lemon/max_matching.h
changeset 594 d657c71db7db
parent 590 b61354458b59
equal deleted inserted replaced
8:1ebc4b0acb38 -1:000000000000
     1 /* -*- mode: C++; indent-tabs-mode: nil; -*-
       
     2  *
       
     3  * This file is a part of LEMON, a generic C++ optimization library.
       
     4  *
       
     5  * Copyright (C) 2003-2009
       
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
       
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
       
     8  *
       
     9  * Permission to use, modify and distribute this software is granted
       
    10  * provided that this copyright notice appears in all copies. For
       
    11  * precise terms see the accompanying LICENSE file.
       
    12  *
       
    13  * This software is provided "AS IS" with no warranty of any kind,
       
    14  * express or implied, and with no claim as to its suitability for any
       
    15  * purpose.
       
    16  *
       
    17  */
       
    18 
       
    19 #ifndef LEMON_MAX_MATCHING_H
       
    20 #define LEMON_MAX_MATCHING_H
       
    21 
       
    22 #include <vector>
       
    23 #include <queue>
       
    24 #include <set>
       
    25 #include <limits>
       
    26 
       
    27 #include <lemon/core.h>
       
    28 #include <lemon/unionfind.h>
       
    29 #include <lemon/bin_heap.h>
       
    30 #include <lemon/maps.h>
       
    31 
       
    32 ///\ingroup matching
       
    33 ///\file
       
    34 ///\brief Maximum matching algorithms in general graphs.
       
    35 
       
    36 namespace lemon {
       
    37 
       
    38   /// \ingroup matching
       
    39   ///
       
    40   /// \brief Maximum cardinality matching in general graphs
       
    41   ///
       
    42   /// This class implements Edmonds' alternating forest matching algorithm
       
    43   /// for finding a maximum cardinality matching in a general undirected graph.
       
    44   /// It can be started from an arbitrary initial matching 
       
    45   /// (the default is the empty one).
       
    46   ///
       
    47   /// The dual solution of the problem is a map of the nodes to
       
    48   /// \ref MaxMatching::Status "Status", having values \c EVEN (or \c D),
       
    49   /// \c ODD (or \c A) and \c MATCHED (or \c C) defining the Gallai-Edmonds
       
    50   /// decomposition of the graph. The nodes in \c EVEN/D induce a subgraph
       
    51   /// with factor-critical components, the nodes in \c ODD/A form the
       
    52   /// canonical barrier, and the nodes in \c MATCHED/C induce a graph having
       
    53   /// a perfect matching. The number of the factor-critical components
       
    54   /// minus the number of barrier nodes is a lower bound on the
       
    55   /// unmatched nodes, and the matching is optimal if and only if this bound is
       
    56   /// tight. This decomposition can be obtained using \ref status() or
       
    57   /// \ref statusMap() after running the algorithm.
       
    58   ///
       
    59   /// \tparam GR The undirected graph type the algorithm runs on.
       
    60   template <typename GR>
       
    61   class MaxMatching {
       
    62   public:
       
    63 
       
    64     /// The graph type of the algorithm
       
    65     typedef GR Graph;
       
    66     /// The type of the matching map
       
    67     typedef typename Graph::template NodeMap<typename Graph::Arc>
       
    68     MatchingMap;
       
    69 
       
    70     ///\brief Status constants for Gallai-Edmonds decomposition.
       
    71     ///
       
    72     ///These constants are used for indicating the Gallai-Edmonds 
       
    73     ///decomposition of a graph. The nodes with status \c EVEN (or \c D)
       
    74     ///induce a subgraph with factor-critical components, the nodes with
       
    75     ///status \c ODD (or \c A) form the canonical barrier, and the nodes
       
    76     ///with status \c MATCHED (or \c C) induce a subgraph having a 
       
    77     ///perfect matching.
       
    78     enum Status {
       
    79       EVEN = 1,       ///< = 1. (\c D is an alias for \c EVEN.)
       
    80       D = 1,
       
    81       MATCHED = 0,    ///< = 0. (\c C is an alias for \c MATCHED.)
       
    82       C = 0,
       
    83       ODD = -1,       ///< = -1. (\c A is an alias for \c ODD.)
       
    84       A = -1,
       
    85       UNMATCHED = -2  ///< = -2.
       
    86     };
       
    87 
       
    88     /// The type of the status map
       
    89     typedef typename Graph::template NodeMap<Status> StatusMap;
       
    90 
       
    91   private:
       
    92 
       
    93     TEMPLATE_GRAPH_TYPEDEFS(Graph);
       
    94 
       
    95     typedef UnionFindEnum<IntNodeMap> BlossomSet;
       
    96     typedef ExtendFindEnum<IntNodeMap> TreeSet;
       
    97     typedef RangeMap<Node> NodeIntMap;
       
    98     typedef MatchingMap EarMap;
       
    99     typedef std::vector<Node> NodeQueue;
       
   100 
       
   101     const Graph& _graph;
       
   102     MatchingMap* _matching;
       
   103     StatusMap* _status;
       
   104 
       
   105     EarMap* _ear;
       
   106 
       
   107     IntNodeMap* _blossom_set_index;
       
   108     BlossomSet* _blossom_set;
       
   109     NodeIntMap* _blossom_rep;
       
   110 
       
   111     IntNodeMap* _tree_set_index;
       
   112     TreeSet* _tree_set;
       
   113 
       
   114     NodeQueue _node_queue;
       
   115     int _process, _postpone, _last;
       
   116 
       
   117     int _node_num;
       
   118 
       
   119   private:
       
   120 
       
   121     void createStructures() {
       
   122       _node_num = countNodes(_graph);
       
   123       if (!_matching) {
       
   124         _matching = new MatchingMap(_graph);
       
   125       }
       
   126       if (!_status) {
       
   127         _status = new StatusMap(_graph);
       
   128       }
       
   129       if (!_ear) {
       
   130         _ear = new EarMap(_graph);
       
   131       }
       
   132       if (!_blossom_set) {
       
   133         _blossom_set_index = new IntNodeMap(_graph);
       
   134         _blossom_set = new BlossomSet(*_blossom_set_index);
       
   135       }
       
   136       if (!_blossom_rep) {
       
   137         _blossom_rep = new NodeIntMap(_node_num);
       
   138       }
       
   139       if (!_tree_set) {
       
   140         _tree_set_index = new IntNodeMap(_graph);
       
   141         _tree_set = new TreeSet(*_tree_set_index);
       
   142       }
       
   143       _node_queue.resize(_node_num);
       
   144     }
       
   145 
       
   146     void destroyStructures() {
       
   147       if (_matching) {
       
   148         delete _matching;
       
   149       }
       
   150       if (_status) {
       
   151         delete _status;
       
   152       }
       
   153       if (_ear) {
       
   154         delete _ear;
       
   155       }
       
   156       if (_blossom_set) {
       
   157         delete _blossom_set;
       
   158         delete _blossom_set_index;
       
   159       }
       
   160       if (_blossom_rep) {
       
   161         delete _blossom_rep;
       
   162       }
       
   163       if (_tree_set) {
       
   164         delete _tree_set_index;
       
   165         delete _tree_set;
       
   166       }
       
   167     }
       
   168 
       
   169     void processDense(const Node& n) {
       
   170       _process = _postpone = _last = 0;
       
   171       _node_queue[_last++] = n;
       
   172 
       
   173       while (_process != _last) {
       
   174         Node u = _node_queue[_process++];
       
   175         for (OutArcIt a(_graph, u); a != INVALID; ++a) {
       
   176           Node v = _graph.target(a);
       
   177           if ((*_status)[v] == MATCHED) {
       
   178             extendOnArc(a);
       
   179           } else if ((*_status)[v] == UNMATCHED) {
       
   180             augmentOnArc(a);
       
   181             return;
       
   182           }
       
   183         }
       
   184       }
       
   185 
       
   186       while (_postpone != _last) {
       
   187         Node u = _node_queue[_postpone++];
       
   188 
       
   189         for (OutArcIt a(_graph, u); a != INVALID ; ++a) {
       
   190           Node v = _graph.target(a);
       
   191 
       
   192           if ((*_status)[v] == EVEN) {
       
   193             if (_blossom_set->find(u) != _blossom_set->find(v)) {
       
   194               shrinkOnEdge(a);
       
   195             }
       
   196           }
       
   197 
       
   198           while (_process != _last) {
       
   199             Node w = _node_queue[_process++];
       
   200             for (OutArcIt b(_graph, w); b != INVALID; ++b) {
       
   201               Node x = _graph.target(b);
       
   202               if ((*_status)[x] == MATCHED) {
       
   203                 extendOnArc(b);
       
   204               } else if ((*_status)[x] == UNMATCHED) {
       
   205                 augmentOnArc(b);
       
   206                 return;
       
   207               }
       
   208             }
       
   209           }
       
   210         }
       
   211       }
       
   212     }
       
   213 
       
   214     void processSparse(const Node& n) {
       
   215       _process = _last = 0;
       
   216       _node_queue[_last++] = n;
       
   217       while (_process != _last) {
       
   218         Node u = _node_queue[_process++];
       
   219         for (OutArcIt a(_graph, u); a != INVALID; ++a) {
       
   220           Node v = _graph.target(a);
       
   221 
       
   222           if ((*_status)[v] == EVEN) {
       
   223             if (_blossom_set->find(u) != _blossom_set->find(v)) {
       
   224               shrinkOnEdge(a);
       
   225             }
       
   226           } else if ((*_status)[v] == MATCHED) {
       
   227             extendOnArc(a);
       
   228           } else if ((*_status)[v] == UNMATCHED) {
       
   229             augmentOnArc(a);
       
   230             return;
       
   231           }
       
   232         }
       
   233       }
       
   234     }
       
   235 
       
   236     void shrinkOnEdge(const Edge& e) {
       
   237       Node nca = INVALID;
       
   238 
       
   239       {
       
   240         std::set<Node> left_set, right_set;
       
   241 
       
   242         Node left = (*_blossom_rep)[_blossom_set->find(_graph.u(e))];
       
   243         left_set.insert(left);
       
   244 
       
   245         Node right = (*_blossom_rep)[_blossom_set->find(_graph.v(e))];
       
   246         right_set.insert(right);
       
   247 
       
   248         while (true) {
       
   249           if ((*_matching)[left] == INVALID) break;
       
   250           left = _graph.target((*_matching)[left]);
       
   251           left = (*_blossom_rep)[_blossom_set->
       
   252                                  find(_graph.target((*_ear)[left]))];
       
   253           if (right_set.find(left) != right_set.end()) {
       
   254             nca = left;
       
   255             break;
       
   256           }
       
   257           left_set.insert(left);
       
   258 
       
   259           if ((*_matching)[right] == INVALID) break;
       
   260           right = _graph.target((*_matching)[right]);
       
   261           right = (*_blossom_rep)[_blossom_set->
       
   262                                   find(_graph.target((*_ear)[right]))];
       
   263           if (left_set.find(right) != left_set.end()) {
       
   264             nca = right;
       
   265             break;
       
   266           }
       
   267           right_set.insert(right);
       
   268         }
       
   269 
       
   270         if (nca == INVALID) {
       
   271           if ((*_matching)[left] == INVALID) {
       
   272             nca = right;
       
   273             while (left_set.find(nca) == left_set.end()) {
       
   274               nca = _graph.target((*_matching)[nca]);
       
   275               nca =(*_blossom_rep)[_blossom_set->
       
   276                                    find(_graph.target((*_ear)[nca]))];
       
   277             }
       
   278           } else {
       
   279             nca = left;
       
   280             while (right_set.find(nca) == right_set.end()) {
       
   281               nca = _graph.target((*_matching)[nca]);
       
   282               nca = (*_blossom_rep)[_blossom_set->
       
   283                                    find(_graph.target((*_ear)[nca]))];
       
   284             }
       
   285           }
       
   286         }
       
   287       }
       
   288 
       
   289       {
       
   290 
       
   291         Node node = _graph.u(e);
       
   292         Arc arc = _graph.direct(e, true);
       
   293         Node base = (*_blossom_rep)[_blossom_set->find(node)];
       
   294 
       
   295         while (base != nca) {
       
   296           (*_ear)[node] = arc;
       
   297 
       
   298           Node n = node;
       
   299           while (n != base) {
       
   300             n = _graph.target((*_matching)[n]);
       
   301             Arc a = (*_ear)[n];
       
   302             n = _graph.target(a);
       
   303             (*_ear)[n] = _graph.oppositeArc(a);
       
   304           }
       
   305           node = _graph.target((*_matching)[base]);
       
   306           _tree_set->erase(base);
       
   307           _tree_set->erase(node);
       
   308           _blossom_set->insert(node, _blossom_set->find(base));
       
   309           (*_status)[node] = EVEN;
       
   310           _node_queue[_last++] = node;
       
   311           arc = _graph.oppositeArc((*_ear)[node]);
       
   312           node = _graph.target((*_ear)[node]);
       
   313           base = (*_blossom_rep)[_blossom_set->find(node)];
       
   314           _blossom_set->join(_graph.target(arc), base);
       
   315         }
       
   316       }
       
   317 
       
   318       (*_blossom_rep)[_blossom_set->find(nca)] = nca;
       
   319 
       
   320       {
       
   321 
       
   322         Node node = _graph.v(e);
       
   323         Arc arc = _graph.direct(e, false);
       
   324         Node base = (*_blossom_rep)[_blossom_set->find(node)];
       
   325 
       
   326         while (base != nca) {
       
   327           (*_ear)[node] = arc;
       
   328 
       
   329           Node n = node;
       
   330           while (n != base) {
       
   331             n = _graph.target((*_matching)[n]);
       
   332             Arc a = (*_ear)[n];
       
   333             n = _graph.target(a);
       
   334             (*_ear)[n] = _graph.oppositeArc(a);
       
   335           }
       
   336           node = _graph.target((*_matching)[base]);
       
   337           _tree_set->erase(base);
       
   338           _tree_set->erase(node);
       
   339           _blossom_set->insert(node, _blossom_set->find(base));
       
   340           (*_status)[node] = EVEN;
       
   341           _node_queue[_last++] = node;
       
   342           arc = _graph.oppositeArc((*_ear)[node]);
       
   343           node = _graph.target((*_ear)[node]);
       
   344           base = (*_blossom_rep)[_blossom_set->find(node)];
       
   345           _blossom_set->join(_graph.target(arc), base);
       
   346         }
       
   347       }
       
   348 
       
   349       (*_blossom_rep)[_blossom_set->find(nca)] = nca;
       
   350     }
       
   351 
       
   352     void extendOnArc(const Arc& a) {
       
   353       Node base = _graph.source(a);
       
   354       Node odd = _graph.target(a);
       
   355 
       
   356       (*_ear)[odd] = _graph.oppositeArc(a);
       
   357       Node even = _graph.target((*_matching)[odd]);
       
   358       (*_blossom_rep)[_blossom_set->insert(even)] = even;
       
   359       (*_status)[odd] = ODD;
       
   360       (*_status)[even] = EVEN;
       
   361       int tree = _tree_set->find((*_blossom_rep)[_blossom_set->find(base)]);
       
   362       _tree_set->insert(odd, tree);
       
   363       _tree_set->insert(even, tree);
       
   364       _node_queue[_last++] = even;
       
   365 
       
   366     }
       
   367 
       
   368     void augmentOnArc(const Arc& a) {
       
   369       Node even = _graph.source(a);
       
   370       Node odd = _graph.target(a);
       
   371 
       
   372       int tree = _tree_set->find((*_blossom_rep)[_blossom_set->find(even)]);
       
   373 
       
   374       (*_matching)[odd] = _graph.oppositeArc(a);
       
   375       (*_status)[odd] = MATCHED;
       
   376 
       
   377       Arc arc = (*_matching)[even];
       
   378       (*_matching)[even] = a;
       
   379 
       
   380       while (arc != INVALID) {
       
   381         odd = _graph.target(arc);
       
   382         arc = (*_ear)[odd];
       
   383         even = _graph.target(arc);
       
   384         (*_matching)[odd] = arc;
       
   385         arc = (*_matching)[even];
       
   386         (*_matching)[even] = _graph.oppositeArc((*_matching)[odd]);
       
   387       }
       
   388 
       
   389       for (typename TreeSet::ItemIt it(*_tree_set, tree);
       
   390            it != INVALID; ++it) {
       
   391         if ((*_status)[it] == ODD) {
       
   392           (*_status)[it] = MATCHED;
       
   393         } else {
       
   394           int blossom = _blossom_set->find(it);
       
   395           for (typename BlossomSet::ItemIt jt(*_blossom_set, blossom);
       
   396                jt != INVALID; ++jt) {
       
   397             (*_status)[jt] = MATCHED;
       
   398           }
       
   399           _blossom_set->eraseClass(blossom);
       
   400         }
       
   401       }
       
   402       _tree_set->eraseClass(tree);
       
   403 
       
   404     }
       
   405 
       
   406   public:
       
   407 
       
   408     /// \brief Constructor
       
   409     ///
       
   410     /// Constructor.
       
   411     MaxMatching(const Graph& graph)
       
   412       : _graph(graph), _matching(0), _status(0), _ear(0),
       
   413         _blossom_set_index(0), _blossom_set(0), _blossom_rep(0),
       
   414         _tree_set_index(0), _tree_set(0) {}
       
   415 
       
   416     ~MaxMatching() {
       
   417       destroyStructures();
       
   418     }
       
   419 
       
   420     /// \name Execution Control
       
   421     /// The simplest way to execute the algorithm is to use the
       
   422     /// \c run() member function.\n
       
   423     /// If you need better control on the execution, you have to call
       
   424     /// one of the functions \ref init(), \ref greedyInit() or
       
   425     /// \ref matchingInit() first, then you can start the algorithm with
       
   426     /// \ref startSparse() or \ref startDense().
       
   427 
       
   428     ///@{
       
   429 
       
   430     /// \brief Set the initial matching to the empty matching.
       
   431     ///
       
   432     /// This function sets the initial matching to the empty matching.
       
   433     void init() {
       
   434       createStructures();
       
   435       for(NodeIt n(_graph); n != INVALID; ++n) {
       
   436         (*_matching)[n] = INVALID;
       
   437         (*_status)[n] = UNMATCHED;
       
   438       }
       
   439     }
       
   440 
       
   441     /// \brief Find an initial matching in a greedy way.
       
