|
1 /* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
2 * |
|
3 * This file is a part of LEMON, a generic C++ optimization library. |
|
4 * |
|
5 * Copyright (C) 2003-2009 |
|
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
7 * (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
8 * |
|
9 * Permission to use, modify and distribute this software is granted |
|
10 * provided that this copyright notice appears in all copies. For |
|
11 * precise terms see the accompanying LICENSE file. |
|
12 * |
|
13 * This software is provided "AS IS" with no warranty of any kind, |
|
14 * express or implied, and with no claim as to its suitability for any |
|
15 * purpose. |
|
16 * |
|
17 */ |
|
18 |
|
19 #ifndef LEMON_PLANARITY_H |
|
20 #define LEMON_PLANARITY_H |
|
21 |
|
22 /// \ingroup planar |
|
23 /// \file |
|
24 /// \brief Planarity checking, embedding, drawing and coloring |
|
25 |
|
26 #include <vector> |
|
27 #include <list> |
|
28 |
|
29 #include <lemon/dfs.h> |
|
30 #include <lemon/bfs.h> |
|
31 #include <lemon/radix_sort.h> |
|
32 #include <lemon/maps.h> |
|
33 #include <lemon/path.h> |
|
34 #include <lemon/bucket_heap.h> |
|
35 #include <lemon/adaptors.h> |
|
36 #include <lemon/edge_set.h> |
|
37 #include <lemon/color.h> |
|
38 #include <lemon/dim2.h> |
|
39 |
|
40 namespace lemon { |
|
41 |
|
42 namespace _planarity_bits { |
|
43 |
|
44 template <typename Graph> |
|
45 struct PlanarityVisitor : DfsVisitor<Graph> { |
|
46 |
|
47 TEMPLATE_GRAPH_TYPEDEFS(Graph); |
|
48 |
|
49 typedef typename Graph::template NodeMap<Arc> PredMap; |
|
50 |
|
51 typedef typename Graph::template EdgeMap<bool> TreeMap; |
|
52 |
|
53 typedef typename Graph::template NodeMap<int> OrderMap; |
|
54 typedef std::vector<Node> OrderList; |
|
55 |
|
56 typedef typename Graph::template NodeMap<int> LowMap; |
|
57 typedef typename Graph::template NodeMap<int> AncestorMap; |
|
58 |
|
59 PlanarityVisitor(const Graph& graph, |
|
60 PredMap& pred_map, TreeMap& tree_map, |
|
61 OrderMap& order_map, OrderList& order_list, |
|
62 AncestorMap& ancestor_map, LowMap& low_map) |
|
63 : _graph(graph), _pred_map(pred_map), _tree_map(tree_map), |
|
64 _order_map(order_map), _order_list(order_list), |
|
65 _ancestor_map(ancestor_map), _low_map(low_map) {} |
|
66 |
|
67 void reach(const Node& node) { |
|
68 _order_map[node] = _order_list.size(); |
|
69 _low_map[node] = _order_list.size(); |
|
70 _ancestor_map[node] = _order_list.size(); |
|
71 _order_list.push_back(node); |
|
72 } |
|
73 |
|
74 void discover(const Arc& arc) { |
|
75 Node source = _graph.source(arc); |
|
76 Node target = _graph.target(arc); |
|
77 |
|
78 _tree_map[arc] = true; |
|
79 _pred_map[target] = arc; |
|
80 } |
|
81 |
|
82 void examine(const Arc& arc) { |
|
83 Node source = _graph.source(arc); |
|
84 Node target = _graph.target(arc); |
|
85 |
|
86 if (_order_map[target] < _order_map[source] && !_tree_map[arc]) { |
|
87 if (_low_map[source] > _order_map[target]) { |
|
88 _low_map[source] = _order_map[target]; |
|
89 } |
|
90 if (_ancestor_map[source] > _order_map[target]) { |
|
91 _ancestor_map[source] = _order_map[target]; |
|
92 } |
|
93 } |
|
94 } |
|
95 |
|
96 void backtrack(const Arc& arc) { |
|
97 Node source = _graph.source(arc); |
|
98 Node target = _graph.target(arc); |
|
99 |
|
100 if (_low_map[source] > _low_map[target]) { |
|
101 _low_map[source] = _low_map[target]; |
|
102 } |
|
103 } |
|
104 |
|
105 const Graph& _graph; |
|
106 PredMap& _pred_map; |
|
107 TreeMap& _tree_map; |
|
108 OrderMap& _order_map; |
|
109 OrderList& _order_list; |
|
110 AncestorMap& _ancestor_map; |
|
111 LowMap& _low_map; |
|
112 }; |
|
113 |
|
114 template <typename Graph, bool embedding = true> |
|
115 struct NodeDataNode { |
|
116 int prev, next; |
|
117 int visited; |
|
118 typename Graph::Arc first; |
|
119 bool inverted; |
|
120 }; |
|
121 |
|
122 template <typename Graph> |
|
123 struct NodeDataNode<Graph, false> { |
|
124 int prev, next; |
|
125 int visited; |
|
126 }; |
|
127 |
|
128 template <typename Graph> |
|
129 struct ChildListNode { |
|
130 typedef typename Graph::Node Node; |
|
131 Node first; |
|
132 Node prev, next; |
|
133 }; |
|
134 |
|
135 template <typename Graph> |
|
136 struct ArcListNode { |
|
137 typename Graph::Arc prev, next; |
|
138 }; |
|
139 |
|
140 } |
|
141 |
|
142 /// \ingroup planar |
|
143 /// |
|
144 /// \brief Planarity checking of an undirected simple graph |
|
145 /// |
|
146 /// This class implements the Boyer-Myrvold algorithm for planarity |
|
147 /// checking of an undirected graph. This class is a simplified |
|
148 /// version of the PlanarEmbedding algorithm class because neither |
|
149 /// the embedding nor the kuratowski subdivisons are not computed. |
|
150 template <typename Graph> |
|
151 class PlanarityChecking { |
|
152 private: |
|
153 |
|
154 TEMPLATE_GRAPH_TYPEDEFS(Graph); |
|
155 |
|
156 const Graph& _graph; |
|
157 |
|
158 private: |
|
159 |
|
160 typedef typename Graph::template NodeMap<Arc> PredMap; |
|
161 |
|
162 typedef typename Graph::template EdgeMap<bool> TreeMap; |
|
163 |
|
164 typedef typename Graph::template NodeMap<int> OrderMap; |
|
165 typedef std::vector<Node> OrderList; |
|
166 |
|
167 typedef typename Graph::template NodeMap<int> LowMap; |
|
168 typedef typename Graph::template NodeMap<int> AncestorMap; |
|
169 |
|
170 typedef _planarity_bits::NodeDataNode<Graph> NodeDataNode; |
|
171 typedef std::vector<NodeDataNode> NodeData; |
|
172 |
|
173 typedef _planarity_bits::ChildListNode<Graph> ChildListNode; |
|
174 typedef typename Graph::template NodeMap<ChildListNode> ChildLists; |
|
175 |
|
176 typedef typename Graph::template NodeMap<std::list<int> > MergeRoots; |
|
177 |
|
178 typedef typename Graph::template NodeMap<bool> EmbedArc; |
|
179 |
|
180 public: |
|
181 |
|
182 /// \brief Constructor |
|
183 /// |
|
184 /// \note The graph should be simple, i.e. parallel and loop arc |
|
185 /// free. |
|
186 PlanarityChecking(const Graph& graph) : _graph(graph) {} |
|
187 |
|
188 /// \brief Runs the algorithm. |
|
189 /// |
|
190 /// Runs the algorithm. |
|
191 /// \return %True when the graph is planar. |
|
192 bool run() { |
|
193 typedef _planarity_bits::PlanarityVisitor<Graph> Visitor; |
|
194 |
|
195 PredMap pred_map(_graph, INVALID); |
|
196 TreeMap tree_map(_graph, false); |
|
197 |
|
198 OrderMap order_map(_graph, -1); |
|
199 OrderList order_list; |
|
200 |
|
201 AncestorMap ancestor_map(_graph, -1); |
|
202 LowMap low_map(_graph, -1); |
|
203 |
|
204 Visitor visitor(_graph, pred_map, tree_map, |
|
205 order_map, order_list, ancestor_map, low_map); |
|
206 DfsVisit<Graph, Visitor> visit(_graph, visitor); |
|
207 visit.run(); |
|
208 |
|
209 ChildLists child_lists(_graph); |
|
210 createChildLists(tree_map, order_map, low_map, child_lists); |
|
211 |
|
212 NodeData node_data(2 * order_list.size()); |
|
213 |
|
214 EmbedArc embed_arc(_graph, false); |
|
215 |
|
216 MergeRoots merge_roots(_graph); |
|
217 |
|
218 for (int i = order_list.size() - 1; i >= 0; --i) { |
|
219 |
|
220 Node node = order_list[i]; |
|
221 |
|
222 Node source = node; |
|
223 for (OutArcIt e(_graph, node); e != INVALID; ++e) { |
|
224 Node target = _graph.target(e); |
|
225 |
|
226 if (order_map[source] < order_map[target] && tree_map[e]) { |
|
227 initFace(target, node_data, order_map, order_list); |
|
228 } |
|
229 } |
|
230 |
|
231 for (OutArcIt e(_graph, node); e != INVALID; ++e) { |
|
232 Node target = _graph.target(e); |
|
233 |
|
234 if (order_map[source] < order_map[target] && !tree_map[e]) { |
|
235 embed_arc[target] = true; |
|
236 walkUp(target, source, i, pred_map, low_map, |
|
237 order_map, order_list, node_data, merge_roots); |
|
238 } |
|
239 } |
|
240 |
|
241 for (typename MergeRoots::Value::iterator it = |
|
242 merge_roots[node].begin(); it != merge_roots[node].end(); ++it) { |
|
243 int rn = *it; |
|
244 walkDown(rn, i, node_data, order_list, child_lists, |
|
245 ancestor_map, low_map, embed_arc, merge_roots); |
|
246 } |
|
247 merge_roots[node].clear(); |
|
248 |
|
249 for (OutArcIt e(_graph, node); e != INVALID; ++e) { |
|
250 Node target = _graph.target(e); |
|
251 |
|
252 if (order_map[source] < order_map[target] && !tree_map[e]) { |
|
253 if (embed_arc[target]) { |
|
254 return false; |
|
255 } |
|
256 } |
|
257 } |
|
258 } |
|
259 |
|
260 return true; |
|
261 } |
|
262 |
|
263 private: |
|
264 |
|
265 void createChildLists(const TreeMap& tree_map, const OrderMap& order_map, |
|
266 const LowMap& low_map, ChildLists& child_lists) { |
|
267 |
|
268 for (NodeIt n(_graph); n != INVALID; ++n) { |
|
269 Node source = n; |
|
270 |
|
271 std::vector<Node> targets; |
|
272 for (OutArcIt e(_graph, n); e != INVALID; ++e) { |
|
273 Node target = _graph.target(e); |
|
274 |
|
275 if (order_map[source] < order_map[target] && tree_map[e]) { |
|
276 targets.push_back(target); |
|
277 } |
|
278 } |
|
279 |
|
280 if (targets.size() == 0) { |
|
281 child_lists[source].first = INVALID; |
|
282 } else if (targets.size() == 1) { |
|
283 child_lists[source].first = targets[0]; |
|
284 child_lists[targets[0]].prev = INVALID; |
|
285 child_lists[targets[0]].next = INVALID; |
|
286 } else { |
|
287 radixSort(targets.begin(), targets.end(), mapToFunctor(low_map)); |
|
288 for (int i = 1; i < int(targets.size()); ++i) { |
|
289 child_lists[targets[i]].prev = targets[i - 1]; |
|
290 child_lists[targets[i - 1]].next = targets[i]; |
|
291 } |
|
292 child_lists[targets.back()].next = INVALID; |
|
293 child_lists[targets.front()].prev = INVALID; |
|
294 child_lists[source].first = targets.front(); |
|
295 } |
|
296 } |
|
297 } |
|
298 |
|
299 void walkUp(const Node& node, Node root, int rorder, |
|
300 const PredMap& pred_map, const LowMap& low_map, |
|
301 const OrderMap& order_map, const OrderList& order_list, |
|
302 NodeData& node_data, MergeRoots& merge_roots) { |
|
303 |
|
304 int na, nb; |
|
305 bool da, db; |
|
306 |
|
307 na = nb = order_map[node]; |
|
308 da = true; db = false; |
|
309 |
|
310 while (true) { |
|
311 |
|
312 if (node_data[na].visited == rorder) break; |
|
313 if (node_data[nb].visited == rorder) break; |
|
314 |
|
315 node_data[na].visited = rorder; |
|
316 node_data[nb].visited = rorder; |
|
317 |
|
318 int rn = -1; |
|
319 |
|
320 if (na >= int(order_list.size())) { |
|
321 rn = na; |
|
322 } else if (nb >= int(order_list.size())) { |
|
323 rn = nb; |
|
324 } |
|
325 |
|
326 if (rn == -1) { |
|
327 int nn; |
|
328 |
|
329 nn = da ? node_data[na].prev : node_data[na].next; |
|
330 da = node_data[nn].prev != na; |
|
331 na = nn; |
|
332 |
|
333 nn = db ? node_data[nb].prev : node_data[nb].next; |
|
334 db = node_data[nn].prev != nb; |
|
335 nb = nn; |
|
336 |
|
337 } else { |
|
338 |
|
339 Node rep = order_list[rn - order_list.size()]; |
|
340 Node parent = _graph.source(pred_map[rep]); |
|
341 |
|
342 if (low_map[rep] < rorder) { |
|
343 merge_roots[parent].push_back(rn); |
|
344 } else { |
|
345 merge_roots[parent].push_front(rn); |
|
346 } |
|
347 |
|
348 if (parent != root) { |
|
349 na = nb = order_map[parent]; |
