830
   917
      _state.resize(max_arc_num);
kpeter@830
   918
kpeter@830
   919
      // Copy the graph
kpeter@830
   920
      int i = 0;
kpeter@830
   921
      for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
kpeter@830
   922
        _node_id[n] = i;
kpeter@830
   923
      }
kpeter@830
   924
      if (_arc_mixing) {
kpeter@830
   925
        // Store the arcs in a mixed order
kpeter@830
   926
        int k = std::max(int(std::sqrt(double(_arc_num))), 10);
kpeter@830
   927
        int i = 0, j = 0;
kpeter@830
   928
        for (ArcIt a(_graph); a != INVALID; ++a) {
kpeter@830
   929
          _arc_id[a] = i;
kpeter@830
   930
          _source[i] = _node_id[_graph.source(a)];
kpeter@830
   931
          _target[i] = _node_id[_graph.target(a)];
kpeter@830
   932
          if ((i += k) >= _arc_num) i = ++j;
kpeter@830
   933
        }
kpeter@830
   934
      } else {
kpeter@830
   935
        // Store the arcs in the original order
kpeter@830
   936
        int i = 0;
kpeter@830
   937
        for (ArcIt a(_graph); a != INVALID; ++a, ++i) {
kpeter@830
   938
          _arc_id[a] = i;
kpeter@830
   939
          _source[i] = _node_id[_graph.source(a)];
kpeter@830
   940
          _target[i] = _node_id[_graph.target(a)];
kpeter@830
   941
        }
kpeter@830
   942
      }
kpeter@830
   943
      
kpeter@830
   944
      // Reset parameters
kpeter@830
   945
      resetParams();
kpeter@830
   946
      return *this;
kpeter@830
   947
    }
kpeter@830
   948
    
kpeter@601
   949
    /// @}
kpeter@601
   950
kpeter@601
   951
    /// \name Query Functions
kpeter@601
   952
    /// The results of the algorithm can be obtained using these
kpeter@601
   953
    /// functions.\n
kpeter@605
   954
    /// The \ref run() function must be called before using them.
kpeter@605
   955
kpeter@601
   956
    /// @{
kpeter@601
   957
kpeter@605
   958
    /// \brief Return the total cost of the found flow.
kpeter@605
   959
    ///
kpeter@605
   960
    /// This function returns the total cost of the found flow.
kpeter@640
   961
    /// Its complexity is O(e).
kpeter@605
   962
    ///
kpeter@605
   963
    /// \note The return type of the function can be specified as a
kpeter@605
   964
    /// template parameter. For example,
kpeter@605
   965
    /// \code
kpeter@605
   966
    ///   ns.totalCost<double>();
kpeter@605
   967
    /// \endcode
kpeter@607
   968
    /// It is useful if the total cost cannot be stored in the \c Cost
kpeter@605
   969
    /// type of the algorithm, which is the default return type of the
kpeter@605
   970
    /// function.
kpeter@605
   971
    ///
kpeter@605
   972
    /// \pre \ref run() must be called before using this function.
kpeter@642
   973
    template <typename Number>
kpeter@642
   974
    Number totalCost() const {
kpeter@642
   975
      Number c = 0;
kpeter@642
   976
      for (ArcIt a(_graph); a != INVALID; ++a) {
kpeter@642
   977
        int i = _arc_id[a];
kpeter@642
   978
        c += Number(_flow[i]) * Number(_cost[i]);
kpeter@605
   979
      }
kpeter@605
   980
      return c;
kpeter@605
   981
    }
kpeter@605
   982
kpeter@605
   983
#ifndef DOXYGEN
kpeter@607
   984
    Cost totalCost() const {
kpeter@607
   985
      return totalCost<Cost>();
kpeter@605
   986
    }
kpeter@605
   987
#endif
kpeter@605
   988
kpeter@605
   989
    /// \brief Return the flow on the given arc.
kpeter@605
   990
    ///
kpeter@605
   991
    /// This function returns the flow on the given arc.
kpeter@605
   992
    ///
kpeter@605
   993
    /// \pre \ref run() must be called before using this function.
kpeter@641
   994
    Value flow(const Arc& a) const {
kpeter@642
   995
      return _flow[_arc_id[a]];
kpeter@605
   996
    }
kpeter@605
   997
kpeter@642
   998
    /// \brief Return the flow map (the primal solution).
kpeter@601
   999
    ///
kpeter@642
  1000
    /// This function copies the flow value on each arc into the given
kpeter@642
  1001
    /// map. The \c Value type of the algorithm must be convertible to
kpeter@642
  1002
    /// the \c Value type of the map.
kpeter@601
  1003
    ///
kpeter@601
  1004
    /// \pre \ref run() must be called before using this function.
kpeter@642
  1005
    template <typename FlowMap>
kpeter@642
  1006
    void flowMap(FlowMap &map) const {
kpeter@642
  1007
      for (ArcIt a(_graph); a != INVALID; ++a) {
kpeter@642
  1008
        map.set(a, _flow[_arc_id[a]]);
kpeter@642
  1009
      }
kpeter@601
  1010
    }
kpeter@601
  1011
kpeter@605
  1012
    /// \brief Return the potential (dual value) of the given node.