   442     ///
       
   443     /// This function finds an initial matching in a greedy way.
       
   444     void greedyInit() {
       
   445       createStructures();
       
   446       for (NodeIt n(_graph); n != INVALID; ++n) {
       
   447         (*_matching)[n] = INVALID;
       
   448         (*_status)[n] = UNMATCHED;
       
   449       }
       
   450       for (NodeIt n(_graph); n != INVALID; ++n) {
       
   451         if ((*_matching)[n] == INVALID) {
       
   452           for (OutArcIt a(_graph, n); a != INVALID ; ++a) {
       
   453             Node v = _graph.target(a);
       
   454             if ((*_matching)[v] == INVALID && v != n) {
       
   455               (*_matching)[n] = a;
       
   456               (*_status)[n] = MATCHED;
       
   457               (*_matching)[v] = _graph.oppositeArc(a);
       
   458               (*_status)[v] = MATCHED;
       
   459               break;
       
   460             }
       
   461           }
       
   462         }
       
   463       }
       
   464     }
       
   465 
       
   466 
       
   467     /// \brief Initialize the matching from a map.
       
   468     ///
       
   469     /// This function initializes the matching from a \c bool valued edge
       
   470     /// map. This map should have the property that there are no two incident
       
   471     /// edges with \c true value, i.e. it really contains a matching.
       
   472     /// \return \c true if the map contains a matching.
       
   473     template <typename MatchingMap>
       
   474     bool matchingInit(const MatchingMap& matching) {
       
   475       createStructures();
       
   476 
       
   477       for (NodeIt n(_graph); n != INVALID; ++n) {
       
   478         (*_matching)[n] = INVALID;
       
   479         (*_status)[n] = UNMATCHED;
       
   480       }
       
   481       for(EdgeIt e(_graph); e!=INVALID; ++e) {
       
   482         if (matching[e]) {
       
   483 
       
   484           Node u = _graph.u(e);
       
   485           if ((*_matching)[u] != INVALID) return false;
       
   486           (*_matching)[u] = _graph.direct(e, true);
       
   487           (*_status)[u] = MATCHED;
       
   488 
       
   489           Node v = _graph.v(e);
       
   490           if ((*_matching)[v] != INVALID) return false;
       
   491           (*_matching)[v] = _graph.direct(e, false);
       
   492           (*_status)[v] = MATCHED;
       
   493         }
       
   494       }
       
   495       return true;
       
   496     }
       
   497 
       
   498     /// \brief Start Edmonds' algorithm
       
   499     ///
       
   500     /// This function runs the original Edmonds' algorithm.
       
   501     ///
       
   502     /// \pre \ref Init(), \ref greedyInit() or \ref matchingInit() must be
       
   503     /// called before using this function.
       
   504     void startSparse() {
       
   505       for(NodeIt n(_graph); n != INVALID; ++n) {
       
   506         if ((*_status)[n] == UNMATCHED) {
       
   507           (*_blossom_rep)[_blossom_set->insert(n)] = n;
       
   508           _tree_set->insert(n);
       
   509           (*_status)[n] = EVEN;
       
   510           processSparse(n);
       
   511         }
       
   512       }
       
   513     }
       
   514 
       
   515     /// \brief Start Edmonds' algorithm with a heuristic improvement 
       
   516     /// for dense graphs
       
   517     ///
       
   518     /// This function runs Edmonds' algorithm with a heuristic of postponing
       
   519     /// shrinks, therefore resulting in a faster algorithm for dense graphs.
       
   520     ///
       
   521     /// \pre \ref Init(), \ref greedyInit() or \ref matchingInit() must be
       
   522     /// called before using this function.
       
   523     void startDense() {
       
   524       for(NodeIt n(_graph); n != INVALID; ++n) {
       
   525         if ((*_status)[n] == UNMATCHED) {
       
   526           (*_blossom_rep)[_blossom_set->insert(n)] = n;
       
   527           _tree_set->insert(n);
       
   528           (*_status)[n] = EVEN;
       
   529           processDense(n);
       
   530         }
       
   531       }
       
   532     }
       
   533 
       
   534 
       
   535     /// \brief Run Edmonds' algorithm
       
   536     ///
       
   537     /// This function runs Edmonds' algorithm. An additional heuristic of 
       
   538     /// postponing shrinks is used for relatively dense graphs 
       
   539     /// (for which <tt>m>=2*n</tt> holds).
       
   540     void run() {
       
   541       if (countEdges(_graph) < 2 * countNodes(_graph)) {
       
   542         greedyInit();
       
   543         startSparse();
       
   544       } else {
       
   545         init();
       
   546         startDense();
       
   547       }
       
   548     }
       
   549 
       
   550     /// @}
       
   551 
       
   552     /// \name Primal Solution
       
   553     /// Functions to get the primal solution, i.e. the maximum matching.
       
   554 
       
   555     /// @{
       
   556 
       
   557     /// \brief Return the size (cardinality) of the matching.
       
   558     ///
       
   559     /// This function returns the size (cardinality) of the current matching. 
       
   560     /// After run() it returns the size of the maximum matching in the graph.
       
   561     int matchingSize() const {
       
   562       int size = 0;
       
   563       for (NodeIt n(_graph); n != INVALID; ++n) {
       
   564         if ((*_matching)[n] != INVALID) {
       
   565           ++size;
       
   566         }
       
   567       }
       
   568       return size / 2;
       
   569     }
       
   570 
       
   571     /// \brief Return \c true if the given edge is in the matching.
       
   572     ///
       
   573     /// This function returns \c true if the given edge is in the current 
       
   574     /// matching.
       
   575     bool matching(const Edge& edge) const {
       
   576       return edge == (*_matching)[_graph.u(edge)];
       
   577     }
       
   578 
       
   579     /// \brief Return the matching arc (or edge) incident to the given node.
       
   580     ///
       
   581     /// This function returns the matching arc (or edge) incident to the
       
   582     /// given node in the current matching or \c INVALID if the node is 
       
   583     /// not covered by the matching.
       
   584     Arc matching(const Node& n) const {
       
   585       return (*_matching)[n];
       
   586     }
       
   587 
       
   588     /// \brief Return a const reference to the matching map.
       
   589     ///
       
   590     /// This function returns a const reference to a node map that stores
       
   591     /// the matching arc (or edge) incident to each node.
       
   592     const MatchingMap& matchingMap() const {
       
   593       return *_matching;
       
   594     }
       
   595 
       
   596     /// \brief Return the mate of the given node.
       
   597     ///
       
   598     /// This function returns the mate of the given node in the current 
       
   599     /// matching or \c INVALID if the node is not covered by the matching.
       
   600     Node mate(const Node& n) const {
       
   601       return (*_matching)[n] != INVALID ?
       
   602         _graph.target((*_matching)[n]) : INVALID;
       
   603     }
       
   604 
       
   605     /// @}
       
   606 
       
   607     /// \name Dual Solution
       
   608     /// Functions to get the dual solution, i.e. the Gallai-Edmonds 
       
   609     /// decomposition.
       
   610 
       
   611     /// @{
       
   612 
       
   613     /// \brief Return the status of the given node in the Edmonds-Gallai
       
   614     /// decomposition.
       
   615     ///
       
   616     /// This function returns the \ref Status "status" of the given node
       
   617     /// in the Edmonds-Gallai decomposition.
       
   618     Status status(const Node& n) const {
       
   619       return (*_status)[n];
       
   620     }
       
   621 
       
   622     /// \brief Return a const reference to the status map, which stores
       
   623     /// the Edmonds-Gallai decomposition.
       
   624     ///
       
   625     /// This function returns a const reference to a node map that stores the
       
   626     /// \ref Status "status" of each node in the Edmonds-Gallai decomposition.
       
   627     const StatusMap& statusMap() const {
       
   628       return *_status;
       
   629     }
       
   630 
       
   631     /// \brief Return \c true if the given node is in the barrier.
       
   632     ///
       
   633     /// This function returns \c true if the given node is in the barrier.
       
   634     bool barrier(const Node& n) const {
       
   635       return (*_status)[n] == ODD;
       
   636     }
       
   637 
       
   638     /// @}
       
   639 
       
   640   };
       
   641 
       
   642   /// \ingroup matching
       
   643   ///
       
   644   /// \brief Weighted matching in general graphs
       
   645   ///
       
   646   /// This class provides an efficient implementation of Edmond's
       
   647   /// maximum weighted matching algorithm. The implementation is based
       
   648   /// on extensive use of priority queues and provides
       
   649   /// \f$O(nm\log n)\f$ time complexity.
       
   650   ///
       
   651   /// The maximum weighted matching problem is to find a subset of the 
       
   652   /// edges in an undirected graph with maximum overall weight for which 
       
   653   /// each node has at most one incident edge.
       
   654   /// It can be formulated with the following linear program.
       
   655   /// \f[ \sum_{e \in \delta(u)}x_e \le 1 \quad \forall u\in V\f]
       
   656   /** \f[ \sum_{e \in \gamma(B)}x_e \le \frac{\vert B \vert - 1}{2}
       
   657       \quad \forall B\in\mathcal{O}\f] */
       
   658   /// \f[x_e \ge 0\quad \forall e\in E\f]
       
   659   /// \f[\max \sum_{e\in E}x_ew_e\f]
       
   660   /// where \f$\delta(X)\f$ is the set of edges incident to a node in
       
   661   /// \f$X\f$, \f$\gamma(X)\f$ is the set of edges with both ends in
       
   662   /// \f$X\f$ and \f$\mathcal{O}\f$ is the set of odd cardinality
       
   663   /// subsets of the nodes.
       
   664   ///
       
   665   /// The algorithm calculates an optimal matching and a proof of the
       
   666   /// optimality. The solution of the dual problem can be used to check
       
   667   /// the result of the algorithm. The dual linear problem is the
       
   668   /// following.
       
   669   /** \f[ y_u + y_v + \sum_{B \in \mathcal{O}, uv \in \gamma(B)}
       
   670       z_B \ge w_{uv} \quad \forall uv\in E\f] */
       
   671   /// \f[y_u \ge 0 \quad \forall u \in V\f]
       
   672   /// \f[z_B \ge 0 \quad \forall B \in \mathcal{O}\f]
       
   673   /** \f[\min \sum_{u \in V}y_u + \sum_{B \in \mathcal{O}}
       
   674       \frac{\vert B \vert - 1}{2}z_B\f] */
       
   675   ///
       
   676   /// The algorithm can be executed with the run() function. 
       
   677   /// After it the matching (the primal solution) and the dual solution
       
   678   /// can be obtained using the query functions and the 
       
   679   /// \ref MaxWeightedMatching::BlossomIt "BlossomIt" nested class, 
       
   680   /// which is able to iterate on the nodes of a blossom. 
       
   681   /// If the value type is integer, then the dual solution is multiplied
       
   682   /// by \ref MaxWeightedMatching::dualScale "4".
       
   683   ///
       
   684   /// \tparam GR The undirected graph type the algorithm runs on.
       
   685   /// \tparam WM The type edge weight map. The default type is 
       
   686   /// \ref concepts::Graph::EdgeMap "GR::EdgeMap<int>".
       
   687 #ifdef DOXYGEN
       
   688   template <typename GR, typename WM>
       
   689 #else
       
   690   template <typename GR,
       
   691             typename WM = typename GR::template EdgeMap<int> >
       
   692 #endif
       
   693   class MaxWeightedMatching {
       
   694   public:
       
   695 
       
   696     /// The graph type of the algorithm
       
   697     typedef GR Graph;
       
   698     /// The type of the edge weight map
       
   699     typedef WM WeightMap;
       
   700     /// The value type of the edge weights
       
   701     typedef typename WeightMap::Value Value;
       
   702 
       
   703     /// The type of the matching map
       
   704     typedef typename Graph::template NodeMap<typename Graph::Arc>
       
   705     MatchingMap;
       
   706 
       
   707     /// \brief Scaling factor for dual solution
       
   708     ///
       
   709     /// Scaling factor for dual solution. It is equal to 4 or 1
       
   710     /// according to the value type.
       
   711     static const int dualScale =
       
   712       std::numeric_limits<Value>::is_integer ? 4 : 1;
       
   713 
       
   714   private:
       
   715 
       
   716     TEMPLATE_GRAPH_TYPEDEFS(Graph);
       
   717 
       
   718     typedef typename Graph::template NodeMap<Value> NodePotential;
       
   719     typedef std::vector<Node> BlossomNodeList;
       
   720 
       
   721     struct BlossomVariable {
       
   722       int begin, end;
       
   723       Value value;
       
   724 
       
   725       BlossomVariable(int _begin, int _end, Value _value)
       
   726         : begin(_begin), end(_end), value(_value) {}
       
   727 
       
   728     };
       
   729 
       
   730     typedef std::vector<BlossomVariable> BlossomPotential;
       
   731 
       
   732     const Graph& _graph;
       
   733     const WeightMap& _weight;
       
   734 
       
   735     MatchingMap* _matching;
       
   736 
       
   737     NodePotential* _node_potential;
       
   738 
       
   739     BlossomPotential _blossom_potential;
       
   740     BlossomNodeList _blossom_node_list;
       
   741 
       
   742     int _node_num;
       
   743     int _blossom_num;
       
   744 
       
   745     typedef RangeMap<int> IntIntMap;
       
   746 
       
   747     enum Status {
       
   748       EVEN = -1, MATCHED = 0, ODD = 1, UNMATCHED = -2
       
   749     };
       
   750 
       
   751     typedef HeapUnionFind<Value, IntNodeMap> BlossomSet;
       
   752     struct BlossomData {
       
   753       int tree;
       
   754       Status status;
       
   755       Arc pred, next;
       
   756       Value pot, offset;
       
   757       Node base;
       
   758     };
       
   759 
       
   760     IntNodeMap *_blossom_index;
       
   761     BlossomSet *_blossom_set;
       
   762     RangeMap<BlossomData>* _blossom_data;
       
   763 
       
   764     IntNodeMap *_node_index;
       
   765     IntArcMap *_node_heap_index;
       
   766 
       
   767     struct NodeData {
       
   768 
       
   769       NodeData(IntArcMap& node_heap_index)
       
   770         : heap(node_heap_index) {}
       
   771 
       
   772       int blossom;
       
   773       Value pot;
       
   774       BinHeap<Value, IntArcMap> heap;
       
   775       std::map<int, Arc> heap_index;
       
   776 
       
   777       int tree;
       
   778     };
       
   779 
       
   780     RangeMap<NodeData>* _node_data;
       
   781 
       
   782     typedef ExtendFindEnum<IntIntMap> TreeSet;
       
   783 
       
   784     IntIntMap *_tree_set_index;
       
   785     TreeSet *_tree_set;
       
   786 
       
   787     IntNodeMap *_delta1_index;
       
   788     BinHeap<Value, IntNodeMap> *_delta1;
       
   789 
       
   790     IntIntMap *_delta2_index;
       
   791     BinHeap<Value, IntIntMap> *_delta2;
       
   792 
       
   793     IntEdgeMap *_delta3_index;
       
   794     BinHeap<Value, IntEdgeMap> *_delta3;
       
   795 
       
   796     IntIntMap *_delta4_index;
       
   797     BinHeap<Value, IntIntMap> *_delta4;
       
   798 
       
   799     Value _delta_sum;
       
   800 
       
   801     void createStructures() {
       
   802       _node_num = countNodes(_graph);
       
   803       _blossom_num = _node_num * 3 / 2;
       
   804 
       
   805       if (!_matching) {
       
   806         _matching = new MatchingMap(_graph);
       
   807       }
       
   808       if (!_node_potential) {
       
   809         _node_potential = new NodePotential(_graph);
       
   810       }
       
   811       if (!_blossom_set) {
       
   812         _blossom_index = new IntNodeMap(_graph);
       
   813         _blossom_set = new BlossomSet(*_blossom_index);
       
   814         _blossom_data = new RangeMap<BlossomData>(_blossom_num);
       
   815       }
       
   816 
       
   817       if (!_node_index) {
       
   818         _node_index = new IntNodeMap(_graph);
       
   819         _node_heap_index = new IntArcMap(_graph);
       
   820         _node_data = new RangeMap<NodeData>(_node_num,
       
   821                                               NodeData(*_node_heap_index));
       
   822       }
       
   823 
       
   824       if (!_tree_set) {
       
   825         _tree_set_index = new IntIntMap(_blossom_num);
       
   826         _tree_set = new TreeSet(*_tree_set_index);
       
   827       }
       
   828       if (!_delta1) {
       
   829         _delta1_index = new IntNodeMap(_graph);
       
   830         _delta1 = new BinHeap<Value, IntNodeMap>(*_delta1_index);
       
   831       }
       
   832       if (!_delta2) {
       
   833         _delta2_index = new IntIntMap(_blossom_num);
       
   834         _delta2 = new BinHeap<Value, IntIntMap>(*_delta2_index);
       
   835       }
       
   836       if (!_delta3) {
       
   837         _delta3_index = new IntEdgeMap(_graph);
       
   838         _delta3 = new BinHeap<Value, IntEdgeMap>(*_delta3_index);
       
   839       }
       
   840       if (!_delta4) {
       
   841         _delta4_index = new IntIntMap(_blossom_num);
       
   842         _delta4 = new BinHeap<Value, IntIntMap>(*_delta4_index);
       
   843       }
       
   844     }
       
   845 
       
   846     void destroyStructures() {
       
   847       _node_num = countNodes(_graph);
       
   848       _blossom_num = _node_num * 3 / 2;
       
   849 
       
   850       if (_matching) {
       
   851         delete _matching;
       
   852       }
       
   853       if (_node_potential) {
       
   854         delete _node_potential;
       
   855       }
       
   856       if (_blossom_set) {
       
   857         delete _blossom_index;
       
   858         delete _blossom_set;
       
   859         delete _blossom_data;
       
   860       }
       
   861 
       
   862       if (_node_index) {
       
   863         delete _node_index;
       
   864         delete _node_heap_index;
       
   865         delete _node_data;
       
   866       }
       
   867 
       
   868       if (_tree_set) {
       
   869         delete _tree_set_index;
       
   870         delete _tree_set;
       
   871       }
       
   872       if (_delta1) {
       
   873         delete _delta1_index;
       
   874         delete _delta1;
       