|
350 da = true; db = false; |
|
351 } else { |
|
352 break; |
|
353 } |
|
354 } |
|
355 } |
|
356 } |
|
357 |
|
358 void walkDown(int rn, int rorder, NodeData& node_data, |
|
359 OrderList& order_list, ChildLists& child_lists, |
|
360 AncestorMap& ancestor_map, LowMap& low_map, |
|
361 EmbedArc& embed_arc, MergeRoots& merge_roots) { |
|
362 |
|
363 std::vector<std::pair<int, bool> > merge_stack; |
|
364 |
|
365 for (int di = 0; di < 2; ++di) { |
|
366 bool rd = di == 0; |
|
367 int pn = rn; |
|
368 int n = rd ? node_data[rn].next : node_data[rn].prev; |
|
369 |
|
370 while (n != rn) { |
|
371 |
|
372 Node node = order_list[n]; |
|
373 |
|
374 if (embed_arc[node]) { |
|
375 |
|
376 // Merging components on the critical path |
|
377 while (!merge_stack.empty()) { |
|
378 |
|
379 // Component root |
|
380 int cn = merge_stack.back().first; |
|
381 bool cd = merge_stack.back().second; |
|
382 merge_stack.pop_back(); |
|
383 |
|
384 // Parent of component |
|
385 int dn = merge_stack.back().first; |
|
386 bool dd = merge_stack.back().second; |
|
387 merge_stack.pop_back(); |
|
388 |
|
389 Node parent = order_list[dn]; |
|
390 |
|
391 // Erasing from merge_roots |
|
392 merge_roots[parent].pop_front(); |
|
393 |
|
394 Node child = order_list[cn - order_list.size()]; |
|
395 |
|
396 // Erasing from child_lists |
|
397 if (child_lists[child].prev != INVALID) { |
|
398 child_lists[child_lists[child].prev].next = |
|
399 child_lists[child].next; |
|
400 } else { |
|
401 child_lists[parent].first = child_lists[child].next; |
|
402 } |
|
403 |
|
404 if (child_lists[child].next != INVALID) { |
|
405 child_lists[child_lists[child].next].prev = |
|
406 child_lists[child].prev; |
|
407 } |
|
408 |
|
409 // Merging external faces |
|
410 { |
|
411 int en = cn; |
|
412 cn = cd ? node_data[cn].prev : node_data[cn].next; |
|
413 cd = node_data[cn].next == en; |
|
414 |
|
415 } |
|
416 |
|
417 if (cd) node_data[cn].next = dn; else node_data[cn].prev = dn; |
|
418 if (dd) node_data[dn].prev = cn; else node_data[dn].next = cn; |
|
419 |
|
420 } |
|
421 |
|
422 bool d = pn == node_data[n].prev; |
|
423 |
|
424 if (node_data[n].prev == node_data[n].next && |
|
425 node_data[n].inverted) { |
|
426 d = !d; |
|
427 } |
|
428 |
|
429 // Embedding arc into external face |
|
430 if (rd) node_data[rn].next = n; else node_data[rn].prev = n; |
|
431 if (d) node_data[n].prev = rn; else node_data[n].next = rn; |
|
432 pn = rn; |
|
433 |
|
434 embed_arc[order_list[n]] = false; |
|
435 } |
|
436 |
|
437 if (!merge_roots[node].empty()) { |
|
438 |
|
439 bool d = pn == node_data[n].prev; |
|
440 |
|
441 merge_stack.push_back(std::make_pair(n, d)); |
|
442 |
|
443 int rn = merge_roots[node].front(); |
|
444 |
|
445 int xn = node_data[rn].next; |
|
446 Node xnode = order_list[xn]; |
|
447 |
|
448 int yn = node_data[rn].prev; |
|
449 Node ynode = order_list[yn]; |
|
450 |
|
451 bool rd; |
|
452 if (!external(xnode, rorder, child_lists, ancestor_map, low_map)) { |
|
453 rd = true; |
|
454 } else if (!external(ynode, rorder, child_lists, |
|
455 ancestor_map, low_map)) { |
|
456 rd = false; |
|
457 } else if (pertinent(xnode, embed_arc, merge_roots)) { |
|
458 rd = true; |
|
459 } else { |
|
460 rd = false; |
|
461 } |
|
462 |
|
463 merge_stack.push_back(std::make_pair(rn, rd)); |
|
464 |
|
465 pn = rn; |
|
466 n = rd ? xn : yn; |
|
467 |
|
468 } else if (!external(node, rorder, child_lists, |
|
469 ancestor_map, low_map)) { |
|
470 int nn = (node_data[n].next != pn ? |
|
471 node_data[n].next : node_data[n].prev); |
|
472 |
|
473 bool nd = n == node_data[nn].prev; |
|
474 |
|
475 if (nd) node_data[nn].prev = pn; |
|
476 else node_data[nn].next = pn; |
|
477 |
|
478 if (n == node_data[pn].prev) node_data[pn].prev = nn; |
|
479 else node_data[pn].next = nn; |
|
480 |
|
481 node_data[nn].inverted = |
|
482 (node_data[nn].prev == node_data[nn].next && nd != rd); |
|
483 |
|
484 n = nn; |
|
485 } |
|
486 else break; |
|
487 |
|
488 } |
|
489 |
|
490 if (!merge_stack.empty() || n == rn) { |
|
491 break; |
|
492 } |
|
493 } |
|
494 } |
|
495 |
|
496 void initFace(const Node& node, NodeData& node_data, |
|
497 const OrderMap& order_map, const OrderList& order_list) { |
|
498 int n = order_map[node]; |
|
499 int rn = n + order_list.size(); |
|
500 |
|
501 node_data[n].next = node_data[n].prev = rn; |
|
502 node_data[rn].next = node_data[rn].prev = n; |
|
503 |
|
504 node_data[n].visited = order_list.size(); |
|
505 node_data[rn].visited = order_list.size(); |
|
506 |
|
507 } |
|
508 |
|
509 bool external(const Node& node, int rorder, |
|
510 ChildLists& child_lists, AncestorMap& ancestor_map, |
|
511 LowMap& low_map) { |
|
512 Node child = child_lists[node].first; |
|
513 |
|
514 if (child != INVALID) { |
|
515 if (low_map[child] < rorder) return true; |
|
516 } |
|
517 |
|
518 if (ancestor_map[node] < rorder) return true; |
|
519 |
|
520 return false; |
|
521 } |
|
522 |
|
523 bool pertinent(const Node& node, const EmbedArc& embed_arc, |
|
524 const MergeRoots& merge_roots) { |
|
525 return !merge_roots[node].empty() || embed_arc[node]; |
|
526 } |
|
527 |
|
528 }; |
|
529 |
|
530 /// \ingroup planar |
|
531 /// |
|
532 /// \brief Planar embedding of an undirected simple graph |
|
533 /// |
|
534 /// This class implements the Boyer-Myrvold algorithm for planar |
|
535 /// embedding of an undirected graph. The planar embedding is an |
|
536 /// ordering of the outgoing edges of the nodes, which is a possible |
|
537 /// configuration to draw the graph in the plane. If there is not |
|
538 /// such ordering then the graph contains a \f$ K_5 \f$ (full graph |
|
539 /// with 5 nodes) or a \f$ K_{3,3} \f$ (complete bipartite graph on |
|
540 /// 3 ANode and 3 BNode) subdivision. |
|
541 /// |
|
542 /// The current implementation calculates either an embedding or a |
|
543 /// Kuratowski subdivision. The running time of the algorithm is |
|
544 /// \f$ O(n) \f$. |
|
545 template <typename Graph> |
|
546 class PlanarEmbedding { |
|
547 private: |
|
548 |
|
549 TEMPLATE_GRAPH_TYPEDEFS(Graph); |
|
550 |
|
551 const Graph& _graph; |
|
552 typename Graph::template ArcMap<Arc> _embedding; |
|
553 |
|
554 typename Graph::template EdgeMap<bool> _kuratowski; |
|
555 |
|
556 private: |
|
557 |
|
558 typedef typename Graph::template NodeMap<Arc> PredMap; |
|
559 |
|
560 typedef typename Graph::template EdgeMap<bool> TreeMap; |
|
561 |
|
562 typedef typename Graph::template NodeMap<int> OrderMap; |
|
563 typedef std::vector<Node> OrderList; |
|
564 |
|
565 typedef typename Graph::template NodeMap<int> LowMap; |
|
566 typedef typename Graph::template NodeMap<int> AncestorMap; |
|
567 |
|
568 typedef _planarity_bits::NodeDataNode<Graph> NodeDataNode; |
|
569 typedef std::vector<NodeDataNode> NodeData; |
|
570 |
|
571 typedef _planarity_bits::ChildListNode<Graph> ChildListNode; |
|
572 typedef typename Graph::template NodeMap<ChildListNode> ChildLists; |
|
573 |
|
574 typedef typename Graph::template NodeMap<std::list<int> > MergeRoots; |
|
575 |
|
576 typedef typename Graph::template NodeMap<Arc> EmbedArc; |
|
577 |
|
578 typedef _planarity_bits::ArcListNode<Graph> ArcListNode; |
|
579 typedef typename Graph::template ArcMap<ArcListNode> ArcLists; |
|
580 |
|
581 typedef typename Graph::template NodeMap<bool> FlipMap; |
|
582 |
|
583 typedef typename Graph::template NodeMap<int> TypeMap; |
|
584 |
|
585 enum IsolatorNodeType { |
|
586 HIGHX = 6, LOWX = 7, |
|
587 HIGHY = 8, LOWY = 9, |
|
588 ROOT = 10, PERTINENT = 11, |
|
589 INTERNAL = 12 |
|
590 }; |
|
591 |
|
592 public: |
|
593 |
|
594 /// \brief The map for store of embedding |
|
595 typedef typename Graph::template ArcMap<Arc> EmbeddingMap; |
|
596 |
|
597 /// \brief Constructor |
|
598 /// |
|
599 /// \note The graph should be simple, i.e. parallel and loop arc |
|
600 /// free. |
|
601 PlanarEmbedding(const Graph& graph) |
|
602 : _graph(graph), _embedding(_graph), _kuratowski(graph, false) {} |
|
603 |
|
604 /// \brief Runs the algorithm. |
|
605 /// |
|
606 /// Runs the algorithm. |
|
607 /// \param kuratowski If the parameter is false, then the |
|
608 /// algorithm does not compute a Kuratowski subdivision. |
|
609 ///\return %True when the graph is planar. |
|
610 bool run(bool kuratowski = true) { |
|
611 typedef _planarity_bits::PlanarityVisitor<Graph> Visitor; |
|
612 |
|
613 PredMap pred_map(_graph, INVALID); |
|
614 TreeMap tree_map(_graph, false); |
|
615 |
|
616 OrderMap order_map(_graph, -1); |
|
617 OrderList order_list; |
|
618 |
|
619 AncestorMap ancestor_map(_graph, -1); |
|
620 LowMap low_map(_graph, -1); |
|
621 |
|
622 Visitor visitor(_graph, pred_map, tree_map, |
|
623 order_map, order_list, ancestor_map, low_map); |
|
624 DfsVisit<Graph, Visitor> visit(_graph, visitor); |
|
625 visit.run(); |
|
626 |
|
627 ChildLists child_lists(_graph); |
|
628 createChildLists(tree_map, order_map, low_map, child_lists); |
|
629 |
|
630 NodeData node_data(2 * order_list.size()); |
|
631 |
|
632 EmbedArc embed_arc(_graph, INVALID); |
|
633 |
|
634 MergeRoots merge_roots(_graph); |
|
635 |
|
636 ArcLists arc_lists(_graph); |
|
637 |
|
638 FlipMap flip_map(_graph, false); |
|
639 |
|
640 for (int i = order_list.size() - 1; i >= 0; --i) { |
|
641 |
|
642 Node node = order_list[i]; |
|
643 |
|
644 node_data[i].first = INVALID; |
|
645 |
|
646 Node source = node; |
|
647 for (OutArcIt e(_graph, node); e != INVALID; ++e) { |
|
648 Node target = _graph.target(e); |
|
649 |
|
650 if (order_map[source] < order_map[target] && tree_map[e]) { |
|
651 initFace(target, arc_lists, node_data, |
|
652 pred_map, order_map, order_list); |
|
653 } |
|
654 } |
|
655 |
|
656 for (OutArcIt e(_graph, node); e != INVALID; ++e) { |
|
657 Node target = _graph.target(e); |
|
658 |
|
659 if (order_map[source] < order_map[target] && !tree_map[e]) { |
|
660 embed_arc[target] = e; |
|
661 walkUp(target, source, i, pred_map, low_map, |
|
662 order_map, order_list, node_data, merge_roots); |
|
663 } |
|
664 } |
|
665 |
|
666 for (typename MergeRoots::Value::iterator it = |
|
667 merge_roots[node].begin(); it != merge_roots[node].end(); ++it) { |
|
668 int rn = *it; |
|
669 walkDown(rn, i, node_data, arc_lists, flip_map, order_list, |
|
670 child_lists, ancestor_map, low_map, embed_arc, merge_roots); |
|
671 } |
|
672 merge_roots[node].clear(); |
|
673 |
|
674 for (OutArcIt e(_graph, node); e != INVALID; ++e) { |
|
675 Node target = _graph.target(e); |
|
676 |
|
677 if (order_map[source] < order_map[target] && !tree_map[e]) { |
|
678 if (embed_arc[target] != INVALID) { |
|
679 if (kuratowski) { |
|
680 isolateKuratowski(e, node_data, arc_lists, flip_map, |
|
681 order_map, order_list, pred_map, child_lists, |
|
682 ancestor_map, low_map, |
|
683 embed_arc, merge_roots); |
|
684 } |
|
685 return false; |
|
686 } |
|
687 } |
|
688 } |
|
689 } |
|
690 |
|
691 for (int i = 0; i < int(order_list.size()); ++i) { |
|
692 |
|
693 mergeRemainingFaces(order_list[i], node_data, order_list, order_map, |
|
694 child_lists, arc_lists); |
|