kpeter@605
  1013
    ///
kpeter@605
  1014
    /// This function returns the potential (dual value) of the
kpeter@605
  1015
    /// given node.
kpeter@605
  1016
    ///
kpeter@605
  1017
    /// \pre \ref run() must be called before using this function.
kpeter@607
  1018
    Cost potential(const Node& n) const {
kpeter@642
  1019
      return _pi[_node_id[n]];
kpeter@605
  1020
    }
kpeter@605
  1021
kpeter@642
  1022
    /// \brief Return the potential map (the dual solution).
kpeter@601
  1023
    ///
kpeter@642
  1024
    /// This function copies the potential (dual value) of each node
kpeter@642
  1025
    /// into the given map.
kpeter@642
  1026
    /// The \c Cost type of the algorithm must be convertible to the
kpeter@642
  1027
    /// \c Value type of the map.
kpeter@601
  1028
    ///
kpeter@601
  1029
    /// \pre \ref run() must be called before using this function.
kpeter@642
  1030
    template <typename PotentialMap>
kpeter@642
  1031
    void potentialMap(PotentialMap &map) const {
kpeter@642
  1032
      for (NodeIt n(_graph); n != INVALID; ++n) {
kpeter@642
  1033
        map.set(n, _pi[_node_id[n]]);
kpeter@642
  1034
      }
kpeter@601
  1035
    }
kpeter@601
  1036
kpeter@601
  1037
    /// @}
kpeter@601
  1038
kpeter@601
  1039
  private:
kpeter@601
  1040
kpeter@601
  1041
    // Initialize internal data structures
kpeter@601
  1042
    bool init() {
kpeter@605
  1043
      if (_node_num == 0) return false;
kpeter@601
  1044
kpeter@642
  1045
      // Check the sum of supply values
kpeter@642
  1046
      _sum_supply = 0;
kpeter@642
  1047
      for (int i = 0; i != _node_num; ++i) {
kpeter@642
  1048
        _sum_supply += _supply[i];
kpeter@642
  1049
      }
alpar@643
  1050
      if ( !((_stype == GEQ && _sum_supply <= 0) ||
alpar@643
  1051
             (_stype == LEQ && _sum_supply >= 0)) ) return false;
kpeter@601
  1052
kpeter@642
  1053
      // Remove non-zero lower bounds
kpeter@642
  1054
      if (_have_lower) {
kpeter@642
  1055
        for (int i = 0; i != _arc_num; ++i) {
kpeter@642
  1056
          Value c = _lower[i];
kpeter@642
  1057
          if (c >= 0) {
kpeter@811
  1058
            _cap[i] = _upper[i] < MAX ? _upper[i] - c : INF;
kpeter@642
  1059
          } else {
kpeter@811
  1060
            _cap[i] = _upper[i] < MAX + c ? _upper[i] - c : INF;
kpeter@642
  1061
          }
kpeter@642
  1062
          _supply[_source[i]] -= c;
kpeter@642
  1063
          _supply[_target[i]] += c;
kpeter@642
  1064
        }
kpeter@642
  1065
      } else {
kpeter@642
  1066
        for (int i = 0; i != _arc_num; ++i) {
kpeter@642
  1067
          _cap[i] = _upper[i];
kpeter@642
  1068
        }
kpeter@605
  1069
      }
kpeter@601
  1070
kpeter@609
  1071
      // Initialize artifical cost
kpeter@640
  1072
      Cost ART_COST;
kpeter@609
  1073
      if (std::numeric_limits<Cost>::is_exact) {
kpeter@663
  1074
        ART_COST = std::numeric_limits<Cost>::max() / 2 + 1;
kpeter@609
  1075
      } else {
kpeter@640
  1076
        ART_COST = std::numeric_limits<Cost>::min();
kpeter@609
  1077
        for (int i = 0; i != _arc_num; ++i) {
kpeter@640
  1078
          if (_cost[i] > ART_COST) ART_COST = _cost[i];
kpeter@609
  1079
        }
kpeter@640
  1080
        ART_COST = (ART_COST + 1) * _node_num;
kpeter@609
  1081
      }
kpeter@609
  1082
kpeter@642
  1083
      // Initialize arc maps
kpeter@642
  1084
      for (int i = 0; i != _arc_num; ++i) {
kpeter@642
  1085
        _flow[i] = 0;
kpeter@642
  1086
        _state[i] = STATE_LOWER;
kpeter@642
  1087
      }
kpeter@642
  1088
      
kpeter@601
  1089
      // Set data for the artificial root node
kpeter@601
  1090
      _root = _node_num;
kpeter@601
  1091
      _parent[_root] = -1;
kpeter@601
  1092
      _pred[_root] = -1;
kpeter@601
  1093
      _thread[_root] = 0;
kpeter@604
  1094
      _rev_thread[0] = _root;
kpeter@642
  1095
      _succ_num[_root] = _node_num + 1;