   875       }
       
   876       if (_delta2) {
       
   877         delete _delta2_index;
       
   878         delete _delta2;
       
   879       }
       
   880       if (_delta3) {
       
   881         delete _delta3_index;
       
   882         delete _delta3;
       
   883       }
       
   884       if (_delta4) {
       
   885         delete _delta4_index;
       
   886         delete _delta4;
       
   887       }
       
   888     }
       
   889 
       
   890     void matchedToEven(int blossom, int tree) {
       
   891       if (_delta2->state(blossom) == _delta2->IN_HEAP) {
       
   892         _delta2->erase(blossom);
       
   893       }
       
   894 
       
   895       if (!_blossom_set->trivial(blossom)) {
       
   896         (*_blossom_data)[blossom].pot -=
       
   897           2 * (_delta_sum - (*_blossom_data)[blossom].offset);
       
   898       }
       
   899 
       
   900       for (typename BlossomSet::ItemIt n(*_blossom_set, blossom);
       
   901            n != INVALID; ++n) {
       
   902 
       
   903         _blossom_set->increase(n, std::numeric_limits<Value>::max());
       
   904         int ni = (*_node_index)[n];
       
   905 
       
   906         (*_node_data)[ni].heap.clear();
       
   907         (*_node_data)[ni].heap_index.clear();
       
   908 
       
   909         (*_node_data)[ni].pot += _delta_sum - (*_blossom_data)[blossom].offset;
       
   910 
       
   911         _delta1->push(n, (*_node_data)[ni].pot);
       
   912 
       
   913         for (InArcIt e(_graph, n); e != INVALID; ++e) {
       
   914           Node v = _graph.source(e);
       
   915           int vb = _blossom_set->find(v);
       
   916           int vi = (*_node_index)[v];
       
   917 
       
   918           Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot -
       
   919             dualScale * _weight[e];
       
   920 
       
   921           if ((*_blossom_data)[vb].status == EVEN) {
       
   922             if (_delta3->state(e) != _delta3->IN_HEAP && blossom != vb) {
       
   923               _delta3->push(e, rw / 2);
       
   924             }
       
   925           } else if ((*_blossom_data)[vb].status == UNMATCHED) {
       
   926             if (_delta3->state(e) != _delta3->IN_HEAP) {
       
   927               _delta3->push(e, rw);
       
   928             }
       
   929           } else {
       
   930             typename std::map<int, Arc>::iterator it =
       
   931               (*_node_data)[vi].heap_index.find(tree);
       
   932 
       
   933             if (it != (*_node_data)[vi].heap_index.end()) {
       
   934               if ((*_node_data)[vi].heap[it->second] > rw) {
       
   935                 (*_node_data)[vi].heap.replace(it->second, e);
       
   936                 (*_node_data)[vi].heap.decrease(e, rw);
       
   937                 it->second = e;
       
   938               }
       
   939             } else {
       
   940               (*_node_data)[vi].heap.push(e, rw);
       
   941               (*_node_data)[vi].heap_index.insert(std::make_pair(tree, e));
       
   942             }
       
   943 
       
   944             if ((*_blossom_set)[v] > (*_node_data)[vi].heap.prio()) {
       
   945               _blossom_set->decrease(v, (*_node_data)[vi].heap.prio());
       
   946 
       
   947               if ((*_blossom_data)[vb].status == MATCHED) {
       
   948                 if (_delta2->state(vb) != _delta2->IN_HEAP) {
       
   949                   _delta2->push(vb, _blossom_set->classPrio(vb) -
       
   950                                (*_blossom_data)[vb].offset);
       
   951                 } else if ((*_delta2)[vb] > _blossom_set->classPrio(vb) -
       
   952                            (*_blossom_data)[vb].offset){
       
   953                   _delta2->decrease(vb, _blossom_set->classPrio(vb) -
       
   954                                    (*_blossom_data)[vb].offset);
       
   955                 }
       
   956               }
       
   957             }
       
   958           }
       
   959         }
       
   960       }
       
   961       (*_blossom_data)[blossom].offset = 0;
       
   962     }
       
   963 
       
   964     void matchedToOdd(int blossom) {
       
   965       if (_delta2->state(blossom) == _delta2->IN_HEAP) {
       
   966         _delta2->erase(blossom);
       
   967       }
       
   968       (*_blossom_data)[blossom].offset += _delta_sum;
       
   969       if (!_blossom_set->trivial(blossom)) {
       
   970         _delta4->push(blossom, (*_blossom_data)[blossom].pot / 2 +
       
   971                      (*_blossom_data)[blossom].offset);
       
   972       }
       
   973     }
       
   974 
       
   975     void evenToMatched(int blossom, int tree) {
       
   976       if (!_blossom_set->trivial(blossom)) {
       
   977         (*_blossom_data)[blossom].pot += 2 * _delta_sum;
       
   978       }
       
   979 
       
   980       for (typename BlossomSet::ItemIt n(*_blossom_set, blossom);
       
   981            n != INVALID; ++n) {
       
   982         int ni = (*_node_index)[n];
       
   983         (*_node_data)[ni].pot -= _delta_sum;
       
   984 
       
   985         _delta1->erase(n);
       
   986 
       
   987         for (InArcIt e(_graph, n); e != INVALID; ++e) {
       
   988           Node v = _graph.source(e);
       
   989           int vb = _blossom_set->find(v);
       
   990           int vi = (*_node_index)[v];
       
   991 
       
   992           Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot -
       
   993             dualScale * _weight[e];
       
   994 
       
   995           if (vb == blossom) {
       
   996             if (_delta3->state(e) == _delta3->IN_HEAP) {
       
   997               _delta3->erase(e);
       
   998             }
       
   999           } else if ((*_blossom_data)[vb].status == EVEN) {
       
  1000 
       
  1001             if (_delta3->state(e) == _delta3->IN_HEAP) {
       
  1002               _delta3->erase(e);
       
  1003             }
       
  1004 
       
  1005             int vt = _tree_set->find(vb);
       
  1006 
       
  1007             if (vt != tree) {
       
  1008 
       
  1009               Arc r = _graph.oppositeArc(e);
       
  1010 
       
  1011               typename std::map<int, Arc>::iterator it =
       
  1012                 (*_node_data)[ni].heap_index.find(vt);
       
  1013 
       
  1014               if (it != (*_node_data)[ni].heap_index.end()) {
       
  1015                 if ((*_node_data)[ni].heap[it->second] > rw) {
       
  1016                   (*_node_data)[ni].heap.replace(it->second, r);
       
  1017                   (*_node_data)[ni].heap.decrease(r, rw);
       
  1018                   it->second = r;
       
  1019                 }
       
  1020               } else {
       
  1021                 (*_node_data)[ni].heap.push(r, rw);
       
  1022                 (*_node_data)[ni].heap_index.insert(std::make_pair(vt, r));
       
  1023               }
       
  1024 
       
  1025               if ((*_blossom_set)[n] > (*_node_data)[ni].heap.prio()) {
       
  1026                 _blossom_set->decrease(n, (*_node_data)[ni].heap.prio());
       
  1027 
       
  1028                 if (_delta2->state(blossom) != _delta2->IN_HEAP) {
       
  1029                   _delta2->push(blossom, _blossom_set->classPrio(blossom) -
       
  1030                                (*_blossom_data)[blossom].offset);
       
  1031                 } else if ((*_delta2)[blossom] >
       
  1032                            _blossom_set->classPrio(blossom) -
       
  1033                            (*_blossom_data)[blossom].offset){
       
  1034                   _delta2->decrease(blossom, _blossom_set->classPrio(blossom) -
       
  1035                                    (*_blossom_data)[blossom].offset);
       
  1036                 }
       
  1037               }
       
  1038             }
       
  1039 
       
  1040           } else if ((*_blossom_data)[vb].status == UNMATCHED) {
       
  1041             if (_delta3->state(e) == _delta3->IN_HEAP) {
       
  1042               _delta3->erase(e);
       
  1043             }
       
  1044           } else {
       
  1045 
       
  1046             typename std::map<int, Arc>::iterator it =
       
  1047               (*_node_data)[vi].heap_index.find(tree);
       
  1048 
       
  1049             if (it != (*_node_data)[vi].heap_index.end()) {
       
  1050               (*_node_data)[vi].heap.erase(it->second);
       
  1051               (*_node_data)[vi].heap_index.erase(it);
       
  1052               if ((*_node_data)[vi].heap.empty()) {
       
  1053                 _blossom_set->increase(v, std::numeric_limits<Value>::max());
       
  1054               } else if ((*_blossom_set)[v] < (*_node_data)[vi].heap.prio()) {
       
  1055                 _blossom_set->increase(v, (*_node_data)[vi].heap.prio());
       
  1056               }
       
  1057 
       
  1058               if ((*_blossom_data)[vb].status == MATCHED) {
       
  1059                 if (_blossom_set->classPrio(vb) ==
       
  1060                     std::numeric_limits<Value>::max()) {
       
  1061                   _delta2->erase(vb);
       
  1062                 } else if ((*_delta2)[vb] < _blossom_set->classPrio(vb) -
       
  1063                            (*_blossom_data)[vb].offset) {
       
  1064                   _delta2->increase(vb, _blossom_set->classPrio(vb) -
       
  1065                                    (*_blossom_data)[vb].offset);
       
  1066                 }
       
  1067               }
       
  1068             }
       
  1069           }
       
  1070         }
       
  1071       }
       
  1072     }
       
  1073 
       
  1074     void oddToMatched(int blossom) {
       
  1075       (*_blossom_data)[blossom].offset -= _delta_sum;
       
  1076 
       
  1077       if (_blossom_set->classPrio(blossom) !=
       
  1078           std::numeric_limits<Value>::max()) {
       
  1079         _delta2->push(blossom, _blossom_set->classPrio(blossom) -
       
  1080                        (*_blossom_data)[blossom].offset);
       
  1081       }
       
  1082 
       
  1083       if (!_blossom_set->trivial(blossom)) {
       
  1084         _delta4->erase(blossom);
       
  1085       }
       
  1086     }
       
  1087 
       
  1088     void oddToEven(int blossom, int tree) {
       
  1089       if (!_blossom_set->trivial(blossom)) {
       
  1090         _delta4->erase(blossom);
       
  1091         (*_blossom_data)[blossom].pot -=
       
  1092           2 * (2 * _delta_sum - (*_blossom_data)[blossom].offset);
       
  1093       }
       
  1094 
       
  1095       for (typename BlossomSet::ItemIt n(*_blossom_set, blossom);
       
  1096            n != INVALID; ++n) {
       
  1097         int ni = (*_node_index)[n];
       
  1098 
       
  1099         _blossom_set->increase(n, std::numeric_limits<Value>::max());
       
  1100 
       
  1101         (*_node_data)[ni].heap.clear();
       
  1102         (*_node_data)[ni].heap_index.clear();
       
  1103         (*_node_data)[ni].pot +=
       
  1104           2 * _delta_sum - (*_blossom_data)[blossom].offset;
       
  1105 
       
  1106         _delta1->push(n, (*_node_data)[ni].pot);
       
  1107 
       
  1108         for (InArcIt e(_graph, n); e != INVALID; ++e) {
       
  1109           Node v = _graph.source(e);
       
  1110           int vb = _blossom_set->find(v);
       
  1111           int vi = (*_node_index)[v];
       
  1112 
       
  1113           Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot -
       
  1114             dualScale * _weight[e];
       
  1115 
       
  1116           if ((*_blossom_data)[vb].status == EVEN) {
       
  1117             if (_delta3->state(e) != _delta3->IN_HEAP && blossom != vb) {
       
  1118               _delta3->push(e, rw / 2);
       
  1119             }
       
  1120           } else if ((*_blossom_data)[vb].status == UNMATCHED) {
       
  1121             if (_delta3->state(e) != _delta3->IN_HEAP) {
       
  1122               _delta3->push(e, rw);
       
  1123             }
       
  1124           } else {
       
  1125 
       
  1126             typename std::map<int, Arc>::iterator it =
       
  1127               (*_node_data)[vi].heap_index.find(tree);
       
  1128 
       
  1129             if (it != (*_node_data)[vi].heap_index.end()) {
       
  1130               if ((*_node_data)[vi].heap[it->second] > rw) {
       
  1131                 (*_node_data)[vi].heap.replace(it->second, e);
       
  1132                 (*_node_data)[vi].heap.decrease(e, rw);
       
  1133                 it->second = e;
       
  1134               }
       
  1135             } else {
       
  1136               (*_node_data)[vi].heap.push(e, rw);
       
  1137               (*_node_data)[vi].heap_index.insert(std::make_pair(tree, e));
       
  1138             }
       
  1139 
       
  1140             if ((*_blossom_set)[v] > (*_node_data)[vi].heap.prio()) {
       
  1141               _blossom_set->decrease(v, (*_node_data)[vi].heap.prio());
       
  1142 
       
  1143               if ((*_blossom_data)[vb].status == MATCHED) {
       
  1144                 if (_delta2->state(vb) != _delta2->IN_HEAP) {
       
  1145                   _delta2->push(vb, _blossom_set->classPrio(vb) -
       
  1146                                (*_blossom_data)[vb].offset);
       
  1147                 } else if ((*_delta2)[vb] > _blossom_set->classPrio(vb) -
       
  1148                            (*_blossom_data)[vb].offset) {
       
  1149                   _delta2->decrease(vb, _blossom_set->classPrio(vb) -
       
  1150                                    (*_blossom_data)[vb].offset);
       
  1151                 }
       
  1152               }
       
  1153             }
       
  1154           }
       
  1155         }
       
  1156       }
       
  1157       (*_blossom_data)[blossom].offset = 0;
       
  1158     }
       
  1159 
       
  1160 
       
  1161     void matchedToUnmatched(int blossom) {
       
  1162       if (_delta2->state(blossom) == _delta2->IN_HEAP) {
       
  1163         _delta2->erase(blossom);
       
  1164       }
       
  1165 
       
  1166       for (typename BlossomSet::ItemIt n(*_blossom_set, blossom);
       
  1167            n != INVALID; ++n) {
       
  1168         int ni = (*_node_index)[n];
       
  1169 
       
  1170         _blossom_set->increase(n, std::numeric_limits<Value>::max());
       
  1171 
       
  1172         (*_node_data)[ni].heap.clear();
       
  1173         (*_node_data)[ni].heap_index.clear();
       
  1174 
       
  1175         for (OutArcIt e(_graph, n); e != INVALID; ++e) {
       
  1176           Node v = _graph.target(e);
       
  1177           int vb = _blossom_set->find(v);
       
  1178           int vi = (*_node_index)[v];
       
  1179 
       
  1180           Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot -
       
  1181             dualScale * _weight[e];
       
  1182 
       
  1183           if ((*_blossom_data)[vb].status == EVEN) {
       
  1184             if (_delta3->state(e) != _delta3->IN_HEAP) {
       
  1185               _delta3->push(e, rw);
       
  1186             }
       
  1187           }
       
  1188         }
       
  1189       }
       
  1190     }
       
  1191 
       
  1192     void unmatchedToMatched(int blossom) {
       
  1193       for (typename BlossomSet::ItemIt n(*_blossom_set, blossom);
       
  1194            n != INVALID; ++n) {
       
  1195         int ni = (*_node_index)[n];
       
  1196 
       
  1197         for (InArcIt e(_graph, n); e != INVALID; ++e) {
       
  1198           Node v = _graph.source(e);
       
  1199           int vb = _blossom_set->find(v);
       
  1200           int vi = (*_node_index)[v];
       
  1201 
       
  1202           Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot -
       
  1203             dualScale * _weight[e];
       
  1204 
       
  1205           if (vb == blossom) {
       
  1206             if (_delta3->state(e) == _delta3->IN_HEAP) {
       
  1207               _delta3->erase(e);
       
  1208             }
       
  1209           } else if ((*_blossom_data)[vb].status == EVEN) {
       
  1210 
       
  1211             if (_delta3->state(e) == _delta3->IN_HEAP) {
       
  1212               _delta3->erase(e);
       
  1213             }
       
  1214 
       
  1215             int vt = _tree_set->find(vb);
       
  1216 
       
  1217             Arc r = _graph.oppositeArc(e);
       
  1218 
       
  1219             typename std::map<int, Arc>::iterator it =
       
  1220               (*_node_data)[ni].heap_index.find(vt);
       
  1221 
       
  1222             if (it != (*_node_data)[ni].heap_index.end()) {
       
  1223               if ((*_node_data)[ni].heap[it->second] > rw) {
       
  1224                 (*_node_data)[ni].heap.replace(it->second, r);
       
  1225                 (*_node_data)[ni].heap.decrease(r, rw);
       
  1226                 it->second = r;
       
  1227               }
       
  1228             } else {
       
  1229               (*_node_data)[ni].heap.push(r, rw);
       
  1230               (*_node_data)[ni].heap_index.insert(std::make_pair(vt, r));
       
  1231             }
       
  1232 
       
  1233             if ((*_blossom_set)[n] > (*_node_data)[ni].heap.prio()) {
       
  1234               _blossom_set->decrease(n, (*_node_data)[ni].heap.prio());
       
  1235 
       
  1236               if (_delta2->state(blossom) != _delta2->IN_HEAP) {
       
  1237                 _delta2->push(blossom, _blossom_set->classPrio(blossom) -
       
  1238                              (*_blossom_data)[blossom].offset);
       
  1239               } else if ((*_delta2)[blossom] > _blossom_set->classPrio(blossom)-
       
  1240                          (*_blossom_data)[blossom].offset){
       
  1241                 _delta2->decrease(blossom, _blossom_set->classPrio(blossom) -
       
  1242                                  (*_blossom_data)[blossom].offset);
       
  1243               }
       
  1244             }
       
  1245 
       
  1246           } else if ((*_blossom_data)[vb].status == UNMATCHED) {
       
  1247             if (_delta3->state(e) == _delta3->IN_HEAP) {
       
  1248               _delta3->erase(e);
       
  1249             }
       
  1250           }
       
  1251         }
       
  1252       }
       
  1253     }
       
  1254 
       
  1255     void alternatePath(int even, int tree) {
       
  1256       int odd;
       
  1257 
       
  1258       evenToMatched(even, tree);
       
  1259       (*_blossom_data)[even].status = MATCHED;
       