695 storeEmbedding(order_list[i], node_data, order_map, pred_map, |
|
696 arc_lists, flip_map); |
|
697 } |
|
698 |
|
699 return true; |
|
700 } |
|
701 |
|
702 /// \brief Gives back the successor of an arc |
|
703 /// |
|
704 /// Gives back the successor of an arc. This function makes |
|
705 /// possible to query the cyclic order of the outgoing arcs from |
|
706 /// a node. |
|
707 Arc next(const Arc& arc) const { |
|
708 return _embedding[arc]; |
|
709 } |
|
710 |
|
711 /// \brief Gives back the calculated embedding map |
|
712 /// |
|
713 /// The returned map contains the successor of each arc in the |
|
714 /// graph. |
|
715 const EmbeddingMap& embedding() const { |
|
716 return _embedding; |
|
717 } |
|
718 |
|
719 /// \brief Gives back true if the undirected arc is in the |
|
720 /// kuratowski subdivision |
|
721 /// |
|
722 /// Gives back true if the undirected arc is in the kuratowski |
|
723 /// subdivision |
|
724 /// \note The \c run() had to be called with true value. |
|
725 bool kuratowski(const Edge& edge) { |
|
726 return _kuratowski[edge]; |
|
727 } |
|
728 |
|
729 private: |
|
730 |
|
731 void createChildLists(const TreeMap& tree_map, const OrderMap& order_map, |
|
732 const LowMap& low_map, ChildLists& child_lists) { |
|
733 |
|
734 for (NodeIt n(_graph); n != INVALID; ++n) { |
|
735 Node source = n; |
|
736 |
|
737 std::vector<Node> targets; |
|
738 for (OutArcIt e(_graph, n); e != INVALID; ++e) { |
|
739 Node target = _graph.target(e); |
|
740 |
|
741 if (order_map[source] < order_map[target] && tree_map[e]) { |
|
742 targets.push_back(target); |
|
743 } |
|
744 } |
|
745 |
|
746 if (targets.size() == 0) { |
|
747 child_lists[source].first = INVALID; |
|
748 } else if (targets.size() == 1) { |
|
749 child_lists[source].first = targets[0]; |
|
750 child_lists[targets[0]].prev = INVALID; |
|
751 child_lists[targets[0]].next = INVALID; |
|
752 } else { |
|
753 radixSort(targets.begin(), targets.end(), mapToFunctor(low_map)); |
|
754 for (int i = 1; i < int(targets.size()); ++i) { |
|
755 child_lists[targets[i]].prev = targets[i - 1]; |
|
756 child_lists[targets[i - 1]].next = targets[i]; |
|
757 } |
|
758 child_lists[targets.back()].next = INVALID; |
|
759 child_lists[targets.front()].prev = INVALID; |
|
760 child_lists[source].first = targets.front(); |
|
761 } |
|
762 } |
|
763 } |
|
764 |
|
765 void walkUp(const Node& node, Node root, int rorder, |
|
766 const PredMap& pred_map, const LowMap& low_map, |
|
767 const OrderMap& order_map, const OrderList& order_list, |
|
768 NodeData& node_data, MergeRoots& merge_roots) { |
|
769 |
|
770 int na, nb; |
|
771 bool da, db; |
|
772 |
|
773 na = nb = order_map[node]; |
|
774 da = true; db = false; |
|
775 |
|
776 while (true) { |
|
777 |
|
778 if (node_data[na].visited == rorder) break; |
|
779 if (node_data[nb].visited == rorder) break; |
|
780 |
|
781 node_data[na].visited = rorder; |
|
782 node_data[nb].visited = rorder; |
|
783 |
|
784 int rn = -1; |
|
785 |
|
786 if (na >= int(order_list.size())) { |
|
787 rn = na; |
|
788 } else if (nb >= int(order_list.size())) { |
|
789 rn = nb; |
|
790 } |
|
791 |
|
792 if (rn == -1) { |
|
793 int nn; |
|
794 |
|
795 nn = da ? node_data[na].prev : node_data[na].next; |
|
796 da = node_data[nn].prev != na; |
|
797 na = nn; |
|
798 |
|
799 nn = db ? node_data[nb].prev : node_data[nb].next; |
|
800 db = node_data[nn].prev != nb; |
|
801 nb = nn; |
|
802 |
|
803 } else { |
|
804 |
|
805 Node rep = order_list[rn - order_list.size()]; |
|
806 Node parent = _graph.source(pred_map[rep]); |
|
807 |
|
808 if (low_map[rep] < rorder) { |
|
809 merge_roots[parent].push_back(rn); |
|
810 } else { |
|
811 merge_roots[parent].push_front(rn); |
|
812 } |
|
813 |
|
814 if (parent != root) { |
|
815 na = nb = order_map[parent]; |
|
816 da = true; db = false; |
|
817 } else { |
|
818 break; |
|
819 } |
|
820 } |
|
821 } |
|
822 } |
|
823 |
|
824 void walkDown(int rn, int rorder, NodeData& node_data, |
|
825 ArcLists& arc_lists, FlipMap& flip_map, |
|
826 OrderList& order_list, ChildLists& child_lists, |
|
827 AncestorMap& ancestor_map, LowMap& low_map, |
|
828 EmbedArc& embed_arc, MergeRoots& merge_roots) { |
|
829 |
|
830 std::vector<std::pair<int, bool> > merge_stack; |
|
831 |
|
832 for (int di = 0; di < 2; ++di) { |
|
833 bool rd = di == 0; |
|
834 int pn = rn; |
|
835 int n = rd ? node_data[rn].next : node_data[rn].prev; |
|
836 |
|
837 while (n != rn) { |
|
838 |
|
839 Node node = order_list[n]; |
|
840 |
|
841 if (embed_arc[node] != INVALID) { |
|
842 |
|
843 // Merging components on the critical path |
|
844 while (!merge_stack.empty()) { |
|
845 |
|
846 // Component root |
|
847 int cn = merge_stack.back().first; |
|
848 bool cd = merge_stack.back().second; |
|
849 merge_stack.pop_back(); |
|
850 |
|
851 // Parent of component |
|
852 int dn = merge_stack.back().first; |
|
853 bool dd = merge_stack.back().second; |
|
854 merge_stack.pop_back(); |
|
855 |
|
856 Node parent = order_list[dn]; |
|
857 |
|
858 // Erasing from merge_roots |
|
859 merge_roots[parent].pop_front(); |
|
860 |
|
861 Node child = order_list[cn - order_list.size()]; |
|
862 |
|
863 // Erasing from child_lists |
|
864 if (child_lists[child].prev != INVALID) { |
|
865 child_lists[child_lists[child].prev].next = |
|
866 child_lists[child].next; |
|
867 } else { |
|
868 child_lists[parent].first = child_lists[child].next; |
|
869 } |
|
870 |
|
871 if (child_lists[child].next != INVALID) { |
|
872 child_lists[child_lists[child].next].prev = |
|
873 child_lists[child].prev; |
|
874 } |
|
875 |
|
876 // Merging arcs + flipping |
|
877 Arc de = node_data[dn].first; |
|
878 Arc ce = node_data[cn].first; |
|
879 |
|
880 flip_map[order_list[cn - order_list.size()]] = cd != dd; |
|
881 if (cd != dd) { |
|
882 std::swap(arc_lists[ce].prev, arc_lists[ce].next); |
|
883 ce = arc_lists[ce].prev; |
|
884 std::swap(arc_lists[ce].prev, arc_lists[ce].next); |
|
885 } |
|
886 |
|
887 { |
|
888 Arc dne = arc_lists[de].next; |
|
889 Arc cne = arc_lists[ce].next; |
|
890 |
|
891 arc_lists[de].next = cne; |
|
892 arc_lists[ce].next = dne; |
|
893 |
|
894 arc_lists[dne].prev = ce; |
|
895 arc_lists[cne].prev = de; |
|
896 } |
|
897 |
|
898 if (dd) { |
|
899 node_data[dn].first = ce; |
|
900 } |
|
901 |
|
902 // Merging external faces |
|
903 { |
|
904 int en = cn; |
|
905 cn = cd ? node_data[cn].prev : node_data[cn].next; |
|
906 cd = node_data[cn].next == en; |
|
907 |
|
908 if (node_data[cn].prev == node_data[cn].next && |
|
909 node_data[cn].inverted) { |
|
910 cd = !cd; |
|
911 } |
|
912 } |
|
913 |
|
914 if (cd) node_data[cn].next = dn; else node_data[cn].prev = dn; |
|
915 if (dd) node_data[dn].prev = cn; else node_data[dn].next = cn; |
|
916 |
|
917 } |
|
918 |
|
919 bool d = pn == node_data[n].prev; |
|
920 |
|
921 if (node_data[n].prev == node_data[n].next && |
|
922 node_data[n].inverted) { |
|
923 d = !d; |
|
924 } |
|
925 |
|
926 // Add new arc |
|
927 { |
|
928 Arc arc = embed_arc[node]; |
|
929 Arc re = node_data[rn].first; |
|
930 |
|
931 arc_lists[arc_lists[re].next].prev = arc; |
|
932 arc_lists[arc].next = arc_lists[re].next; |
|
933 arc_lists[arc].prev = re; |
|
934 arc_lists[re].next = arc; |
|
935 |
|
936 if (!rd) { |
|
937 node_data[rn].first = arc; |
|
938 } |
|
939 |
|
940 Arc rev = _graph.oppositeArc(arc); |
|
941 Arc e = node_data[n].first; |
|
942 |
|
943 arc_lists[arc_lists[e].next].prev = rev; |
|
944 arc_lists[rev].next = arc_lists[e].next; |
|
945 arc_lists[rev].prev = e; |
|
946 arc_lists[e].next = rev; |
|
947 |
|
948 if (d) { |
|
949 node_data[n].first = rev; |
|
950 } |
|
951 |
|
952 } |
|
953 |
|
954 // Embedding arc into external face |
|
955 if (rd) node_data[rn].next = n; else node_data[rn].prev = n; |
|
956 if (d) node_data[n].prev = rn; else node_data[n].next = rn; |
|
957 pn = rn; |
|
958 |
|
959 embed_arc[order_list[n]] = INVALID; |
|
960 } |
|
961 |
|
962 if (!merge_roots[node].empty()) { |
|
963 |
|
964 bool d = pn == node_data[n].prev; |
|
965 if (node_data[n].prev == node_data[n].next && |
|
966 node_data[n].inverted) { |
|
967 d = !d; |
|
968 } |
|
969 |
|
970 merge_stack.push_back(std::make_pair(n, d)); |
|
971 |
|
972 int rn = merge_roots[node].front(); |
|
973 |
|
974 int xn = node_data[rn].next; |
|
975 Node xnode = order_list[xn]; |
|
976 |
|
977 int yn = node_data[rn].prev; |
|
978 Node ynode = order_list[yn]; |
|
979 |
|
980 bool rd; |
|
981 if (!external(xnode, rorder, child_lists, ancestor_map, low_map)) { |
|
982 rd = true; |
|
983 } else if (!external(ynode, rorder, child_lists, |
|
984 ancestor_map, low_map)) { |
|
985 rd = false; |
|
986 } else if (pertinent(xnode, embed_arc, merge_roots)) { |
|
987 rd = true; |
|
988 } else { |
|
989 rd = false; |
|
990 } |
|
991 |
|
992 merge_stack.push_back(std::make_pair(rn, rd)); |
|
993 |
|
994 pn = rn; |
|
995 n = rd ? xn : yn; |
|
996 |
|
997 } else if (!external(node, rorder, child_lists, |
|
998 ancestor_map, low_map)) { |
|
999 int nn = (node_data[n].next != pn ? |
|
1000 node_data[n].next : node_data[n].prev); |
|
1001 |
|
1002 bool nd = n == node_data[nn].prev; |
|
1003 |
|
1004 if (nd) node_data[nn].prev = pn; |
|
1005 else node_data[nn].next = pn; |
|
1006 |
|
1007 if (n == node_data[pn].prev) node_data[pn].prev = nn; |
|
1008 else node_data[pn].next = nn; |
|
1009 |
|
1010 node_data[nn].inverted = |
|
1011 (node_data[nn].prev == node_data[nn].next && nd != rd); |
|
1012 |
|
1013 n = nn; |
|
1014 } |
|
1015 else break; |
|
1016 |
|
1017 } |
|
1018 |
|
1019 if (!merge_stack.empty() || n == rn) { |
|
1020 break; |
|
1021 } |
|
1022 } |
|
1023 } |
|
1024 |
|
1025 void initFace(const Node& node, ArcLists& arc_lists, |
|
1026 NodeData& node_data, const PredMap& pred_map, |
|
1027 const OrderMap& order_map, const OrderList& order_list) { |
|
1028 int n = order_map[node]; |
|
1029 int rn = n + order_list.size(); |
|
1030 |
|
1031 node_data[n].next = node_data[n].prev = rn; |
|
1032 node_data[rn].next = node_data[rn].prev = n; |
|
1033 |
|
1034 node_data[n].visited = order_list.size(); |
|
1035 node_data[rn].visited = order_list.size(); |
|
1036 |
|
1037 node_data[n].inverted = false; |
|
1038 node_data[rn].inverted = false; |
|
1039 |
|
1040 Arc arc = pred_map[node]; |
|
1041 Arc rev = _graph.oppositeArc(arc); |
|
1042 |
|
1043 node_data[rn].first = arc; |
|
1044 node_data[n].first = rev; |
|
1045 |
|
1046 arc_lists[arc].prev = arc; |
|
1047 arc_lists[arc].next = arc; |
|
1048 |
|
1049 arc_lists[rev].prev = rev; |
|
1050 arc_lists[rev].next = rev; |
|
1051 |
|
1052 } |
|
1053 |
|
1054 void mergeRemainingFaces(const Node& node, NodeData& node_data, |
|
1055 OrderList& order_list, OrderMap& order_map, |
|
1056 ChildLists& child_lists, ArcLists& arc_lists) { |
|
1057 while (child_lists[node].first != INVALID) { |
|
1058 int dd = order_map[node]; |
|
1059 Node child = child_lists[node].first; |
|
1060 int cd = order_map[child] + order_list.size(); |
|
1061 child_lists[node].first = child_lists[child].next; |
|
1062 |
|
1063 Arc de = node_data[dd].first; |
|
1064 Arc ce = node_data[cd].first; |
|