kpeter@604
  1096
      _last_succ[_root] = _root - 1;
kpeter@640
  1097
      _supply[_root] = -_sum_supply;
kpeter@663
  1098
      _pi[_root] = 0;
kpeter@601
  1099
kpeter@601
  1100
      // Add artificial arcs and initialize the spanning tree data structure
kpeter@663
  1101
      if (_sum_supply == 0) {
kpeter@663
  1102
        // EQ supply constraints
kpeter@663
  1103
        _search_arc_num = _arc_num;
kpeter@663
  1104
        _all_arc_num = _arc_num + _node_num;
kpeter@663
  1105
        for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
kpeter@663
  1106
          _parent[u] = _root;
kpeter@663
  1107
          _pred[u] = e;
kpeter@663
  1108
          _thread[u] = u + 1;
kpeter@663
  1109
          _rev_thread[u + 1] = u;
kpeter@663
  1110
          _succ_num[u] = 1;
kpeter@663
  1111
          _last_succ[u] = u;
kpeter@663
  1112
          _cap[e] = INF;
kpeter@663
  1113
          _state[e] = STATE_TREE;
kpeter@663
  1114
          if (_supply[u] >= 0) {
kpeter@663
  1115
            _forward[u] = true;
kpeter@663
  1116
            _pi[u] = 0;
kpeter@663
  1117
            _source[e] = u;
kpeter@663
  1118
            _target[e] = _root;
kpeter@663
  1119
            _flow[e] = _supply[u];
kpeter@663
  1120
            _cost[e] = 0;
kpeter@663
  1121
          } else {
kpeter@663
  1122
            _forward[u] = false;
kpeter@663
  1123
            _pi[u] = ART_COST;
kpeter@663
  1124
            _source[e] = _root;
kpeter@663
  1125
            _target[e] = u;
kpeter@663
  1126
            _flow[e] = -_supply[u];
kpeter@663
  1127
            _cost[e] = ART_COST;
kpeter@663
  1128
          }
kpeter@601
  1129
        }
kpeter@601
  1130
      }
kpeter@663
  1131
      else if (_sum_supply > 0) {
kpeter@663
  1132
        // LEQ supply constraints
kpeter@663
  1133
        _search_arc_num = _arc_num + _node_num;
kpeter@663
  1134
        int f = _arc_num + _node_num;
kpeter@663
  1135
        for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
kpeter@663
  1136
          _parent[u] = _root;
kpeter@663
  1137
          _thread[u] = u + 1;
kpeter@663
  1138
          _rev_thread[u + 1] = u;
kpeter@663
  1139
          _succ_num[u] = 1;
kpeter@663
  1140
          _last_succ[u] = u;
kpeter@663
  1141
          if (_supply[u] >= 0) {
kpeter@663
  1142
            _forward[u] = true;
kpeter@663
  1143
            _pi[u] = 0;
kpeter@663
  1144
            _pred[u] = e;
kpeter@663
  1145
            _source[e] = u;
kpeter@663
  1146
            _target[e] = _root;
kpeter@663
  1147
            _cap[e] = INF;
kpeter@663
  1148
            _flow[e] = _supply[u];
kpeter@663
  1149
            _cost[e] = 0;
kpeter@663
  1150
            _state[e] = STATE_TREE;
kpeter@663
  1151
          } else {
kpeter@663
  1152
            _forward[u] = false;
kpeter@663
  1153
            _pi[u] = ART_COST;
kpeter@663
  1154
            _pred[u] = f;
kpeter@663
  1155
            _source[f] = _root;
kpeter@663
  1156
            _target[f] = u;
kpeter@663
  1157
            _cap[f] = INF;
kpeter@663
  1158
            _flow[f] = -_supply[u];
kpeter@663
  1159
            _cost[f] = ART_COST;
kpeter@663
  1160
            _state[f] = STATE_TREE;
kpeter@663
  1161
            _source[e] = u;
kpeter@663
  1162
            _target[e] = _root;
kpeter@663
  1163
            _cap[e] = INF;
kpeter@663
  1164
            _flow[e] = 0;
kpeter@663
  1165
            _cost[e] = 0;
kpeter@663
  1166
            _state[e] = STATE_LOWER;
kpeter@663
  1167
            ++f;
kpeter@663
  1168
          }
kpeter@663
  1169
        }
kpeter@663
  1170
        _all_arc_num = f;
kpeter@663
  1171
      }
kpeter@663
  1172
      else {
kpeter@663
  1173
        // GEQ supply constraints
kpeter@663
  1174
        _search_arc_num = _arc_num + _node_num;
kpeter@663
  1175
        int f = _arc_num + _node_num;
kpeter@663
  1176
        for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
