lemon/adaptors.h
changeset 784 1a7fe3bef514
parent 617 4137ef9aacc6
child 787 c2230649a493
child 963 761fe0846f49
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/lemon/adaptors.h	Thu Nov 05 15:50:01 2009 +0100
     1.3 @@ -0,0 +1,3614 @@
     1.4 +/* -*- mode: C++; indent-tabs-mode: nil; -*-
     1.5 + *
     1.6 + * This file is a part of LEMON, a generic C++ optimization library.
     1.7 + *
     1.8 + * Copyright (C) 2003-2009
     1.9 + * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
    1.10 + * (Egervary Research Group on Combinatorial Optimization, EGRES).
    1.11 + *
    1.12 + * Permission to use, modify and distribute this software is granted
    1.13 + * provided that this copyright notice appears in all copies. For
    1.14 + * precise terms see the accompanying LICENSE file.
    1.15 + *
    1.16 + * This software is provided "AS IS" with no warranty of any kind,
    1.17 + * express or implied, and with no claim as to its suitability for any
    1.18 + * purpose.
    1.19 + *
    1.20 + */
    1.21 +
    1.22 +#ifndef LEMON_ADAPTORS_H
    1.23 +#define LEMON_ADAPTORS_H
    1.24 +
    1.25 +/// \ingroup graph_adaptors
    1.26 +/// \file
    1.27 +/// \brief Adaptor classes for digraphs and graphs
    1.28 +///
    1.29 +/// This file contains several useful adaptors for digraphs and graphs.
    1.30 +
    1.31 +#include <lemon/core.h>
    1.32 +#include <lemon/maps.h>
    1.33 +#include <lemon/bits/variant.h>
    1.34 +
    1.35 +#include <lemon/bits/graph_adaptor_extender.h>
    1.36 +#include <lemon/bits/map_extender.h>
    1.37 +#include <lemon/tolerance.h>
    1.38 +
    1.39 +#include <algorithm>
    1.40 +
    1.41 +namespace lemon {
    1.42 +
    1.43 +#ifdef _MSC_VER
    1.44 +#define LEMON_SCOPE_FIX(OUTER, NESTED) OUTER::NESTED
    1.45 +#else
    1.46 +#define LEMON_SCOPE_FIX(OUTER, NESTED) typename OUTER::template NESTED
    1.47 +#endif
    1.48 +
    1.49 +  template<typename DGR>
    1.50 +  class DigraphAdaptorBase {
    1.51 +  public:
    1.52 +    typedef DGR Digraph;
    1.53 +    typedef DigraphAdaptorBase Adaptor;
    1.54 +
    1.55 +  protected:
    1.56 +    DGR* _digraph;
    1.57 +    DigraphAdaptorBase() : _digraph(0) { }
    1.58 +    void initialize(DGR& digraph) { _digraph = &digraph; }
    1.59 +
    1.60 +  public:
    1.61 +    DigraphAdaptorBase(DGR& digraph) : _digraph(&digraph) { }
    1.62 +
    1.63 +    typedef typename DGR::Node Node;
    1.64 +    typedef typename DGR::Arc Arc;
    1.65 +
    1.66 +    void first(Node& i) const { _digraph->first(i); }
    1.67 +    void first(Arc& i) const { _digraph->first(i); }
    1.68 +    void firstIn(Arc& i, const Node& n) const { _digraph->firstIn(i, n); }
    1.69 +    void firstOut(Arc& i, const Node& n ) const { _digraph->firstOut(i, n); }
    1.70 +
    1.71 +    void next(Node& i) const { _digraph->next(i); }
    1.72 +    void next(Arc& i) const { _digraph->next(i); }
    1.73 +    void nextIn(Arc& i) const { _digraph->nextIn(i); }
    1.74 +    void nextOut(Arc& i) const { _digraph->nextOut(i); }
    1.75 +
    1.76 +    Node source(const Arc& a) const { return _digraph->source(a); }
    1.77 +    Node target(const Arc& a) const { return _digraph->target(a); }
    1.78 +
    1.79 +    typedef NodeNumTagIndicator<DGR> NodeNumTag;
    1.80 +    int nodeNum() const { return _digraph->nodeNum(); }
    1.81 +
    1.82 +    typedef ArcNumTagIndicator<DGR> ArcNumTag;
    1.83 +    int arcNum() const { return _digraph->arcNum(); }
    1.84 +
    1.85 +    typedef FindArcTagIndicator<DGR> FindArcTag;
    1.86 +    Arc findArc(const Node& u, const Node& v, const Arc& prev = INVALID) const {
    1.87 +      return _digraph->findArc(u, v, prev);
    1.88 +    }
    1.89 +
    1.90 +    Node addNode() { return _digraph->addNode(); }
    1.91 +    Arc addArc(const Node& u, const Node& v) { return _digraph->addArc(u, v); }
    1.92 +
    1.93 +    void erase(const Node& n) { _digraph->erase(n); }
    1.94 +    void erase(const Arc& a) { _digraph->erase(a); }
    1.95 +
    1.96 +    void clear() { _digraph->clear(); }
    1.97 +
    1.98 +    int id(const Node& n) const { return _digraph->id(n); }
    1.99 +    int id(const Arc& a) const { return _digraph->id(a); }
   1.100 +
   1.101 +    Node nodeFromId(int ix) const { return _digraph->nodeFromId(ix); }
   1.102 +    Arc arcFromId(int ix) const { return _digraph->arcFromId(ix); }
   1.103 +
   1.104 +    int maxNodeId() const { return _digraph->maxNodeId(); }
   1.105 +    int maxArcId() const { return _digraph->maxArcId(); }
   1.106 +
   1.107 +    typedef typename ItemSetTraits<DGR, Node>::ItemNotifier NodeNotifier;
   1.108 +    NodeNotifier& notifier(Node) const { return _digraph->notifier(Node()); }
   1.109 +
   1.110 +    typedef typename ItemSetTraits<DGR, Arc>::ItemNotifier ArcNotifier;
   1.111 +    ArcNotifier& notifier(Arc) const { return _digraph->notifier(Arc()); }
   1.112 +
   1.113 +    template <typename V>
   1.114 +    class NodeMap : public DGR::template NodeMap<V> {
   1.115 +      typedef typename DGR::template NodeMap<V> Parent;
   1.116 +
   1.117 +    public:
   1.118 +      explicit NodeMap(const Adaptor& adaptor)
   1.119 +        : Parent(*adaptor._digraph) {}
   1.120 +      NodeMap(const Adaptor& adaptor, const V& value)
   1.121 +        : Parent(*adaptor._digraph, value) { }
   1.122 +
   1.123 +    private:
   1.124 +      NodeMap& operator=(const NodeMap& cmap) {
   1.125 +        return operator=<NodeMap>(cmap);
   1.126 +      }
   1.127 +
   1.128 +      template <typename CMap>
   1.129 +      NodeMap& operator=(const CMap& cmap) {
   1.130 +        Parent::operator=(cmap);
   1.131 +        return *this;
   1.132 +      }
   1.133 +
   1.134 +    };
   1.135 +
   1.136 +    template <typename V>
   1.137 +    class ArcMap : public DGR::template ArcMap<V> {
   1.138 +      typedef typename DGR::template ArcMap<V> Parent;
   1.139 +
   1.140 +    public:
   1.141 +      explicit ArcMap(const DigraphAdaptorBase<DGR>& adaptor)
   1.142 +        : Parent(*adaptor._digraph) {}
   1.143 +      ArcMap(const DigraphAdaptorBase<DGR>& adaptor, const V& value)
   1.144 +        : Parent(*adaptor._digraph, value) {}
   1.145 +
   1.146 +    private:
   1.147 +      ArcMap& operator=(const ArcMap& cmap) {
   1.148 +        return operator=<ArcMap>(cmap);
   1.149 +      }
   1.150 +
   1.151 +      template <typename CMap>
   1.152 +      ArcMap& operator=(const CMap& cmap) {
   1.153 +        Parent::operator=(cmap);
   1.154 +        return *this;
   1.155 +      }
   1.156 +
   1.157 +    };
   1.158 +
   1.159 +  };
   1.160 +
   1.161 +  template<typename GR>
   1.162 +  class GraphAdaptorBase {
   1.163 +  public:
   1.164 +    typedef GR Graph;
   1.165 +
   1.166 +  protected:
   1.167 +    GR* _graph;
   1.168 +
   1.169 +    GraphAdaptorBase() : _graph(0) {}
   1.170 +
   1.171 +    void initialize(GR& graph) { _graph = &graph; }
   1.172 +
   1.173 +  public:
   1.174 +    GraphAdaptorBase(GR& graph) : _graph(&graph) {}
   1.175 +
   1.176 +    typedef typename GR::Node Node;
   1.177 +    typedef typename GR::Arc Arc;
   1.178 +    typedef typename GR::Edge Edge;
   1.179 +
   1.180 +    void first(Node& i) const { _graph->first(i); }
   1.181 +    void first(Arc& i) const { _graph->first(i); }
   1.182 +    void first(Edge& i) const { _graph->first(i); }
   1.183 +    void firstIn(Arc& i, const Node& n) const { _graph->firstIn(i, n); }
   1.184 +    void firstOut(Arc& i, const Node& n ) const { _graph->firstOut(i, n); }
   1.185 +    void firstInc(Edge &i, bool &d, const Node &n) const {
   1.186 +      _graph->firstInc(i, d, n);
   1.187 +    }
   1.188 +
   1.189 +    void next(Node& i) const { _graph->next(i); }
   1.190 +    void next(Arc& i) const { _graph->next(i); }
   1.191 +    void next(Edge& i) const { _graph->next(i); }
   1.192 +    void nextIn(Arc& i) const { _graph->nextIn(i); }
   1.193 +    void nextOut(Arc& i) const { _graph->nextOut(i); }
   1.194 +    void nextInc(Edge &i, bool &d) const { _graph->nextInc(i, d); }
   1.195 +
   1.196 +    Node u(const Edge& e) const { return _graph->u(e); }
   1.197 +    Node v(const Edge& e) const { return _graph->v(e); }
   1.198 +
   1.199 +    Node source(const Arc& a) const { return _graph->source(a); }
   1.200 +    Node target(const Arc& a) const { return _graph->target(a); }