1065 |
|
1066 if (de != INVALID) { |
|
1067 Arc dne = arc_lists[de].next; |
|
1068 Arc cne = arc_lists[ce].next; |
|
1069 |
|
1070 arc_lists[de].next = cne; |
|
1071 arc_lists[ce].next = dne; |
|
1072 |
|
1073 arc_lists[dne].prev = ce; |
|
1074 arc_lists[cne].prev = de; |
|
1075 } |
|
1076 |
|
1077 node_data[dd].first = ce; |
|
1078 |
|
1079 } |
|
1080 } |
|
1081 |
|
1082 void storeEmbedding(const Node& node, NodeData& node_data, |
|
1083 OrderMap& order_map, PredMap& pred_map, |
|
1084 ArcLists& arc_lists, FlipMap& flip_map) { |
|
1085 |
|
1086 if (node_data[order_map[node]].first == INVALID) return; |
|
1087 |
|
1088 if (pred_map[node] != INVALID) { |
|
1089 Node source = _graph.source(pred_map[node]); |
|
1090 flip_map[node] = flip_map[node] != flip_map[source]; |
|
1091 } |
|
1092 |
|
1093 Arc first = node_data[order_map[node]].first; |
|
1094 Arc prev = first; |
|
1095 |
|
1096 Arc arc = flip_map[node] ? |
|
1097 arc_lists[prev].prev : arc_lists[prev].next; |
|
1098 |
|
1099 _embedding[prev] = arc; |
|
1100 |
|
1101 while (arc != first) { |
|
1102 Arc next = arc_lists[arc].prev == prev ? |
|
1103 arc_lists[arc].next : arc_lists[arc].prev; |
|
1104 prev = arc; arc = next; |
|
1105 _embedding[prev] = arc; |
|
1106 } |
|
1107 } |
|
1108 |
|
1109 |
|
1110 bool external(const Node& node, int rorder, |
|
1111 ChildLists& child_lists, AncestorMap& ancestor_map, |
|
1112 LowMap& low_map) { |
|
1113 Node child = child_lists[node].first; |
|
1114 |
|
1115 if (child != INVALID) { |
|
1116 if (low_map[child] < rorder) return true; |
|
1117 } |
|
1118 |
|
1119 if (ancestor_map[node] < rorder) return true; |
|
1120 |
|
1121 return false; |
|
1122 } |
|
1123 |
|
1124 bool pertinent(const Node& node, const EmbedArc& embed_arc, |
|
1125 const MergeRoots& merge_roots) { |
|
1126 return !merge_roots[node].empty() || embed_arc[node] != INVALID; |
|
1127 } |
|
1128 |
|
1129 int lowPoint(const Node& node, OrderMap& order_map, ChildLists& child_lists, |
|
1130 AncestorMap& ancestor_map, LowMap& low_map) { |
|
1131 int low_point; |
|
1132 |
|
1133 Node child = child_lists[node].first; |
|
1134 |
|
1135 if (child != INVALID) { |
|
1136 low_point = low_map[child]; |
|
1137 } else { |
|
1138 low_point = order_map[node]; |
|
1139 } |
|
1140 |
|
1141 if (low_point > ancestor_map[node]) { |
|
1142 low_point = ancestor_map[node]; |
|
1143 } |
|
1144 |
|
1145 return low_point; |
|
1146 } |
|
1147 |
|
1148 int findComponentRoot(Node root, Node node, ChildLists& child_lists, |
|
1149 OrderMap& order_map, OrderList& order_list) { |
|
1150 |
|
1151 int order = order_map[root]; |
|
1152 int norder = order_map[node]; |
|
1153 |
|
1154 Node child = child_lists[root].first; |
|
1155 while (child != INVALID) { |
|
1156 int corder = order_map[child]; |
|
1157 if (corder > order && corder < norder) { |
|
1158 order = corder; |
|
1159 } |
|
1160 child = child_lists[child].next; |
|
1161 } |
|
1162 return order + order_list.size(); |
|
1163 } |
|
1164 |
|
1165 Node findPertinent(Node node, OrderMap& order_map, NodeData& node_data, |
|
1166 EmbedArc& embed_arc, MergeRoots& merge_roots) { |
|
1167 Node wnode =_graph.target(node_data[order_map[node]].first); |
|
1168 while (!pertinent(wnode, embed_arc, merge_roots)) { |
|
1169 wnode = _graph.target(node_data[order_map[wnode]].first); |
|
1170 } |
|
1171 return wnode; |
|
1172 } |
|
1173 |
|
1174 |
|
1175 Node findExternal(Node node, int rorder, OrderMap& order_map, |
|
1176 ChildLists& child_lists, AncestorMap& ancestor_map, |
|
1177 LowMap& low_map, NodeData& node_data) { |
|
1178 Node wnode =_graph.target(node_data[order_map[node]].first); |
|
1179 while (!external(wnode, rorder, child_lists, ancestor_map, low_map)) { |
|
1180 wnode = _graph.target(node_data[order_map[wnode]].first); |
|
1181 } |
|
1182 return wnode; |
|
1183 } |
|
1184 |
|
1185 void markCommonPath(Node node, int rorder, Node& wnode, Node& znode, |
|
1186 OrderList& order_list, OrderMap& order_map, |
|
1187 NodeData& node_data, ArcLists& arc_lists, |
|
1188 EmbedArc& embed_arc, MergeRoots& merge_roots, |
|
1189 ChildLists& child_lists, AncestorMap& ancestor_map, |
|
1190 LowMap& low_map) { |
|
1191 |
|
1192 Node cnode = node; |
|
1193 Node pred = INVALID; |
|
1194 |
|
1195 while (true) { |
|
1196 |
|
1197 bool pert = pertinent(cnode, embed_arc, merge_roots); |
|
1198 bool ext = external(cnode, rorder, child_lists, ancestor_map, low_map); |
|
1199 |
|
1200 if (pert && ext) { |
|
1201 if (!merge_roots[cnode].empty()) { |
|
1202 int cn = merge_roots[cnode].back(); |
|
1203 |
|
1204 if (low_map[order_list[cn - order_list.size()]] < rorder) { |
|
1205 Arc arc = node_data[cn].first; |
|
1206 _kuratowski.set(arc, true); |
|
1207 |
|
1208 pred = cnode; |
|
1209 cnode = _graph.target(arc); |
|
1210 |
|
1211 continue; |
|
1212 } |
|
1213 } |
|
1214 wnode = znode = cnode; |
|
1215 return; |
|
1216 |
|
1217 } else if (pert) { |
|
1218 wnode = cnode; |
|
1219 |
|
1220 while (!external(cnode, rorder, child_lists, ancestor_map, low_map)) { |
|
1221 Arc arc = node_data[order_map[cnode]].first; |
|
1222 |
|
1223 if (_graph.target(arc) == pred) { |
|
1224 arc = arc_lists[arc].next; |
|
1225 } |
|
1226 _kuratowski.set(arc, true); |
|
1227 |
|
1228 Node next = _graph.target(arc); |
|
1229 pred = cnode; cnode = next; |
|
1230 } |
|
1231 |
|
1232 znode = cnode; |
|
1233 return; |
|
1234 |
|
1235 } else if (ext) { |
|
1236 znode = cnode; |
|
1237 |
|
1238 while (!pertinent(cnode, embed_arc, merge_roots)) { |
|
1239 Arc arc = node_data[order_map[cnode]].first; |
|
1240 |
|
1241 if (_graph.target(arc) == pred) { |
|
1242 arc = arc_lists[arc].next; |
|
1243 } |
|
1244 _kuratowski.set(arc, true); |
|
1245 |
|
1246 Node next = _graph.target(arc); |
|
1247 pred = cnode; cnode = next; |
|
1248 } |
|
1249 |
|
1250 wnode = cnode; |
|
1251 return; |
|
1252 |
|
1253 } else { |
|
1254 Arc arc = node_data[order_map[cnode]].first; |
|
1255 |
|
1256 if (_graph.target(arc) == pred) { |
|
1257 arc = arc_lists[arc].next; |
|
1258 } |
|
1259 _kuratowski.set(arc, true); |
|
1260 |
|
1261 Node next = _graph.target(arc); |
|
1262 pred = cnode; cnode = next; |
|
1263 } |
|
1264 |
|
1265 } |
|
1266 |
|
1267 } |
|
1268 |
|
1269 void orientComponent(Node root, int rn, OrderMap& order_map, |
|
1270 PredMap& pred_map, NodeData& node_data, |
|
1271 ArcLists& arc_lists, FlipMap& flip_map, |
|
1272 TypeMap& type_map) { |
|
1273 node_data[order_map[root]].first = node_data[rn].first; |
|
1274 type_map[root] = 1; |
|
1275 |
|
1276 std::vector<Node> st, qu; |
|
1277 |
|
1278 st.push_back(root); |
|
1279 while (!st.empty()) { |
|
1280 Node node = st.back(); |
|
1281 st.pop_back(); |
|
1282 qu.push_back(node); |
|
1283 |
|
1284 Arc arc = node_data[order_map[node]].first; |
|
1285 |
|
1286 if (type_map[_graph.target(arc)] == 0) { |
|
1287 st.push_back(_graph.target(arc)); |
|
1288 type_map[_graph.target(arc)] = 1; |
|
1289 } |
|
1290 |
|
1291 Arc last = arc, pred = arc; |
|
1292 arc = arc_lists[arc].next; |
|
1293 while (arc != last) { |
|
1294 |
|
1295 if (type_map[_graph.target(arc)] == 0) { |
|
1296 st.push_back(_graph.target(arc)); |
|
1297 type_map[_graph.target(arc)] = 1; |
|
1298 } |
|
1299 |
|
1300 Arc next = arc_lists[arc].next != pred ? |
|
1301 arc_lists[arc].next : arc_lists[arc].prev; |
|
1302 pred = arc; arc = next; |
|
1303 } |
|
1304 |
|
1305 } |
|
1306 |
|
1307 type_map[root] = 2; |
|
1308 flip_map[root] = false; |
|
1309 |
|
1310 for (int i = 1; i < int(qu.size()); ++i) { |
|
1311 |
|
1312 Node node = qu[i]; |
|
1313 |
|
1314 while (type_map[node] != 2) { |
|
1315 st.push_back(node); |
|
1316 type_map[node] = 2; |
|
1317 node = _graph.source(pred_map[node]); |
|
1318 } |
|
1319 |
|
1320 bool flip = flip_map[node]; |
|
1321 |
|
1322 while (!st.empty()) { |
|
1323 node = st.back(); |
|
1324 st.pop_back(); |
|
1325 |
|
1326 flip_map[node] = flip != flip_map[node]; |
|
1327 flip = flip_map[node]; |
|
1328 |
|
1329 if (flip) { |
|
1330 Arc arc = node_data[order_map[node]].first; |
|
1331 std::swap(arc_lists[arc].prev, arc_lists[arc].next); |
|
1332 arc = arc_lists[arc].prev; |
|
1333 std::swap(arc_lists[arc].prev, arc_lists[arc].next); |
|
1334 node_data[order_map[node]].first = arc; |
|
1335 } |
|
1336 } |
|
1337 } |
|
1338 |
|
1339 for (int i = 0; i < int(qu.size()); ++i) { |
|
1340 |
|
1341 Arc arc = node_data[order_map[qu[i]]].first; |
|
1342 Arc last = arc, pred = arc; |
|
1343 |
|
1344 arc = arc_lists[arc].next; |
|
1345 while (arc != last) { |
|
1346 |
|
1347 if (arc_lists[arc].next == pred) { |
|
1348 std::swap(arc_lists[arc].next, arc_lists[arc].prev); |
|
1349 } |
|
1350 pred = arc; arc = arc_lists[arc].next; |
|
1351 } |
|
1352 |
|
1353 } |
|
1354 } |
|
1355 |
|
1356 void setFaceFlags(Node root, Node wnode, Node ynode, Node xnode, |
|
1357 OrderMap& order_map, NodeData& node_data, |
|
1358 TypeMap& type_map) { |
|
1359 Node node = _graph.target(node_data[order_map[root]].first); |
|
1360 |
|
1361 while (node != ynode) { |
|
1362 type_map[node] = HIGHY; |
|
1363 node = _graph.target(node_data[order_map[node]].first); |
|
1364 } |
|
1365 |
|
1366 while (node != wnode) { |
|
1367 type_map[node] = LOWY; |
|
1368 node = _graph.target(node_data[order_map[node]].first); |
|
1369 } |
|
1370 |
|
1371 node = _graph.target(node_data[order_map[wnode]].first); |
|
1372 |
|
1373 while (node != xnode) { |
|
1374 type_map[node] = LOWX; |
|
1375 node = _graph.target(node_data[order_map[node]].first); |
|
1376 } |
|
1377 type_map[node] = LOWX; |
|
1378 |
|
1379 node = _graph.target(node_data[order_map[xnode]].first); |
|
1380 while (node != root) { |
|
1381 type_map[node] = HIGHX; |
|
1382 node = _graph.target(node_data[order_map[node]].first); |
|
1383 } |
|
1384 |
|
1385 type_map[wnode] = PERTINENT; |
|
1386 type_map[root] = ROOT; |
|
1387 } |
|
1388 |
|
1389 void findInternalPath(std::vector<Arc>& ipath, |
|
1390 Node wnode, Node root, TypeMap& type_map, |
|
1391 OrderMap& order_map, NodeData& node_data, |
|
1392 ArcLists& arc_lists) { |
|
1393 std::vector<Arc> st; |
|
1394 |
|
1395 Node node = wnode; |
|
1396 |
|
1397 while (node != root) { |
|
1398 Arc arc = arc_lists[node_data[order_map[node]].first].next; |
|
1399 st.push_back(arc); |
|
1400 node = _graph.target(arc); |
|
1401 } |
|
1402 |
|
1403 while (true) { |
|
1404 Arc arc = st.back(); |
|
1405 if (type_map[_graph.target(arc)] == LOWX || |
|
1406 type_map[_graph.target(arc)] == HIGHX) { |
|
1407 break; |
|
1408 } |
|
1409 if (type_map[_graph.target(arc)] == 2) { |
|
1410 type_map[_graph.target(arc)] = 3; |
|
1411 |
|
1412 arc = arc_lists[_graph.oppositeArc(arc)].next; |
|
1413 st.push_back(arc); |
|
1414 } else { |
|
1415 st.pop_back(); |
|
1416 arc = arc_lists[arc].next; |
|
1417 |
|
1418 while (_graph.oppositeArc(arc) == st.back()) { |
|
1419 arc = st.back(); |
|
1420 st.pop_back(); |
|
1421 arc = arc_lists[arc].next; |
|
1422 } |
|
1423 st.push_back(arc); |
|
1424 } |
|
1425 } |
|
1426 |
|
1427 for (int i = 0; i < int(st.size()); ++i) { |
|
1428 if (type_map[_graph.target(st[i])] != LOWY && |
|
1429 type_map[_graph.target(st[i])] != HIGHY) { |