kpeter@663
  1177
          _parent[u] = _root;
kpeter@663
  1178
          _thread[u] = u + 1;
kpeter@663
  1179
          _rev_thread[u + 1] = u;
kpeter@663
  1180
          _succ_num[u] = 1;
kpeter@663
  1181
          _last_succ[u] = u;
kpeter@663
  1182
          if (_supply[u] <= 0) {
kpeter@663
  1183
            _forward[u] = false;
kpeter@663
  1184
            _pi[u] = 0;
kpeter@663
  1185
            _pred[u] = e;
kpeter@663
  1186
            _source[e] = _root;
kpeter@663
  1187
            _target[e] = u;
kpeter@663
  1188
            _cap[e] = INF;
kpeter@663
  1189
            _flow[e] = -_supply[u];
kpeter@663
  1190
            _cost[e] = 0;
kpeter@663
  1191
            _state[e] = STATE_TREE;
kpeter@663
  1192
          } else {
kpeter@663
  1193
            _forward[u] = true;
kpeter@663
  1194
            _pi[u] = -ART_COST;
kpeter@663
  1195
            _pred[u] = f;
kpeter@663
  1196
            _source[f] = u;
kpeter@663
  1197
            _target[f] = _root;
kpeter@663
  1198
            _cap[f] = INF;
kpeter@663
  1199
            _flow[f] = _supply[u];
kpeter@663
  1200
            _state[f] = STATE_TREE;
kpeter@663
  1201
            _cost[f] = ART_COST;
kpeter@663
  1202
            _source[e] = _root;
kpeter@663
  1203
            _target[e] = u;
kpeter@663
  1204
            _cap[e] = INF;
kpeter@663
  1205
            _flow[e] = 0;
kpeter@663
  1206
            _cost[e] = 0;
kpeter@663
  1207
            _state[e] = STATE_LOWER;
kpeter@663
  1208
            ++f;
kpeter@663
  1209
          }
kpeter@663
  1210
        }
kpeter@663
  1211
        _all_arc_num = f;
kpeter@663
  1212
      }
kpeter@601
  1213
kpeter@601
  1214
      return true;
kpeter@601
  1215
    }
kpeter@601
  1216
kpeter@601
  1217
    // Find the join node
kpeter@601
  1218
    void findJoinNode() {
kpeter@603
  1219
      int u = _source[in_arc];
kpeter@603
  1220
      int v = _target[in_arc];
kpeter@601
  1221
      while (u != v) {
kpeter@604
  1222
        if (_succ_num[u] < _succ_num[v]) {
kpeter@604
  1223
          u = _parent[u];
kpeter@604
  1224
        } else {
kpeter@604
  1225
          v = _parent[v];
kpeter@604
  1226
        }
kpeter@601
  1227
      }
kpeter@601
  1228
      join = u;
kpeter@601
  1229
    }
kpeter@601
  1230
kpeter@601
  1231
    // Find the leaving arc of the cycle and returns true if the
kpeter@601
  1232
    // leaving arc is not the same as the entering arc
kpeter@601
  1233
    bool findLeavingArc() {
kpeter@601
  1234
      // Initialize first and second nodes according to the direction
kpeter@601
  1235
      // of the cycle
kpeter@603
  1236
      if (_state[in_arc] == STATE_LOWER) {
kpeter@603
  1237
        first  = _source[in_arc];
kpeter@603
  1238
        second = _target[in_arc];
kpeter@601
  1239
      } else {
kpeter@603
  1240
        first  = _target[in_arc];
kpeter@603
  1241
        second = _source[in_arc];
kpeter@601
  1242
      }
kpeter@603
  1243
      delta = _cap[in_arc];
kpeter@601
  1244
      int result = 0;
kpeter@641
  1245
      Value d;
kpeter@601
  1246
      int e;
kpeter@601
  1247
kpeter@601
  1248
      // Search the cycle along the path form the first node to the root
kpeter@601
  1249
      for (int u = first; u != join; u = _parent[u]) {
kpeter@601
  1250
        e = _pred[u];
kpeter@640
  1251
        d = _forward[u] ?
kpeter@811
  1252
          _flow[e] : (_cap[e] >= MAX ? INF : _cap[e] - _flow[e]);
kpeter@601
  1253
        if (d < delta) {
kpeter@601
  1254
          delta = d;
kpeter@601
  1255
          u_out = u;
kpeter@601
  1256
          result = 1;
kpeter@601
  1257
        }
kpeter@601
  1258
      }
kpeter@601
  1259
      // Search the cycle along the path form the second node to the root
kpeter@601
  1260
      for (int u = second; u != join; u = _parent[u]) {
kpeter@601
  1261
        e = _pred[u];
kpeter@640
  1262
        d = _forward[u] ? 