   1.201 +
   1.202 +    typedef NodeNumTagIndicator<Graph> NodeNumTag;
   1.203 +    int nodeNum() const { return _graph->nodeNum(); }
   1.204 +
   1.205 +    typedef ArcNumTagIndicator<Graph> ArcNumTag;
   1.206 +    int arcNum() const { return _graph->arcNum(); }
   1.207 +
   1.208 +    typedef EdgeNumTagIndicator<Graph> EdgeNumTag;
   1.209 +    int edgeNum() const { return _graph->edgeNum(); }
   1.210 +
   1.211 +    typedef FindArcTagIndicator<Graph> FindArcTag;
   1.212 +    Arc findArc(const Node& u, const Node& v,
   1.213 +                const Arc& prev = INVALID) const {
   1.214 +      return _graph->findArc(u, v, prev);
   1.215 +    }
   1.216 +
   1.217 +    typedef FindEdgeTagIndicator<Graph> FindEdgeTag;
   1.218 +    Edge findEdge(const Node& u, const Node& v,
   1.219 +                  const Edge& prev = INVALID) const {
   1.220 +      return _graph->findEdge(u, v, prev);
   1.221 +    }
   1.222 +
   1.223 +    Node addNode() { return _graph->addNode(); }
   1.224 +    Edge addEdge(const Node& u, const Node& v) { return _graph->addEdge(u, v); }
   1.225 +
   1.226 +    void erase(const Node& i) { _graph->erase(i); }
   1.227 +    void erase(const Edge& i) { _graph->erase(i); }
   1.228 +
   1.229 +    void clear() { _graph->clear(); }
   1.230 +
   1.231 +    bool direction(const Arc& a) const { return _graph->direction(a); }
   1.232 +    Arc direct(const Edge& e, bool d) const { return _graph->direct(e, d); }
   1.233 +
   1.234 +    int id(const Node& v) const { return _graph->id(v); }
   1.235 +    int id(const Arc& a) const { return _graph->id(a); }
   1.236 +    int id(const Edge& e) const { return _graph->id(e); }
   1.237 +
   1.238 +    Node nodeFromId(int ix) const { return _graph->nodeFromId(ix); }
   1.239 +    Arc arcFromId(int ix) const { return _graph->arcFromId(ix); }
   1.240 +    Edge edgeFromId(int ix) const { return _graph->edgeFromId(ix); }
   1.241 +
   1.242 +    int maxNodeId() const { return _graph->maxNodeId(); }
   1.243 +    int maxArcId() const { return _graph->maxArcId(); }
   1.244 +    int maxEdgeId() const { return _graph->maxEdgeId(); }
   1.245 +
   1.246 +    typedef typename ItemSetTraits<GR, Node>::ItemNotifier NodeNotifier;
   1.247 +    NodeNotifier& notifier(Node) const { return _graph->notifier(Node()); }
   1.248 +
   1.249 +    typedef typename ItemSetTraits<GR, Arc>::ItemNotifier ArcNotifier;
   1.250 +    ArcNotifier& notifier(Arc) const { return _graph->notifier(Arc()); }
   1.251 +
   1.252 +    typedef typename ItemSetTraits<GR, Edge>::ItemNotifier EdgeNotifier;
   1.253 +    EdgeNotifier& notifier(Edge) const { return _graph->notifier(Edge()); }
   1.254 +
   1.255 +    template <typename V>
   1.256 +    class NodeMap : public GR::template NodeMap<V> {
   1.257 +      typedef typename GR::template NodeMap<V> Parent;
   1.258 +
   1.259 +    public:
   1.260 +      explicit NodeMap(const GraphAdaptorBase<GR>& adapter)
   1.261 +        : Parent(*adapter._graph) {}
   1.262 +      NodeMap(const GraphAdaptorBase<GR>& adapter, const V& value)
   1.263 +        : Parent(*adapter._graph, value) {}
   1.264 +
   1.265 +    private:
   1.266 +      NodeMap& operator=(const NodeMap& cmap) {
   1.267 +        return operator=<NodeMap>(cmap);
   1.268 +      }
   1.269 +
   1.270 +      template <typename CMap>
   1.271 +      NodeMap& operator=(const CMap& cmap) {
   1.272 +        Parent::operator=(cmap);
   1.273 +        return *this;
   1.274 +      }
   1.275 +
   1.276 +    };
   1.277 +
   1.278 +    template <typename V>
   1.279 +    class ArcMap : public GR::template ArcMap<V> {
   1.280 +      typedef typename GR::template ArcMap<V> Parent;
   1.281 +
   1.282 +    public:
   1.283 +      explicit ArcMap(const GraphAdaptorBase<GR>& adapter)
   1.284 +        : Parent(*adapter._graph) {}
   1.285 +      ArcMap(const GraphAdaptorBase<GR>& adapter, const V& value)
   1.286 +        : Parent(*adapter._graph, value) {}
   1.287 +
   1.288 +    private:
   1.289 +      ArcMap& operator=(const ArcMap& cmap) {
   1.290 +        return operator=<ArcMap>(cmap);
   1.291 +      }
   1.292 +
   1.293 +      template <typename CMap>
   1.294 +      ArcMap& operator=(const CMap& cmap) {
   1.295 +        Parent::operator=(cmap);
   1.296 +        return *this;
   1.297 +      }
   1.298 +    };
   1.299 +
   1.300 +    template <typename V>
   1.301 +    class EdgeMap : public GR::template EdgeMap<V> {
   1.302 +      typedef typename GR::template EdgeMap<V> Parent;
   1.303 +
   1.304 +    public:
   1.305 +      explicit EdgeMap(const GraphAdaptorBase<GR>& adapter)
   1.306 +        : Parent(*adapter._graph) {}
   1.307 +      EdgeMap(const GraphAdaptorBase<GR>& adapter, const V& value)
   1.308 +        : Parent(*adapter._graph, value) {}
   1.309 +
   1.310 +    private:
   1.311 +      EdgeMap& operator=(const EdgeMap& cmap) {
   1.312 +        return operator=<EdgeMap>(cmap);
   1.313 +      }
   1.314 +
   1.315 +      template <typename CMap>
   1.316 +      EdgeMap& operator=(const CMap& cmap) {
   1.317 +        Parent::operator=(cmap);
   1.318 +        return *this;
   1.319 +      }
   1.320 +    };
   1.321 +
   1.322 +  };
   1.323 +
   1.324 +  template <typename DGR>
   1.325 +  class ReverseDigraphBase : public DigraphAdaptorBase<DGR> {
   1.326 +    typedef DigraphAdaptorBase<DGR> Parent;
   1.327 +  public:
   1.328 +    typedef DGR Digraph;
   1.329 +  protected:
   1.330 +    ReverseDigraphBase() : Parent() { }
   1.331 +  public:
   1.332 +    typedef typename Parent::Node Node;
   1.333 +    typedef typename Parent::Arc Arc;
   1.334 +
   1.335 +    void firstIn(Arc& a, const Node& n) const { Parent::firstOut(a, n); }
   1.336 +    void firstOut(Arc& a, const Node& n ) const { Parent::firstIn(a, n); }
   1.337 +
   1.338 +    void nextIn(Arc& a) const { Parent::nextOut(a); }
   1.339 +    void nextOut(Arc& a) const { Parent::nextIn(a); }
   1.340 +
   1.341 +    Node source(const Arc& a) const { return Parent::target(a); }
   1.342 +    Node target(const Arc& a) const { return Parent::source(a); }
   1.343 +
   1.344 +    Arc addArc(const Node& u, const Node& v) { return Parent::addArc(v, u); }
   1.345 +
   1.346 +    typedef FindArcTagIndicator<DGR> FindArcTag;
   1.347 +    Arc findArc(const Node& u, const Node& v,
   1.348 +                const Arc& prev = INVALID) const {
   1.349 +      return Parent::findArc(v, u, prev);
   1.350 +    }
   1.351 +
   1.352 +  };
   1.353 +
   1.354 +  /// \ingroup graph_adaptors
   1.355 +  ///
   1.356 +  /// \brief Adaptor class for reversing the orientation of the arcs in
   1.357 +  /// a digraph.
   1.358 +  ///
   1.359 +  /// ReverseDigraph can be used for reversing the arcs in a digraph.
   1.360 +  /// It conforms to the \ref concepts::Digraph "Digraph" concept.
   1.361 +  ///
   1.362 +  /// The adapted digraph can also be modified through this adaptor
   1.363 +  /// by adding or removing nodes or arcs, unless the \c GR template
   1.364 +  /// parameter is set to be \c const.
   1.365 +  ///
   1.366 +  /// \tparam DGR The type of the adapted digraph.
   1.367 +  /// It must conform to the \ref concepts::Digraph "Digraph" concept.
   1.368 +  /// It can also be specified to be \c const.
   1.369 +  ///
   1.370 +  /// \note The \c Node and \c Arc types of this adaptor and the adapted
   1.371 +  /// digraph are convertible to each other.
   1.372 +  template<typename DGR>
   1.373 +#ifdef DOXYGEN
   1.374 +  class ReverseDigraph {
   1.375 +#else
   1.376 +  class ReverseDigraph :
   1.377 +    public DigraphAdaptorExtender<ReverseDigraphBase<DGR> > {
   1.378 +#endif
   1.379 +    typedef DigraphAdaptorExtender<ReverseDigraphBase<DGR> > Parent;
   1.380 +  public:
   1.381 +    /// The type of the adapted digraph.
   1.382 +    typedef DGR Digraph;
   1.383 +  protected:
   1.384 +    ReverseDigraph() { }
   1.385 +  public:
   1.386 +
   1.387 +    /// \brief Constructor
   1.388 +    ///
   1.389 +    /// Creates a reverse digraph adaptor for the given digraph.
   1.390 +    explicit ReverseDigraph(DGR& digraph) {
   1.391 +      Parent::initialize(digraph);
   1.392 +    }
   1.393 +  };
   1.394 +
   1.395 +  /// \brief Returns a read-only ReverseDigraph adaptor
   1.396 +  ///
   1.397 +  /// This function just returns a read-only \ref ReverseDigraph adaptor.