  1260 
       
  1261       while ((*_blossom_data)[even].pred != INVALID) {
       
  1262         odd = _blossom_set->find(_graph.target((*_blossom_data)[even].pred));
       
  1263         (*_blossom_data)[odd].status = MATCHED;
       
  1264         oddToMatched(odd);
       
  1265         (*_blossom_data)[odd].next = (*_blossom_data)[odd].pred;
       
  1266 
       
  1267         even = _blossom_set->find(_graph.target((*_blossom_data)[odd].pred));
       
  1268         (*_blossom_data)[even].status = MATCHED;
       
  1269         evenToMatched(even, tree);
       
  1270         (*_blossom_data)[even].next =
       
  1271           _graph.oppositeArc((*_blossom_data)[odd].pred);
       
  1272       }
       
  1273 
       
  1274     }
       
  1275 
       
  1276     void destroyTree(int tree) {
       
  1277       for (TreeSet::ItemIt b(*_tree_set, tree); b != INVALID; ++b) {
       
  1278         if ((*_blossom_data)[b].status == EVEN) {
       
  1279           (*_blossom_data)[b].status = MATCHED;
       
  1280           evenToMatched(b, tree);
       
  1281         } else if ((*_blossom_data)[b].status == ODD) {
       
  1282           (*_blossom_data)[b].status = MATCHED;
       
  1283           oddToMatched(b);
       
  1284         }
       
  1285       }
       
  1286       _tree_set->eraseClass(tree);
       
  1287     }
       
  1288 
       
  1289 
       
  1290     void unmatchNode(const Node& node) {
       
  1291       int blossom = _blossom_set->find(node);
       
  1292       int tree = _tree_set->find(blossom);
       
  1293 
       
  1294       alternatePath(blossom, tree);
       
  1295       destroyTree(tree);
       
  1296 
       
  1297       (*_blossom_data)[blossom].status = UNMATCHED;
       
  1298       (*_blossom_data)[blossom].base = node;
       
  1299       matchedToUnmatched(blossom);
       
  1300     }
       
  1301 
       
  1302 
       
  1303     void augmentOnEdge(const Edge& edge) {
       
  1304 
       
  1305       int left = _blossom_set->find(_graph.u(edge));
       
  1306       int right = _blossom_set->find(_graph.v(edge));
       
  1307 
       
  1308       if ((*_blossom_data)[left].status == EVEN) {
       
  1309         int left_tree = _tree_set->find(left);
       
  1310         alternatePath(left, left_tree);
       
  1311         destroyTree(left_tree);
       
  1312       } else {
       
  1313         (*_blossom_data)[left].status = MATCHED;
       
  1314         unmatchedToMatched(left);
       
  1315       }
       
  1316 
       
  1317       if ((*_blossom_data)[right].status == EVEN) {
       
  1318         int right_tree = _tree_set->find(right);
       
  1319         alternatePath(right, right_tree);
       
  1320         destroyTree(right_tree);
       
  1321       } else {
       
  1322         (*_blossom_data)[right].status = MATCHED;
       
  1323         unmatchedToMatched(right);
       
  1324       }
       
  1325 
       
  1326       (*_blossom_data)[left].next = _graph.direct(edge, true);
       
  1327       (*_blossom_data)[right].next = _graph.direct(edge, false);
       
  1328     }
       
  1329 
       
  1330     void extendOnArc(const Arc& arc) {
       
  1331       int base = _blossom_set->find(_graph.target(arc));
       
  1332       int tree = _tree_set->find(base);
       
  1333 
       
  1334       int odd = _blossom_set->find(_graph.source(arc));
       
  1335       _tree_set->insert(odd, tree);
       
  1336       (*_blossom_data)[odd].status = ODD;
       
  1337       matchedToOdd(odd);
       
  1338       (*_blossom_data)[odd].pred = arc;
       
  1339 
       
  1340       int even = _blossom_set->find(_graph.target((*_blossom_data)[odd].next));
       
  1341       (*_blossom_data)[even].pred = (*_blossom_data)[even].next;
       
  1342       _tree_set->insert(even, tree);
       
  1343       (*_blossom_data)[even].status = EVEN;
       
  1344       matchedToEven(even, tree);
       
  1345     }
       
  1346 
       
  1347     void shrinkOnEdge(const Edge& edge, int tree) {
       
  1348       int nca = -1;
       
  1349       std::vector<int> left_path, right_path;
       
  1350 
       
  1351       {
       
  1352         std::set<int> left_set, right_set;
       
  1353         int left = _blossom_set->find(_graph.u(edge));
       
  1354         left_path.push_back(left);
       
  1355         left_set.insert(left);
       
  1356 
       
  1357         int right = _blossom_set->find(_graph.v(edge));
       
  1358         right_path.push_back(right);
       
  1359         right_set.insert(right);
       
  1360 
       
  1361         while (true) {
       
  1362 
       
  1363           if ((*_blossom_data)[left].pred == INVALID) break;
       
  1364 
       
  1365           left =
       
  1366             _blossom_set->find(_graph.target((*_blossom_data)[left].pred));
       
  1367           left_path.push_back(left);
       
  1368           left =
       
  1369             _blossom_set->find(_graph.target((*_blossom_data)[left].pred));
       
  1370           left_path.push_back(left);
       
  1371 
       
  1372           left_set.insert(left);
       
  1373 
       
  1374           if (right_set.find(left) != right_set.end()) {
       
  1375             nca = left;
       
  1376             break;
       
  1377           }
       
  1378 
       
  1379           if ((*_blossom_data)[right].pred == INVALID) break;
       
  1380 
       
  1381           right =
       
  1382             _blossom_set->find(_graph.target((*_blossom_data)[right].pred));
       
  1383           right_path.push_back(right);
       
  1384           right =
       
  1385             _blossom_set->find(_graph.target((*_blossom_data)[right].pred));
       
  1386           right_path.push_back(right);
       
  1387 
       
  1388           right_set.insert(right);
       
  1389 
       
  1390           if (left_set.find(right) != left_set.end()) {
       
  1391             nca = right;
       
  1392             break;
       
  1393           }
       
  1394 
       
  1395         }
       
  1396 
       
  1397         if (nca == -1) {
       
  1398           if ((*_blossom_data)[left].pred == INVALID) {
       
  1399             nca = right;
       
  1400             while (left_set.find(nca) == left_set.end()) {
       
  1401               nca =
       
  1402                 _blossom_set->find(_graph.target((*_blossom_data)[nca].pred));
       
  1403               right_path.push_back(nca);
       
  1404               nca =
       
  1405                 _blossom_set->find(_graph.target((*_blossom_data)[nca].pred));
       
  1406               right_path.push_back(nca);
       
  1407             }
       
  1408           } else {
       
  1409             nca = left;
       
  1410             while (right_set.find(nca) == right_set.end()) {
       
  1411               nca =
       
  1412                 _blossom_set->find(_graph.target((*_blossom_data)[nca].pred));
       
  1413               left_path.push_back(nca);
       
  1414               nca =
       
  1415                 _blossom_set->find(_graph.target((*_blossom_data)[nca].pred));
       
  1416               left_path.push_back(nca);
       
  1417             }
       
  1418           }
       
  1419         }
       
  1420       }
       
  1421 
       
  1422       std::vector<int> subblossoms;
       
  1423       Arc prev;
       
  1424 
       
  1425       prev = _graph.direct(edge, true);
       
  1426       for (int i = 0; left_path[i] != nca; i += 2) {
       
  1427         subblossoms.push_back(left_path[i]);
       
  1428         (*_blossom_data)[left_path[i]].next = prev;
       
  1429         _tree_set->erase(left_path[i]);
       
  1430 
       
  1431         subblossoms.push_back(left_path[i + 1]);
       
  1432         (*_blossom_data)[left_path[i + 1]].status = EVEN;
       
  1433         oddToEven(left_path[i + 1], tree);
       
  1434         _tree_set->erase(left_path[i + 1]);
       
  1435         prev = _graph.oppositeArc((*_blossom_data)[left_path[i + 1]].pred);
       
  1436       }
       
  1437 
       
  1438       int k = 0;
       
  1439       while (right_path[k] != nca) ++k;
       
  1440 
       
  1441       subblossoms.push_back(nca);
       
  1442       (*_blossom_data)[nca].next = prev;
       
  1443 
       
  1444       for (int i = k - 2; i >= 0; i -= 2) {
       
  1445         subblossoms.push_back(right_path[i + 1]);
       
  1446         (*_blossom_data)[right_path[i + 1]].status = EVEN;
       
  1447         oddToEven(right_path[i + 1], tree);
       
  1448         _tree_set->erase(right_path[i + 1]);
       
  1449 
       
  1450         (*_blossom_data)[right_path[i + 1]].next =
       
  1451           (*_blossom_data)[right_path[i + 1]].pred;
       
  1452 
       
  1453         subblossoms.push_back(right_path[i]);
       
  1454         _tree_set->erase(right_path[i]);
       
  1455       }
       
  1456 
       
  1457       int surface =
       
  1458         _blossom_set->join(subblossoms.begin(), subblossoms.end());
       
  1459 
       
  1460       for (int i = 0; i < int(subblossoms.size()); ++i) {
       
  1461         if (!_blossom_set->trivial(subblossoms[i])) {
       
  1462           (*_blossom_data)[subblossoms[i]].pot += 2 * _delta_sum;
       
  1463         }
       
  1464         (*_blossom_data)[subblossoms[i]].status = MATCHED;
       
  1465       }
       
  1466 
       
  1467       (*_blossom_data)[surface].pot = -2 * _delta_sum;
       
  1468       (*_blossom_data)[surface].offset = 0;
       
  1469       (*_blossom_data)[surface].status = EVEN;
       
  1470       (*_blossom_data)[surface].pred = (*_blossom_data)[nca].pred;
       
  1471       (*_blossom_data)[surface].next = (*_blossom_data)[nca].pred;
       
  1472 
       
  1473       _tree_set->insert(surface, tree);
       
  1474       _tree_set->erase(nca);
       
  1475     }
       
  1476 
       
  1477     void splitBlossom(int blossom) {
       
  1478       Arc next = (*_blossom_data)[blossom].next;
       
  1479       Arc pred = (*_blossom_data)[blossom].pred;
       
  1480 
       
  1481       int tree = _tree_set->find(blossom);
       
  1482 
       
  1483       (*_blossom_data)[blossom].status = MATCHED;
       
  1484       oddToMatched(blossom);
       
  1485       if (_delta2->state(blossom) == _delta2->IN_HEAP) {
       
  1486         _delta2->erase(blossom);
       
  1487       }
       
  1488 
       
  1489       std::vector<int> subblossoms;
       
  1490       _blossom_set->split(blossom, std::back_inserter(subblossoms));
       
  1491 
       
  1492       Value offset = (*_blossom_data)[blossom].offset;
       
  1493       int b = _blossom_set->find(_graph.source(pred));
       
  1494       int d = _blossom_set->find(_graph.source(next));
       
  1495 
       
  1496       int ib = -1, id = -1;
       
  1497       for (int i = 0; i < int(subblossoms.size()); ++i) {
       
  1498         if (subblossoms[i] == b) ib = i;
       
  1499         if (subblossoms[i] == d) id = i;
       
  1500 
       
  1501         (*_blossom_data)[subblossoms[i]].offset = offset;
       
  1502         if (!_blossom_set->trivial(subblossoms[i])) {
       
  1503           (*_blossom_data)[subblossoms[i]].pot -= 2 * offset;
       
  1504         }
       
  1505         if (_blossom_set->classPrio(subblossoms[i]) !=
       
  1506             std::numeric_limits<Value>::max()) {
       
  1507           _delta2->push(subblossoms[i],
       
  1508                         _blossom_set->classPrio(subblossoms[i]) -
       
  1509                         (*_blossom_data)[subblossoms[i]].offset);
       
  1510         }
       
  1511       }
       
  1512 
       
  1513       if (id > ib ? ((id - ib) % 2 == 0) : ((ib - id) % 2 == 1)) {
       
  1514         for (int i = (id + 1) % subblossoms.size();
       
  1515              i != ib; i = (i + 2) % subblossoms.size()) {
       
  1516           int sb = subblossoms[i];
       
  1517           int tb = subblossoms[(i + 1) % subblossoms.size()];
       
  1518           (*_blossom_data)[sb].next =
       
  1519             _graph.oppositeArc((*_blossom_data)[tb].next);
       
  1520         }
       
  1521 
       
  1522         for (int i = ib; i != id; i = (i + 2) % subblossoms.size()) {
       
  1523           int sb = subblossoms[i];
       
  1524           int tb = subblossoms[(i + 1) % subblossoms.size()];
       
  1525           int ub = subblossoms[(i + 2) % subblossoms.size()];
       
  1526 
       
  1527           (*_blossom_data)[sb].status = ODD;
       
  1528           matchedToOdd(sb);
       
  1529           _tree_set->insert(sb, tree);
       
  1530           (*_blossom_data)[sb].pred = pred;
       
  1531           (*_blossom_data)[sb].next =
       
  1532                            _graph.oppositeArc((*_blossom_data)[tb].next);
       
  1533 
       
  1534           pred = (*_blossom_data)[ub].next;
       
  1535 
       
  1536           (*_blossom_data)[tb].status = EVEN;
       
  1537           matchedToEven(tb, tree);
       
  1538           _tree_set->insert(tb, tree);
       
  1539           (*_blossom_data)[tb].pred = (*_blossom_data)[tb].next;
       
  1540         }
       
  1541 
       
  1542         (*_blossom_data)[subblossoms[id]].status = ODD;
       
  1543         matchedToOdd(subblossoms[id]);
       
  1544         _tree_set->insert(subblossoms[id], tree);
       
  1545         (*_blossom_data)[subblossoms[id]].next = next;
       
  1546         (*_blossom_data)[subblossoms[id]].pred = pred;
       
  1547 
       
  1548       } else {
       
  1549 
       
  1550         for (int i = (ib + 1) % subblossoms.size();
       
  1551              i != id; i = (i + 2) % subblossoms.size()) {
       
  1552           int sb = subblossoms[i];
       
  1553           int tb = subblossoms[(i + 1) % subblossoms.size()];
       
  1554           (*_blossom_data)[sb].next =
       
  1555             _graph.oppositeArc((*_blossom_data)[tb].next);
       
  1556         }
       
  1557 
       
  1558         for (int i = id; i != ib; i = (i + 2) % subblossoms.size()) {
       
  1559           int sb = subblossoms[i];
       
  1560           int tb = subblossoms[(i + 1) % subblossoms.size()];
       
  1561           int ub = subblossoms[(i + 2) % subblossoms.size()];
       
  1562 
       
  1563           (*_blossom_data)[sb].status = ODD;
       
  1564           matchedToOdd(sb);
       
  1565           _tree_set->insert(sb, tree);
       
  1566           (*_blossom_data)[sb].next = next;
       
  1567           (*_blossom_data)[sb].pred =
       
  1568             _graph.oppositeArc((*_blossom_data)[tb].next);
       
  1569 
       
  1570           (*_blossom_data)[tb].status = EVEN;
       
  1571           matchedToEven(tb, tree);
       
  1572           _tree_set->insert(tb, tree);
       
  1573           (*_blossom_data)[tb].pred =
       
  1574             (*_blossom_data)[tb].next =
       
  1575             _graph.oppositeArc((*_blossom_data)[ub].next);
       
  1576           next = (*_blossom_data)[ub].next;
       
  1577         }
       
  1578 
       
  1579         (*_blossom_data)[subblossoms[ib]].status = ODD;
       
  1580         matchedToOdd(subblossoms[ib]);
       
  1581         _tree_set->insert(subblossoms[ib], tree);
       
  1582         (*_blossom_data)[subblossoms[ib]].next = next;
       
  1583         (*_blossom_data)[subblossoms[ib]].pred = pred;
       
  1584       }
       
  1585       _tree_set->erase(blossom);
       
  1586     }
       
  1587 
       
  1588     void extractBlossom(int blossom, const Node& base, const Arc& matching) {
       
  1589       if (_blossom_set->trivial(blossom)) {
       
  1590         int bi = (*_node_index)[base];
       
  1591         Value pot = (*_node_data)[bi].pot;
       
  1592 
       
  1593         (*_matching)[base] = matching;
       
  1594         _blossom_node_list.push_back(base);
       
  1595         (*_node_potential)[base] = pot;
       
  1596       } else {
       
  1597 
       
  1598         Value pot = (*_blossom_data)[blossom].pot;
       
  1599         int bn = _blossom_node_list.size();
       
  1600 
       
  1601         std::vector<int> subblossoms;
       
  1602         _blossom_set->split(blossom, std::back_inserter(subblossoms));
       
  1603         int b = _blossom_set->find(base);
       
  1604         int ib = -1;
       
  1605         for (int i = 0; i < int(subblossoms.size()); ++i) {
       
  1606           if (subblossoms[i] == b) { ib = i; break; }
       
  1607         }
       
  1608 
       
  1609         for (int i = 1; i < int(subblossoms.size()); i += 2) {
       
  1610           int sb = subblossoms[(ib + i) % subblossoms.size()];
       
  1611           int tb = subblossoms[(ib + i + 1) % subblossoms.size()];
       
  1612 
       
  1613           Arc m = (*_blossom_data)[tb].next;
       
  1614           extractBlossom(sb, _graph.target(m), _graph.oppositeArc(m));
       
  1615           extractBlossom(tb, _graph.source(m), m);
       
  1616         }
       
  1617         extractBlossom(subblossoms[ib], base, matching);
       
  1618 
       
  1619         int en = _blossom_node_list.size();
       
  1620 
       
  1621         _blossom_potential.push_back(BlossomVariable(bn, en, pot));
       
  1622       }
       
  1623     }
       
  1624 
       
  1625     void extractMatching() {
       
  1626       std::vector<int> blossoms;
       
  1627       for (typename BlossomSet::ClassIt c(*_blossom_set); c != INVALID; ++c) {
       
  1628         blossoms.push_back(c);
       
  1629       }
       
  1630 
       
  1631       for (int i = 0; i < int(blossoms.size()); ++i) {
       
  1632         if ((*_blossom_data)[blossoms[i]].status == MATCHED) {
       
  1633 
       
  1634           Value offset = (*_blossom_data)[blossoms[i]].offset;
       
  1635           (*_blossom_data)[blossoms[i]].pot += 2 * offset;
       
  1636           for (typename BlossomSet::ItemIt n(*_blossom_set, blossoms[i]);
       
  1637                n != INVALID; ++n) {
       
  1638             (*_node_data)[(*_node_index)[n]].pot -= offset;
       
  1639           }
       
  1640 
       
  1641           Arc matching = (*_blossom_data)[blossoms[i]].next;
       
  1642           Node base = _graph.source(matching);
       
  1643           extractBlossom(blossoms[i], base, matching);
       
  1644         } else {
       
  1645           Node base = (*_blossom_data)[blossoms[i]].base;
       
  1646           extractBlossom(blossoms[i], base, INVALID);
       
  1647         }
       
  1648       }
       
  1649     }
       
  1650 
       
  1651   public:
       
  1652 
       
  1653     /// \brief Constructor
       
  1654     ///
       
  1655     /// Constructor.
       