|
1430 for (; i < int(st.size()); ++i) { |
|
1431 ipath.push_back(st[i]); |
|
1432 } |
|
1433 } |
|
1434 } |
|
1435 } |
|
1436 |
|
1437 void setInternalFlags(std::vector<Arc>& ipath, TypeMap& type_map) { |
|
1438 for (int i = 1; i < int(ipath.size()); ++i) { |
|
1439 type_map[_graph.source(ipath[i])] = INTERNAL; |
|
1440 } |
|
1441 } |
|
1442 |
|
1443 void findPilePath(std::vector<Arc>& ppath, |
|
1444 Node root, TypeMap& type_map, OrderMap& order_map, |
|
1445 NodeData& node_data, ArcLists& arc_lists) { |
|
1446 std::vector<Arc> st; |
|
1447 |
|
1448 st.push_back(_graph.oppositeArc(node_data[order_map[root]].first)); |
|
1449 st.push_back(node_data[order_map[root]].first); |
|
1450 |
|
1451 while (st.size() > 1) { |
|
1452 Arc arc = st.back(); |
|
1453 if (type_map[_graph.target(arc)] == INTERNAL) { |
|
1454 break; |
|
1455 } |
|
1456 if (type_map[_graph.target(arc)] == 3) { |
|
1457 type_map[_graph.target(arc)] = 4; |
|
1458 |
|
1459 arc = arc_lists[_graph.oppositeArc(arc)].next; |
|
1460 st.push_back(arc); |
|
1461 } else { |
|
1462 st.pop_back(); |
|
1463 arc = arc_lists[arc].next; |
|
1464 |
|
1465 while (!st.empty() && _graph.oppositeArc(arc) == st.back()) { |
|
1466 arc = st.back(); |
|
1467 st.pop_back(); |
|
1468 arc = arc_lists[arc].next; |
|
1469 } |
|
1470 st.push_back(arc); |
|
1471 } |
|
1472 } |
|
1473 |
|
1474 for (int i = 1; i < int(st.size()); ++i) { |
|
1475 ppath.push_back(st[i]); |
|
1476 } |
|
1477 } |
|
1478 |
|
1479 |
|
1480 int markExternalPath(Node node, OrderMap& order_map, |
|
1481 ChildLists& child_lists, PredMap& pred_map, |
|
1482 AncestorMap& ancestor_map, LowMap& low_map) { |
|
1483 int lp = lowPoint(node, order_map, child_lists, |
|
1484 ancestor_map, low_map); |
|
1485 |
|
1486 if (ancestor_map[node] != lp) { |
|
1487 node = child_lists[node].first; |
|
1488 _kuratowski[pred_map[node]] = true; |
|
1489 |
|
1490 while (ancestor_map[node] != lp) { |
|
1491 for (OutArcIt e(_graph, node); e != INVALID; ++e) { |
|
1492 Node tnode = _graph.target(e); |
|
1493 if (order_map[tnode] > order_map[node] && low_map[tnode] == lp) { |
|
1494 node = tnode; |
|
1495 _kuratowski[e] = true; |
|
1496 break; |
|
1497 } |
|
1498 } |
|
1499 } |
|
1500 } |
|
1501 |
|
1502 for (OutArcIt e(_graph, node); e != INVALID; ++e) { |
|
1503 if (order_map[_graph.target(e)] == lp) { |
|
1504 _kuratowski[e] = true; |
|
1505 break; |
|
1506 } |
|
1507 } |
|
1508 |
|
1509 return lp; |
|
1510 } |
|
1511 |
|
1512 void markPertinentPath(Node node, OrderMap& order_map, |
|
1513 NodeData& node_data, ArcLists& arc_lists, |
|
1514 EmbedArc& embed_arc, MergeRoots& merge_roots) { |
|
1515 while (embed_arc[node] == INVALID) { |
|
1516 int n = merge_roots[node].front(); |
|
1517 Arc arc = node_data[n].first; |
|
1518 |
|
1519 _kuratowski.set(arc, true); |
|
1520 |
|
1521 Node pred = node; |
|
1522 node = _graph.target(arc); |
|
1523 while (!pertinent(node, embed_arc, merge_roots)) { |
|
1524 arc = node_data[order_map[node]].first; |
|
1525 if (_graph.target(arc) == pred) { |
|
1526 arc = arc_lists[arc].next; |
|
1527 } |
|
1528 _kuratowski.set(arc, true); |
|
1529 pred = node; |
|
1530 node = _graph.target(arc); |
|
1531 } |
|
1532 } |
|
1533 _kuratowski.set(embed_arc[node], true); |
|
1534 } |
|
1535 |
|
1536 void markPredPath(Node node, Node snode, PredMap& pred_map) { |
|
1537 while (node != snode) { |
|
1538 _kuratowski.set(pred_map[node], true); |
|
1539 node = _graph.source(pred_map[node]); |
|
1540 } |
|
1541 } |
|
1542 |
|
1543 void markFacePath(Node ynode, Node xnode, |
|
1544 OrderMap& order_map, NodeData& node_data) { |
|
1545 Arc arc = node_data[order_map[ynode]].first; |
|
1546 Node node = _graph.target(arc); |
|
1547 _kuratowski.set(arc, true); |
|
1548 |
|
1549 while (node != xnode) { |
|
1550 arc = node_data[order_map[node]].first; |
|
1551 _kuratowski.set(arc, true); |
|
1552 node = _graph.target(arc); |
|
1553 } |
|
1554 } |
|
1555 |
|
1556 void markInternalPath(std::vector<Arc>& path) { |
|
1557 for (int i = 0; i < int(path.size()); ++i) { |
|
1558 _kuratowski.set(path[i], true); |
|
1559 } |
|
1560 } |
|
1561 |
|
1562 void markPilePath(std::vector<Arc>& path) { |
|
1563 for (int i = 0; i < int(path.size()); ++i) { |
|
1564 _kuratowski.set(path[i], true); |
|
1565 } |
|
1566 } |
|
1567 |
|
1568 void isolateKuratowski(Arc arc, NodeData& node_data, |
|
1569 ArcLists& arc_lists, FlipMap& flip_map, |
|
1570 OrderMap& order_map, OrderList& order_list, |
|
1571 PredMap& pred_map, ChildLists& child_lists, |
|
1572 AncestorMap& ancestor_map, LowMap& low_map, |
|
1573 EmbedArc& embed_arc, MergeRoots& merge_roots) { |
|
1574 |
|
1575 Node root = _graph.source(arc); |
|
1576 Node enode = _graph.target(arc); |
|
1577 |
|
1578 int rorder = order_map[root]; |
|
1579 |
|
1580 TypeMap type_map(_graph, 0); |
|
1581 |
|
1582 int rn = findComponentRoot(root, enode, child_lists, |
|
1583 order_map, order_list); |
|
1584 |
|
1585 Node xnode = order_list[node_data[rn].next]; |
|
1586 Node ynode = order_list[node_data[rn].prev]; |
|
1587 |
|
1588 // Minor-A |
|
1589 { |
|
1590 while (!merge_roots[xnode].empty() || !merge_roots[ynode].empty()) { |
|
1591 |
|
1592 if (!merge_roots[xnode].empty()) { |
|
1593 root = xnode; |
|
1594 rn = merge_roots[xnode].front(); |
|
1595 } else { |
|
1596 root = ynode; |
|
1597 rn = merge_roots[ynode].front(); |
|
1598 } |
|
1599 |
|
1600 xnode = order_list[node_data[rn].next]; |
|
1601 ynode = order_list[node_data[rn].prev]; |
|
1602 } |
|
1603 |
|
1604 if (root != _graph.source(arc)) { |
|
1605 orientComponent(root, rn, order_map, pred_map, |
|
1606 node_data, arc_lists, flip_map, type_map); |
|
1607 markFacePath(root, root, order_map, node_data); |
|
1608 int xlp = markExternalPath(xnode, order_map, child_lists, |
|
1609 pred_map, ancestor_map, low_map); |
|
1610 int ylp = markExternalPath(ynode, order_map, child_lists, |
|
1611 pred_map, ancestor_map, low_map); |
|
1612 markPredPath(root, order_list[xlp < ylp ? xlp : ylp], pred_map); |
|
1613 Node lwnode = findPertinent(ynode, order_map, node_data, |
|
1614 embed_arc, merge_roots); |
|
1615 |
|
1616 markPertinentPath(lwnode, order_map, node_data, arc_lists, |
|
1617 embed_arc, merge_roots); |
|
1618 |
|
1619 return; |
|
1620 } |
|
1621 } |
|
1622 |
|
1623 orientComponent(root, rn, order_map, pred_map, |
|
1624 node_data, arc_lists, flip_map, type_map); |
|
1625 |
|
1626 Node wnode = findPertinent(ynode, order_map, node_data, |
|
1627 embed_arc, merge_roots); |
|
1628 setFaceFlags(root, wnode, ynode, xnode, order_map, node_data, type_map); |
|
1629 |
|
1630 |
|
1631 //Minor-B |
|
1632 if (!merge_roots[wnode].empty()) { |
|
1633 int cn = merge_roots[wnode].back(); |
|
1634 Node rep = order_list[cn - order_list.size()]; |
|
1635 if (low_map[rep] < rorder) { |
|
1636 markFacePath(root, root, order_map, node_data); |
|
1637 int xlp = markExternalPath(xnode, order_map, child_lists, |
|
1638 pred_map, ancestor_map, low_map); |
|
1639 int ylp = markExternalPath(ynode, order_map, child_lists, |
|
1640 pred_map, ancestor_map, low_map); |
|
1641 |
|
1642 Node lwnode, lznode; |
|
1643 markCommonPath(wnode, rorder, lwnode, lznode, order_list, |
|
1644 order_map, node_data, arc_lists, embed_arc, |
|
1645 merge_roots, child_lists, ancestor_map, low_map); |
|
1646 |
|
1647 markPertinentPath(lwnode, order_map, node_data, arc_lists, |
|
1648 embed_arc, merge_roots); |
|
1649 int zlp = markExternalPath(lznode, order_map, child_lists, |
|
1650 pred_map, ancestor_map, low_map); |
|
1651 |
|
1652 int minlp = xlp < ylp ? xlp : ylp; |
|
1653 if (zlp < minlp) minlp = zlp; |
|
1654 |
|
1655 int maxlp = xlp > ylp ? xlp : ylp; |
|
1656 if (zlp > maxlp) maxlp = zlp; |
|
1657 |
|
1658 markPredPath(order_list[maxlp], order_list[minlp], pred_map); |
|
1659 |
|
1660 return; |
|
1661 } |
|
1662 } |
|
1663 |
|
1664 Node pxnode, pynode; |
|
1665 std::vector<Arc> ipath; |
|
1666 findInternalPath(ipath, wnode, root, type_map, order_map, |
|
1667 node_data, arc_lists); |
|
1668 setInternalFlags(ipath, type_map); |
|
1669 pynode = _graph.source(ipath.front()); |
|
1670 pxnode = _graph.target(ipath.back()); |
|
1671 |
|
1672 wnode = findPertinent(pynode, order_map, node_data, |
|
1673 embed_arc, merge_roots); |
|
1674 |
|
1675 // Minor-C |
|
1676 { |
|
1677 if (type_map[_graph.source(ipath.front())] == HIGHY) { |
|
1678 if (type_map[_graph.target(ipath.back())] == HIGHX) { |
|
1679 markFacePath(xnode, pxnode, order_map, node_data); |
|
1680 } |
|
1681 markFacePath(root, xnode, order_map, node_data); |
|
1682 markPertinentPath(wnode, order_map, node_data, arc_lists, |
|
1683 embed_arc, merge_roots); |
|
1684 markInternalPath(ipath); |
|
1685 int xlp = markExternalPath(xnode, order_map, child_lists, |
|
1686 pred_map, ancestor_map, low_map); |
|
1687 int ylp = markExternalPath(ynode, order_map, child_lists, |
|
1688 pred_map, ancestor_map, low_map); |
|
1689 markPredPath(root, order_list[xlp < ylp ? xlp : ylp], pred_map); |
|
1690 return; |
|
1691 } |
|
1692 |
|
1693 if (type_map[_graph.target(ipath.back())] == HIGHX) { |
|
1694 markFacePath(ynode, root, order_map, node_data); |
|
1695 markPertinentPath(wnode, order_map, node_data, arc_lists, |
|
1696 embed_arc, merge_roots); |
|
1697 markInternalPath(ipath); |
|
1698 int xlp = markExternalPath(xnode, order_map, child_lists, |
|
1699 pred_map, ancestor_map, low_map); |
|
1700 int ylp = markExternalPath(ynode, order_map, child_lists, |
|
1701 pred_map, ancestor_map, low_map); |
|
1702 markPredPath(root, order_list[xlp < ylp ? xlp : ylp], pred_map); |
|
1703 return; |
|
1704 } |
|
1705 } |
|
1706 |
|
1707 std::vector<Arc> ppath; |
|
1708 findPilePath(ppath, root, type_map, order_map, node_data, arc_lists); |
|
1709 |
|
1710 // Minor-D |
|
1711 if (!ppath.empty()) { |
|
1712 markFacePath(ynode, xnode, order_map, node_data); |
|
1713 markPertinentPath(wnode, order_map, node_data, arc_lists, |
|
1714 embed_arc, merge_roots); |
|
1715 markPilePath(ppath); |
|
1716 markInternalPath(ipath); |
|
1717 int xlp = markExternalPath(xnode, order_map, child_lists, |
|
1718 pred_map, ancestor_map, low_map); |
|
1719 int ylp = markExternalPath(ynode, order_map, child_lists, |
|
1720 pred_map, ancestor_map, low_map); |
|
1721 markPredPath(root, order_list[xlp < ylp ? xlp : ylp], pred_map); |
|
1722 return; |
|
1723 } |
|
1724 |
|
1725 // Minor-E* |
|
1726 { |
|
1727 |
|
1728 if (!external(wnode, rorder, child_lists, ancestor_map, low_map)) { |
|
1729 Node znode = findExternal(pynode, rorder, order_map, |
|
1730 child_lists, ancestor_map, |
|
1731 low_map, node_data); |
|
1732 |
|
1733 if (type_map[znode] == LOWY) { |
|
1734 markFacePath(root, xnode, order_map, node_data); |
|
1735 markPertinentPath(wnode, order_map, node_data, arc_lists, |
|
1736 embed_arc, merge_roots); |
|
1737 markInternalPath(ipath); |
|
1738 int xlp = markExternalPath(xnode, order_map, child_lists, |
|
1739 pred_map, ancestor_map, low_map); |
|
1740 int zlp = markExternalPath(znode, order_map, child_lists, |
|
1741 pred_map, ancestor_map, low_map); |
|