   1.398 +  /// \ingroup graph_adaptors
   1.399 +  /// \relates ReverseDigraph
   1.400 +  template<typename DGR>
   1.401 +  ReverseDigraph<const DGR> reverseDigraph(const DGR& digraph) {
   1.402 +    return ReverseDigraph<const DGR>(digraph);
   1.403 +  }
   1.404 +
   1.405 +
   1.406 +  template <typename DGR, typename NF, typename AF, bool ch = true>
   1.407 +  class SubDigraphBase : public DigraphAdaptorBase<DGR> {
   1.408 +    typedef DigraphAdaptorBase<DGR> Parent;
   1.409 +  public:
   1.410 +    typedef DGR Digraph;
   1.411 +    typedef NF NodeFilterMap;
   1.412 +    typedef AF ArcFilterMap;
   1.413 +
   1.414 +    typedef SubDigraphBase Adaptor;
   1.415 +  protected:
   1.416 +    NF* _node_filter;
   1.417 +    AF* _arc_filter;
   1.418 +    SubDigraphBase()
   1.419 +      : Parent(), _node_filter(0), _arc_filter(0) { }
   1.420 +
   1.421 +    void initialize(DGR& digraph, NF& node_filter, AF& arc_filter) {
   1.422 +      Parent::initialize(digraph);
   1.423 +      _node_filter = &node_filter;
   1.424 +      _arc_filter = &arc_filter;      
   1.425 +    }
   1.426 +
   1.427 +  public:
   1.428 +
   1.429 +    typedef typename Parent::Node Node;
   1.430 +    typedef typename Parent::Arc Arc;
   1.431 +
   1.432 +    void first(Node& i) const {
   1.433 +      Parent::first(i);
   1.434 +      while (i != INVALID && !(*_node_filter)[i]) Parent::next(i);
   1.435 +    }
   1.436 +
   1.437 +    void first(Arc& i) const {
   1.438 +      Parent::first(i);
   1.439 +      while (i != INVALID && (!(*_arc_filter)[i]
   1.440 +                              || !(*_node_filter)[Parent::source(i)]
   1.441 +                              || !(*_node_filter)[Parent::target(i)]))
   1.442 +        Parent::next(i);
   1.443 +    }
   1.444 +
   1.445 +    void firstIn(Arc& i, const Node& n) const {
   1.446 +      Parent::firstIn(i, n);
   1.447 +      while (i != INVALID && (!(*_arc_filter)[i]
   1.448 +                              || !(*_node_filter)[Parent::source(i)]))
   1.449 +        Parent::nextIn(i);
   1.450 +    }
   1.451 +
   1.452 +    void firstOut(Arc& i, const Node& n) const {
   1.453 +      Parent::firstOut(i, n);
   1.454 +      while (i != INVALID && (!(*_arc_filter)[i]
   1.455 +                              || !(*_node_filter)[Parent::target(i)]))
   1.456 +        Parent::nextOut(i);
   1.457 +    }
   1.458 +
   1.459 +    void next(Node& i) const {
   1.460 +      Parent::next(i);
   1.461 +      while (i != INVALID && !(*_node_filter)[i]) Parent::next(i);
   1.462 +    }
   1.463 +
   1.464 +    void next(Arc& i) const {
   1.465 +      Parent::next(i);
   1.466 +      while (i != INVALID && (!(*_arc_filter)[i]
   1.467 +                              || !(*_node_filter)[Parent::source(i)]
   1.468 +                              || !(*_node_filter)[Parent::target(i)]))
   1.469 +        Parent::next(i);
   1.470 +    }
   1.471 +
   1.472 +    void nextIn(Arc& i) const {
   1.473 +      Parent::nextIn(i);
   1.474 +      while (i != INVALID && (!(*_arc_filter)[i]
   1.475 +                              || !(*_node_filter)[Parent::source(i)]))
   1.476 +        Parent::nextIn(i);
   1.477 +    }
   1.478 +
   1.479 +    void nextOut(Arc& i) const {
   1.480 +      Parent::nextOut(i);
   1.481 +      while (i != INVALID && (!(*_arc_filter)[i]
   1.482 +                              || !(*_node_filter)[Parent::target(i)]))
   1.483 +        Parent::nextOut(i);
   1.484 +    }
   1.485 +
   1.486 +    void status(const Node& n, bool v) const { _node_filter->set(n, v); }
   1.487 +    void status(const Arc& a, bool v) const { _arc_filter->set(a, v); }
   1.488 +
   1.489 +    bool status(const Node& n) const { return (*_node_filter)[n]; }
   1.490 +    bool status(const Arc& a) const { return (*_arc_filter)[a]; }
   1.491 +
   1.492 +    typedef False NodeNumTag;
   1.493 +    typedef False ArcNumTag;
   1.494 +
   1.495 +    typedef FindArcTagIndicator<DGR> FindArcTag;
   1.496 +    Arc findArc(const Node& source, const Node& target,
   1.497 +                const Arc& prev = INVALID) const {
   1.498 +      if (!(*_node_filter)[source] || !(*_node_filter)[target]) {
   1.499 +        return INVALID;
   1.500 +      }
   1.501 +      Arc arc = Parent::findArc(source, target, prev);
   1.502 +      while (arc != INVALID && !(*_arc_filter)[arc]) {
   1.503 +        arc = Parent::findArc(source, target, arc);
   1.504 +      }
   1.505 +      return arc;
   1.506 +    }
   1.507 +
   1.508 +  public:
   1.509 +
   1.510 +    template <typename V>
   1.511 +    class NodeMap 
   1.512 +      : public SubMapExtender<SubDigraphBase<DGR, NF, AF, ch>, 
   1.513 +	      LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, NodeMap<V>)> {
   1.514 +      typedef SubMapExtender<SubDigraphBase<DGR, NF, AF, ch>,
   1.515 +	LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, NodeMap<V>)> Parent;
   1.516 +
   1.517 +    public:
   1.518 +      typedef V Value;
   1.519 +
   1.520 +      NodeMap(const SubDigraphBase<DGR, NF, AF, ch>& adaptor)
   1.521 +        : Parent(adaptor) {}
   1.522 +      NodeMap(const SubDigraphBase<DGR, NF, AF, ch>& adaptor, const V& value)
   1.523 +        : Parent(adaptor, value) {}
   1.524 +
   1.525 +    private:
   1.526 +      NodeMap& operator=(const NodeMap& cmap) {
   1.527 +        return operator=<NodeMap>(cmap);
   1.528 +      }
   1.529 +
   1.530 +      template <typename CMap>
   1.531 +      NodeMap& operator=(const CMap& cmap) {
   1.532 +        Parent::operator=(cmap);
   1.533 +        return *this;
   1.534 +      }
   1.535 +    };
   1.536 +
   1.537 +    template <typename V>
   1.538 +    class ArcMap 
   1.539 +      : public SubMapExtender<SubDigraphBase<DGR, NF, AF, ch>,
   1.540 +	      LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, ArcMap<V>)> {
   1.541 +      typedef SubMapExtender<SubDigraphBase<DGR, NF, AF, ch>,
   1.542 +        LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, ArcMap<V>)> Parent;
   1.543 +
   1.544 +    public:
   1.545 +      typedef V Value;
   1.546 +
   1.547 +      ArcMap(const SubDigraphBase<DGR, NF, AF, ch>& adaptor)
   1.548 +        : Parent(adaptor) {}
   1.549 +      ArcMap(const SubDigraphBase<DGR, NF, AF, ch>& adaptor, const V& value)
   1.550 +        : Parent(adaptor, value) {}
   1.551 +
   1.552 +    private:
   1.553 +      ArcMap& operator=(const ArcMap& cmap) {
   1.554 +        return operator=<ArcMap>(cmap);
   1.555 +      }
   1.556 +
   1.557 +      template <typename CMap>
   1.558 +      ArcMap& operator=(const CMap& cmap) {
   1.559 +        Parent::operator=(cmap);
   1.560 +        return *this;
   1.561 +      }
   1.562 +    };
   1.563 +
   1.564 +  };
   1.565 +
   1.566 +  template <typename DGR, typename NF, typename AF>
   1.567 +  class SubDigraphBase<DGR, NF, AF, false>
   1.568 +    : public DigraphAdaptorBase<DGR> {
   1.569 +    typedef DigraphAdaptorBase<DGR> Parent;
   1.570 +  public:
   1.571 +    typedef DGR Digraph;
   1.572 +    typedef NF NodeFilterMap;
   1.573 +    typedef AF ArcFilterMap;
   1.574 +
   1.575 +    typedef SubDigraphBase Adaptor;
   1.576 +  protected:
   1.577 +    NF* _node_filter;
   1.578 +    AF* _arc_filter;
   1.579 +    SubDigraphBase()
   1.580 +      : Parent(), _node_filter(0), _arc_filter(0) { }
   1.581 +
   1.582 +    void initialize(DGR& digraph, NF& node_filter, AF& arc_filter) {
   1.583 +      Parent::initialize(digraph);
   1.584 +      _node_filter = &node_filter;
   1.585 +      _arc_filter = &arc_filter;      
   1.586 +    }
   1.587 +
   1.588 +  public:
   1.589 +
   1.590 +    typedef typename Parent::Node Node;
   1.591 +    typedef typename Parent::Arc Arc;
   1.592 +
   1.593 +    void first(Node& i) const {
   1.594 +      Parent::first(i);
   1.595 +      while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i);
   1.596 +    }
   1.597 +
   1.598 +    void first(Arc& i) const {
   1.599 +      Parent::first(i);
   1.600 +      while (i!=INVALID && !(*_arc_filter)[i]) Parent::next(i);
   1.601 +    }
   1.602 +
   1.603 +    void firstIn(Arc& i, const Node& n) const {
   1.604 +      Parent::firstIn(i, n);
   1.605 +      while (i!=INVALID && !(*_arc_filter)[i]) Parent::nextIn(i);
   1.606 +    }
   1.607 +
   1.608 +    void firstOut(Arc& i, const Node& n) const {
   1.609 +      Parent::firstOut(i, n);
   1.610 +      while (i!=INVALID && !(*_arc_filter)[i]) Parent::nextOut(i);
   1.611 +    }
   1.612 +
   1.613 +    void next(Node& i) const {
   1.614 +      Parent::next(i);
   1.615 +      while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i);
   1.616 +    }
   1.617 +    void next(Arc& i) const {
   1.618 +      Parent::next(i);
   1.619 +      while (i!=INVALID && !(*_arc_filter)[i]) Parent::next(i);
   1.620 +    }
   1.621 +    void nextIn(Arc& i) const {
   1.622 +      Parent::nextIn(i);
   1.623 +      while (i!=INVALID && !(*_arc_filter)[i]) Parent::nextIn(i);
   1.624 +    }
   1.625 +
   1.626 +    void nextOut(Arc& i) const {
   1.627 +      Parent::nextOut(i);
   1.628 +      while (i!=INVALID && !(*_arc_filter)[i]) Parent::nextOut(i);
   1.629 +    }
   1.630 +
   1.631 +    void status(const Node& n, bool v) const { _node_filter->set(n, v); }
   1.632 +    void status(const Arc& a, bool v) const { _arc_filter->set(a, v); }
   1.633 +
   1.634 +    bool status(const Node& n) const { return (*_node_filter)[n]; }
   1.635 +    bool status(const Arc& a) const { return (*_arc_filter)[a]; }
   1.636 +
   1.637 +    typedef False NodeNumTag;
   1.638 +    typedef False ArcNumTag;
   1.639 +
   1.640 +    typedef FindArcTagIndicator<DGR> FindArcTag;
   1.641 +    Arc findArc(const Node& source, const Node& target,
   1.642 +                const Arc& prev = INVALID) const {
   1.643 +      if (!(*_node_filter)[source] || !(*_node_filter)[target]) {
   1.644 +        return INVALID;
   1.645 +      }
   1.646 +      Arc arc = Parent::findArc(source, target, prev);
   1.647 +      while (arc != INVALID && !(*_arc_filter)[arc]) {
   1.648 +        arc = Parent::findArc(source, target, arc);
   1.649 +      }
   1.650 +      return arc;
   1.651 +    }
   1.652 +
   1.653 +    template <typename V>
   1.654 +    class NodeMap 
   1.655 +      : public SubMapExtender<SubDigraphBase<DGR, NF, AF, false>,
   1.656 +          LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, NodeMap<V>)> {
   1.657 +      typedef SubMapExtender<SubDigraphBase<DGR, NF, AF, false>, 
   1.658 +        LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, NodeMap<V>)> Parent;
   1.659 +
   1.660 +    public:
   1.661 +      typedef V Value;
   1.662 +
   1.663 +      NodeMap(const SubDigraphBase<DGR, NF, AF, false>& adaptor)
   1.664 +        : Parent(adaptor) {}
   1.665 +      NodeMap(const SubDigraphBase<DGR, NF, AF, false>& adaptor, const V& value)
   1.666 +        : Parent(adaptor, value) {}
   1.667 +
   1.668 +    private:
   1.669 +      NodeMap& operator=(const NodeMap& cmap) {
   1.670 +        return operator=<NodeMap>(cmap);
   1.671 +      }
   1.672 +
   1.673 +      template <typename CMap>
   1.674 +      NodeMap& operator=(const CMap& cmap) {
   1.675 +        Parent::operator=(cmap);
   1.676 +        return *this;
   1.677 +      }
   1.678 +    };
   1.679 +
   1.680 +    template <typename V>
   1.681 +    class ArcMap 
   1.682 +      : public SubMapExtender<SubDigraphBase<DGR, NF, AF, false>,
   1.683 +          LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, ArcMap<V>)> {
   1.684 +      typedef SubMapExtender<SubDigraphBase<DGR, NF, AF, false>,
   1.685 +        LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, ArcMap<V>)> Parent;
   1.686 +
   1.687 +    public:
   1.688 +      typedef V Value;
   1.689 +
   1.690 +      ArcMap(const SubDigraphBase<DGR, NF, AF, false>& adaptor)
   1.691 +        : Parent(adaptor) {}
   1.692 +      ArcMap(const SubDigraphBase<DGR, NF, AF, false>& adaptor, const V& value)
   1.693 +        : Parent(adaptor, value) {}
   1.694 +
   1.695 +    private:
   1.696 +      ArcMap& operator=(const ArcMap& cmap) {
   1.697 +        return operator=<ArcMap>(cmap);
   1.698 +      }
   1.699 +
   1.700 +      template <typename CMap>
   1.701 +      ArcMap& operator=(const CMap& cmap) {
   1.702 +        Parent::operator=(cmap);
   1.703 +        return *this;
   1.704 +      }
   1.705 +    };
   1.706 +
   1.707 +  };
   1.708 +
   1.709 +  /// \ingroup graph_adaptors
   1.710 +  ///
   1.711 +  /// \brief Adaptor class for hiding nodes and arcs in a digraph
   1.712 +  ///
   1.713 +  /// SubDigraph can be used for hiding nodes and arcs in a digraph.