  1656     MaxWeightedMatching(const Graph& graph, const WeightMap& weight)
       
  1657       : _graph(graph), _weight(weight), _matching(0),
       
  1658         _node_potential(0), _blossom_potential(), _blossom_node_list(),
       
  1659         _node_num(0), _blossom_num(0),
       
  1660 
       
  1661         _blossom_index(0), _blossom_set(0), _blossom_data(0),
       
  1662         _node_index(0), _node_heap_index(0), _node_data(0),
       
  1663         _tree_set_index(0), _tree_set(0),
       
  1664 
       
  1665         _delta1_index(0), _delta1(0),
       
  1666         _delta2_index(0), _delta2(0),
       
  1667         _delta3_index(0), _delta3(0),
       
  1668         _delta4_index(0), _delta4(0),
       
  1669 
       
  1670         _delta_sum() {}
       
  1671 
       
  1672     ~MaxWeightedMatching() {
       
  1673       destroyStructures();
       
  1674     }
       
  1675 
       
  1676     /// \name Execution Control
       
  1677     /// The simplest way to execute the algorithm is to use the
       
  1678     /// \ref run() member function.
       
  1679 
       
  1680     ///@{
       
  1681 
       
  1682     /// \brief Initialize the algorithm
       
  1683     ///
       
  1684     /// This function initializes the algorithm.
       
  1685     void init() {
       
  1686       createStructures();
       
  1687 
       
  1688       for (ArcIt e(_graph); e != INVALID; ++e) {
       
  1689         (*_node_heap_index)[e] = BinHeap<Value, IntArcMap>::PRE_HEAP;
       
  1690       }
       
  1691       for (NodeIt n(_graph); n != INVALID; ++n) {
       
  1692         (*_delta1_index)[n] = _delta1->PRE_HEAP;
       
  1693       }
       
  1694       for (EdgeIt e(_graph); e != INVALID; ++e) {
       
  1695         (*_delta3_index)[e] = _delta3->PRE_HEAP;
       
  1696       }
       
  1697       for (int i = 0; i < _blossom_num; ++i) {
       
  1698         (*_delta2_index)[i] = _delta2->PRE_HEAP;
       
  1699         (*_delta4_index)[i] = _delta4->PRE_HEAP;
       
  1700       }
       
  1701 
       
  1702       int index = 0;
       
  1703       for (NodeIt n(_graph); n != INVALID; ++n) {
       
  1704         Value max = 0;
       
  1705         for (OutArcIt e(_graph, n); e != INVALID; ++e) {
       
  1706           if (_graph.target(e) == n) continue;
       
  1707           if ((dualScale * _weight[e]) / 2 > max) {
       
  1708             max = (dualScale * _weight[e]) / 2;
       
  1709           }
       
  1710         }
       
  1711         (*_node_index)[n] = index;
       
  1712         (*_node_data)[index].pot = max;
       
  1713         _delta1->push(n, max);
       
  1714         int blossom =
       
  1715           _blossom_set->insert(n, std::numeric_limits<Value>::max());
       
  1716 
       
  1717         _tree_set->insert(blossom);
       
  1718 
       
  1719         (*_blossom_data)[blossom].status = EVEN;
       
  1720         (*_blossom_data)[blossom].pred = INVALID;
       
  1721         (*_blossom_data)[blossom].next = INVALID;
       
  1722         (*_blossom_data)[blossom].pot = 0;
       
  1723         (*_blossom_data)[blossom].offset = 0;
       
  1724         ++index;
       
  1725       }
       
  1726       for (EdgeIt e(_graph); e != INVALID; ++e) {
       
  1727         int si = (*_node_index)[_graph.u(e)];
       
  1728         int ti = (*_node_index)[_graph.v(e)];
       
  1729         if (_graph.u(e) != _graph.v(e)) {
       
  1730           _delta3->push(e, ((*_node_data)[si].pot + (*_node_data)[ti].pot -
       
  1731                             dualScale * _weight[e]) / 2);
       
  1732         }
       
  1733       }
       
  1734     }
       
  1735 
       
  1736     /// \brief Start the algorithm
       
  1737     ///
       
  1738     /// This function starts the algorithm.
       
  1739     ///
       
  1740     /// \pre \ref init() must be called before using this function.
       
  1741     void start() {
       
  1742       enum OpType {
       
  1743         D1, D2, D3, D4
       
  1744       };
       
  1745 
       
  1746       int unmatched = _node_num;
       
  1747       while (unmatched > 0) {
       
  1748         Value d1 = !_delta1->empty() ?
       
  1749           _delta1->prio() : std::numeric_limits<Value>::max();
       
  1750 
       
  1751         Value d2 = !_delta2->empty() ?
       
  1752           _delta2->prio() : std::numeric_limits<Value>::max();
       
  1753 
       
  1754         Value d3 = !_delta3->empty() ?
       
  1755           _delta3->prio() : std::numeric_limits<Value>::max();
       
  1756 
       
  1757         Value d4 = !_delta4->empty() ?
       
  1758           _delta4->prio() : std::numeric_limits<Value>::max();
       
  1759 
       
  1760         _delta_sum = d1; OpType ot = D1;
       
  1761         if (d2 < _delta_sum) { _delta_sum = d2; ot = D2; }
       
  1762         if (d3 < _delta_sum) { _delta_sum = d3; ot = D3; }
       
  1763         if (d4 < _delta_sum) { _delta_sum = d4; ot = D4; }
       
  1764 
       
  1765 
       
  1766         switch (ot) {
       
  1767         case D1:
       
  1768           {
       
  1769             Node n = _delta1->top();
       
  1770             unmatchNode(n);
       
  1771             --unmatched;
       
  1772           }
       
  1773           break;
       
  1774         case D2:
       
  1775           {
       
  1776             int blossom = _delta2->top();
       
  1777             Node n = _blossom_set->classTop(blossom);
       
  1778             Arc e = (*_node_data)[(*_node_index)[n]].heap.top();
       
  1779             extendOnArc(e);
       
  1780           }
       
  1781           break;
       
  1782         case D3:
       
  1783           {
       
  1784             Edge e = _delta3->top();
       
  1785 
       
  1786             int left_blossom = _blossom_set->find(_graph.u(e));
       
  1787             int right_blossom = _blossom_set->find(_graph.v(e));
       
  1788 
       
  1789             if (left_blossom == right_blossom) {
       
  1790               _delta3->pop();
       
  1791             } else {
       
  1792               int left_tree;
       
  1793               if ((*_blossom_data)[left_blossom].status == EVEN) {
       
  1794                 left_tree = _tree_set->find(left_blossom);
       
  1795               } else {
       
  1796                 left_tree = -1;
       
  1797                 ++unmatched;
       
  1798               }
       
  1799               int right_tree;
       
  1800               if ((*_blossom_data)[right_blossom].status == EVEN) {
       
  1801                 right_tree = _tree_set->find(right_blossom);
       
  1802               } else {
       
  1803                 right_tree = -1;
       
  1804                 ++unmatched;
       
  1805               }
       
  1806 
       
  1807               if (left_tree == right_tree) {
       
  1808                 shrinkOnEdge(e, left_tree);
       
  1809               } else {
       
  1810                 augmentOnEdge(e);
       
  1811                 unmatched -= 2;
       
  1812               }
       
  1813             }
       
  1814           } break;
       
  1815         case D4:
       
  1816           splitBlossom(_delta4->top());
       
  1817           break;
       
  1818         }
       
  1819       }
       
  1820       extractMatching();
       
  1821     }
       
  1822 
       
  1823     /// \brief Run the algorithm.
       
  1824     ///
       
  1825     /// This method runs the \c %MaxWeightedMatching algorithm.
       
  1826     ///
       
  1827     /// \note mwm.run() is just a shortcut of the following code.
       
  1828     /// \code
       
  1829     ///   mwm.init();
       
  1830     ///   mwm.start();
       
  1831     /// \endcode
       
  1832     void run() {
       
  1833       init();
       
  1834       start();
       
  1835     }
       
  1836 
       
  1837     /// @}
       
  1838 
       
  1839     /// \name Primal Solution
       
  1840     /// Functions to get the primal solution, i.e. the maximum weighted 
       
  1841     /// matching.\n
       
  1842     /// Either \ref run() or \ref start() function should be called before
       
  1843     /// using them.
       
  1844 
       
  1845     /// @{
       
  1846 
       
  1847     /// \brief Return the weight of the matching.
       
  1848     ///
       
  1849     /// This function returns the weight of the found matching.
       
  1850     ///
       
  1851     /// \pre Either run() or start() must be called before using this function.
       
  1852     Value matchingWeight() const {
       
  1853       Value sum = 0;
       
  1854       for (NodeIt n(_graph); n != INVALID; ++n) {
       
  1855         if ((*_matching)[n] != INVALID) {
       
  1856           sum += _weight[(*_matching)[n]];
       
  1857         }
       
  1858       }
       
  1859       return sum /= 2;
       
  1860     }
       
  1861 
       
  1862     /// \brief Return the size (cardinality) of the matching.
       
  1863     ///
       
  1864     /// This function returns the size (cardinality) of the found matching.
       
  1865     ///
       
  1866     /// \pre Either run() or start() must be called before using this function.
       
  1867     int matchingSize() const {
       
  1868       int num = 0;
       
  1869       for (NodeIt n(_graph); n != INVALID; ++n) {
       
  1870         if ((*_matching)[n] != INVALID) {
       
  1871           ++num;
       
  1872         }
       
  1873       }
       
  1874       return num /= 2;
       
  1875     }
       
  1876 
       
  1877     /// \brief Return \c true if the given edge is in the matching.
       
  1878     ///
       
  1879     /// This function returns \c true if the given edge is in the found 
       
  1880     /// matching.
       
  1881     ///
       
  1882     /// \pre Either run() or start() must be called before using this function.
       
  1883     bool matching(const Edge& edge) const {
       
  1884       return edge == (*_matching)[_graph.u(edge)];
       
  1885     }
       
  1886 
       
  1887     /// \brief Return the matching arc (or edge) incident to the given node.
       
  1888     ///
       
  1889     /// This function returns the matching arc (or edge) incident to the
       
  1890     /// given node in the found matching or \c INVALID if the node is 
       
  1891     /// not covered by the matching.
       
  1892     ///
       
  1893     /// \pre Either run() or start() must be called before using this function.
       
  1894     Arc matching(const Node& node) const {
       
  1895       return (*_matching)[node];
       
  1896     }
       
  1897 
       
  1898     /// \brief Return a const reference to the matching map.
       
  1899     ///
       
  1900     /// This function returns a const reference to a node map that stores
       
  1901     /// the matching arc (or edge) incident to each node.
       
  1902     const MatchingMap& matchingMap() const {
       
  1903       return *_matching;
       
  1904     }
       
  1905 
       
  1906     /// \brief Return the mate of the given node.
       
  1907     ///
       
  1908     /// This function returns the mate of the given node in the found 
       
  1909     /// matching or \c INVALID if the node is not covered by the matching.
       
  1910     ///
       
  1911     /// \pre Either run() or start() must be called before using this function.
       
  1912     Node mate(const Node& node) const {
       
  1913       return (*_matching)[node] != INVALID ?
       
  1914         _graph.target((*_matching)[node]) : INVALID;
       
  1915     }
       
  1916 
       
  1917     /// @}
       
  1918 
       
  1919     /// \name Dual Solution
       
  1920     /// Functions to get the dual solution.\n
       
  1921     /// Either \ref run() or \ref start() function should be called before
       
  1922     /// using them.
       
  1923 
       
  1924     /// @{
       
  1925 
       
  1926     /// \brief Return the value of the dual solution.
       
  1927     ///
       
  1928     /// This function returns the value of the dual solution. 
       
  1929     /// It should be equal to the primal value scaled by \ref dualScale 
       
  1930     /// "dual scale".
       
  1931     ///
       
  1932     /// \pre Either run() or start() must be called before using this function.
       
  1933     Value dualValue() const {
       
  1934       Value sum = 0;
       
  1935       for (NodeIt n(_graph); n != INVALID; ++n) {
       
  1936         sum += nodeValue(n);
       
  1937       }
       
  1938       for (int i = 0; i < blossomNum(); ++i) {
       
  1939         sum += blossomValue(i) * (blossomSize(i) / 2);
       
  1940       }
       
  1941       return sum;
       
  1942     }
       
  1943 
       
  1944     /// \brief Return the dual value (potential) of the given node.
       
  1945     ///
       
  1946     /// This function returns the dual value (potential) of the given node.
       
  1947     ///
       
  1948     /// \pre Either run() or start() must be called before using this function.
       
  1949     Value nodeValue(const Node& n) const {
       
  1950       return (*_node_potential)[n];
       
  1951     }
       
  1952 
       
  1953     /// \brief Return the number of the blossoms in the basis.
       
  1954     ///
       
  1955     /// This function returns the number of the blossoms in the basis.
       
  1956     ///
       
  1957     /// \pre Either run() or start() must be called before using this function.
       
  1958     /// \see BlossomIt
       
  1959     int blossomNum() const {
       
  1960       return _blossom_potential.size();
       
  1961     }
       
  1962 
       
  1963     /// \brief Return the number of the nodes in the given blossom.
       
  1964     ///
       
  1965     /// This function returns the number of the nodes in the given blossom.
       
  1966     ///
       
  1967     /// \pre Either run() or start() must be called before using this function.
       
  1968     /// \see BlossomIt
       
  1969     int blossomSize(int k) const {
       
  1970       return _blossom_potential[k].end - _blossom_potential[k].begin;
       
  1971     }
       
  1972 
       
  1973     /// \brief Return the dual value (ptential) of the given blossom.
       
  1974     ///
       
  1975     /// This function returns the dual value (ptential) of the given blossom.
       
  1976     ///
       
  1977     /// \pre Either run() or start() must be called before using this function.
       
  1978     Value blossomValue(int k) const {
       
  1979       return _blossom_potential[k].value;
       
  1980     }
       
  1981 
       
  1982     /// \brief Iterator for obtaining the nodes of a blossom.
       
  1983     ///
       
  1984     /// This class provides an iterator for obtaining the nodes of the 
       
  1985     /// given blossom. It lists a subset of the nodes.
       
  1986     /// Before using this iterator, you must allocate a 
       
  1987     /// MaxWeightedMatching class and execute it.
       
  1988     class BlossomIt {
       
  1989     public:
       
  1990 
       
  1991       /// \brief Constructor.
       
  1992       ///
       
  1993       /// Constructor to get the nodes of the given variable.
       
  1994       ///
       
  1995       /// \pre Either \ref MaxWeightedMatching::run() "algorithm.run()" or 
       
  1996       /// \ref MaxWeightedMatching::start() "algorithm.start()" must be 
       
  1997       /// called before initializing this iterator.
       
  1998       BlossomIt(const MaxWeightedMatching& algorithm, int variable)
       
  1999         : _algorithm(&algorithm)
       
  2000       {
       
  2001         _index = _algorithm->_blossom_potential[variable].begin;
       
  2002         _last = _algorithm->_blossom_potential[variable].end;
       
  2003       }
       
  2004 
       
  2005       /// \brief Conversion to \c Node.
       
  2006       ///
       
  2007       /// Conversion to \c Node.
       
  2008       operator Node() const {
       
  2009         return _algorithm->_blossom_node_list[_index];
       
  2010       }
       
  2011 
       
  2012       /// \brief Increment operator.
       
  2013       ///
       
  2014       /// Increment operator.
       
  2015       BlossomIt& operator++() {
       
  2016         ++_index;
       
  2017         return *this;
       
  2018       }
       
  2019 
       
  2020       /// \brief Validity checking
       
  2021       ///
       
  2022       /// Checks whether the iterator is invalid.
       
  2023       bool operator==(Invalid) const { return _index == _last; }
       
  2024 
       
  2025       /// \brief Validity checking
       
  2026       ///
       
  2027       /// Checks whether the iterator is valid.
       
  2028       bool operator!=(Invalid) const { return _index != _last; }
       
  2029 
       
  2030     private:
       
  2031       const MaxWeightedMatching* _algorithm;
       
  2032       int _last;
       
  2033       int _index;
       
  2034     };
       
  2035 
       
  2036     /// @}
       
  2037 
       
  2038   };
       
  2039 
       
  2040   /// \ingroup matching
       
  2041   ///
       
  2042   /// \brief Weighted perfect matching in general graphs
       
  2043   ///
       
  2044   /// This class provides an efficient implementation of Edmond's
       
  2045   /// maximum weighted perfect matching algorithm. The implementation
       
  2046   /// is based on extensive use of priority queues and provides
       
  2047   /// \f$O(nm\log n)\f$ time complexity.
       
  2048   ///
       
  2049   /// The maximum weighted perfect matching problem is to find a subset of 
       
  2050   /// the edges in an undirected graph with maximum overall weight for which 
       
  2051   /// each node has exactly one incident edge.
       
  2052   /// It can be formulated with the following linear program.
       
  2053   /// \f[ \sum_{e \in \delta(u)}x_e = 1 \quad \forall u\in V\f]
       
  2054   /** \f[ \sum_{e \in \gamma(B)}x_e \le \frac{\vert B \vert - 1}{2}
       
  2055       \quad \forall B\in\mathcal{O}\f] */
       
  2056   /// \f[x_e \ge 0\quad \forall e\in E\f]
       
  2057   /// \f[\max \sum_{e\in E}x_ew_e\f]
       
  2058   /// where \f$\delta(X)\f$ is the set of edges incident to a node in
       
  2059   /// \f$X\f$, \f$\gamma(X)\f$ is the set of edges with both ends in
       
  2060   /// \f$X\f$ and \f$\mathcal{O}\f$ is the set of odd cardinality
       
  2061   /// subsets of the nodes.
       