1742 markPredPath(root, order_list[xlp < zlp ? xlp : zlp], pred_map); |
|
1743 } else { |
|
1744 markFacePath(ynode, root, order_map, node_data); |
|
1745 markPertinentPath(wnode, order_map, node_data, arc_lists, |
|
1746 embed_arc, merge_roots); |
|
1747 markInternalPath(ipath); |
|
1748 int ylp = markExternalPath(ynode, order_map, child_lists, |
|
1749 pred_map, ancestor_map, low_map); |
|
1750 int zlp = markExternalPath(znode, order_map, child_lists, |
|
1751 pred_map, ancestor_map, low_map); |
|
1752 markPredPath(root, order_list[ylp < zlp ? ylp : zlp], pred_map); |
|
1753 } |
|
1754 return; |
|
1755 } |
|
1756 |
|
1757 int xlp = markExternalPath(xnode, order_map, child_lists, |
|
1758 pred_map, ancestor_map, low_map); |
|
1759 int ylp = markExternalPath(ynode, order_map, child_lists, |
|
1760 pred_map, ancestor_map, low_map); |
|
1761 int wlp = markExternalPath(wnode, order_map, child_lists, |
|
1762 pred_map, ancestor_map, low_map); |
|
1763 |
|
1764 if (wlp > xlp && wlp > ylp) { |
|
1765 markFacePath(root, root, order_map, node_data); |
|
1766 markPredPath(root, order_list[xlp < ylp ? xlp : ylp], pred_map); |
|
1767 return; |
|
1768 } |
|
1769 |
|
1770 markInternalPath(ipath); |
|
1771 markPertinentPath(wnode, order_map, node_data, arc_lists, |
|
1772 embed_arc, merge_roots); |
|
1773 |
|
1774 if (xlp > ylp && xlp > wlp) { |
|
1775 markFacePath(root, pynode, order_map, node_data); |
|
1776 markFacePath(wnode, xnode, order_map, node_data); |
|
1777 markPredPath(root, order_list[ylp < wlp ? ylp : wlp], pred_map); |
|
1778 return; |
|
1779 } |
|
1780 |
|
1781 if (ylp > xlp && ylp > wlp) { |
|
1782 markFacePath(pxnode, root, order_map, node_data); |
|
1783 markFacePath(ynode, wnode, order_map, node_data); |
|
1784 markPredPath(root, order_list[xlp < wlp ? xlp : wlp], pred_map); |
|
1785 return; |
|
1786 } |
|
1787 |
|
1788 if (pynode != ynode) { |
|
1789 markFacePath(pxnode, wnode, order_map, node_data); |
|
1790 |
|
1791 int minlp = xlp < ylp ? xlp : ylp; |
|
1792 if (wlp < minlp) minlp = wlp; |
|
1793 |
|
1794 int maxlp = xlp > ylp ? xlp : ylp; |
|
1795 if (wlp > maxlp) maxlp = wlp; |
|
1796 |
|
1797 markPredPath(order_list[maxlp], order_list[minlp], pred_map); |
|
1798 return; |
|
1799 } |
|
1800 |
|
1801 if (pxnode != xnode) { |
|
1802 markFacePath(wnode, pynode, order_map, node_data); |
|
1803 |
|
1804 int minlp = xlp < ylp ? xlp : ylp; |
|
1805 if (wlp < minlp) minlp = wlp; |
|
1806 |
|
1807 int maxlp = xlp > ylp ? xlp : ylp; |
|
1808 if (wlp > maxlp) maxlp = wlp; |
|
1809 |
|
1810 markPredPath(order_list[maxlp], order_list[minlp], pred_map); |
|
1811 return; |
|
1812 } |
|
1813 |
|
1814 markFacePath(root, root, order_map, node_data); |
|
1815 int minlp = xlp < ylp ? xlp : ylp; |
|
1816 if (wlp < minlp) minlp = wlp; |
|
1817 markPredPath(root, order_list[minlp], pred_map); |
|
1818 return; |
|
1819 } |
|
1820 |
|
1821 } |
|
1822 |
|
1823 }; |
|
1824 |
|
1825 namespace _planarity_bits { |
|
1826 |
|
1827 template <typename Graph, typename EmbeddingMap> |
|
1828 void makeConnected(Graph& graph, EmbeddingMap& embedding) { |
|
1829 DfsVisitor<Graph> null_visitor; |
|
1830 DfsVisit<Graph, DfsVisitor<Graph> > dfs(graph, null_visitor); |
|
1831 dfs.init(); |
|
1832 |
|
1833 typename Graph::Node u = INVALID; |
|
1834 for (typename Graph::NodeIt n(graph); n != INVALID; ++n) { |
|
1835 if (!dfs.reached(n)) { |
|
1836 dfs.addSource(n); |
|
1837 dfs.start(); |
|
1838 if (u == INVALID) { |
|
1839 u = n; |
|
1840 } else { |
|
1841 typename Graph::Node v = n; |
|
1842 |
|
1843 typename Graph::Arc ue = typename Graph::OutArcIt(graph, u); |
|
1844 typename Graph::Arc ve = typename Graph::OutArcIt(graph, v); |
|
1845 |
|
1846 typename Graph::Arc e = graph.direct(graph.addEdge(u, v), true); |
|
1847 |
|
1848 if (ue != INVALID) { |
|
1849 embedding[e] = embedding[ue]; |
|
1850 embedding[ue] = e; |
|
1851 } else { |
|
1852 embedding[e] = e; |
|
1853 } |
|
1854 |
|
1855 if (ve != INVALID) { |
|
1856 embedding[graph.oppositeArc(e)] = embedding[ve]; |
|
1857 embedding[ve] = graph.oppositeArc(e); |
|
1858 } else { |
|
1859 embedding[graph.oppositeArc(e)] = graph.oppositeArc(e); |
|
1860 } |
|
1861 } |
|
1862 } |
|
1863 } |
|
1864 } |
|
1865 |
|
1866 template <typename Graph, typename EmbeddingMap> |
|
1867 void makeBiNodeConnected(Graph& graph, EmbeddingMap& embedding) { |
|
1868 typename Graph::template ArcMap<bool> processed(graph); |
|
1869 |
|
1870 std::vector<typename Graph::Arc> arcs; |
|
1871 for (typename Graph::ArcIt e(graph); e != INVALID; ++e) { |
|
1872 arcs.push_back(e); |
|
1873 } |
|
1874 |
|
1875 IterableBoolMap<Graph, typename Graph::Node> visited(graph, false); |
|
1876 |
|
1877 for (int i = 0; i < int(arcs.size()); ++i) { |
|
1878 typename Graph::Arc pp = arcs[i]; |
|
1879 if (processed[pp]) continue; |
|
1880 |
|
1881 typename Graph::Arc e = embedding[graph.oppositeArc(pp)]; |
|
1882 processed[e] = true; |
|
1883 visited.set(graph.source(e), true); |
|
1884 |
|
1885 typename Graph::Arc p = e, l = e; |
|
1886 e = embedding[graph.oppositeArc(e)]; |
|
1887 |
|
1888 while (e != l) { |
|
1889 processed[e] = true; |
|
1890 |
|
1891 if (visited[graph.source(e)]) { |
|
1892 |
|
1893 typename Graph::Arc n = |
|
1894 graph.direct(graph.addEdge(graph.source(p), |
|
1895 graph.target(e)), true); |
|
1896 embedding[n] = p; |
|
1897 embedding[graph.oppositeArc(pp)] = n; |
|
1898 |
|
1899 embedding[graph.oppositeArc(n)] = |
|
1900 embedding[graph.oppositeArc(e)]; |
|
1901 embedding[graph.oppositeArc(e)] = |
|
1902 graph.oppositeArc(n); |
|
1903 |
|
1904 p = n; |
|
1905 e = embedding[graph.oppositeArc(n)]; |
|
1906 } else { |
|
1907 visited.set(graph.source(e), true); |
|
1908 pp = p; |
|
1909 p = e; |
|
1910 e = embedding[graph.oppositeArc(e)]; |
|
1911 } |
|
1912 } |
|
1913 visited.setAll(false); |
|
1914 } |
|
1915 } |
|
1916 |
|
1917 |
|
1918 template <typename Graph, typename EmbeddingMap> |
|
1919 void makeMaxPlanar(Graph& graph, EmbeddingMap& embedding) { |
|
1920 |
|
1921 typename Graph::template NodeMap<int> degree(graph); |
|
1922 |
|
1923 for (typename Graph::NodeIt n(graph); n != INVALID; ++n) { |
|
1924 degree[n] = countIncEdges(graph, n); |
|
1925 } |
|
1926 |
|
1927 typename Graph::template ArcMap<bool> processed(graph); |
|
1928 IterableBoolMap<Graph, typename Graph::Node> visited(graph, false); |
|
1929 |
|
1930 std::vector<typename Graph::Arc> arcs; |
|
1931 for (typename Graph::ArcIt e(graph); e != INVALID; ++e) { |
|
1932 arcs.push_back(e); |
|
1933 } |
|
1934 |
|
1935 for (int i = 0; i < int(arcs.size()); ++i) { |
|
1936 typename Graph::Arc e = arcs[i]; |
|
1937 |
|
1938 if (processed[e]) continue; |
|
1939 processed[e] = true; |
|
1940 |
|
1941 typename Graph::Arc mine = e; |
|
1942 int mind = degree[graph.source(e)]; |
|
1943 |
|
1944 int face_size = 1; |
|
1945 |
|
1946 typename Graph::Arc l = e; |
|
1947 e = embedding[graph.oppositeArc(e)]; |
|
1948 while (l != e) { |
|
1949 processed[e] = true; |
|
1950 |
|
1951 ++face_size; |
|
1952 |
|
1953 if (degree[graph.source(e)] < mind) { |
|
1954 mine = e; |
|
1955 mind = degree[graph.source(e)]; |
|
1956 } |
|
1957 |
|
1958 e = embedding[graph.oppositeArc(e)]; |
|
1959 } |
|
1960 |
|
1961 if (face_size < 4) { |
|
1962 continue; |
|
1963 } |
|
1964 |
|
1965 typename Graph::Node s = graph.source(mine); |
|
1966 for (typename Graph::OutArcIt e(graph, s); e != INVALID; ++e) { |
|
1967 visited.set(graph.target(e), true); |
|
1968 } |
|
1969 |
|
1970 typename Graph::Arc oppe = INVALID; |
|
1971 |
|
1972 e = embedding[graph.oppositeArc(mine)]; |
|
1973 e = embedding[graph.oppositeArc(e)]; |
|
1974 while (graph.target(e) != s) { |
|
1975 if (visited[graph.source(e)]) { |
|
1976 oppe = e; |
|
1977 break; |
|
1978 } |
|
1979 e = embedding[graph.oppositeArc(e)]; |
|
1980 } |
|
1981 visited.setAll(false); |
|
1982 |
|
1983 if (oppe == INVALID) { |
|
1984 |
|
1985 e = embedding[graph.oppositeArc(mine)]; |
|
1986 typename Graph::Arc pn = mine, p = e; |
|
1987 |
|
1988 e = embedding[graph.oppositeArc(e)]; |
|
1989 while (graph.target(e) != s) { |
|
1990 typename Graph::Arc n = |
|
1991 graph.direct(graph.addEdge(s, graph.source(e)), true); |
|
1992 |
|
1993 embedding[n] = pn; |
|
1994 embedding[graph.oppositeArc(n)] = e; |
|
1995 embedding[graph.oppositeArc(p)] = graph.oppositeArc(n); |
|
1996 |
|
1997 pn = n; |
|
1998 |
|
1999 p = e; |
|
2000 e = embedding[graph.oppositeArc(e)]; |
|
2001 } |
|
2002 |
|
2003 embedding[graph.oppositeArc(e)] = pn; |
|
2004 |
|
2005 } else { |
|
2006 |
|
2007 mine = embedding[graph.oppositeArc(mine)]; |
|
2008 s = graph.source(mine); |
|
2009 oppe = embedding[graph.oppositeArc(oppe)]; |
|
2010 typename Graph::Node t = graph.source(oppe); |
|
2011 |
|
2012 typename Graph::Arc ce = graph.direct(graph.addEdge(s, t), true); |
|
2013 embedding[ce] = mine; |
|
2014 embedding[graph.oppositeArc(ce)] = oppe; |
|
2015 |
|
2016 typename Graph::Arc pn = ce, p = oppe; |
|
2017 e = embedding[graph.oppositeArc(oppe)]; |
|
2018 while (graph.target(e) != s) { |
|
2019 typename Graph::Arc n = |
|
2020 graph.direct(graph.addEdge(s, graph.source(e)), true); |
|
2021 |
|
2022 embedding[n] = pn; |
|
2023 embedding[graph.oppositeArc(n)] = e; |
|
2024 embedding[graph.oppositeArc(p)] = graph.oppositeArc(n); |
|
2025 |
|
2026 pn = n; |
|
2027 |
|
2028 p = e; |
|
2029 e = embedding[graph.oppositeArc(e)]; |
|
2030 |
|
2031 } |
|
2032 embedding[graph.oppositeArc(e)] = pn; |
|
2033 |
|
2034 pn = graph.oppositeArc(ce), p = mine; |
|
2035 e = embedding[graph.oppositeArc(mine)]; |
|
2036 while (graph.target(e) != t) { |
|
2037 typename Graph::Arc n = |
|
2038 graph.direct(graph.addEdge(t, graph.source(e)), true); |
|
2039 |
|
2040 embedding[n] = pn; |
|
2041 embedding[graph.oppositeArc(n)] = e; |
|
2042 embedding[graph.oppositeArc(p)] = graph.oppositeArc(n); |
|
2043 |
|
2044 pn = n; |
|
2045 |
|
2046 p = e; |
|
2047 e = embedding[graph.oppositeArc(e)]; |
|
2048 |
|
2049 } |
|
2050 embedding[graph.oppositeArc(e)] = pn; |
|
2051 } |
|
2052 } |
|
2053 } |
|
2054 |
|
2055 } |
|
2056 |
|
2057 /// \ingroup planar |
|
2058 /// |
|
2059 /// \brief Schnyder's planar drawing algorithm |
|
2060 /// |
|
2061 /// The planar drawing algorithm calculates positions for the nodes |
|
2062 /// in the plane which coordinates satisfy that if the arcs are |
|
2063 /// represented with straight lines then they will not intersect |
|
2064 /// each other. |
|
2065 /// |
|
2066 /// Scnyder's algorithm embeds the graph on \c (n-2,n-2) size grid, |
|
2067 /// i.e. each node will be located in the \c [0,n-2]x[0,n-2] square. |
|
2068 /// The time complexity of the algorithm is O(n). |
|
2069 template <typename Graph> |
|
2070 class PlanarDrawing { |
|
2071 public: |
|
2072 |
|
2073 TEMPLATE_GRAPH_TYPEDEFS(Graph); |
|
2074 |
|
2075 /// \brief The point type for store coordinates |
|
2076 typedef dim2::Point<int> Point; |
|
2077 /// \brief The map type for store coordinates |
|
2078 typedef typename Graph::template NodeMap<Point> PointMap; |
|
2079 |
|
2080 |
|
2081 /// \brief Constructor |
|
2082 /// |
|