   1.714 +  /// A \c bool node map and a \c bool arc map must be specified, which
   1.715 +  /// define the filters for nodes and arcs.
   1.716 +  /// Only the nodes and arcs with \c true filter value are
   1.717 +  /// shown in the subdigraph. The arcs that are incident to hidden
   1.718 +  /// nodes are also filtered out.
   1.719 +  /// This adaptor conforms to the \ref concepts::Digraph "Digraph" concept.
   1.720 +  ///
   1.721 +  /// The adapted digraph can also be modified through this adaptor
   1.722 +  /// by adding or removing nodes or arcs, unless the \c GR template
   1.723 +  /// parameter is set to be \c const.
   1.724 +  ///
   1.725 +  /// \tparam DGR The type of the adapted digraph.
   1.726 +  /// It must conform to the \ref concepts::Digraph "Digraph" concept.
   1.727 +  /// It can also be specified to be \c const.
   1.728 +  /// \tparam NF The type of the node filter map.
   1.729 +  /// It must be a \c bool (or convertible) node map of the
   1.730 +  /// adapted digraph. The default type is
   1.731 +  /// \ref concepts::Digraph::NodeMap "DGR::NodeMap<bool>".
   1.732 +  /// \tparam AF The type of the arc filter map.
   1.733 +  /// It must be \c bool (or convertible) arc map of the
   1.734 +  /// adapted digraph. The default type is
   1.735 +  /// \ref concepts::Digraph::ArcMap "DGR::ArcMap<bool>".
   1.736 +  ///
   1.737 +  /// \note The \c Node and \c Arc types of this adaptor and the adapted
   1.738 +  /// digraph are convertible to each other.
   1.739 +  ///
   1.740 +  /// \see FilterNodes
   1.741 +  /// \see FilterArcs
   1.742 +#ifdef DOXYGEN
   1.743 +  template<typename DGR, typename NF, typename AF>
   1.744 +  class SubDigraph {
   1.745 +#else
   1.746 +  template<typename DGR,
   1.747 +           typename NF = typename DGR::template NodeMap<bool>,
   1.748 +           typename AF = typename DGR::template ArcMap<bool> >
   1.749 +  class SubDigraph :
   1.750 +    public DigraphAdaptorExtender<SubDigraphBase<DGR, NF, AF, true> > {
   1.751 +#endif
   1.752 +  public:
   1.753 +    /// The type of the adapted digraph.
   1.754 +    typedef DGR Digraph;
   1.755 +    /// The type of the node filter map.
   1.756 +    typedef NF NodeFilterMap;
   1.757 +    /// The type of the arc filter map.
   1.758 +    typedef AF ArcFilterMap;
   1.759 +
   1.760 +    typedef DigraphAdaptorExtender<SubDigraphBase<DGR, NF, AF, true> >
   1.761 +      Parent;
   1.762 +
   1.763 +    typedef typename Parent::Node Node;
   1.764 +    typedef typename Parent::Arc Arc;
   1.765 +
   1.766 +  protected:
   1.767 +    SubDigraph() { }
   1.768 +  public:
   1.769 +
   1.770 +    /// \brief Constructor
   1.771 +    ///
   1.772 +    /// Creates a subdigraph for the given digraph with the
   1.773 +    /// given node and arc filter maps.
   1.774 +    SubDigraph(DGR& digraph, NF& node_filter, AF& arc_filter) {
   1.775 +      Parent::initialize(digraph, node_filter, arc_filter);
   1.776 +    }
   1.777 +
   1.778 +    /// \brief Sets the status of the given node
   1.779 +    ///
   1.780 +    /// This function sets the status of the given node.
   1.781 +    /// It is done by simply setting the assigned value of \c n
   1.782 +    /// to \c v in the node filter map.
   1.783 +    void status(const Node& n, bool v) const { Parent::status(n, v); }
   1.784 +
   1.785 +    /// \brief Sets the status of the given arc
   1.786 +    ///
   1.787 +    /// This function sets the status of the given arc.
   1.788 +    /// It is done by simply setting the assigned value of \c a
   1.789 +    /// to \c v in the arc filter map.
   1.790 +    void status(const Arc& a, bool v) const { Parent::status(a, v); }
   1.791 +
   1.792 +    /// \brief Returns the status of the given node
   1.793 +    ///
   1.794 +    /// This function returns the status of the given node.
   1.795 +    /// It is \c true if the given node is enabled (i.e. not hidden).
   1.796 +    bool status(const Node& n) const { return Parent::status(n); }
   1.797 +
   1.798 +    /// \brief Returns the status of the given arc
   1.799 +    ///
   1.800 +    /// This function returns the status of the given arc.
   1.801 +    /// It is \c true if the given arc is enabled (i.e. not hidden).
   1.802 +    bool status(const Arc& a) const { return Parent::status(a); }
   1.803 +
   1.804 +    /// \brief Disables the given node
   1.805 +    ///
   1.806 +    /// This function disables the given node in the subdigraph,
   1.807 +    /// so the iteration jumps over it.
   1.808 +    /// It is the same as \ref status() "status(n, false)".
   1.809 +    void disable(const Node& n) const { Parent::status(n, false); }
   1.810 +
   1.811 +    /// \brief Disables the given arc
   1.812 +    ///
   1.813 +    /// This function disables the given arc in the subdigraph,
   1.814 +    /// so the iteration jumps over it.
   1.815 +    /// It is the same as \ref status() "status(a, false)".
   1.816 +    void disable(const Arc& a) const { Parent::status(a, false); }
   1.817 +
   1.818 +    /// \brief Enables the given node
   1.819 +    ///
   1.820 +    /// This function enables the given node in the subdigraph.
   1.821 +    /// It is the same as \ref status() "status(n, true)".
   1.822 +    void enable(const Node& n) const { Parent::status(n, true); }
   1.823 +
   1.824 +    /// \brief Enables the given arc
   1.825 +    ///
   1.826 +    /// This function enables the given arc in the subdigraph.
   1.827 +    /// It is the same as \ref status() "status(a, true)".
   1.828 +    void enable(const Arc& a) const { Parent::status(a, true); }
   1.829 +
   1.830 +  };
   1.831 +
   1.832 +  /// \brief Returns a read-only SubDigraph adaptor
   1.833 +  ///
   1.834 +  /// This function just returns a read-only \ref SubDigraph adaptor.