  2062   ///
       
  2063   /// The algorithm calculates an optimal matching and a proof of the
       
  2064   /// optimality. The solution of the dual problem can be used to check
       
  2065   /// the result of the algorithm. The dual linear problem is the
       
  2066   /// following.
       
  2067   /** \f[ y_u + y_v + \sum_{B \in \mathcal{O}, uv \in \gamma(B)}z_B \ge
       
  2068       w_{uv} \quad \forall uv\in E\f] */
       
  2069   /// \f[z_B \ge 0 \quad \forall B \in \mathcal{O}\f]
       
  2070   /** \f[\min \sum_{u \in V}y_u + \sum_{B \in \mathcal{O}}
       
  2071       \frac{\vert B \vert - 1}{2}z_B\f] */
       
  2072   ///
       
  2073   /// The algorithm can be executed with the run() function. 
       
  2074   /// After it the matching (the primal solution) and the dual solution
       
  2075   /// can be obtained using the query functions and the 
       
  2076   /// \ref MaxWeightedPerfectMatching::BlossomIt "BlossomIt" nested class, 
       
  2077   /// which is able to iterate on the nodes of a blossom. 
       
  2078   /// If the value type is integer, then the dual solution is multiplied
       
  2079   /// by \ref MaxWeightedMatching::dualScale "4".
       
  2080   ///
       
  2081   /// \tparam GR The undirected graph type the algorithm runs on.
       
  2082   /// \tparam WM The type edge weight map. The default type is 
       
  2083   /// \ref concepts::Graph::EdgeMap "GR::EdgeMap<int>".
       
  2084 #ifdef DOXYGEN
       
  2085   template <typename GR, typename WM>
       
  2086 #else
       
  2087   template <typename GR,
       
  2088             typename WM = typename GR::template EdgeMap<int> >
       
  2089 #endif
       
  2090   class MaxWeightedPerfectMatching {
       
  2091   public:
       
  2092 
       
  2093     /// The graph type of the algorithm
       
  2094     typedef GR Graph;
       
  2095     /// The type of the edge weight map
       
  2096     typedef WM WeightMap;
       
  2097     /// The value type of the edge weights
       
  2098     typedef typename WeightMap::Value Value;
       
  2099 
       
  2100     /// \brief Scaling factor for dual solution
       
  2101     ///
       
  2102     /// Scaling factor for dual solution, it is equal to 4 or 1
       
  2103     /// according to the value type.
       
  2104     static const int dualScale =
       
  2105       std::numeric_limits<Value>::is_integer ? 4 : 1;
       
  2106 
       
  2107     /// The type of the matching map
       
  2108     typedef typename Graph::template NodeMap<typename Graph::Arc>
       
  2109     MatchingMap;
       
  2110 
       
  2111   private:
       
  2112 
       
  2113     TEMPLATE_GRAPH_TYPEDEFS(Graph);
       
  2114 
       
  2115     typedef typename Graph::template NodeMap<Value> NodePotential;
       
  2116     typedef std::vector<Node> BlossomNodeList;
       
  2117 
       
  2118     struct BlossomVariable {
       
  2119       int begin, end;
       
  2120       Value value;
       
  2121 
       
  2122       BlossomVariable(int _begin, int _end, Value _value)
       
  2123         : begin(_begin), end(_end), value(_value) {}
       
  2124 
       
  2125     };
       
  2126 
       
  2127     typedef std::vector<BlossomVariable> BlossomPotential;
       
  2128 
       
  2129     const Graph& _graph;
       
  2130     const WeightMap& _weight;
       
  2131 
       
  2132     MatchingMap* _matching;
       
  2133 
       
  2134     NodePotential* _node_potential;
       
  2135 
       
  2136     BlossomPotential _blossom_potential;
       
  2137     BlossomNodeList _blossom_node_list;
       
  2138 
       
  2139     int _node_num;
       
  2140     int _blossom_num;
       
  2141 
       
  2142     typedef RangeMap<int> IntIntMap;
       
  2143 
       
  2144     enum Status {
       
  2145       EVEN = -1, MATCHED = 0, ODD = 1
       
  2146     };
       
  2147 
       
  2148     typedef HeapUnionFind<Value, IntNodeMap> BlossomSet;
       
  2149     struct BlossomData {
       
  2150       int tree;
       
  2151       Status status;
       
  2152       Arc pred, next;
       
  2153       Value pot, offset;
       
  2154     };
       
  2155 
       
  2156     IntNodeMap *_blossom_index;
       
  2157     BlossomSet *_blossom_set;
       
  2158     RangeMap<BlossomData>* _blossom_data;
       
  2159 
       
  2160     IntNodeMap *_node_index;
       
  2161     IntArcMap *_node_heap_index;
       
  2162 
       
  2163     struct NodeData {
       
  2164 
       
  2165       NodeData(IntArcMap& node_heap_index)
       
  2166         : heap(node_heap_index) {}
       
  2167 
       
  2168       int blossom;
       
  2169       Value pot;
       
  2170       BinHeap<Value, IntArcMap> heap;
       
  2171       std::map<int, Arc> heap_index;
       
  2172 
       
  2173       int tree;
       
  2174     };
       
  2175 
       
  2176     RangeMap<NodeData>* _node_data;
       
  2177 
       
  2178     typedef ExtendFindEnum<IntIntMap> TreeSet;
       
  2179 
       
  2180     IntIntMap *_tree_set_index;
       
  2181     TreeSet *_tree_set;
       
  2182 
       
  2183     IntIntMap *_delta2_index;
       
  2184     BinHeap<Value, IntIntMap> *_delta2;
       
  2185 
       
  2186     IntEdgeMap *_delta3_index;
       
  2187     BinHeap<Value, IntEdgeMap> *_delta3;
       
  2188 
       
  2189     IntIntMap *_delta4_index;
       
  2190     BinHeap<Value, IntIntMap> *_delta4;
       
  2191 
       
  2192     Value _delta_sum;
       
  2193 
       
  2194     void createStructures() {
       
  2195       _node_num = countNodes(_graph);
       
  2196       _blossom_num = _node_num * 3 / 2;
       
  2197 
       
  2198       if (!_matching) {
       
  2199         _matching = new MatchingMap(_graph);
       
  2200       }
       
  2201       if (!_node_potential) {
       
  2202         _node_potential = new NodePotential(_graph);
       
  2203       }
       
  2204       if (!_blossom_set) {
       
  2205         _blossom_index = new IntNodeMap(_graph);
       
  2206         _blossom_set = new BlossomSet(*_blossom_index);
       
  2207         _blossom_data = new RangeMap<BlossomData>(_blossom_num);
       
  2208       }
       
  2209 
       
  2210       if (!_node_index) {
       
  2211         _node_index = new IntNodeMap(_graph);
       
  2212         _node_heap_index = new IntArcMap(_graph);
       
  2213         _node_data = new RangeMap<NodeData>(_node_num,
       
  2214                                             NodeData(*_node_heap_index));
       
  2215       }
       
  2216 
       
  2217       if (!_tree_set) {
       
  2218         _tree_set_index = new IntIntMap(_blossom_num);
       
  2219         _tree_set = new TreeSet(*_tree_set_index);
       
  2220       }
       
  2221       if (!_delta2) {
       
  2222         _delta2_index = new IntIntMap(_blossom_num);
       
  2223         _delta2 = new BinHeap<Value, IntIntMap>(*_delta2_index);
       
  2224       }
       
  2225       if (!_delta3) {
       
  2226         _delta3_index = new IntEdgeMap(_graph);
       
  2227         _delta3 = new BinHeap<Value, IntEdgeMap>(*_delta3_index);
       
  2228       }
       
  2229       if (!_delta4) {
       
  2230         _delta4_index = new IntIntMap(_blossom_num);
       
  2231         _delta4 = new BinHeap<Value, IntIntMap>(*_delta4_index);
       
  2232       }
       
  2233     }
       
  2234 
       
  2235     void destroyStructures() {
       
  2236       _node_num = countNodes(_graph);
       
  2237       _blossom_num = _node_num * 3 / 2;
       
  2238 
       
  2239       if (_matching) {
       
  2240         delete _matching;
       
  2241       }
       
  2242       if (_node_potential) {
       
  2243         delete _node_potential;
       
  2244       }
       
  2245       if (_blossom_set) {
       
  2246         delete _blossom_index;
       
  2247         delete _blossom_set;
       
  2248         delete _blossom_data;
       
  2249       }
       
  2250 
       
  2251       if (_node_index) {
       
  2252         delete _node_index;
       
  2253         delete _node_heap_index;
       
  2254         delete _node_data;
       
  2255       }
       
  2256 
       
  2257       if (_tree_set) {
       
  2258         delete _tree_set_index;
       
  2259         delete _tree_set;
       
  2260       }
       
  2261       if (_delta2) {
       
  2262         delete _delta2_index;
       
  2263         delete _delta2;
       
  2264       }
       
  2265       if (_delta3) {
       
  2266         delete _delta3_index;
       
  2267         delete _delta3;
       
  2268       }
       
  2269       if (_delta4) {
       
  2270         delete _delta4_index;
       
  2271         delete _delta4;
       
  2272       }
       
  2273     }
       
  2274 
       
  2275     void matchedToEven(int blossom, int tree) {
       
  2276       if (_delta2->state(blossom) == _delta2->IN_HEAP) {
       
  2277         _delta2->erase(blossom);
       
  2278       }
       
  2279 
       
  2280       if (!_blossom_set->trivial(blossom)) {
       
  2281         (*_blossom_data)[blossom].pot -=
       
  2282           2 * (_delta_sum - (*_blossom_data)[blossom].offset);
       
  2283       }
       
  2284 
       
  2285       for (typename BlossomSet::ItemIt n(*_blossom_set, blossom);
       
  2286            n != INVALID; ++n) {
       
  2287 
       
  2288         _blossom_set->increase(n, std::numeric_limits<Value>::max());
       
  2289         int ni = (*_node_index)[n];
       
  2290 
       
  2291         (*_node_data)[ni].heap.clear();
       
  2292         (*_node_data)[ni].heap_index.clear();
       
  2293 
       
  2294         (*_node_data)[ni].pot += _delta_sum - (*_blossom_data)[blossom].offset;
       
  2295 
       
  2296         for (InArcIt e(_graph, n); e != INVALID; ++e) {
       
  2297           Node v = _graph.source(e);
       
  2298           int vb = _blossom_set->find(v);
       
  2299           int vi = (*_node_index)[v];
       
  2300 
       
  2301           Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot -
       
  2302             dualScale * _weight[e];
       
  2303 
       
  2304           if ((*_blossom_data)[vb].status == EVEN) {
       
  2305             if (_delta3->state(e) != _delta3->IN_HEAP && blossom != vb) {
       
  2306               _delta3->push(e, rw / 2);
       
  2307             }
       
  2308           } else {
       
  2309             typename std::map<int, Arc>::iterator it =
       
  2310               (*_node_data)[vi].heap_index.find(tree);
       
  2311 
       
  2312             if (it != (*_node_data)[vi].heap_index.end()) {
       
  2313               if ((*_node_data)[vi].heap[it->second] > rw) {
       
  2314                 (*_node_data)[vi].heap.replace(it->second, e);
       
  2315                 (*_node_data)[vi].heap.decrease(e, rw);
       
  2316                 it->second = e;
       
  2317               }
       
  2318             } else {
       
  2319               (*_node_data)[vi].heap.push(e, rw);
       
  2320               (*_node_data)[vi].heap_index.insert(std::make_pair(tree, e));
       
  2321             }
       
  2322 
       
  2323             if ((*_blossom_set)[v] > (*_node_data)[vi].heap.prio()) {
       
  2324               _blossom_set->decrease(v, (*_node_data)[vi].heap.prio());
       
  2325 
       
  2326               if ((*_blossom_data)[vb].status == MATCHED) {
       
  2327                 if (_delta2->state(vb) != _delta2->IN_HEAP) {
       
  2328                   _delta2->push(vb, _blossom_set->classPrio(vb) -
       
  2329                                (*_blossom_data)[vb].offset);
       
  2330                 } else if ((*_delta2)[vb] > _blossom_set->classPrio(vb) -
       
  2331                            (*_blossom_data)[vb].offset){
       
  2332                   _delta2->decrease(vb, _blossom_set->classPrio(vb) -
       
  2333                                    (*_blossom_data)[vb].offset);
       
  2334                 }
       
  2335               }
       
  2336             }
       
  2337           }
       
  2338         }
       
  2339       }
       
  2340       (*_blossom_data)[blossom].offset = 0;
       
  2341     }
       
  2342 
       
  2343     void matchedToOdd(int blossom) {
       
  2344       if (_delta2->state(blossom) == _delta2->IN_HEAP) {
       
  2345         _delta2->erase(blossom);
       
  2346       }
       
  2347       (*_blossom_data)[blossom].offset += _delta_sum;
       
  2348       if (!_blossom_set->trivial(blossom)) {
       
  2349         _delta4->push(blossom, (*_blossom_data)[blossom].pot / 2 +
       
  2350                      (*_blossom_data)[blossom].offset);
       
  2351       }
       
  2352     }
       
  2353 
       
  2354     void evenToMatched(int blossom, int tree) {
       
  2355       if (!_blossom_set->trivial(blossom)) {
       
  2356         (*_blossom_data)[blossom].pot += 2 * _delta_sum;
       
  2357       }
       
  2358 
       
  2359       for (typename BlossomSet::ItemIt n(*_blossom_set, blossom);
       
  2360            n != INVALID; ++n) {
       
  2361         int ni = (*_node_index)[n];
       
  2362         (*_node_data)[ni].pot -= _delta_sum;
       
  2363 
       
  2364         for (InArcIt e(_graph, n); e != INVALID; ++e) {
       
  2365           Node v = _graph.source(e);
       
  2366           int vb = _blossom_set->find(v);
       
  2367           int vi = (*_node_index)[v];
       
  2368 
       
  2369           Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot -
       
  2370             dualScale * _weight[e];
       
  2371 
       
  2372           if (vb == blossom) {
       
  2373             if (_delta3->state(e) == _delta3->IN_HEAP) {
       
  2374               _delta3->erase(e);
       
  2375             }
       
  2376           } else if ((*_blossom_data)[vb].status == EVEN) {
       
  2377 
       
  2378             if (_delta3->state(e) == _delta3->IN_HEAP) {
       
  2379               _delta3->erase(e);
       
  2380             }
       
  2381 
       
  2382             int vt = _tree_set->find(vb);
       
  2383 
       
  2384             if (vt != tree) {
       
  2385 
       
  2386               Arc r = _graph.oppositeArc(e);
       
  2387 
       
  2388               typename std::map<int, Arc>::iterator it =
       
  2389                 (*_node_data)[ni].heap_index.find(vt);
       
  2390 
       
  2391               if (it != (*_node_data)[ni].heap_index.end()) {
       
  2392                 if ((*_node_data)[ni].heap[it->second] > rw) {
       
  2393                   (*_node_data)[ni].heap.replace(it->second, r);
       
  2394                   (*_node_data)[ni].heap.decrease(r, rw);
       
  2395                   it->second = r;
       
  2396                 }
       
  2397               } else {
       
  2398                 (*_node_data)[ni].heap.push(r, rw);
       
  2399                 (*_node_data)[ni].heap_index.insert(std::make_pair(vt, r));
       
  2400               }
       
  2401 
       
  2402               if ((*_blossom_set)[n] > (*_node_data)[ni].heap.prio()) {
       
  2403                 _blossom_set->decrease(n, (*_node_data)[ni].heap.prio());
       
  2404 
       
  2405                 if (_delta2->state(blossom) != _delta2->IN_HEAP) {
       
  2406                   _delta2->push(blossom, _blossom_set->classPrio(blossom) -
       
  2407                                (*_blossom_data)[blossom].offset);
       
  2408                 } else if ((*_delta2)[blossom] >
       
  2409                            _blossom_set->classPrio(blossom) -
       
  2410                            (*_blossom_data)[blossom].offset){
       
  2411                   _delta2->decrease(blossom, _blossom_set->classPrio(blossom) -
       
  2412                                    (*_blossom_data)[blossom].offset);
       
  2413                 }
       
  2414               }
       
  2415             }
       
  2416           } else {
       
  2417 
       
  2418             typename std::map<int, Arc>::iterator it =
       
  2419               (*_node_data)[vi].heap_index.find(tree);
       
  2420 
       
  2421             if (it != (*_node_data)[vi].heap_index.end()) {
       
  2422               (*_node_data)[vi].heap.erase(it->second);
       
  2423               (*_node_data)[vi].heap_index.erase(it);
       
  2424               if ((*_node_data)[vi].heap.empty()) {
       
  2425                 _blossom_set->increase(v, std::numeric_limits<Value>::max());
       
  2426               } else if ((*_blossom_set)[v] < (*_node_data)[vi].heap.prio()) {
       
  2427                 _blossom_set->increase(v, (*_node_data)[vi].heap.prio());
       
  2428               }
       
  2429 
       
  2430               if ((*_blossom_data)[vb].status == MATCHED) {
       
  2431                 if (_blossom_set->classPrio(vb) ==
       
  2432                     std::numeric_limits<Value>::max()) {
       
  2433                   _delta2->erase(vb);
       
  2434                 } else if ((*_delta2)[vb] < _blossom_set->classPrio(vb) -
       
  2435                            (*_blossom_data)[vb].offset) {
       
  2436                   _delta2->increase(vb, _blossom_set->classPrio(vb) -
       
  2437                                    (*_blossom_data)[vb].offset);
       
  2438                 }
       
  2439               }
       
  2440             }
       
  2441           }
       
  2442         }
       
  2443       }
       
  2444     }
       
  2445 
       
  2446     void oddToMatched(int blossom) {
       
  2447       (*_blossom_data)[blossom].offset -= _delta_sum;
       
  2448 
       
  2449       if (_blossom_set->classPrio(blossom) !=
       
  2450           std::numeric_limits<Value>::max()) {
       
  2451         _delta2->push(blossom, _blossom_set->classPrio(blossom) -
       
  2452                        (*_blossom_data)[blossom].offset);
       