2083 /// Constructor |
|
2084 /// \pre The graph should be simple, i.e. loop and parallel arc free. |
|
2085 PlanarDrawing(const Graph& graph) |
|
2086 : _graph(graph), _point_map(graph) {} |
|
2087 |
|
2088 private: |
|
2089 |
|
2090 template <typename AuxGraph, typename AuxEmbeddingMap> |
|
2091 void drawing(const AuxGraph& graph, |
|
2092 const AuxEmbeddingMap& next, |
|
2093 PointMap& point_map) { |
|
2094 TEMPLATE_GRAPH_TYPEDEFS(AuxGraph); |
|
2095 |
|
2096 typename AuxGraph::template ArcMap<Arc> prev(graph); |
|
2097 |
|
2098 for (NodeIt n(graph); n != INVALID; ++n) { |
|
2099 Arc e = OutArcIt(graph, n); |
|
2100 |
|
2101 Arc p = e, l = e; |
|
2102 |
|
2103 e = next[e]; |
|
2104 while (e != l) { |
|
2105 prev[e] = p; |
|
2106 p = e; |
|
2107 e = next[e]; |
|
2108 } |
|
2109 prev[e] = p; |
|
2110 } |
|
2111 |
|
2112 Node anode, bnode, cnode; |
|
2113 |
|
2114 { |
|
2115 Arc e = ArcIt(graph); |
|
2116 anode = graph.source(e); |
|
2117 bnode = graph.target(e); |
|
2118 cnode = graph.target(next[graph.oppositeArc(e)]); |
|
2119 } |
|
2120 |
|
2121 IterableBoolMap<AuxGraph, Node> proper(graph, false); |
|
2122 typename AuxGraph::template NodeMap<int> conn(graph, -1); |
|
2123 |
|
2124 conn[anode] = conn[bnode] = -2; |
|
2125 { |
|
2126 for (OutArcIt e(graph, anode); e != INVALID; ++e) { |
|
2127 Node m = graph.target(e); |
|
2128 if (conn[m] == -1) { |
|
2129 conn[m] = 1; |
|
2130 } |
|
2131 } |
|
2132 conn[cnode] = 2; |
|
2133 |
|
2134 for (OutArcIt e(graph, bnode); e != INVALID; ++e) { |
|
2135 Node m = graph.target(e); |
|
2136 if (conn[m] == -1) { |
|
2137 conn[m] = 1; |
|
2138 } else if (conn[m] != -2) { |
|
2139 conn[m] += 1; |
|
2140 Arc pe = graph.oppositeArc(e); |
|
2141 if (conn[graph.target(next[pe])] == -2) { |
|
2142 conn[m] -= 1; |
|
2143 } |
|
2144 if (conn[graph.target(prev[pe])] == -2) { |
|
2145 conn[m] -= 1; |
|
2146 } |
|
2147 |
|
2148 proper.set(m, conn[m] == 1); |
|
2149 } |
|
2150 } |
|
2151 } |
|
2152 |
|
2153 |
|
2154 typename AuxGraph::template ArcMap<int> angle(graph, -1); |
|
2155 |
|
2156 while (proper.trueNum() != 0) { |
|
2157 Node n = typename IterableBoolMap<AuxGraph, Node>::TrueIt(proper); |
|
2158 proper.set(n, false); |
|
2159 conn[n] = -2; |
|
2160 |
|
2161 for (OutArcIt e(graph, n); e != INVALID; ++e) { |
|
2162 Node m = graph.target(e); |
|
2163 if (conn[m] == -1) { |
|
2164 conn[m] = 1; |
|
2165 } else if (conn[m] != -2) { |
|
2166 conn[m] += 1; |
|
2167 Arc pe = graph.oppositeArc(e); |
|
2168 if (conn[graph.target(next[pe])] == -2) { |
|
2169 conn[m] -= 1; |
|
2170 } |
|
2171 if (conn[graph.target(prev[pe])] == -2) { |
|
2172 conn[m] -= 1; |
|
2173 } |
|
2174 |
|
2175 proper.set(m, conn[m] == 1); |
|
2176 } |
|
2177 } |
|
2178 |
|
2179 { |
|
2180 Arc e = OutArcIt(graph, n); |
|
2181 Arc p = e, l = e; |
|
2182 |
|
2183 e = next[e]; |
|
2184 while (e != l) { |
|
2185 |
|
2186 if (conn[graph.target(e)] == -2 && conn[graph.target(p)] == -2) { |
|
2187 Arc f = e; |
|
2188 angle[f] = 0; |
|
2189 f = next[graph.oppositeArc(f)]; |
|
2190 angle[f] = 1; |
|
2191 f = next[graph.oppositeArc(f)]; |
|
2192 angle[f] = 2; |
|
2193 } |
|
2194 |
|
2195 p = e; |
|
2196 e = next[e]; |
|
2197 } |
|
2198 |
|
2199 if (conn[graph.target(e)] == -2 && conn[graph.target(p)] == -2) { |
|
2200 Arc f = e; |
|
2201 angle[f] = 0; |
|
2202 f = next[graph.oppositeArc(f)]; |
|
2203 angle[f] = 1; |
|
2204 f = next[graph.oppositeArc(f)]; |
|
2205 angle[f] = 2; |
|
2206 } |
|
2207 } |
|
2208 } |
|
2209 |
|
2210 typename AuxGraph::template NodeMap<Node> apred(graph, INVALID); |
|
2211 typename AuxGraph::template NodeMap<Node> bpred(graph, INVALID); |
|
2212 typename AuxGraph::template NodeMap<Node> cpred(graph, INVALID); |
|
2213 |
|
2214 typename AuxGraph::template NodeMap<int> apredid(graph, -1); |
|
2215 typename AuxGraph::template NodeMap<int> bpredid(graph, -1); |
|
2216 typename AuxGraph::template NodeMap<int> cpredid(graph, -1); |
|
2217 |
|
2218 for (ArcIt e(graph); e != INVALID; ++e) { |
|
2219 if (angle[e] == angle[next[e]]) { |
|
2220 switch (angle[e]) { |
|
2221 case 2: |
|
2222 apred[graph.target(e)] = graph.source(e); |
|
2223 apredid[graph.target(e)] = graph.id(graph.source(e)); |
|
2224 break; |
|
2225 case 1: |
|
2226 bpred[graph.target(e)] = graph.source(e); |
|
2227 bpredid[graph.target(e)] = graph.id(graph.source(e)); |
|
2228 break; |
|
2229 case 0: |
|
2230 cpred[graph.target(e)] = graph.source(e); |
|
2231 cpredid[graph.target(e)] = graph.id(graph.source(e)); |
|
2232 break; |
|
2233 } |
|
2234 } |
|
2235 } |
|
2236 |
|
2237 cpred[anode] = INVALID; |
|
2238 cpred[bnode] = INVALID; |
|
2239 |
|
2240 std::vector<Node> aorder, border, corder; |
|
2241 |
|
2242 { |
|
2243 typename AuxGraph::template NodeMap<bool> processed(graph, false); |
|
2244 std::vector<Node> st; |
|
2245 for (NodeIt n(graph); n != INVALID; ++n) { |
|
2246 if (!processed[n] && n != bnode && n != cnode) { |
|
2247 st.push_back(n); |
|
2248 processed[n] = true; |
|
2249 Node m = apred[n]; |
|
2250 while (m != INVALID && !processed[m]) { |
|
2251 st.push_back(m); |
|
2252 processed[m] = true; |
|
2253 m = apred[m]; |
|
2254 } |
|
2255 while (!st.empty()) { |
|
2256 aorder.push_back(st.back()); |
|
2257 st.pop_back(); |
|
2258 } |
|
2259 } |
|
2260 } |
|
2261 } |
|
2262 |
|
2263 { |
|
2264 typename AuxGraph::template NodeMap<bool> processed(graph, false); |
|
2265 std::vector<Node> st; |
|
2266 for (NodeIt n(graph); n != INVALID; ++n) { |
|
2267 if (!processed[n] && n != cnode && n != anode) { |
|
2268 st.push_back(n); |
|
2269 processed[n] = true; |
|
2270 Node m = bpred[n]; |
|
2271 while (m != INVALID && !processed[m]) { |
|
2272 st.push_back(m); |
|
2273 processed[m] = true; |
|
2274 m = bpred[m]; |
|
2275 } |
|
2276 while (!st.empty()) { |
|
2277 border.push_back(st.back()); |
|
2278 st.pop_back(); |
|
2279 } |
|
2280 } |
|
2281 } |
|
2282 } |
|
2283 |
|
2284 { |
|
2285 typename AuxGraph::template NodeMap<bool> processed(graph, false); |
|
2286 std::vector<Node> st; |
|
2287 for (NodeIt n(graph); n != INVALID; ++n) { |
|
2288 if (!processed[n] && n != anode && n != bnode) { |
|
2289 st.push_back(n); |
|
2290 processed[n] = true; |
|
2291 Node m = cpred[n]; |
|
2292 while (m != INVALID && !processed[m]) { |
|
2293 st.push_back(m); |
|
2294 processed[m] = true; |
|
2295 m = cpred[m]; |
|
2296 } |
|
2297 while (!st.empty()) { |
|
2298 corder.push_back(st.back()); |
|
2299 st.pop_back(); |
|
2300 } |
|
2301 } |
|
2302 } |
|
2303 } |
|
2304 |
|
2305 typename AuxGraph::template NodeMap<int> atree(graph, 0); |
|
2306 for (int i = aorder.size() - 1; i >= 0; --i) { |
|
2307 Node n = aorder[i]; |
|
2308 atree[n] = 1; |
|
2309 for (OutArcIt e(graph, n); e != INVALID; ++e) { |
|
2310 if (apred[graph.target(e)] == n) { |
|
2311 atree[n] += atree[graph.target(e)]; |
|
2312 } |
|
2313 } |
|
2314 } |
|
2315 |
|
2316 typename AuxGraph::template NodeMap<int> btree(graph, 0); |
|
2317 for (int i = border.size() - 1; i >= 0; --i) { |
|
2318 Node n = border[i]; |
|
2319 btree[n] = 1; |
|
2320 for (OutArcIt e(graph, n); e != INVALID; ++e) { |
|
2321 if (bpred[graph.target(e)] == n) { |
|
2322 btree[n] += btree[graph.target(e)]; |
|
2323 } |
|
2324 } |
|
2325 } |
|
2326 |
|
2327 typename AuxGraph::template NodeMap<int> apath(graph, 0); |
|
2328 apath[bnode] = apath[cnode] = 1; |
|
2329 typename AuxGraph::template NodeMap<int> apath_btree(graph, 0); |
|
2330 apath_btree[bnode] = btree[bnode]; |
|
2331 for (int i = 1; i < int(aorder.size()); ++i) { |
|
2332 Node n = aorder[i]; |
|
2333 apath[n] = apath[apred[n]] + 1; |
|
2334 apath_btree[n] = btree[n] + apath_btree[apred[n]]; |
|
2335 } |
|
2336 |
|
2337 typename AuxGraph::template NodeMap<int> bpath_atree(graph, 0); |
|
2338 bpath_atree[anode] = atree[anode]; |
|
2339 for (int i = 1; i < int(border.size()); ++i) { |
|
2340 Node n = border[i]; |
|
2341 bpath_atree[n] = atree[n] + bpath_atree[bpred[n]]; |
|
2342 } |
|
2343 |
|
2344 typename AuxGraph::template NodeMap<int> cpath(graph, 0); |
|
2345 cpath[anode] = cpath[bnode] = 1; |
|
2346 typename AuxGraph::template NodeMap<int> cpath_atree(graph, 0); |
|
2347 cpath_atree[anode] = atree[anode]; |
|
2348 typename AuxGraph::template NodeMap<int> cpath_btree(graph, 0); |
|
2349 cpath_btree[bnode] = btree[bnode]; |
|
2350 for (int i = 1; i < int(corder.size()); ++i) { |
|
2351 Node n = corder[i]; |
|
2352 cpath[n] = cpath[cpred[n]] + 1; |
|
2353 cpath_atree[n] = atree[n] + cpath_atree[cpred[n]]; |
|
2354 cpath_btree[n] = btree[n] + cpath_btree[cpred[n]]; |
|
2355 } |
|
2356 |
|
2357 typename AuxGraph::template NodeMap<int> third(graph); |
|
2358 for (NodeIt n(graph); n != INVALID; ++n) { |
|
2359 point_map[n].x = |
|
2360 bpath_atree[n] + cpath_atree[n] - atree[n] - cpath[n] + 1; |
|
2361 point_map[n].y = |
|
2362 cpath_btree[n] + apath_btree[n] - btree[n] - apath[n] + 1; |
|
2363 } |
|
2364 |
|
2365 } |
|
2366 |
|
2367 public: |
|
2368 |
|
2369 /// \brief Calculates the node positions |
|
2370 /// |
|
2371 /// This function calculates the node positions. |
|
2372 /// \return %True if the graph is planar. |
|
2373 bool run() { |
|
2374 PlanarEmbedding<Graph> pe(_graph); |
|
2375 if (!pe.run()) return false; |
|
2376 |
|
2377 run(pe); |
|
2378 return true; |
|
2379 } |
|
2380 |
|
2381 /// \brief Calculates the node positions according to a |
|
2382 /// combinatorical embedding |
|
2383 /// |
|
2384 /// This function calculates the node locations. The \c embedding |
|
2385 /// parameter should contain a valid combinatorical embedding, i.e. |
|
2386 /// a valid cyclic order of the arcs. |
|
2387 template <typename EmbeddingMap> |
|
2388 void run(const EmbeddingMap& embedding) { |
|
2389 typedef SmartEdgeSet<Graph> AuxGraph; |
|
2390 |
|
2391 if (3 * countNodes(_graph) - 6 == countEdges(_graph)) { |
|
2392 drawing(_graph, embedding, _point_map); |
|
2393 return; |
|
2394 } |
|
2395 |
|
2396 AuxGraph aux_graph(_graph); |
|
2397 typename AuxGraph::template ArcMap<typename AuxGraph::Arc> |
|
2398 aux_embedding(aux_graph); |
|
2399 |
|
2400 { |
|
2401 |
|
2402 typename Graph::template EdgeMap<typename AuxGraph::Edge> |
|
2403 ref(_graph); |
|
2404 |
|
2405 for (EdgeIt e(_graph); e != INVALID; ++e) { |
|
2406 ref[e] = aux_graph.addEdge(_graph.u(e), _graph.v(e)); |
|
2407 } |
|
2408 |
|
2409 for (EdgeIt e(_graph); e != INVALID; ++e) { |
|
2410 Arc ee = embedding[_graph.direct(e, true)]; |
|
2411 aux_embedding[aux_graph.direct(ref[e], true)] = |
|
2412 aux_graph.direct(ref[ee], _graph.direction(ee)); |
|
2413 ee = embedding[_graph.direct(e, false)]; |
|
2414 aux_embedding[aux_graph.direct(ref[e], false)] = |
|
2415 aux_graph.direct(ref[ee], _graph.direction(ee)); |
|
2416 } |
|
2417 } |
|
2418 _planarity_bits::makeConnected(aux_graph, aux_embedding); |
|
2419 _planarity_bits::makeBiNodeConnected(aux_graph, aux_embedding); |
|
2420 _planarity_bits::makeMaxPlanar(aux_graph, aux_embedding); |
|
2421 drawing(aux_graph, aux_embedding, _point_map); |
|
2422 } |
|
2423 |
|
2424 /// \brief The coordinate of the given node |
|
2425 /// |
|
2426 /// The coordinate of the given node. |