   1.835 +  /// \ingroup graph_adaptors
   1.836 +  /// \relates SubDigraph
   1.837 +  template<typename DGR, typename NF, typename AF>
   1.838 +  SubDigraph<const DGR, NF, AF>
   1.839 +  subDigraph(const DGR& digraph,
   1.840 +             NF& node_filter, AF& arc_filter) {
   1.841 +    return SubDigraph<const DGR, NF, AF>
   1.842 +      (digraph, node_filter, arc_filter);
   1.843 +  }
   1.844 +
   1.845 +  template<typename DGR, typename NF, typename AF>
   1.846 +  SubDigraph<const DGR, const NF, AF>
   1.847 +  subDigraph(const DGR& digraph,
   1.848 +             const NF& node_filter, AF& arc_filter) {
   1.849 +    return SubDigraph<const DGR, const NF, AF>
   1.850 +      (digraph, node_filter, arc_filter);
   1.851 +  }
   1.852 +
   1.853 +  template<typename DGR, typename NF, typename AF>
   1.854 +  SubDigraph<const DGR, NF, const AF>
   1.855 +  subDigraph(const DGR& digraph,
   1.856 +             NF& node_filter, const AF& arc_filter) {
   1.857 +    return SubDigraph<const DGR, NF, const AF>
   1.858 +      (digraph, node_filter, arc_filter);
   1.859 +  }
   1.860 +
   1.861 +  template<typename DGR, typename NF, typename AF>
   1.862 +  SubDigraph<const DGR, const NF, const AF>
   1.863 +  subDigraph(const DGR& digraph,
   1.864 +             const NF& node_filter, const AF& arc_filter) {
   1.865 +    return SubDigraph<const DGR, const NF, const AF>
   1.866 +      (digraph, node_filter, arc_filter);
   1.867 +  }
   1.868 +
   1.869 +
   1.870 +  template <typename GR, typename NF, typename EF, bool ch = true>
   1.871 +  class SubGraphBase : public GraphAdaptorBase<GR> {
   1.872 +    typedef GraphAdaptorBase<GR> Parent;
   1.873 +  public:
   1.874 +    typedef GR Graph;
   1.875 +    typedef NF NodeFilterMap;
   1.876 +    typedef EF EdgeFilterMap;
   1.877 +
   1.878 +    typedef SubGraphBase Adaptor;
   1.879 +  protected:
   1.880 +
   1.881 +    NF* _node_filter;
   1.882 +    EF* _edge_filter;
   1.883 +
   1.884 +    SubGraphBase()
   1.885 +      : Parent(), _node_filter(0), _edge_filter(0) { }
   1.886 +
   1.887 +    void initialize(GR& graph, NF& node_filter, EF& edge_filter) {
   1.888 +      Parent::initialize(graph);
   1.889 +      _node_filter = &node_filter;
   1.890 +      _edge_filter = &edge_filter;
   1.891 +    }
   1.892 +
   1.893 +  public:
   1.894 +
   1.895 +    typedef typename Parent::Node Node;
   1.896 +    typedef typename Parent::Arc Arc;
   1.897 +    typedef typename Parent::Edge Edge;
   1.898 +
   1.899 +    void first(Node& i) const {
   1.900 +      Parent::first(i);
   1.901 +      while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i);
   1.902 +    }
   1.903 +
   1.904 +    void first(Arc& i) const {
   1.905 +      Parent::first(i);
   1.906 +      while (i!=INVALID && (!(*_edge_filter)[i]
   1.907 +                            || !(*_node_filter)[Parent::source(i)]
   1.908 +                            || !(*_node_filter)[Parent::target(i)]))
   1.909 +        Parent::next(i);
   1.910 +    }
   1.911 +
   1.912 +    void first(Edge& i) const {
   1.913 +      Parent::first(i);
   1.914 +      while (i!=INVALID && (!(*_edge_filter)[i]
   1.915 +                            || !(*_node_filter)[Parent::u(i)]
   1.916 +                            || !(*_node_filter)[Parent::v(i)]))
   1.917 +        Parent::next(i);
   1.918 +    }
   1.919 +
   1.920 +    void firstIn(Arc& i, const Node& n) const {
   1.921 +      Parent::firstIn(i, n);
   1.922 +      while (i!=INVALID && (!(*_edge_filter)[i]
   1.923 +                            || !(*_node_filter)[Parent::source(i)]))
   1.924 +        Parent::nextIn(i);
   1.925 +    }
   1.926 +
   1.927 +    void firstOut(Arc& i, const Node& n) const {
   1.928 +      Parent::firstOut(i, n);
   1.929 +      while (i!=INVALID && (!(*_edge_filter)[i]
   1.930 +                            || !(*_node_filter)[Parent::target(i)]))
   1.931 +        Parent::nextOut(i);
   1.932 +    }
   1.933 +
   1.934 +    void firstInc(Edge& i, bool& d, const Node& n) const {
   1.935 +      Parent::firstInc(i, d, n);
   1.936 +      while (i!=INVALID && (!(*_edge_filter)[i]
   1.937 +                            || !(*_node_filter)[Parent::u(i)]
   1.938 +                            || !(*_node_filter)[Parent::v(i)]))
   1.939 +        Parent::nextInc(i, d);
   1.940 +    }
   1.941 +
   1.942 +    void next(Node& i) const {
   1.943 +      Parent::next(i);
   1.944 +      while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i);
   1.945 +    }
   1.946 +
   1.947 +    void next(Arc& i) const {
   1.948 +      Parent::next(i);
   1.949 +      while (i!=INVALID && (!(*_edge_filter)[i]
   1.950 +                            || !(*_node_filter)[Parent::source(i)]
   1.951 +                            || !(*_node_filter)[Parent::target(i)]))
   1.952 +        Parent::next(i);
   1.953 +    }
   1.954 +
   1.955 +    void next(Edge& i) const {
   1.956 +      Parent::next(i);
   1.957 +      while (i!=INVALID && (!(*_edge_filter)[i]
   1.958 +                            || !(*_node_filter)[Parent::u(i)]
   1.959 +                            || !(*_node_filter)[Parent::v(i)]))
   1.960 +        Parent::next(i);
   1.961 +    }
   1.962 +
   1.963 +    void nextIn(Arc& i) const {
   1.964 +      Parent::nextIn(i);
   1.965 +      while (i!=INVALID && (!(*_edge_filter)[i]
   1.966 +                            || !(*_node_filter)[Parent::source(i)]))
   1.967 +        Parent::nextIn(i);
   1.968 +    }
   1.969 +
   1.970 +    void nextOut(Arc& i) const {
   1.971 +      Parent::nextOut(i);
   1.972 +      while (i!=INVALID && (!(*_edge_filter)[i]
   1.973 +                            || !(*_node_filter)[Parent::target(i)]))
   1.974 +        Parent::nextOut(i);
   1.975 +    }
   1.976 +
   1.977 +    void nextInc(Edge& i, bool& d) const {
   1.978 +      Parent::nextInc(i, d);
   1.979 +      while (i!=INVALID && (!(*_edge_filter)[i]
   1.980 +                            || !(*_node_filter)[Parent::u(i)]
   1.981 +                            || !(*_node_filter)[Parent::v(i)]))
   1.982 +        Parent::nextInc(i, d);
   1.983 +    }
   1.984 +
   1.985 +    void status(const Node& n, bool v) const { _node_filter->set(n, v); }
   1.986 +    void status(const Edge& e, bool v) const { _edge_filter->set(e, v); }
   1.987 +
   1.988 +    bool status(const Node& n) const { return (*_node_filter)[n]; }
   1.989 +    bool status(const Edge& e) const { return (*_edge_filter)[e]; }
   1.990 +
   1.991 +    typedef False NodeNumTag;
   1.992 +    typedef False ArcNumTag;
   1.993 +    typedef False EdgeNumTag;
   1.994 +
   1.995 +    typedef FindArcTagIndicator<Graph> FindArcTag;
   1.996 +    Arc findArc(const Node& u, const Node& v,
   1.997 +                const Arc& prev = INVALID) const {
   1.998 +      if (!(*_node_filter)[u] || !(*_node_filter)[v]) {
   1.999 +        return INVALID;
  1.1000 +      }
  1.1001 +      Arc arc = Parent::findArc(u, v, prev);
  1.1002 +      while (arc != INVALID && !(*_edge_filter)[arc]) {
  1.1003 +        arc = Parent::findArc(u, v, arc);
  1.1004 +      }
  1.1005 +      return arc;
  1.1006 +    }
  1.1007 +
  1.1008 +    typedef FindEdgeTagIndicator<Graph> FindEdgeTag;
  1.1009 +    Edge findEdge(const Node& u, const Node& v,
  1.1010 +                  const Edge& prev = INVALID) const {
  1.1011 +      if (!(*_node_filter)[u] || !(*_node_filter)[v]) {
  1.1012 +        return INVALID;
  1.1013 +      }
  1.1014 +      Edge edge = Parent::findEdge(u, v, prev);
  1.1015 +      while (edge != INVALID && !(*_edge_filter)[edge]) {
  1.1016 +        edge = Parent::findEdge(u, v, edge);
  1.1017 +      }
  1.1018 +      return edge;
  1.1019 +    }
  1.1020 +
  1.1021 +    template <typename V>
  1.1022 +    class NodeMap 
  1.1023 +      : public SubMapExtender<SubGraphBase<GR, NF, EF, ch>,
  1.1024 +          LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, NodeMap<V>)> {
  1.1025 +      typedef SubMapExtender<SubGraphBase<GR, NF, EF, ch>, 
  1.1026 +        LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, NodeMap<V>)> Parent;
  1.1027 +
  1.1028 +    public:
  1.1029 +      typedef V Value;
  1.1030 +
  1.1031 +      NodeMap(const SubGraphBase<GR, NF, EF, ch>& adaptor)
  1.1032 +        : Parent(adaptor) {}
  1.1033 +      NodeMap(const SubGraphBase<GR, NF, EF, ch>& adaptor, const V& value)
  1.1034 +        : Parent(adaptor, value) {}
  1.1035 +
  1.1036 +    private:
  1.1037 +      NodeMap& operator=(const NodeMap& cmap) {
  1.1038 +        return operator=<NodeMap>(cmap);
  1.1039 +      }
  1.1040 +
  1.1041 +      template <typename CMap>
  1.1042 +      NodeMap& operator=(const CMap& cmap) {
  1.1043 +        Parent::operator=(cmap);
  1.1044 +        return *this;
  1.1045 +      }
  1.1046 +    };
  1.1047 +
  1.1048 +    template <typename V>
  1.1049 +    class ArcMap 
  1.1050 +      : public SubMapExtender<SubGraphBase<GR, NF, EF, ch>,
  1.1051 +          LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, ArcMap<V>)> {
  1.1052 +      typedef SubMapExtender<SubGraphBase<GR, NF, EF, ch>, 
  1.1053 +        LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, ArcMap<V>)> Parent;
  1.1054 +
  1.1055 +    public:
  1.1056 +      typedef V Value;
  1.1057 +
  1.1058 +      ArcMap(const SubGraphBase<GR, NF, EF, ch>& adaptor)
  1.1059 +        : Parent(adaptor) {}
  1.1060 +      ArcMap(const SubGraphBase<GR, NF, EF, ch>& adaptor, const V& value)
  1.1061 +        : Parent(adaptor, value) {}
  1.1062 +
  1.1063 +    private:
  1.1064 +      ArcMap& operator=(const ArcMap& cmap) {