  2453       }
       
  2454 
       
  2455       if (!_blossom_set->trivial(blossom)) {
       
  2456         _delta4->erase(blossom);
       
  2457       }
       
  2458     }
       
  2459 
       
  2460     void oddToEven(int blossom, int tree) {
       
  2461       if (!_blossom_set->trivial(blossom)) {
       
  2462         _delta4->erase(blossom);
       
  2463         (*_blossom_data)[blossom].pot -=
       
  2464           2 * (2 * _delta_sum - (*_blossom_data)[blossom].offset);
       
  2465       }
       
  2466 
       
  2467       for (typename BlossomSet::ItemIt n(*_blossom_set, blossom);
       
  2468            n != INVALID; ++n) {
       
  2469         int ni = (*_node_index)[n];
       
  2470 
       
  2471         _blossom_set->increase(n, std::numeric_limits<Value>::max());
       
  2472 
       
  2473         (*_node_data)[ni].heap.clear();
       
  2474         (*_node_data)[ni].heap_index.clear();
       
  2475         (*_node_data)[ni].pot +=
       
  2476           2 * _delta_sum - (*_blossom_data)[blossom].offset;
       
  2477 
       
  2478         for (InArcIt e(_graph, n); e != INVALID; ++e) {
       
  2479           Node v = _graph.source(e);
       
  2480           int vb = _blossom_set->find(v);
       
  2481           int vi = (*_node_index)[v];
       
  2482 
       
  2483           Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot -
       
  2484             dualScale * _weight[e];
       
  2485 
       
  2486           if ((*_blossom_data)[vb].status == EVEN) {
       
  2487             if (_delta3->state(e) != _delta3->IN_HEAP && blossom != vb) {
       
  2488               _delta3->push(e, rw / 2);
       
  2489             }
       
  2490           } else {
       
  2491 
       
  2492             typename std::map<int, Arc>::iterator it =
       
  2493               (*_node_data)[vi].heap_index.find(tree);
       
  2494 
       
  2495             if (it != (*_node_data)[vi].heap_index.end()) {
       
  2496               if ((*_node_data)[vi].heap[it->second] > rw) {
       
  2497                 (*_node_data)[vi].heap.replace(it->second, e);
       
  2498                 (*_node_data)[vi].heap.decrease(e, rw);
       
  2499                 it->second = e;
       
  2500               }
       
  2501             } else {
       
  2502               (*_node_data)[vi].heap.push(e, rw);
       
  2503               (*_node_data)[vi].heap_index.insert(std::make_pair(tree, e));
       
  2504             }
       
  2505 
       
  2506             if ((*_blossom_set)[v] > (*_node_data)[vi].heap.prio()) {
       
  2507               _blossom_set->decrease(v, (*_node_data)[vi].heap.prio());
       
  2508 
       
  2509               if ((*_blossom_data)[vb].status == MATCHED) {
       
  2510                 if (_delta2->state(vb) != _delta2->IN_HEAP) {
       
  2511                   _delta2->push(vb, _blossom_set->classPrio(vb) -
       
  2512                                (*_blossom_data)[vb].offset);
       
  2513                 } else if ((*_delta2)[vb] > _blossom_set->classPrio(vb) -
       
  2514                            (*_blossom_data)[vb].offset) {
       
  2515                   _delta2->decrease(vb, _blossom_set->classPrio(vb) -
       
  2516                                    (*_blossom_data)[vb].offset);
       
  2517                 }
       
  2518               }
       
  2519             }
       
  2520           }
       
  2521         }
       
  2522       }
       
  2523       (*_blossom_data)[blossom].offset = 0;
       
  2524     }
       
  2525 
       
  2526     void alternatePath(int even, int tree) {
       
  2527       int odd;
       
  2528 
       
  2529       evenToMatched(even, tree);
       
  2530       (*_blossom_data)[even].status = MATCHED;
       
  2531 
       
  2532       while ((*_blossom_data)[even].pred != INVALID) {
       
  2533         odd = _blossom_set->find(_graph.target((*_blossom_data)[even].pred));
       
  2534         (*_blossom_data)[odd].status = MATCHED;
       
  2535         oddToMatched(odd);
       
  2536         (*_blossom_data)[odd].next = (*_blossom_data)[odd].pred;
       
  2537 
       
  2538         even = _blossom_set->find(_graph.target((*_blossom_data)[odd].pred));
       
  2539         (*_blossom_data)[even].status = MATCHED;
       
  2540         evenToMatched(even, tree);
       
  2541         (*_blossom_data)[even].next =
       
  2542           _graph.oppositeArc((*_blossom_data)[odd].pred);
       
  2543       }
       
  2544 
       
  2545     }
       
  2546 
       
  2547     void destroyTree(int tree) {
       
  2548       for (TreeSet::ItemIt b(*_tree_set, tree); b != INVALID; ++b) {
       
  2549         if ((*_blossom_data)[b].status == EVEN) {
       
  2550           (*_blossom_data)[b].status = MATCHED;
       
  2551           evenToMatched(b, tree);
       
  2552         } else if ((*_blossom_data)[b].status == ODD) {
       
  2553           (*_blossom_data)[b].status = MATCHED;
       
  2554           oddToMatched(b);
       
  2555         }
       
  2556       }
       
  2557       _tree_set->eraseClass(tree);
       
  2558     }
       
  2559 
       
  2560     void augmentOnEdge(const Edge& edge) {
       
  2561 
       
  2562       int left = _blossom_set->find(_graph.u(edge));
       
  2563       int right = _blossom_set->find(_graph.v(edge));
       
  2564 
       
  2565       int left_tree = _tree_set->find(left);
       
  2566       alternatePath(left, left_tree);
       
  2567       destroyTree(left_tree);
       
  2568 
       
  2569       int right_tree = _tree_set->find(right);
       
  2570       alternatePath(right, right_tree);
       
  2571       destroyTree(right_tree);
       
  2572 
       
  2573       (*_blossom_data)[left].next = _graph.direct(edge, true);
       
  2574       (*_blossom_data)[right].next = _graph.direct(edge, false);
       
  2575     }
       
  2576 
       
  2577     void extendOnArc(const Arc& arc) {
       
  2578       int base = _blossom_set->find(_graph.target(arc));
       
  2579       int tree = _tree_set->find(base);
       
  2580 
       
  2581       int odd = _blossom_set->find(_graph.source(arc));
       
  2582       _tree_set->insert(odd, tree);
       
  2583       (*_blossom_data)[odd].status = ODD;
       
  2584       matchedToOdd(odd);
       
  2585       (*_blossom_data)[odd].pred = arc;
       
  2586 
       
  2587       int even = _blossom_set->find(_graph.target((*_blossom_data)[odd].next));
       
  2588       (*_blossom_data)[even].pred = (*_blossom_data)[even].next;
       
  2589       _tree_set->insert(even, tree);
       
  2590       (*_blossom_data)[even].status = EVEN;
       
  2591       matchedToEven(even, tree);
       
  2592     }
       
  2593 
       
  2594     void shrinkOnEdge(const Edge& edge, int tree) {
       
  2595       int nca = -1;
       
  2596       std::vector<int> left_path, right_path;
       
  2597 
       
  2598       {
       
  2599         std::set<int> left_set, right_set;
       
  2600         int left = _blossom_set->find(_graph.u(edge));
       
  2601         left_path.push_back(left);
       
  2602         left_set.insert(left);
       
  2603 
       
  2604         int right = _blossom_set->find(_graph.v(edge));
       
  2605         right_path.push_back(right);
       
  2606         right_set.insert(right);
       
  2607 
       
  2608         while (true) {
       
  2609 
       
  2610           if ((*_blossom_data)[left].pred == INVALID) break;
       
  2611 
       
  2612           left =
       
  2613             _blossom_set->find(_graph.target((*_blossom_data)[left].pred));
       
  2614           left_path.push_back(left);
       
  2615           left =
       
  2616             _blossom_set->find(_graph.target((*_blossom_data)[left].pred));
       
  2617           left_path.push_back(left);
       
  2618 
       
  2619           left_set.insert(left);
       
  2620 
       
  2621           if (right_set.find(left) != right_set.end()) {
       
  2622             nca = left;
       
  2623             break;
       
  2624           }
       
  2625 
       
  2626           if ((*_blossom_data)[right].pred == INVALID) break;
       
  2627 
       
  2628           right =
       
  2629             _blossom_set->find(_graph.target((*_blossom_data)[right].pred));
       
  2630           right_path.push_back(right);
       
  2631           right =
       
  2632             _blossom_set->find(_graph.target((*_blossom_data)[right].pred));
       
  2633           right_path.push_back(right);
       
  2634 
       
  2635           right_set.insert(right);
       
  2636 
       
  2637           if (left_set.find(right) != left_set.end()) {
       
  2638             nca = right;
       
  2639             break;
       
  2640           }
       
  2641 
       
  2642         }
       
  2643 
       
  2644         if (nca == -1) {
       
  2645           if ((*_blossom_data)[left].pred == INVALID) {
       
  2646             nca = right;
       
  2647             while (left_set.find(nca) == left_set.end()) {
       
  2648               nca =
       
  2649                 _blossom_set->find(_graph.target((*_blossom_data)[nca].pred));
       
  2650               right_path.push_back(nca);
       
  2651               nca =
       
  2652                 _blossom_set->find(_graph.target((*_blossom_data)[nca].pred));
       
  2653               right_path.push_back(nca);
       
  2654             }
       
  2655           } else {
       
  2656             nca = left;
       
  2657             while (right_set.find(nca) == right_set.end()) {
       
  2658               nca =
       
  2659                 _blossom_set->find(_graph.target((*_blossom_data)[nca].pred));
       
  2660               left_path.push_back(nca);
       
  2661               nca =
       
  2662                 _blossom_set->find(_graph.target((*_blossom_data)[nca].pred));
       
  2663               left_path.push_back(nca);
       
  2664             }
       
  2665           }
       
  2666         }
       
  2667       }
       
  2668 
       
  2669       std::vector<int> subblossoms;
       
  2670       Arc prev;
       
  2671 
       
  2672       prev = _graph.direct(edge, true);
       
  2673       for (int i = 0; left_path[i] != nca; i += 2) {
       
  2674         subblossoms.push_back(left_path[i]);
       
  2675         (*_blossom_data)[left_path[i]].next = prev;
       
  2676         _tree_set->erase(left_path[i]);
       
  2677 
       
  2678         subblossoms.push_back(left_path[i + 1]);
       
  2679         (*_blossom_data)[left_path[i + 1]].status = EVEN;
       
  2680         oddToEven(left_path[i + 1], tree);
       
  2681         _tree_set->erase(left_path[i + 1]);
       
  2682         prev = _graph.oppositeArc((*_blossom_data)[left_path[i + 1]].pred);
       
  2683       }
       
  2684 
       
  2685       int k = 0;
       
  2686       while (right_path[k] != nca) ++k;
       
  2687 
       
  2688       subblossoms.push_back(nca);
       
  2689       (*_blossom_data)[nca].next = prev;
       
  2690 
       
  2691       for (int i = k - 2; i >= 0; i -= 2) {
       
  2692         subblossoms.push_back(right_path[i + 1]);
       
  2693         (*_blossom_data)[right_path[i + 1]].status = EVEN;
       
  2694         oddToEven(right_path[i + 1], tree);
       
  2695         _tree_set->erase(right_path[i + 1]);
       
  2696 
       
  2697         (*_blossom_data)[right_path[i + 1]].next =
       
  2698           (*_blossom_data)[right_path[i + 1]].pred;
       
  2699 
       
  2700         subblossoms.push_back(right_path[i]);
       
  2701         _tree_set->erase(right_path[i]);
       
  2702       }
       
  2703 
       
  2704       int surface =
       
  2705         _blossom_set->join(subblossoms.begin(), subblossoms.end());
       
  2706 
       
  2707       for (int i = 0; i < int(subblossoms.size()); ++i) {
       
  2708         if (!_blossom_set->trivial(subblossoms[i])) {
       
  2709           (*_blossom_data)[subblossoms[i]].pot += 2 * _delta_sum;
       
  2710         }
       
  2711         (*_blossom_data)[subblossoms[i]].status = MATCHED;
       
  2712       }
       
  2713 
       
  2714       (*_blossom_data)[surface].pot = -2 * _delta_sum;
       
  2715       (*_blossom_data)[surface].offset = 0;
       
  2716       (*_blossom_data)[surface].status = EVEN;
       
  2717       (*_blossom_data)[surface].pred = (*_blossom_data)[nca].pred;
       
  2718       (*_blossom_data)[surface].next = (*_blossom_data)[nca].pred;
       
  2719 
       
  2720       _tree_set->insert(surface, tree);
       
  2721       _tree_set->erase(nca);
       
  2722     }
       
  2723 
       
  2724     void splitBlossom(int blossom) {
       
  2725       Arc next = (*_blossom_data)[blossom].next;
       
  2726       Arc pred = (*_blossom_data)[blossom].pred;
       
  2727 
       
  2728       int tree = _tree_set->find(blossom);
       
  2729 
       
  2730       (*_blossom_data)[blossom].status = MATCHED;
       
  2731       oddToMatched(blossom);
       
  2732       if (_delta2->state(blossom) == _delta2->IN_HEAP) {
       
  2733         _delta2->erase(blossom);
       
  2734       }
       
  2735 
       
  2736       std::vector<int> subblossoms;
       
  2737       _blossom_set->split(blossom, std::back_inserter(subblossoms));
       
  2738 
       
  2739       Value offset = (*_blossom_data)[blossom].offset;
       
  2740       int b = _blossom_set->find(_graph.source(pred));
       
  2741       int d = _blossom_set->find(_graph.source(next));
       
  2742 
       
  2743       int ib = -1, id = -1;
       
  2744       for (int i = 0; i < int(subblossoms.size()); ++i) {
       
  2745         if (subblossoms[i] == b) ib = i;
       
  2746         if (subblossoms[i] == d) id = i;
       
  2747 
       
  2748         (*_blossom_data)[subblossoms[i]].offset = offset;
       
  2749         if (!_blossom_set->trivial(subblossoms[i])) {
       
  2750           (*_blossom_data)[subblossoms[i]].pot -= 2 * offset;
       
  2751         }
       
  2752         if (_blossom_set->classPrio(subblossoms[i]) !=
       
  2753             std::numeric_limits<Value>::max()) {
       
  2754           _delta2->push(subblossoms[i],
       
  2755                         _blossom_set->classPrio(subblossoms[i]) -
       
  2756                         (*_blossom_data)[subblossoms[i]].offset);
       
  2757         }
       
  2758       }
       
  2759 
       
  2760       if (id > ib ? ((id - ib) % 2 == 0) : ((ib - id) % 2 == 1)) {
       
  2761         for (int i = (id + 1) % subblossoms.size();
       
  2762              i != ib; i = (i + 2) % subblossoms.size()) {
       
  2763           int sb = subblossoms[i];
       
  2764           int tb = subblossoms[(i + 1) % subblossoms.size()];
       
  2765           (*_blossom_data)[sb].next =
       
  2766             _graph.oppositeArc((*_blossom_data)[tb].next);
       
  2767         }
       
  2768 
       
  2769         for (int i = ib; i != id; i = (i + 2) % subblossoms.size()) {
       
  2770           int sb = subblossoms[i];
       
  2771           int tb = subblossoms[(i + 1) % subblossoms.size()];
       
  2772           int ub = subblossoms[(i + 2) % subblossoms.size()];
       
  2773 
       
  2774           (*_blossom_data)[sb].status = ODD;
       
  2775           matchedToOdd(sb);
       
  2776           _tree_set->insert(sb, tree);
       
  2777           (*_blossom_data)[sb].pred = pred;
       
  2778           (*_blossom_data)[sb].next =
       
  2779                            _graph.oppositeArc((*_blossom_data)[tb].next);
       
  2780 
       
  2781           pred = (*_blossom_data)[ub].next;
       
  2782 
       
  2783           (*_blossom_data)[tb].status = EVEN;
       
  2784           matchedToEven(tb, tree);
       
  2785           _tree_set->insert(tb, tree);
       
  2786           (*_blossom_data)[tb].pred = (*_blossom_data)[tb].next;
       
  2787         }
       
  2788 
       
  2789         (*_blossom_data)[subblossoms[id]].status = ODD;
       
  2790         matchedToOdd(subblossoms[id]);
       
  2791         _tree_set->insert(subblossoms[id], tree);
       
  2792         (*_blossom_data)[subblossoms[id]].next = next;
       
  2793         (*_blossom_data)[subblossoms[id]].pred = pred;
       
  2794 
       
  2795       } else {
       
  2796 
       
  2797         for (int i = (ib + 1) % subblossoms.size();
       
  2798              i != id; i = (i + 2) % subblossoms.size()) {
       
  2799           int sb = subblossoms[i];
       
  2800           int tb = subblossoms[(i + 1) % subblossoms.size()];
       
  2801           (*_blossom_data)[sb].next =
       
  2802             _graph.oppositeArc((*_blossom_data)[tb].next);
       
  2803         }
       
  2804 
       
  2805         for (int i = id; i != ib; i = (i + 2) % subblossoms.size()) {
       
  2806           int sb = subblossoms[i];
       
  2807           int tb = subblossoms[(i + 1) % subblossoms.size()];
       
  2808           int ub = subblossoms[(i + 2) % subblossoms.size()];
       
  2809 
       
  2810           (*_blossom_data)[sb].status = ODD;
       
  2811           matchedToOdd(sb);
       
  2812           _tree_set->insert(sb, tree);
       
  2813           (*_blossom_data)[sb].next = next;
       
  2814           (*_blossom_data)[sb].pred =
       
  2815             _graph.oppositeArc((*_blossom_data)[tb].next);
       
  2816 
       
  2817           (*_blossom_data)[tb].status = EVEN;
       
  2818           matchedToEven(tb, tree);
       
  2819           _tree_set->insert(tb, tree);
       
  2820           (*_blossom_data)[tb].pred =
       
  2821             (*_blossom_data)[tb].next =
       
  2822             _graph.oppositeArc((*_blossom_data)[ub].next);
       
  2823           next = (*_blossom_data)[ub].next;
       