kpeter@811
  1263
          (_cap[e] >= MAX ? INF : _cap[e] - _flow[e]) : _flow[e];
kpeter@601
  1264
        if (d <= delta) {
kpeter@601
  1265
          delta = d;
kpeter@601
  1266
          u_out = u;
kpeter@601
  1267
          result = 2;
kpeter@601
  1268
        }
kpeter@601
  1269
      }
kpeter@601
  1270
kpeter@601
  1271
      if (result == 1) {
kpeter@601
  1272
        u_in = first;
kpeter@601
  1273
        v_in = second;
kpeter@601
  1274
      } else {
kpeter@601
  1275
        u_in = second;
kpeter@601
  1276
        v_in = first;
kpeter@601
  1277
      }
kpeter@601
  1278
      return result != 0;
kpeter@601
  1279
    }
kpeter@601
  1280
kpeter@601
  1281
    // Change _flow and _state vectors
kpeter@601
  1282
    void changeFlow(bool change) {
kpeter@601
  1283
      // Augment along the cycle
kpeter@601
  1284
      if (delta > 0) {
kpeter@641
  1285
        Value val = _state[in_arc] * delta;
kpeter@603
  1286
        _flow[in_arc] += val;
kpeter@603
  1287
        for (int u = _source[in_arc]; u != join; u = _parent[u]) {
kpeter@601
  1288
          _flow[_pred[u]] += _forward[u] ? -val : val;
kpeter@601
  1289
        }
kpeter@603
  1290
        for (int u = _target[in_arc]; u != join; u = _parent[u]) {
kpeter@601
  1291
          _flow[_pred[u]] += _forward[u] ? val : -val;
kpeter@601
  1292
        }
kpeter@601
  1293
      }
kpeter@601
  1294
      // Update the state of the entering and leaving arcs
kpeter@601
  1295
      if (change) {
kpeter@603
  1296
        _state[in_arc] = STATE_TREE;
kpeter@601
  1297
        _state[_pred[u_out]] =
kpeter@601
  1298
          (_flow[_pred[u_out]] == 0) ? STATE_LOWER : STATE_UPPER;
kpeter@601
  1299
      } else {
kpeter@603
  1300
        _state[in_arc] = -_state[in_arc];
kpeter@601
  1301
      }
kpeter@601
  1302
    }
kpeter@601
  1303
kpeter@604
  1304
    // Update the tree structure
kpeter@604
  1305
    void updateTreeStructure() {
kpeter@604
  1306
      int u, w;
kpeter@604
  1307
      int old_rev_thread = _rev_thread[u_out];
kpeter@604
  1308
      int old_succ_num = _succ_num[u_out];
kpeter@604
  1309
      int old_last_succ = _last_succ[u_out];
kpeter@601
  1310
      v_out = _parent[u_out];
kpeter@601
  1311
kpeter@604
  1312
      u = _last_succ[u_in];  // the last successor of u_in
kpeter@604
  1313
      right = _thread[u];    // the node after it
kpeter@604
  1314
kpeter@604
  1315
      // Handle the case when old_rev_thread equals to v_in
kpeter@604
  1316
      // (it also means that join and v_out coincide)
kpeter@604
  1317
      if (old_rev_thread == v_in) {
kpeter@604
  1318
        last = _thread[_last_succ[u_out]];
kpeter@604
  1319
      } else {
kpeter@604
  1320
        last = _thread[v_in];
kpeter@601
  1321
      }
kpeter@601
  1322
kpeter@604
  1323
      // Update _thread and _parent along the stem nodes (i.e. the nodes
kpeter@604
  1324
      // between u_in and u_out, whose parent have to be changed)
kpeter@601
  1325
      _thread[v_in] = stem = u_in;
kpeter@604
  1326
      _dirty_revs.clear();
kpeter@604
  1327
      _dirty_revs.push_back(v_in);
kpeter@601
  1328
      par_stem = v_in;
kpeter@601
  1329
      while (stem != u_out) {
kpeter@604
  1330
        // Insert the next stem node into the thread list
kpeter@604
  1331
        new_stem = _parent[stem];
kpeter@604
  1332
        _thread[u] = new_stem;
kpeter@604
  1333
        _dirty_revs.push_back(u);
kpeter@601
  1334
kpeter@604
  1335
        // Remove the subtree of stem from the thread list
kpeter@604
  1336
        w = _rev_thread[stem];
kpeter@604
  1337
        _thread[w] = right;
kpeter@604
  1338
        _rev_thread[right] = w;
kpeter@601
  1339
kpeter@604
  1340
        // Change the parent node and shift stem nodes
kpeter@601
  1341
        _parent[stem] = par_stem;
kpeter@601
  1342
        par_stem = stem;
kpeter@601
  1343
        stem = new_stem;
kpeter@601
  1344
kpeter@604
  1345
        // Update u and right
kpeter@604
  1346
        u = _last_succ[stem] == _last_succ[par_stem] ?