  1.1065 +        return operator=<ArcMap>(cmap);
  1.1066 +      }
  1.1067 +
  1.1068 +      template <typename CMap>
  1.1069 +      ArcMap& operator=(const CMap& cmap) {
  1.1070 +        Parent::operator=(cmap);
  1.1071 +        return *this;
  1.1072 +      }
  1.1073 +    };
  1.1074 +
  1.1075 +    template <typename V>
  1.1076 +    class EdgeMap 
  1.1077 +      : public SubMapExtender<SubGraphBase<GR, NF, EF, ch>,
  1.1078 +        LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, EdgeMap<V>)> {
  1.1079 +      typedef SubMapExtender<SubGraphBase<GR, NF, EF, ch>, 
  1.1080 +        LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, EdgeMap<V>)> Parent;
  1.1081 +
  1.1082 +    public:
  1.1083 +      typedef V Value;
  1.1084 +
  1.1085 +      EdgeMap(const SubGraphBase<GR, NF, EF, ch>& adaptor)
  1.1086 +        : Parent(adaptor) {}
  1.1087 +
  1.1088 +      EdgeMap(const SubGraphBase<GR, NF, EF, ch>& adaptor, const V& value)
  1.1089 +        : Parent(adaptor, value) {}
  1.1090 +
  1.1091 +    private:
  1.1092 +      EdgeMap& operator=(const EdgeMap& cmap) {
  1.1093 +        return operator=<EdgeMap>(cmap);
  1.1094 +      }
  1.1095 +
  1.1096 +      template <typename CMap>
  1.1097 +      EdgeMap& operator=(const CMap& cmap) {
  1.1098 +        Parent::operator=(cmap);
  1.1099 +        return *this;
  1.1100 +      }
  1.1101 +    };
  1.1102 +
  1.1103 +  };
  1.1104 +
  1.1105 +  template <typename GR, typename NF, typename EF>
  1.1106 +  class SubGraphBase<GR, NF, EF, false>
  1.1107 +    : public GraphAdaptorBase<GR> {
  1.1108 +    typedef GraphAdaptorBase<GR> Parent;
  1.1109 +  public:
  1.1110 +    typedef GR Graph;
  1.1111 +    typedef NF NodeFilterMap;
  1.1112 +    typedef EF EdgeFilterMap;
  1.1113 +
  1.1114 +    typedef SubGraphBase Adaptor;
  1.1115 +  protected:
  1.1116 +    NF* _node_filter;
  1.1117 +    EF* _edge_filter;
  1.1118 +    SubGraphBase() 
  1.1119 +	  : Parent(), _node_filter(0), _edge_filter(0) { }
  1.1120 +
  1.1121 +    void initialize(GR& graph, NF& node_filter, EF& edge_filter) {
  1.1122 +      Parent::initialize(graph);
  1.1123 +      _node_filter = &node_filter;
  1.1124 +      _edge_filter = &edge_filter;
  1.1125 +    }
  1.1126 +
  1.1127 +  public:
  1.1128 +
  1.1129 +    typedef typename Parent::Node Node;
  1.1130 +    typedef typename Parent::Arc Arc;
  1.1131 +    typedef typename Parent::Edge Edge;
  1.1132 +
  1.1133 +    void first(Node& i) const {
  1.1134 +      Parent::first(i);
  1.1135 +      while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i);
  1.1136 +    }
  1.1137 +
  1.1138 +    void first(Arc& i) const {
  1.1139 +      Parent::first(i);
  1.1140 +      while (i!=INVALID && !(*_edge_filter)[i]) Parent::next(i);
  1.1141 +    }
  1.1142 +
  1.1143 +    void first(Edge& i) const {
  1.1144 +      Parent::first(i);
  1.1145 +      while (i!=INVALID && !(*_edge_filter)[i]) Parent::next(i);
  1.1146 +    }
  1.1147 +
  1.1148 +    void firstIn(Arc& i, const Node& n) const {
  1.1149 +      Parent::firstIn(i, n);
  1.1150 +      while (i!=INVALID && !(*_edge_filter)[i]) Parent::nextIn(i);
  1.1151 +    }
  1.1152 +
  1.1153 +    void firstOut(Arc& i, const Node& n) const {
  1.1154 +      Parent::firstOut(i, n);
  1.1155 +      while (i!=INVALID && !(*_edge_filter)[i]) Parent::nextOut(i);
  1.1156 +    }
  1.1157 +
  1.1158 +    void firstInc(Edge& i, bool& d, const Node& n) const {
  1.1159 +      Parent::firstInc(i, d, n);
  1.1160 +      while (i!=INVALID && !(*_edge_filter)[i]) Parent::nextInc(i, d);
  1.1161 +    }
  1.1162 +
  1.1163 +    void next(Node& i) const {
  1.1164 +      Parent::next(i);
  1.1165 +      while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i);
  1.1166 +    }
  1.1167 +    void next(Arc& i) const {
  1.1168 +      Parent::next(i);
  1.1169 +      while (i!=INVALID && !(*_edge_filter)[i]) Parent::next(i);
  1.1170 +    }
  1.1171 +    void next(Edge& i) const {
  1.1172 +      Parent::next(i);
  1.1173 +      while (i!=INVALID && !(*_edge_filter)[i]) Parent::next(i);
  1.1174 +    }
  1.1175 +    void nextIn(Arc& i) const {
  1.1176 +      Parent::nextIn(i);
  1.1177 +      while (i!=INVALID && !(*_edge_filter)[i]) Parent::nextIn(i);
  1.1178 +    }
  1.1179 +
  1.1180 +    void nextOut(Arc& i) const {
  1.1181 +      Parent::nextOut(i);
  1.1182 +      while (i!=INVALID && !(*_edge_filter)[i]) Parent::nextOut(i);
  1.1183 +    }
  1.1184 +    void nextInc(Edge& i, bool& d) const {
  1.1185 +      Parent::nextInc(i, d);
  1.1186 +      while (i!=INVALID && !(*_edge_filter)[i]) Parent::nextInc(i, d);
  1.1187 +    }
  1.1188 +
  1.1189 +    void status(const Node& n, bool v) const { _node_filter->set(n, v); }
  1.1190 +    void status(const Edge& e, bool v) const { _edge_filter->set(e, v); }
  1.1191 +
  1.1192 +    bool status(const Node& n) const { return (*_node_filter)[n]; }
  1.1193 +    bool status(const Edge& e) const { return (*_edge_filter)[e]; }
  1.1194 +
  1.1195 +    typedef False NodeNumTag;
  1.1196 +    typedef False ArcNumTag;
  1.1197 +    typedef False EdgeNumTag;
  1.1198 +
  1.1199 +    typedef FindArcTagIndicator<Graph> FindArcTag;
  1.1200 +    Arc findArc(const Node& u, const Node& v,
  1.1201 +                const Arc& prev = INVALID) const {
  1.1202 +      Arc arc = Parent::findArc(u, v, prev);
  1.1203 +      while (arc != INVALID && !(*_edge_filter)[arc]) {
  1.1204 +        arc = Parent::findArc(u, v, arc);
  1.1205 +      }
  1.1206 +      return arc;
  1.1207 +    }
  1.1208 +
  1.1209 +    typedef FindEdgeTagIndicator<Graph> FindEdgeTag;
  1.1210 +    Edge findEdge(const Node& u, const Node& v,
  1.1211 +                  const Edge& prev = INVALID) const {
  1.1212 +      Edge edge = Parent::findEdge(u, v, prev);
  1.1213 +      while (edge != INVALID && !(*_edge_filter)[edge]) {
  1.1214 +        edge = Parent::findEdge(u, v, edge);
  1.1215 +      }
  1.1216 +      return edge;
  1.1217 +    }
  1.1218 +
  1.1219 +    template <typename V>
  1.1220 +    class NodeMap 
  1.1221 +      : public SubMapExtender<SubGraphBase<GR, NF, EF, false>,
  1.1222 +          LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, NodeMap<V>)> {
  1.1223 +      typedef SubMapExtender<SubGraphBase<GR, NF, EF, false>, 
  1.1224 +        LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, NodeMap<V>)> Parent;
  1.1225 +
  1.1226 +    public:
  1.1227 +      typedef V Value;
  1.1228 +
  1.1229 +      NodeMap(const SubGraphBase<GR, NF, EF, false>& adaptor)
  1.1230 +        : Parent(adaptor) {}
  1.1231 +      NodeMap(const SubGraphBase<GR, NF, EF, false>& adaptor, const V& value)
  1.1232 +        : Parent(adaptor, value) {}
  1.1233 +
  1.1234 +    private:
  1.1235 +      NodeMap& operator=(const NodeMap& cmap) {
  1.1236 +        return operator=<NodeMap>(cmap);
  1.1237 +      }
  1.1238 +
  1.1239 +      template <typename CMap>
  1.1240 +      NodeMap& operator=(const CMap& cmap) {
  1.1241 +        Parent::operator=(cmap);
  1.1242 +        return *this;
  1.1243 +      }
  1.1244 +    };
  1.1245 +
  1.1246 +    template <typename V>
  1.1247 +    class ArcMap 
  1.1248 +      : public SubMapExtender<SubGraphBase<GR, NF, EF, false>,
  1.1249 +          LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, ArcMap<V>)> {
  1.1250 +      typedef SubMapExtender<SubGraphBase<GR, NF, EF, false>, 
  1.1251 +        LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, ArcMap<V>)> Parent;
  1.1252 +
  1.1253 +    public:
  1.1254 +      typedef V Value;
  1.1255 +
  1.1256 +      ArcMap(const SubGraphBase<GR, NF, EF, false>& adaptor)
  1.1257 +        : Parent(adaptor) {}
  1.1258 +      ArcMap(const SubGraphBase<GR, NF, EF, false>& adaptor, const V& value)
  1.1259 +        : Parent(adaptor, value) {}
  1.1260 +
  1.1261 +    private:
  1.1262 +      ArcMap& operator=(const ArcMap& cmap) {
  1.1263 +        return operator=<ArcMap>(cmap);
  1.1264 +      }
  1.1265 +
  1.1266 +      template <typename CMap>
  1.1267 +      ArcMap& operator=(const CMap& cmap) {
  1.1268 +        Parent::operator=(cmap);
  1.1269 +        return *this;
  1.1270 +      }
  1.1271 +    };
  1.1272 +
  1.1273 +    template <typename V>
  1.1274 +    class EdgeMap 
  1.1275 +      : public SubMapExtender<SubGraphBase<GR, NF, EF, false>,
  1.1276 +        LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, EdgeMap<V>)> {
  1.1277 +      typedef SubMapExtender<SubGraphBase<GR, NF, EF, false>, 
  1.1278 +	LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, EdgeMap<V>)> Parent;
  1.1279 +
  1.1280 +    public:
  1.1281 +      typedef V Value;
  1.1282 +
  1.1283 +      EdgeMap(const SubGraphBase<GR, NF, EF, false>& adaptor)
  1.1284 +        : Parent(adaptor) {}
  1.1285 +
  1.1286 +      EdgeMap(const SubGraphBase<GR, NF, EF, false>& adaptor, const V& value)
  1.1287 +        : Parent(adaptor, value) {}
  1.1288 +
  1.1289 +    private:
  1.1290 +      EdgeMap& operator=(const EdgeMap& cmap) {
  1.1291 +        return operator=<EdgeMap>(cmap);
  1.1292 +      }
  1.1293 +
  1.1294 +      template <typename CMap>
  1.1295 +      EdgeMap& operator=(const CMap& cmap) {
  1.1296 +        Parent::operator=(cmap);
  1.1297 +        return *this;
  1.1298 +      }
  1.1299 +    };
  1.1300 +
  1.1301 +  };
  1.1302 +
  1.1303 +  /// \ingroup graph_adaptors
  1.1304 +  ///
  1.1305 +  /// \brief Adaptor class for hiding nodes and edges in an undirected
  1.1306 +  /// graph.
  1.1307 +  ///
  1.1308 +  /// SubGraph can be used for hiding nodes and edges in a graph.