|
2427 Point operator[](const Node& node) const { |
|
2428 return _point_map[node]; |
|
2429 } |
|
2430 |
|
2431 /// \brief Returns the grid embedding in a \e NodeMap. |
|
2432 /// |
|
2433 /// Returns the grid embedding in a \e NodeMap of \c dim2::Point<int> . |
|
2434 const PointMap& coords() const { |
|
2435 return _point_map; |
|
2436 } |
|
2437 |
|
2438 private: |
|
2439 |
|
2440 const Graph& _graph; |
|
2441 PointMap _point_map; |
|
2442 |
|
2443 }; |
|
2444 |
|
2445 namespace _planarity_bits { |
|
2446 |
|
2447 template <typename ColorMap> |
|
2448 class KempeFilter { |
|
2449 public: |
|
2450 typedef typename ColorMap::Key Key; |
|
2451 typedef bool Value; |
|
2452 |
|
2453 KempeFilter(const ColorMap& color_map, |
|
2454 const typename ColorMap::Value& first, |
|
2455 const typename ColorMap::Value& second) |
|
2456 : _color_map(color_map), _first(first), _second(second) {} |
|
2457 |
|
2458 Value operator[](const Key& key) const { |
|
2459 return _color_map[key] == _first || _color_map[key] == _second; |
|
2460 } |
|
2461 |
|
2462 private: |
|
2463 const ColorMap& _color_map; |
|
2464 typename ColorMap::Value _first, _second; |
|
2465 }; |
|
2466 } |
|
2467 |
|
2468 /// \ingroup planar |
|
2469 /// |
|
2470 /// \brief Coloring planar graphs |
|
2471 /// |
|
2472 /// The graph coloring problem is the coloring of the graph nodes |
|
2473 /// that there are not adjacent nodes with the same color. The |
|
2474 /// planar graphs can be always colored with four colors, it is |
|
2475 /// proved by Appel and Haken and their proofs provide a quadratic |
|
2476 /// time algorithm for four coloring, but it could not be used to |
|
2477 /// implement efficient algorithm. The five and six coloring can be |
|
2478 /// made in linear time, but in this class the five coloring has |
|
2479 /// quadratic worst case time complexity. The two coloring (if |
|
2480 /// possible) is solvable with a graph search algorithm and it is |
|
2481 /// implemented in \ref bipartitePartitions() function in LEMON. To |
|
2482 /// decide whether the planar graph is three colorable is |
|
2483 /// NP-complete. |
|
2484 /// |
|
2485 /// This class contains member functions for calculate colorings |
|
2486 /// with five and six colors. The six coloring algorithm is a simple |
|
2487 /// greedy coloring on the backward minimum outgoing order of nodes. |
|
2488 /// This order can be computed as in each phase the node with least |
|
2489 /// outgoing arcs to unprocessed nodes is chosen. This order |
|
2490 /// guarantees that when a node is chosen for coloring it has at |
|
2491 /// most five already colored adjacents. The five coloring algorithm |
|
2492 /// use the same method, but if the greedy approach fails to color |
|
2493 /// with five colors, i.e. the node has five already different |
|
2494 /// colored neighbours, it swaps the colors in one of the connected |
|
2495 /// two colored sets with the Kempe recoloring method. |
|
2496 template <typename Graph> |
|
2497 class PlanarColoring { |
|
2498 public: |
|
2499 |
|
2500 TEMPLATE_GRAPH_TYPEDEFS(Graph); |
|
2501 |
|
2502 /// \brief The map type for store color indexes |
|
2503 typedef typename Graph::template NodeMap<int> IndexMap; |
|
2504 /// \brief The map type for store colors |
|
2505 typedef ComposeMap<Palette, IndexMap> ColorMap; |
|
2506 |
|
2507 /// \brief Constructor |
|
2508 /// |
|
2509 /// Constructor |
|
2510 /// \pre The graph should be simple, i.e. loop and parallel arc free. |
|
2511 PlanarColoring(const Graph& graph) |
|
2512 : _graph(graph), _color_map(graph), _palette(0) { |
|
2513 _palette.add(Color(1,0,0)); |
|
2514 _palette.add(Color(0,1,0)); |
|
2515 _palette.add(Color(0,0,1)); |
|
2516 _palette.add(Color(1,1,0)); |
|
2517 _palette.add(Color(1,0,1)); |
|
2518 _palette.add(Color(0,1,1)); |
|
2519 } |
|
2520 |
|
2521 /// \brief Returns the \e NodeMap of color indexes |
|
2522 /// |
|
2523 /// Returns the \e NodeMap of color indexes. The values are in the |
|
2524 /// range \c [0..4] or \c [0..5] according to the coloring method. |
|
2525 IndexMap colorIndexMap() const { |
|
2526 return _color_map; |
|
2527 } |
|
2528 |
|
2529 /// \brief Returns the \e NodeMap of colors |
|
2530 /// |
|
2531 /// Returns the \e NodeMap of colors. The values are five or six |
|
2532 /// distinct \ref lemon::Color "colors". |
|
2533 ColorMap colorMap() const { |
|
2534 return composeMap(_palette, _color_map); |
|
2535 } |
|
2536 |
|
2537 /// \brief Returns the color index of the node |
|
2538 /// |
|
2539 /// Returns the color index of the node. The values are in the |
|
2540 /// range \c [0..4] or \c [0..5] according to the coloring method. |
|
2541 int colorIndex(const Node& node) const { |
|
2542 return _color_map[node]; |
|
2543 } |
|
2544 |
|
2545 /// \brief Returns the color of the node |
|
2546 /// |
|
2547 /// Returns the color of the node. The values are five or six |
|
2548 /// distinct \ref lemon::Color "colors". |
|
2549 Color color(const Node& node) const { |
|
2550 return _palette[_color_map[node]]; |
|
2551 } |
|
2552 |
|
2553 |
|
2554 /// \brief Calculates a coloring with at most six colors |
|
2555 /// |
|
2556 /// This function calculates a coloring with at most six colors. The time |
|
2557 /// complexity of this variant is linear in the size of the graph. |
|
2558 /// \return %True when the algorithm could color the graph with six color. |
|
2559 /// If the algorithm fails, then the graph could not be planar. |
|
2560 /// \note This function can return true if the graph is not |
|
2561 /// planar but it can be colored with 6 colors. |
|
2562 bool runSixColoring() { |
|
2563 |
|
2564 typename Graph::template NodeMap<int> heap_index(_graph, -1); |
|
2565 BucketHeap<typename Graph::template NodeMap<int> > heap(heap_index); |
|
2566 |
|
2567 for (NodeIt n(_graph); n != INVALID; ++n) { |
|
2568 _color_map[n] = -2; |
|
2569 heap.push(n, countOutArcs(_graph, n)); |
|
2570 } |
|
2571 |
|
2572 std::vector<Node> order; |
|
2573 |
|
2574 while (!heap.empty()) { |
|
2575 Node n = heap.top(); |
|
2576 heap.pop(); |
|
2577 _color_map[n] = -1; |
|
2578 order.push_back(n); |
|
2579 for (OutArcIt e(_graph, n); e != INVALID; ++e) { |
|
2580 Node t = _graph.runningNode(e); |
|
2581 if (_color_map[t] == -2) { |
|
2582 heap.decrease(t, heap[t] - 1); |
|
2583 } |
|
2584 } |
|
2585 } |
|
2586 |
|
2587 for (int i = order.size() - 1; i >= 0; --i) { |
|
2588 std::vector<bool> forbidden(6, false); |
|
2589 for (OutArcIt e(_graph, order[i]); e != INVALID; ++e) { |
|
2590 Node t = _graph.runningNode(e); |
|
2591 if (_color_map[t] != -1) { |
|
2592 forbidden[_color_map[t]] = true; |
|
2593 } |
|
2594 } |
|
2595 for (int k = 0; k < 6; ++k) { |
|
2596 if (!forbidden[k]) { |
|
2597 _color_map[order[i]] = k; |
|
2598 break; |
|
2599 } |
|
2600 } |
|
2601 if (_color_map[order[i]] == -1) { |
|
2602 return false; |
|
2603 } |
|
2604 } |
|
2605 return true; |
|
2606 } |
|
2607 |
|
2608 private: |
|
2609 |
|
2610 bool recolor(const Node& u, const Node& v) { |
|
2611 int ucolor = _color_map[u]; |
|
2612 int vcolor = _color_map[v]; |
|
2613 typedef _planarity_bits::KempeFilter<IndexMap> KempeFilter; |
|
2614 KempeFilter filter(_color_map, ucolor, vcolor); |
|
2615 |
|
2616 typedef FilterNodes<const Graph, const KempeFilter> KempeGraph; |
|
2617 KempeGraph kempe_graph(_graph, filter); |
|
2618 |
|
2619 std::vector<Node> comp; |
|
2620 Bfs<KempeGraph> bfs(kempe_graph); |
|
2621 bfs.init(); |
|
2622 bfs.addSource(u); |
|
2623 while (!bfs.emptyQueue()) { |
|
2624 Node n = bfs.nextNode(); |
|
2625 if (n == v) return false; |
|
2626 comp.push_back(n); |
|
2627 bfs.processNextNode(); |
|
2628 } |
|
2629 |
|
2630 int scolor = ucolor + vcolor; |
|
2631 for (int i = 0; i < static_cast<int>(comp.size()); ++i) { |
|
2632 _color_map[comp[i]] = scolor - _color_map[comp[i]]; |
|
2633 } |
|
2634 |
|
2635 return true; |
|
2636 } |
|
2637 |
|
2638 template <typename EmbeddingMap> |
|
2639 void kempeRecoloring(const Node& node, const EmbeddingMap& embedding) { |
|
2640 std::vector<Node> nodes; |
|
2641 nodes.reserve(4); |
|
2642 |
|
2643 for (Arc e = OutArcIt(_graph, node); e != INVALID; e = embedding[e]) { |
|
2644 Node t = _graph.target(e); |
|
2645 if (_color_map[t] != -1) { |
|
2646 nodes.push_back(t); |
|
2647 if (nodes.size() == 4) break; |
|
2648 } |
|
2649 } |
|
2650 |
|
2651 int color = _color_map[nodes[0]]; |
|
2652 if (recolor(nodes[0], nodes[2])) { |
|
2653 _color_map[node] = color; |
|
2654 } else { |
|
2655 color = _color_map[nodes[1]]; |
|
2656 recolor(nodes[1], nodes[3]); |
|
2657 _color_map[node] = color; |
|
2658 } |
|
2659 } |
|
2660 |
|
2661 public: |
|
2662 |
|
2663 /// \brief Calculates a coloring with at most five colors |
|
2664 /// |
|
2665 /// This function calculates a coloring with at most five |
|
2666 /// colors. The worst case time complexity of this variant is |
|
2667 /// quadratic in the size of the graph. |
|
2668 template <typename EmbeddingMap> |
|
2669 void runFiveColoring(const EmbeddingMap& embedding) { |
|
2670 |
|
2671 typename Graph::template NodeMap<int> heap_index(_graph, -1); |
|
2672 BucketHeap<typename Graph::template NodeMap<int> > heap(heap_index); |
|
2673 |
|
2674 for (NodeIt n(_graph); n != INVALID; ++n) { |
|
2675 _color_map[n] = -2; |
|
2676 heap.push(n, countOutArcs(_graph, n)); |
|
2677 } |
|
2678 |
|
2679 std::vector<Node> order; |
|
2680 |
|
2681 while (!heap.empty()) { |
|
2682 Node n = heap.top(); |
|
2683 heap.pop(); |
|
2684 _color_map[n] = -1; |
|
2685 order.push_back(n); |
|
2686 for (OutArcIt e(_graph, n); e != INVALID; ++e) { |
|
2687 Node t = _graph.runningNode(e); |
|
2688 if (_color_map[t] == -2) { |
|
2689 heap.decrease(t, heap[t] - 1); |
|
2690 } |
|
2691 } |
|
2692 } |
|
2693 |
|
2694 for (int i = order.size() - 1; i >= 0; --i) { |
|
2695 std::vector<bool> forbidden(5, false); |
|
2696 for (OutArcIt e(_graph, order[i]); e != INVALID; ++e) { |
|
2697 Node t = _graph.runningNode(e); |
|
2698 if (_color_map[t] != -1) { |
|
2699 forbidden[_color_map[t]] = true; |
|
2700 } |
|
2701 } |
|
2702 for (int k = 0; k < 5; ++k) { |
|
2703 if (!forbidden[k]) { |
|
2704 _color_map[order[i]] = k; |
|
2705 break; |
|
2706 } |
|
2707 } |
|
2708 if (_color_map[order[i]] == -1) { |
|
2709 kempeRecoloring(order[i], embedding); |
|
2710 } |
|
2711 } |
|
2712 } |
|
2713 |
|
2714 /// \brief Calculates a coloring with at most five colors |
|
2715 /// |
|
2716 /// This function calculates a coloring with at most five |
|
2717 /// colors. The worst case time complexity of this variant is |
|
2718 /// quadratic in the size of the graph. |
|
2719 /// \return %True when the graph is planar. |
|
2720 bool runFiveColoring() { |
|
2721 PlanarEmbedding<Graph> pe(_graph); |
|
2722 if (!pe.run()) return false; |
|
2723 |
|
2724 runFiveColoring(pe.embeddingMap()); |
|
2725 return true; |
|
2726 } |
|
2727 |
|
2728 private: |
|
2729 |
|
2730 const Graph& _graph; |
|
2731 IndexMap _color_map; |
|
2732 Palette _palette; |
|
2733 }; |
|
2734 |
|
2735 } |
|
2736 |
|
2737 #endif |