kpeter@604
  1347
          _rev_thread[par_stem] : _last_succ[stem];
kpeter@601
  1348
        right = _thread[u];
kpeter@601
  1349
      }
kpeter@601
  1350
      _parent[u_out] = par_stem;
kpeter@601
  1351
      _thread[u] = last;
kpeter@604
  1352
      _rev_thread[last] = u;
kpeter@604
  1353
      _last_succ[u_out] = u;
kpeter@601
  1354
kpeter@604
  1355
      // Remove the subtree of u_out from the thread list except for
kpeter@604
  1356
      // the case when old_rev_thread equals to v_in
kpeter@604
  1357
      // (it also means that join and v_out coincide)
kpeter@604
  1358
      if (old_rev_thread != v_in) {
kpeter@604
  1359
        _thread[old_rev_thread] = right;
kpeter@604
  1360
        _rev_thread[right] = old_rev_thread;
kpeter@604
  1361
      }
kpeter@604
  1362
kpeter@604
  1363
      // Update _rev_thread using the new _thread values
kpeter@839
  1364
      for (int i = 0; i != int(_dirty_revs.size()); ++i) {
kpeter@604
  1365
        u = _dirty_revs[i];
kpeter@604
  1366
        _rev_thread[_thread[u]] = u;
kpeter@604
  1367
      }
kpeter@604
  1368
kpeter@604
  1369
      // Update _pred, _forward, _last_succ and _succ_num for the
kpeter@604
  1370
      // stem nodes from u_out to u_in
kpeter@604
  1371
      int tmp_sc = 0, tmp_ls = _last_succ[u_out];
kpeter@604
  1372
      u = u_out;
kpeter@604
  1373
      while (u != u_in) {
kpeter@604
  1374
        w = _parent[u];
kpeter@604
  1375
        _pred[u] = _pred[w];
kpeter@604
  1376
        _forward[u] = !_forward[w];
kpeter@604
  1377
        tmp_sc += _succ_num[u] - _succ_num[w];
kpeter@604
  1378
        _succ_num[u] = tmp_sc;
kpeter@604
  1379
        _last_succ[w] = tmp_ls;
kpeter@604
  1380
        u = w;
kpeter@604
  1381
      }
kpeter@604
  1382
      _pred[u_in] = in_arc;
kpeter@604
  1383
      _forward[u_in] = (u_in == _source[in_arc]);
kpeter@604
  1384
      _succ_num[u_in] = old_succ_num;
kpeter@604
  1385
kpeter@604
  1386
      // Set limits for updating _last_succ form v_in and v_out
kpeter@604
  1387
      // towards the root
kpeter@604
  1388
      int up_limit_in = -1;
kpeter@604
  1389
      int up_limit_out = -1;
kpeter@604
  1390
      if (_last_succ[join] == v_in) {
kpeter@604
  1391
        up_limit_out = join;
kpeter@601
  1392
      } else {
kpeter@604
  1393
        up_limit_in = join;
kpeter@604
  1394
      }
kpeter@604
  1395
kpeter@604
  1396
      // Update _last_succ from v_in towards the root
kpeter@604
  1397
      for (u = v_in; u != up_limit_in && _last_succ[u] == v_in;
kpeter@604
  1398
           u = _parent[u]) {
kpeter@604
  1399
        _last_succ[u] = _last_succ[u_out];
kpeter@604
  1400
      }
kpeter@604
  1401
      // Update _last_succ from v_out towards the root
kpeter@604
  1402
      if (join != old_rev_thread && v_in != old_rev_thread) {
kpeter@604
  1403
        for (u = v_out; u != up_limit_out && _last_succ[u] == old_last_succ;
kpeter@604
  1404
             u = _parent[u]) {
kpeter@604
  1405
          _last_succ[u] = old_rev_thread;
kpeter@604
  1406
        }
kpeter@604
  1407
      } else {
kpeter@604
  1408
        for (u = v_out; u != up_limit_out && _last_succ[u] == old_last_succ;
kpeter@604
  1409
             u = _parent[u]) {
kpeter@604
  1410
          _last_succ[u] = _last_succ[u_out];
kpeter@604
  1411
        }
kpeter@604
  1412
      }
kpeter@604
  1413
kpeter@604
  1414
      // Update _succ_num from v_in to join
kpeter@604
  1415
      for (u = v_in; u != join; u = _parent[u]) {
kpeter@604
  1416
        _succ_num[u] += old_succ_num;
kpeter@604
  1417
      }
kpeter@604
  1418
      // Update _succ_num from v_out to join
kpeter@604
  1419
      for (u = v_out; u != join; u = _parent[u]) {
kpeter@604
  1420
        _succ_num[u] -= old_succ_num;
kpeter@601
  1421
      }
kpeter@601
  1422
    }
kpeter@601
  1423
kpeter@604
  1424
    // Update potentials
kpeter@604
  1425
    void updatePotential() {
kpeter@607
  1426
      Cost sigma = _forward[u_in] ?