  1.1309 +  /// A \c bool node map and a \c bool edge map must be specified, which
  1.1310 +  /// define the filters for nodes and edges.
  1.1311 +  /// Only the nodes and edges with \c true filter value are
  1.1312 +  /// shown in the subgraph. The edges that are incident to hidden
  1.1313 +  /// nodes are also filtered out.
  1.1314 +  /// This adaptor conforms to the \ref concepts::Graph "Graph" concept.
  1.1315 +  ///
  1.1316 +  /// The adapted graph can also be modified through this adaptor
  1.1317 +  /// by adding or removing nodes or edges, unless the \c GR template
  1.1318 +  /// parameter is set to be \c const.
  1.1319 +  ///
  1.1320 +  /// \tparam GR The type of the adapted graph.
  1.1321 +  /// It must conform to the \ref concepts::Graph "Graph" concept.
  1.1322 +  /// It can also be specified to be \c const.
  1.1323 +  /// \tparam NF The type of the node filter map.
  1.1324 +  /// It must be a \c bool (or convertible) node map of the
  1.1325 +  /// adapted graph. The default type is
  1.1326 +  /// \ref concepts::Graph::NodeMap "GR::NodeMap<bool>".
  1.1327 +  /// \tparam EF The type of the edge filter map.
  1.1328 +  /// It must be a \c bool (or convertible) edge map of the
  1.1329 +  /// adapted graph. The default type is
  1.1330 +  /// \ref concepts::Graph::EdgeMap "GR::EdgeMap<bool>".
  1.1331 +  ///
  1.1332 +  /// \note The \c Node, \c Edge and \c Arc types of this adaptor and the
  1.1333 +  /// adapted graph are convertible to each other.
  1.1334 +  ///
  1.1335 +  /// \see FilterNodes
  1.1336 +  /// \see FilterEdges
  1.1337 +#ifdef DOXYGEN
  1.1338 +  template<typename GR, typename NF, typename EF>
  1.1339 +  class SubGraph {
  1.1340 +#else
  1.1341 +  template<typename GR,
  1.1342 +           typename NF = typename GR::template NodeMap<bool>,
  1.1343 +           typename EF = typename GR::template EdgeMap<bool> >
  1.1344 +  class SubGraph :
  1.1345 +    public GraphAdaptorExtender<SubGraphBase<GR, NF, EF, true> > {
  1.1346 +#endif
  1.1347 +  public:
  1.1348 +    /// The type of the adapted graph.
  1.1349 +    typedef GR Graph;
  1.1350 +    /// The type of the node filter map.
  1.1351 +    typedef NF NodeFilterMap;
  1.1352 +    /// The type of the edge filter map.
  1.1353 +    typedef EF EdgeFilterMap;
  1.1354 +
  1.1355 +    typedef GraphAdaptorExtender<SubGraphBase<GR, NF, EF, true> >
  1.1356 +      Parent;
  1.1357 +
  1.1358 +    typedef typename Parent::Node Node;
  1.1359 +    typedef typename Parent::Edge Edge;
  1.1360 +
  1.1361 +  protected:
  1.1362 +    SubGraph() { }
  1.1363 +  public:
  1.1364 +
  1.1365 +    /// \brief Constructor
  1.1366 +    ///
  1.1367 +    /// Creates a subgraph for the given graph with the given node
  1.1368 +    /// and edge filter maps.
  1.1369 +    SubGraph(GR& graph, NF& node_filter, EF& edge_filter) {
  1.1370 +      initialize(graph, node_filter, edge_filter);
  1.1371 +    }
  1.1372 +
  1.1373 +    /// \brief Sets the status of the given node
  1.1374 +    ///
  1.1375 +    /// This function sets the status of the given node.
  1.1376 +    /// It is done by simply setting the assigned value of \c n
  1.1377 +    /// to \c v in the node filter map.
  1.1378 +    void status(const Node& n, bool v) const { Parent::status(n, v); }
  1.1379 +
  1.1380 +    /// \brief Sets the status of the given edge
  1.1381 +    ///
  1.1382 +    /// This function sets the status of the given edge.
  1.1383 +    /// It is done by simply setting the assigned value of \c e
  1.1384 +    /// to \c v in the edge filter map.
  1.1385 +    void status(const Edge& e, bool v) const { Parent::status(e, v); }
  1.1386 +
  1.1387 +    /// \brief Returns the status of the given node
  1.1388 +    ///
  1.1389 +    /// This function returns the status of the given node.
  1.1390 +    /// It is \c true if the given node is enabled (i.e. not hidden).
  1.1391 +    bool status(const Node& n) const { return Parent::status(n); }
  1.1392 +
  1.1393 +    /// \brief Returns the status of the given edge
  1.1394 +    ///
  1.1395 +    /// This function returns the status of the given edge.
  1.1396 +    /// It is \c true if the given edge is enabled (i.e. not hidden).
  1.1397 +    bool status(const Edge& e) const { return Parent::status(e); }
  1.1398 +
  1.1399 +    /// \brief Disables the given node
  1.1400 +    ///
  1.1401 +    /// This function disables the given node in the subdigraph,
  1.1402 +    /// so the iteration jumps over it.
  1.1403 +    /// It is the same as \ref status() "status(n, false)".
  1.1404 +    void disable(const Node& n) const { Parent::status(n, false); }
  1.1405 +
  1.1406 +    /// \brief Disables the given edge
  1.1407 +    ///
  1.1408 +    /// This function disables the given edge in the subgraph,
  1.1409 +    /// so the iteration jumps over it.
  1.1410 +    /// It is the same as \ref status() "status(e, false)".
  1.1411 +    void disable(const Edge& e) const { Parent::status(e, false); }
  1.1412 +
  1.1413 +    /// \brief Enables the given node
  1.1414 +    ///
  1.1415 +    /// This function enables the given node in the subdigraph.
  1.1416 +    /// It is the same as \ref status() "status(n, true)".
  1.1417 +    void enable(const Node& n) const { Parent::status(n, true); }
  1.1418 +
  1.1419 +    /// \brief Enables the given edge
  1.1420 +    ///
  1.1421 +    /// This function enables the given edge in the subgraph.
  1.1422 +    /// It is the same as \ref status() "status(e, true)".
  1.1423 +    void enable(const Edge& e) const { Parent::status(e, true); }
  1.1424 +
  1.1425 +  };
  1.1426 +
  1.1427 +  /// \brief Returns a read-only SubGraph adaptor
  1.1428 +  ///
  1.1429 +  /// This function just returns a read-only \ref SubGraph adaptor.
  1.1430 +  /// \ingroup graph_adaptors
  1.1431 +  /// \relates SubGraph
  1.1432 +  template<typename GR, typename NF, typename EF>
  1.1433 +  SubGraph<const GR, NF, EF>
  1.1434 +  subGraph(const GR& graph, NF& node_filter, EF& edge_filter) {
  1.1435 +    return SubGraph<const GR, NF, EF>
  1.1436 +      (graph, node_filter, edge_filter);
  1.1437 +  }
  1.1438 +
  1.1439 +  template<typename GR, typename NF, typename EF>
  1.1440 +  SubGraph<const GR, const NF, EF>
  1.1441 +  subGraph(const GR& graph, const NF& node_filter, EF& edge_filter) {
  1.1442 +    return SubGraph<const GR, const NF, EF>
  1.1443 +      (graph, node_filter, edge_filter);
  1.1444 +  }
  1.1445 +
  1.1446 +  template<typename GR, typename NF, typename EF>
  1.1447 +  SubGraph<const GR, NF, const EF>
  1.1448 +  subGraph(const GR& graph, NF& node_filter, const EF& edge_filter) {
  1.1449 +    return SubGraph<const GR, NF, const EF>
  1.1450 +      (graph, node_filter, edge_filter);
  1.1451 +  }
  1.1452 +
  1.1453 +  template<typename GR, typename NF, typename EF>
  1.1454 +  SubGraph<const GR, const NF, const EF>
  1.1455 +  subGraph(const GR& graph, const NF& node_filter, const EF& edge_filter) {
  1.1456 +    return SubGraph<const GR, const NF, const EF>
  1.1457 +      (graph, node_filter, edge_filter);
  1.1458 +  }
  1.1459 +
  1.1460 +
  1.1461 +  /// \ingroup graph_adaptors
  1.1462 +  ///
  1.1463 +  /// \brief Adaptor class for hiding nodes in a digraph or a graph.
  1.1464 +  ///
  1.1465 +  /// FilterNodes adaptor can be used for hiding nodes in a digraph or a
  1.1466 +  /// graph. A \c bool node map must be specified, which defines the filter
  1.1467 +  /// for the nodes. Only the nodes with \c true filter value and the
  1.1468 +  /// arcs/edges incident to nodes both with \c true filter value are shown
  1.1469 +  /// in the subgraph. This adaptor conforms to the \ref concepts::Digraph
  1.1470 +  /// "Digraph" concept or the \ref concepts::Graph "Graph" concept
  1.1471 +  /// depending on the \c GR template parameter.
  1.1472 +  ///
  1.1473 +  /// The adapted (di)graph can also be modified through this adaptor
  1.1474 +  /// by adding or removing nodes or arcs/edges, unless the \c GR template
  1.1475 +  /// parameter is set to be \c const.
  1.1476 +  ///
  1.1477 +  /// \tparam GR The type of the adapted digraph or graph.
  1.1478 +  /// It must conform to the \ref concepts::Digraph "Digraph" concept
  1.1479 +  /// or the \ref concepts::Graph "Graph" concept.
  1.1480 +  /// It can also be specified to be \c const.
  1.1481 +  /// \tparam NF The type of the node filter map.
  1.1482 +  /// It must be a \c bool (or convertible) node map of the
  1.1483 +  /// adapted (di)graph. The default type is
  1.1484 +  /// \ref concepts::Graph::NodeMap "GR::NodeMap<bool>".
  1.1485 +  ///
  1.1486 +  /// \note The \c Node and <tt>Arc/Edge</tt> types of this adaptor and the
  1.1487 +  /// adapted (di)graph are convertible to each other.
  1.1488 +#ifdef DOXYGEN
  1.1489 +  template<typename GR, typename NF>
  1.1490 +  class FilterNodes {
  1.1491 +#else
  1.1492 +  template<typename GR,
  1.1493 +           typename NF = typename GR::template NodeMap<bool>,
  1.1494 +           typename Enable = void>
  1.1495 +  class FilterNodes :
  1.1496 +    public DigraphAdaptorExtender<
  1.1497 +      SubDigraphBase<GR, NF, ConstMap<typename GR::Arc, Const<bool, true> >,
  1.1498 +                     true> > {
  1.1499 +#endif
  1.1500 +    typedef DigraphAdaptorExtender<
  1.1501 +      SubDigraphBase<GR, NF, ConstMap<typename GR::Arc, Const<bool, true> >, 
  1.1502 +                     true> > Parent;
  1.1503 +
  1.1504 +  public:
  1.1505 +
  1.1506 +    typedef GR Digraph;
  1.1507 +    typedef NF NodeFilterMap;
  1.1508 +
  1.1509 +    typedef typename Parent::Node Node;
  1.1510 +
  1.1511 +  protected:
  1.1512 +    ConstMap<typename Digraph::Arc, Const<bool, true> > const_true_map;
  1.1513 +
  1.1514 +    FilterNodes() : const_true_map() {}
  1.1515 +
  1.1516 +  public:
  1.1517 +
  1.1518 +    /// \brief Constructor
  1.1519 +    ///
  1.1520 +    /// Creates a subgraph for the given digraph or graph with the
  1.1521 +    /// given node filter map.