  2824         }
       
  2825 
       
  2826         (*_blossom_data)[subblossoms[ib]].status = ODD;
       
  2827         matchedToOdd(subblossoms[ib]);
       
  2828         _tree_set->insert(subblossoms[ib], tree);
       
  2829         (*_blossom_data)[subblossoms[ib]].next = next;
       
  2830         (*_blossom_data)[subblossoms[ib]].pred = pred;
       
  2831       }
       
  2832       _tree_set->erase(blossom);
       
  2833     }
       
  2834 
       
  2835     void extractBlossom(int blossom, const Node& base, const Arc& matching) {
       
  2836       if (_blossom_set->trivial(blossom)) {
       
  2837         int bi = (*_node_index)[base];
       
  2838         Value pot = (*_node_data)[bi].pot;
       
  2839 
       
  2840         (*_matching)[base] = matching;
       
  2841         _blossom_node_list.push_back(base);
       
  2842         (*_node_potential)[base] = pot;
       
  2843       } else {
       
  2844 
       
  2845         Value pot = (*_blossom_data)[blossom].pot;
       
  2846         int bn = _blossom_node_list.size();
       
  2847 
       
  2848         std::vector<int> subblossoms;
       
  2849         _blossom_set->split(blossom, std::back_inserter(subblossoms));
       
  2850         int b = _blossom_set->find(base);
       
  2851         int ib = -1;
       
  2852         for (int i = 0; i < int(subblossoms.size()); ++i) {
       
  2853           if (subblossoms[i] == b) { ib = i; break; }
       
  2854         }
       
  2855 
       
  2856         for (int i = 1; i < int(subblossoms.size()); i += 2) {
       
  2857           int sb = subblossoms[(ib + i) % subblossoms.size()];
       
  2858           int tb = subblossoms[(ib + i + 1) % subblossoms.size()];
       
  2859 
       
  2860           Arc m = (*_blossom_data)[tb].next;
       
  2861           extractBlossom(sb, _graph.target(m), _graph.oppositeArc(m));
       
  2862           extractBlossom(tb, _graph.source(m), m);
       
  2863         }
       
  2864         extractBlossom(subblossoms[ib], base, matching);
       
  2865 
       
  2866         int en = _blossom_node_list.size();
       
  2867 
       
  2868         _blossom_potential.push_back(BlossomVariable(bn, en, pot));
       
  2869       }
       
  2870     }
       
  2871 
       
  2872     void extractMatching() {
       
  2873       std::vector<int> blossoms;
       
  2874       for (typename BlossomSet::ClassIt c(*_blossom_set); c != INVALID; ++c) {
       
  2875         blossoms.push_back(c);
       
  2876       }
       
  2877 
       
  2878       for (int i = 0; i < int(blossoms.size()); ++i) {
       
  2879 
       
  2880         Value offset = (*_blossom_data)[blossoms[i]].offset;
       
  2881         (*_blossom_data)[blossoms[i]].pot += 2 * offset;
       
  2882         for (typename BlossomSet::ItemIt n(*_blossom_set, blossoms[i]);
       
  2883              n != INVALID; ++n) {
       
  2884           (*_node_data)[(*_node_index)[n]].pot -= offset;
       
  2885         }
       
  2886 
       
  2887         Arc matching = (*_blossom_data)[blossoms[i]].next;
       
  2888         Node base = _graph.source(matching);
       
  2889         extractBlossom(blossoms[i], base, matching);
       
  2890       }
       
  2891     }
       
  2892 
       
  2893   public:
       
  2894 
       
  2895     /// \brief Constructor
       
  2896     ///
       
  2897     /// Constructor.
       
  2898     MaxWeightedPerfectMatching(const Graph& graph, const WeightMap& weight)
       
  2899       : _graph(graph), _weight(weight), _matching(0),
       
  2900         _node_potential(0), _blossom_potential(), _blossom_node_list(),
       
  2901         _node_num(0), _blossom_num(0),
       
  2902 
       
  2903         _blossom_index(0), _blossom_set(0), _blossom_data(0),
       
  2904         _node_index(0), _node_heap_index(0), _node_data(0),
       
  2905         _tree_set_index(0), _tree_set(0),
       
  2906 
       
  2907         _delta2_index(0), _delta2(0),
       
  2908         _delta3_index(0), _delta3(0),
       
  2909         _delta4_index(0), _delta4(0),
       
  2910 
       
  2911         _delta_sum() {}
       
  2912 
       
  2913     ~MaxWeightedPerfectMatching() {
       
  2914       destroyStructures();
       
  2915     }
       
  2916 
       
  2917     /// \name Execution Control
       
  2918     /// The simplest way to execute the algorithm is to use the
       
  2919     /// \ref run() member function.
       
  2920 
       
  2921     ///@{
       
  2922 
       
  2923     /// \brief Initialize the algorithm
       
  2924     ///
       
  2925     /// This function initializes the algorithm.
       
  2926     void init() {
       
  2927       createStructures();
       
  2928 
       
  2929       for (ArcIt e(_graph); e != INVALID; ++e) {
       
  2930         (*_node_heap_index)[e] = BinHeap<Value, IntArcMap>::PRE_HEAP;
       
  2931       }
       
  2932       for (EdgeIt e(_graph); e != INVALID; ++e) {
       
  2933         (*_delta3_index)[e] = _delta3->PRE_HEAP;
       
  2934       }
       
  2935       for (int i = 0; i < _blossom_num; ++i) {
       
  2936         (*_delta2_index)[i] = _delta2->PRE_HEAP;
       
  2937         (*_delta4_index)[i] = _delta4->PRE_HEAP;
       
  2938       }
       
  2939 
       
  2940       int index = 0;
       
  2941       for (NodeIt n(_graph); n != INVALID; ++n) {
       
  2942         Value max = - std::numeric_limits<Value>::max();
       
  2943         for (OutArcIt e(_graph, n); e != INVALID; ++e) {
       
  2944           if (_graph.target(e) == n) continue;
       
  2945           if ((dualScale * _weight[e]) / 2 > max) {
       
  2946             max = (dualScale * _weight[e]) / 2;
       
  2947           }
       
  2948         }
       
  2949         (*_node_index)[n] = index;
       
  2950         (*_node_data)[index].pot = max;
       
  2951         int blossom =
       
  2952           _blossom_set->insert(n, std::numeric_limits<Value>::max());
       
  2953 
       
  2954         _tree_set->insert(blossom);
       
  2955 
       
  2956         (*_blossom_data)[blossom].status = EVEN;
       
  2957         (*_blossom_data)[blossom].pred = INVALID;
       
  2958         (*_blossom_data)[blossom].next = INVALID;
       
  2959         (*_blossom_data)[blossom].pot = 0;
       
  2960         (*_blossom_data)[blossom].offset = 0;
       
  2961         ++index;
       
  2962       }
       
  2963       for (EdgeIt e(_graph); e != INVALID; ++e) {
       
  2964         int si = (*_node_index)[_graph.u(e)];
       
  2965         int ti = (*_node_index)[_graph.v(e)];
       
  2966         if (_graph.u(e) != _graph.v(e)) {
       
  2967           _delta3->push(e, ((*_node_data)[si].pot + (*_node_data)[ti].pot -
       
  2968                             dualScale * _weight[e]) / 2);
       
  2969         }
       
  2970       }
       
  2971     }
       
  2972 
       
  2973     /// \brief Start the algorithm
       
  2974     ///
       
  2975     /// This function starts the algorithm.
       
  2976     ///
       
  2977     /// \pre \ref init() must be called before using this function.
       
  2978     bool start() {
       
  2979       enum OpType {
       
  2980         D2, D3, D4
       
  2981       };
       
  2982 
       
  2983       int unmatched = _node_num;
       
  2984       while (unmatched > 0) {
       
  2985         Value d2 = !_delta2->empty() ?
       
  2986           _delta2->prio() : std::numeric_limits<Value>::max();
       
  2987 
       
  2988         Value d3 = !_delta3->empty() ?
       
  2989           _delta3->prio() : std::numeric_limits<Value>::max();
       
  2990 
       
  2991         Value d4 = !_delta4->empty() ?
       
  2992           _delta4->prio() : std::numeric_limits<Value>::max();
       
  2993 
       
  2994         _delta_sum = d2; OpType ot = D2;
       
  2995         if (d3 < _delta_sum) { _delta_sum = d3; ot = D3; }
       
  2996         if (d4 < _delta_sum) { _delta_sum = d4; ot = D4; }
       
  2997 
       
  2998         if (_delta_sum == std::numeric_limits<Value>::max()) {
       
  2999           return false;
       
  3000         }
       
  3001 
       
  3002         switch (ot) {
       
  3003         case D2:
       
  3004           {
       
  3005             int blossom = _delta2->top();
       
  3006             Node n = _blossom_set->classTop(blossom);
       
  3007             Arc e = (*_node_data)[(*_node_index)[n]].heap.top();
       
  3008             extendOnArc(e);
       
  3009           }
       
  3010           break;
       
  3011         case D3:
       
  3012           {
       
  3013             Edge e = _delta3->top();
       
  3014 
       
  3015             int left_blossom = _blossom_set->find(_graph.u(e));
       
  3016             int right_blossom = _blossom_set->find(_graph.v(e));
       
  3017 
       
  3018             if (left_blossom == right_blossom) {
       
  3019               _delta3->pop();
       
  3020             } else {
       
  3021               int left_tree = _tree_set->find(left_blossom);
       
  3022               int right_tree = _tree_set->find(right_blossom);
       
  3023 
       
  3024               if (left_tree == right_tree) {
       
  3025                 shrinkOnEdge(e, left_tree);
       
  3026               } else {
       
  3027                 augmentOnEdge(e);
       
  3028                 unmatched -= 2;
       
  3029               }
       
  3030             }
       
  3031           } break;
       
  3032         case D4:
       
  3033           splitBlossom(_delta4->top());
       
  3034           break;
       
  3035         }
       
  3036       }
       
  3037       extractMatching();
       
  3038       return true;
       
  3039     }
       
  3040 
       
  3041     /// \brief Run the algorithm.
       
  3042     ///
       
  3043     /// This method runs the \c %MaxWeightedPerfectMatching algorithm.
       
  3044     ///
       
  3045     /// \note mwpm.run() is just a shortcut of the following code.
       
  3046     /// \code
       
  3047     ///   mwpm.init();
       
  3048     ///   mwpm.start();
       
  3049     /// \endcode
       
  3050     bool run() {
       
  3051       init();
       
  3052       return start();
       
  3053     }
       
  3054 
       
  3055     /// @}
       
  3056 
       
  3057     /// \name Primal Solution
       
  3058     /// Functions to get the primal solution, i.e. the maximum weighted 
       
  3059     /// perfect matching.\n
       
  3060     /// Either \ref run() or \ref start() function should be called before
       
  3061     /// using them.
       
  3062 
       
  3063     /// @{
       
  3064 
       
  3065     /// \brief Return the weight of the matching.
       
  3066     ///
       
  3067     /// This function returns the weight of the found matching.
       
  3068     ///
       
  3069     /// \pre Either run() or start() must be called before using this function.
       
  3070     Value matchingWeight() const {
       
  3071       Value sum = 0;
       
  3072       for (NodeIt n(_graph); n != INVALID; ++n) {
       
  3073         if ((*_matching)[n] != INVALID) {
       
  3074           sum += _weight[(*_matching)[n]];
       
  3075         }
       
  3076       }
       
  3077       return sum /= 2;
       
  3078     }
       
  3079 
       
  3080     /// \brief Return \c true if the given edge is in the matching.
       
  3081     ///
       
  3082     /// This function returns \c true if the given edge is in the found 
       
  3083     /// matching.
       
  3084     ///
       
  3085     /// \pre Either run() or start() must be called before using this function.
       
  3086     bool matching(const Edge& edge) const {
       
  3087       return static_cast<const Edge&>((*_matching)[_graph.u(edge)]) == edge;
       
  3088     }
       
  3089 
       
  3090     /// \brief Return the matching arc (or edge) incident to the given node.
       
  3091     ///
       
  3092     /// This function returns the matching arc (or edge) incident to the
       
  3093     /// given node in the found matching or \c INVALID if the node is 
       
  3094     /// not covered by the matching.
       
  3095     ///
       
  3096     /// \pre Either run() or start() must be called before using this function.
       
  3097     Arc matching(const Node& node) const {
       
  3098       return (*_matching)[node];
       
  3099     }
       
  3100 
       
  3101     /// \brief Return a const reference to the matching map.
       
  3102     ///
       
  3103     /// This function returns a const reference to a node map that stores
       
  3104     /// the matching arc (or edge) incident to each node.
       
  3105     const MatchingMap& matchingMap() const {
       
  3106       return *_matching;
       
  3107     }
       
  3108 
       
  3109     /// \brief Return the mate of the given node.
       
  3110     ///
       
  3111     /// This function returns the mate of the given node in the found 
       
  3112     /// matching or \c INVALID if the node is not covered by the matching.
       
  3113     ///
       
  3114     /// \pre Either run() or start() must be called before using this function.
       
  3115     Node mate(const Node& node) const {
       
  3116       return _graph.target((*_matching)[node]);
       
  3117     }
       
  3118 
       
  3119     /// @}
       
  3120 
       
  3121     /// \name Dual Solution
       
  3122     /// Functions to get the dual solution.\n
       
  3123     /// Either \ref run() or \ref start() function should be called before
       
  3124     /// using them.
       
  3125 
       
  3126     /// @{
       
  3127 
       
  3128     /// \brief Return the value of the dual solution.
       
  3129     ///
       
  3130     /// This function returns the value of the dual solution. 
       
  3131     /// It should be equal to the primal value scaled by \ref dualScale 
       
  3132     /// "dual scale".
       
  3133     ///
       
  3134     /// \pre Either run() or start() must be called before using this function.
       
  3135     Value dualValue() const {
       
  3136       Value sum = 0;
       
  3137       for (NodeIt n(_graph); n != INVALID; ++n) {
       
  3138         sum += nodeValue(n);
       
  3139       }
       
  3140       for (int i = 0; i < blossomNum(); ++i) {
       
  3141         sum += blossomValue(i) * (blossomSize(i) / 2);
       
  3142       }
       
  3143       return sum;
       
  3144     }
       
  3145 
       
  3146     /// \brief Return the dual value (potential) of the given node.
       
  3147     ///
       
  3148     /// This function returns the dual value (potential) of the given node.
       
  3149     ///
       
  3150     /// \pre Either run() or start() must be called before using this function.
       
  3151     Value nodeValue(const Node& n) const {
       
  3152       return (*_node_potential)[n];
       
  3153     }
       
  3154 
       
  3155     /// \brief Return the number of the blossoms in the basis.
       
  3156     ///
       
  3157     /// This function returns the number of the blossoms in the basis.
       
  3158     ///
       
  3159     /// \pre Either run() or start() must be called before using this function.
       
  3160     /// \see BlossomIt
       
  3161     int blossomNum() const {
       
  3162       return _blossom_potential.size();
       
  3163     }
       
  3164 
       
  3165     /// \brief Return the number of the nodes in the given blossom.
       
  3166     ///
       
  3167     /// This function returns the number of the nodes in the given blossom.
       
  3168     ///
       
  3169     /// \pre Either run() or start() must be called before using this function.
       
  3170     /// \see BlossomIt
       
  3171     int blossomSize(int k) const {
       
  3172       return _blossom_potential[k].end - _blossom_potential[k].begin;
       
  3173     }
       
  3174 
       
  3175     /// \brief Return the dual value (ptential) of the given blossom.
       
  3176     ///
       
  3177     /// This function returns the dual value (ptential) of the given blossom.
       
  3178     ///
       
  3179     /// \pre Either run() or start() must be called before using this function.
       
  3180     Value blossomValue(int k) const {
       
  3181       return _blossom_potential[k].value;
       
  3182     }
       
  3183 
       
  3184     /// \brief Iterator for obtaining the nodes of a blossom.
       
  3185     ///
       
  3186     /// This class provides an iterator for obtaining the nodes of the 
       
  3187     /// given blossom. It lists a subset of the nodes.
       
  3188     /// Before using this iterator, you must allocate a 
       
  3189     /// MaxWeightedPerfectMatching class and execute it.
       
  3190     class BlossomIt {
       
  3191     public:
       
  3192 
       
  3193       /// \brief Constructor.
       
  3194       ///
       
  3195       /// Constructor to get the nodes of the given variable.
       
  3196       ///
       
  3197       /// \pre Either \ref MaxWeightedPerfectMatching::run() "algorithm.run()" 
       
  3198       /// or \ref MaxWeightedPerfectMatching::start() "algorithm.start()" 
       
  3199       /// must be called before initializing this iterator.
       
  3200       BlossomIt(const MaxWeightedPerfectMatching& algorithm, int variable)
       
  3201         : _algorithm(&algorithm)
       
  3202       {
       
  3203         _index = _algorithm->_blossom_potential[variable].begin;
       
  3204         _last = _algorithm->_blossom_potential[variable].end;
       
  3205       }
       
  3206 
       
  3207       /// \brief Conversion to \c Node.
       
  3208       ///
       
  3209       /// Conversion to \c Node.
       
  3210       operator Node() const {
       
  3211         return _algorithm->_blossom_node_list[_index];
       
  3212       }
       
  3213 
       
  3214       /// \brief Increment operator.
       
  3215       ///
       
  3216       /// Increment operator.
       
  3217       BlossomIt& operator++() {
       
  3218         ++_index;
       
  3219         return *this;
       
  3220       }
       
  3221 
       
  3222       /// \brief Validity checking
       
  3223       ///
       
  3224       /// This function checks whether the iterator is invalid.
       
  3225       bool operator==(Invalid) const { return _index == _last; }
       
  3226 
       
  3227       /// \brief Validity checking
       
  3228       ///
       
  3229       /// This function checks whether the iterator is valid.
       
  3230       bool operator!=(Invalid) const { return _index != _last; }
       
  3231 
       
  3232     private:
       
  3233       const MaxWeightedPerfectMatching* _algorithm;
       
  3234       int _last;
       
  3235       int _index;
       
  3236     };
       
  3237 
       
  3238     /// @}
       
  3239 
       
  3240   };
       
  3241 
       
  3242 } //END OF NAMESPACE LEMON
       
  3243 
       
  3244 #endif //LEMON_MAX_MATCHING_H