kpeter@601
  1427
        _pi[v_in] - _pi[u_in] - _cost[_pred[u_in]] :
kpeter@601
  1428
        _pi[v_in] - _pi[u_in] + _cost[_pred[u_in]];
kpeter@608
  1429
      // Update potentials in the subtree, which has been moved
kpeter@608
  1430
      int end = _thread[_last_succ[u_in]];
kpeter@608
  1431
      for (int u = u_in; u != end; u = _thread[u]) {
kpeter@608
  1432
        _pi[u] += sigma;
kpeter@601
  1433
      }
kpeter@601
  1434
    }
kpeter@601
  1435
kpeter@839
  1436
    // Heuristic initial pivots
kpeter@839
  1437
    bool initialPivots() {
kpeter@839
  1438
      Value curr, total = 0;
kpeter@839
  1439
      std::vector<Node> supply_nodes, demand_nodes;
kpeter@839
  1440
      for (NodeIt u(_graph); u != INVALID; ++u) {
kpeter@839
  1441
        curr = _supply[_node_id[u]];
kpeter@839
  1442
        if (curr > 0) {
kpeter@839
  1443
          total += curr;
kpeter@839
  1444
          supply_nodes.push_back(u);
kpeter@839
  1445
        }
kpeter@839
  1446
        else if (curr < 0) {
kpeter@839
  1447
          demand_nodes.push_back(u);
kpeter@839
  1448
        }
kpeter@839
  1449
      }
kpeter@839
  1450
      if (_sum_supply > 0) total -= _sum_supply;
kpeter@839
  1451
      if (total <= 0) return true;
kpeter@839
  1452
kpeter@839
  1453
      IntVector arc_vector;
kpeter@839
  1454
      if (_sum_supply >= 0) {
kpeter@839
  1455
        if (supply_nodes.size() == 1 && demand_nodes.size() == 1) {
kpeter@839
  1456
          // Perform a reverse graph search from the sink to the source
kpeter@839
  1457
          typename GR::template NodeMap<bool> reached(_graph, false);
kpeter@839
  1458
          Node s = supply_nodes[0], t = demand_nodes[0];
kpeter@839
  1459
          std::vector<Node> stack;
kpeter@839
  1460
          reached[t] = true;
kpeter@839
  1461
          stack.push_back(t);
kpeter@839
  1462
          while (!stack.empty()) {
kpeter@839
  1463
            Node u, v = stack.back();
kpeter@839
  1464
            stack.pop_back();
kpeter@839
  1465
            if (v == s) break;
kpeter@839
  1466
            for (InArcIt a(_graph, v); a != INVALID; ++a) {
kpeter@839
  1467
              if (reached[u = _graph.source(a)]) continue;
kpeter@839
  1468
              int j = _arc_id[a];
kpeter@839
  1469
              if (_cap[j] >= total) {
kpeter@839
  1470
                arc_vector.push_back(j);
kpeter@839
  1471
                reached[u] = true;
kpeter@839
  1472
                stack.push_back(u);
kpeter@839
  1473
              }
kpeter@839
  1474
            }
kpeter@839
  1475
          }
kpeter@839
  1476
        } else {
kpeter@839
  1477
          // Find the min. cost incomming arc for each demand node
kpeter@839
  1478
          for (int i = 0; i != int(demand_nodes.size()); ++i) {
kpeter@839
  1479
            Node v = demand_nodes[i];
kpeter@839
  1480
            Cost c, min_cost = std::numeric_limits<Cost>::max();
kpeter@839
  1481
            Arc min_arc = INVALID;
kpeter@839
  1482
            for (InArcIt a(_graph, v); a != INVALID; ++a) {
kpeter@839
  1483
              c = _cost[_arc_id[a]];
kpeter@839
  1484
              if (c < min_cost) {
kpeter@839
  1485
                min_cost = c;
kpeter@839
  1486
                min_arc = a;
kpeter@839
  1487
              }
kpeter@839
  1488
            }
kpeter@839
  1489
            if (min_arc != INVALID) {
kpeter@839
  1490
              arc_vector.push_back(_arc_id[min_arc]);
kpeter@839
  1491
            }
kpeter@839
  1492
          }
kpeter@839
  1493
        }
kpeter@839
  1494
      } else {
kpeter@839
  1495
        // Find the min. cost outgoing arc for each supply node
kpeter@839
  1496
        for (int i = 0; i != int(supply_nodes.size()); ++i) {
kpeter@839
  1497
          Node u = supply_nodes[i];
kpeter@839
  1498
          Cost c, min_cost = std::numeric_limits<Cost>::max();
kpeter@839
  1499
          Arc min_arc = INVALID;
kpeter@839
  1500
          for (OutArcIt a(_graph, u); a != INVALID; ++a) {
kpeter@839
  1501
            c = _cost[_arc_id[a]];
kpeter@839
  1502
            if (c < min_cost) {
kpeter@839
  1503
              min_cost = c;
kpeter@839
  1504
              min_arc = a;
kpeter@839
  1505
            }
kpeter@839
  1506
          }
kpeter@839
  1507
          if (min_arc != INVALID) {
kpeter@839
  1508
            arc_vector.push_back(_arc_id[min_arc]);
kpeter@839
  1509
          }
kpeter@839
  1510
        }
kpeter@839
  1511
      }
kpeter@839
  1512
kpeter@839
  1513
      // Perform heuristic initial pivots
kpeter@839
  1514
      for (int i = 0; i != int(arc_vector.size()); ++i) {
kpeter@839
  1515
        in_arc = arc_vector[i];
kpeter@839
  1516
        if (_state[in_arc] * (_cost[in_arc] + _pi[_source[in_arc]] -
kpeter@839
  1517
            _pi[_target[in_arc]]) >= 0) continue;
kpeter@839
  1518
        findJoinNode();
kpeter@839
  1519
        bool change = findLeavingArc();
kpeter@839
  1520
        if (delta >= MAX) return false;
kpeter@839
  1521
        changeFlow(change);
kpeter@839
  1522
        if (change) {
kpeter@839
  1523
          updateTreeStructure();
kpeter@839
  1524
          updatePotential();
kpeter@839
  1525
        }
kpeter@839
  1526
      }
kpeter@839
  1527
      return true;
kpeter@839
  1528
    }
kpeter@839
  1529
kpeter@601
  1530
    // Execute the algorithm
kpeter@640
  1531
    ProblemType start(PivotRule pivot_rule) {
kpeter@601
  1532
      // Select the pivot rule implementation
kpeter@601
  1533
      switch (pivot_rule) {
kpeter@605
  1534
        case FIRST_ELIGIBLE:
kpeter@601
  1535
          return start<FirstEligiblePivotRule>();
kpeter@605
  1536
        case BEST_ELIGIBLE:
kpeter@601
  1537
          return start<BestEligiblePivotRule>();
kpeter@605
  1538
        case BLOCK_SEARCH:
kpeter@601
  1539
          return start<BlockSearchPivotRule>();
kpeter@605
  1540
        case CANDIDATE_LIST:
kpeter@601
  1541
          return start<CandidateListPivotRule>();
kpeter@605
  1542
        case ALTERING_LIST:
kpeter@601
  1543
          return start<AlteringListPivotRule>();
kpeter@601
  1544
      }
kpeter@640
  1545
      return INFEASIBLE; // avoid warning
kpeter@601
  1546
    }
kpeter@601
  1547
kpeter@605
  1548
    template <typename PivotRuleImpl>
kpeter@640
  1549
    ProblemType start() {
kpeter@605
  1550
      PivotRuleImpl pivot(*this);
kpeter@601
  1551
kpeter@839
  1552
      // Perform heuristic initial pivots
kpeter@839
  1553
      if (!initialPivots()) return UNBOUNDED;
kpeter@839
  1554
kpeter@605
  1555
      // Execute the Network Simplex algorithm
kpeter@601
  1556
      while (pivot.findEnteringArc()) {
kpeter@601
  1557
        findJoinNode();
kpeter@601
  1558
        bool change = findLeavingArc();
kpeter@811
  1559
        if (delta >= MAX) return UNBOUNDED;
kpeter@601
  1560
        changeFlow(change);
kpeter@601
  1561
        if (change) {
kpeter@604
  1562
          updateTreeStructure();
kpeter@604
  1563
          updatePotential();
kpeter@601
  1564
        }
kpeter@601
  1565
      }
kpeter@640
  1566
      
kpeter@640
  1567
      // Check feasibility
kpeter@663
  1568
      for (int e = _search_arc_num; e != _all_arc_num; ++e) {
kpeter@663
  1569
        if (_flow[e] != 0) return INFEASIBLE;
kpeter@640
  1570
      }
kpeter@601
  1571
kpeter@642
  1572
      // Transform the solution and the supply map to the original form
kpeter@642
  1573
      if (_have_lower) {
kpeter@601
  1574
        for (int i = 0; i != _arc_num; ++i) {
kpeter@642
  1575
          Value c = _lower[i];
kpeter@642
  1576
          if (c != 0) {
kpeter@642
  1577
            _flow[i] += c;
kpeter@642
  1578
            _supply[_source[i]] += c;
kpeter@642
  1579
            _supply[_target[i]] -= c;
kpeter@642
  1580
          }
kpeter@601
  1581
        }
kpeter@601
  1582
      }
kpeter@663
  1583
      
kpeter@663
  1584
      // Shift potentials to meet the requirements of the GEQ/LEQ type
kpeter@663
  1585
      // optimality conditions
kpeter@663
  1586
      if (_sum_supply == 0) {
kpeter@663
  1587
        if (_stype == GEQ) {
kpeter@663
  1588
          Cost max_pot = std::numeric_limits<Cost>::min();
kpeter@663
  1589
          for (int i = 0; i != _node_num; ++i) {
kpeter@663
  1590
            if (_pi[i] > max_pot) max_pot = _pi[i];
kpeter@663
  1591
          }
kpeter@663
  1592
          if (max_pot > 0) {
kpeter@663
  1593
            for (int i = 0; i != _node_num; ++i)
kpeter@663
  1594
              _pi[i] -= max_pot;
kpeter@663
  1595
          }
kpeter@663
  1596
        } else {
kpeter@663
  1597
          Cost min_pot = std::numeric_limits<Cost>::max();
kpeter@663
  1598
          for (int i = 0; i != _node_num; ++i) {
kpeter@663
  1599
            if (_pi[i] < min_pot) min_pot = _pi[i];
kpeter@663
  1600
          }
kpeter@663
  1601
          if (min_pot < 0) {
kpeter@663
  1602
            for (int i = 0; i != _node_num; ++i)
kpeter@663
  1603
              _pi[i] -= min_pot;
kpeter@663
  1604
          }
kpeter@663
  1605
        }
kpeter@663
  1606
      }
kpeter@601
  1607
kpeter@640
  1608
      return OPTIMAL;
kpeter@601
  1609
    }
kpeter@601
  1610
kpeter@601
  1611
  }; //class NetworkSimplex
kpeter@601
  1612
kpeter@601
  1613
  ///@}
kpeter@601
  1614
kpeter@601
  1615
} //namespace lemon
kpeter@601
  1616
kpeter@601
  1617
#endif //LEMON_NETWORK_SIMPLEX_H