  1.1522 +    FilterNodes(GR& graph, NF& node_filter) 
  1.1523 +      : Parent(), const_true_map()
  1.1524 +    {
  1.1525 +      Parent::initialize(graph, node_filter, const_true_map);
  1.1526 +    }
  1.1527 +
  1.1528 +    /// \brief Sets the status of the given node
  1.1529 +    ///
  1.1530 +    /// This function sets the status of the given node.
  1.1531 +    /// It is done by simply setting the assigned value of \c n
  1.1532 +    /// to \c v in the node filter map.
  1.1533 +    void status(const Node& n, bool v) const { Parent::status(n, v); }
  1.1534 +
  1.1535 +    /// \brief Returns the status of the given node
  1.1536 +    ///
  1.1537 +    /// This function returns the status of the given node.
  1.1538 +    /// It is \c true if the given node is enabled (i.e. not hidden).
  1.1539 +    bool status(const Node& n) const { return Parent::status(n); }
  1.1540 +
  1.1541 +    /// \brief Disables the given node
  1.1542 +    ///
  1.1543 +    /// This function disables the given node, so the iteration
  1.1544 +    /// jumps over it.
  1.1545 +    /// It is the same as \ref status() "status(n, false)".
  1.1546 +    void disable(const Node& n) const { Parent::status(n, false); }
  1.1547 +
  1.1548 +    /// \brief Enables the given node
  1.1549 +    ///
  1.1550 +    /// This function enables the given node.
  1.1551 +    /// It is the same as \ref status() "status(n, true)".
  1.1552 +    void enable(const Node& n) const { Parent::status(n, true); }
  1.1553 +
  1.1554 +  };
  1.1555 +
  1.1556 +  template<typename GR, typename NF>
  1.1557 +  class FilterNodes<GR, NF,
  1.1558 +                    typename enable_if<UndirectedTagIndicator<GR> >::type> :
  1.1559 +    public GraphAdaptorExtender<
  1.1560 +      SubGraphBase<GR, NF, ConstMap<typename GR::Edge, Const<bool, true> >, 
  1.1561 +                   true> > {
  1.1562 +
  1.1563 +    typedef GraphAdaptorExtender<
  1.1564 +      SubGraphBase<GR, NF, ConstMap<typename GR::Edge, Const<bool, true> >, 
  1.1565 +                   true> > Parent;
  1.1566 +
  1.1567 +  public:
  1.1568 +
  1.1569 +    typedef GR Graph;
  1.1570 +    typedef NF NodeFilterMap;
  1.1571 +
  1.1572 +    typedef typename Parent::Node Node;
  1.1573 +
  1.1574 +  protected:
  1.1575 +    ConstMap<typename GR::Edge, Const<bool, true> > const_true_map;
  1.1576 +
  1.1577 +    FilterNodes() : const_true_map() {}
  1.1578 +
  1.1579 +  public:
  1.1580 +
  1.1581 +    FilterNodes(GR& graph, NodeFilterMap& node_filter) :
  1.1582 +      Parent(), const_true_map() {
  1.1583 +      Parent::initialize(graph, node_filter, const_true_map);
  1.1584 +    }
  1.1585 +
  1.1586 +    void status(const Node& n, bool v) const { Parent::status(n, v); }
  1.1587 +    bool status(const Node& n) const { return Parent::status(n); }
  1.1588 +    void disable(const Node& n) const { Parent::status(n, false); }
  1.1589 +    void enable(const Node& n) const { Parent::status(n, true); }
  1.1590 +
  1.1591 +  };
  1.1592 +
  1.1593 +
  1.1594 +  /// \brief Returns a read-only FilterNodes adaptor
  1.1595 +  ///
  1.1596 +  /// This function just returns a read-only \ref FilterNodes adaptor.
  1.1597 +  /// \ingroup graph_adaptors
  1.1598 +  /// \relates FilterNodes
  1.1599 +  template<typename GR, typename NF>
  1.1600 +  FilterNodes<const GR, NF>
  1.1601 +  filterNodes(const GR& graph, NF& node_filter) {
  1.1602 +    return FilterNodes<const GR, NF>(graph, node_filter);
  1.1603 +  }
  1.1604 +
  1.1605 +  template<typename GR, typename NF>
  1.1606 +  FilterNodes<const GR, const NF>
  1.1607 +  filterNodes(const GR& graph, const NF& node_filter) {
  1.1608 +    return FilterNodes<const GR, const NF>(graph, node_filter);
  1.1609 +  }
  1.1610 +
  1.1611 +  /// \ingroup graph_adaptors
  1.1612 +  ///
  1.1613 +  /// \brief Adaptor class for hiding arcs in a digraph.
  1.1614 +  ///
  1.1615 +  /// FilterArcs adaptor can be used for hiding arcs in a digraph.
  1.1616 +  /// A \c bool arc map must be specified, which defines the filter for
  1.1617 +  /// the arcs. Only the arcs with \c true filter value are shown in the
  1.1618 +  /// subdigraph. This adaptor conforms to the \ref concepts::Digraph
  1.1619 +  /// "Digraph" concept.
  1.1620 +  ///
  1.1621 +  /// The adapted digraph can also be modified through this adaptor
  1.1622 +  /// by adding or removing nodes or arcs, unless the \c GR template
  1.1623 +  /// parameter is set to be \c const.
  1.1624 +  ///
  1.1625 +  /// \tparam DGR The type of the adapted digraph.
  1.1626 +  /// It must conform to the \ref concepts::Digraph "Digraph" concept.
  1.1627 +  /// It can also be specified to be \c const.
  1.1628 +  /// \tparam AF The type of the arc filter map.
  1.1629 +  /// It must be a \c bool (or convertible) arc map of the
  1.1630 +  /// adapted digraph. The default type is
  1.1631 +  /// \ref concepts::Digraph::ArcMap "DGR::ArcMap<bool>".
  1.1632 +  ///
  1.1633 +  /// \note The \c Node and \c Arc types of this adaptor and the adapted
  1.1634 +  /// digraph are convertible to each other.
  1.1635 +#ifdef DOXYGEN
  1.1636 +  template<typename DGR,
  1.1637 +           typename AF>
  1.1638 +  class FilterArcs {
  1.1639 +#else
  1.1640 +  template<typename DGR,
  1.1641 +           typename AF = typename DGR::template ArcMap<bool> >
  1.1642 +  class FilterArcs :
  1.1643 +    public DigraphAdaptorExtender<
  1.1644 +      SubDigraphBase<DGR, ConstMap<typename DGR::Node, Const<bool, true> >,
  1.1645 +                     AF, false> > {
  1.1646 +#endif
  1.1647 +    typedef DigraphAdaptorExtender<
  1.1648 +      SubDigraphBase<DGR, ConstMap<typename DGR::Node, Const<bool, true> >, 
  1.1649 +                     AF, false> > Parent;
  1.1650 +
  1.1651 +  public:
  1.1652 +
  1.1653 +    /// The type of the adapted digraph.
  1.1654 +    typedef DGR Digraph;
  1.1655 +    /// The type of the arc filter map.
  1.1656 +    typedef AF ArcFilterMap;
  1.1657 +
  1.1658 +    typedef typename Parent::Arc Arc;
  1.1659 +
  1.1660 +  protected:
  1.1661 +    ConstMap<typename DGR::Node, Const<bool, true> > const_true_map;
  1.1662 +
  1.1663 +    FilterArcs() : const_true_map() {}
  1.1664 +
  1.1665 +  public:
  1.1666 +
  1.1667 +    /// \brief Constructor
  1.1668 +    ///
  1.1669 +    /// Creates a subdigraph for the given digraph with the given arc
  1.1670 +    /// filter map.
  1.1671 +    FilterArcs(DGR& digraph, ArcFilterMap& arc_filter)
  1.1672 +      : Parent(), const_true_map() {
  1.1673 +      Parent::initialize(digraph, const_true_map, arc_filter);
  1.1674 +    }
  1.1675 +
  1.1676 +    /// \brief Sets the status of the given arc
  1.1677 +    ///
  1.1678 +    /// This function sets the status of the given arc.
  1.1679 +    /// It is done by simply setting the assigned value of \c a
  1.1680 +    /// to \c v in the arc filter map.
  1.1681 +    void status(const Arc& a, bool v) const { Parent::status(a, v); }
  1.1682 +
  1.1683 +    /// \brief Returns the status of the given arc
  1.1684 +    ///
  1.1685 +    /// This function returns the status of the given arc.
  1.1686 +    /// It is \c true if the given arc is enabled (i.e. not hidden).
  1.1687 +    bool status(const Arc& a) const { return Parent::status(a); }
  1.1688 +
  1.1689 +    /// \brief Disables the given arc
  1.1690 +    ///
  1.1691 +    /// This function disables the given arc in the subdigraph,
  1.1692 +    /// so the iteration jumps over it.
  1.1693 +    /// It is the same as \ref status() "status(a, false)".
  1.1694 +    void disable(const Arc& a) const { Parent::status(a, false); }
  1.1695 +
  1.1696 +    /// \brief Enables the given arc
  1.1697 +    ///
  1.1698 +    /// This function enables the given arc in the subdigraph.
  1.1699 +    /// It is the same as \ref status() "status(a, true)".
  1.1700 +    void enable(const Arc& a) const { Parent::status(a, true); }
  1.1701 +
  1.1702 +  };
  1.1703 +
  1.1704 +  /// \brief Returns a read-only FilterArcs adaptor
  1.1705 +  ///
  1.1706 +  /// This function just returns a read-only \ref FilterArcs adaptor.
  1.1707 +  /// \ingroup graph_adaptors
  1.1708 +  /// \relates FilterArcs
  1.1709 +  template<typename DGR, typename AF>
  1.1710 +  FilterArcs<const DGR, AF>
  1.1711 +  filterArcs(const DGR& digraph, AF& arc_filter) {
  1.1712 +    return FilterArcs<const DGR, AF>(digraph, arc_filter);
  1.1713 +  }
  1.1714 +
  1.1715 +  template<typename DGR, typename AF>
  1.1716 +  FilterArcs<const DGR, const AF>
  1.1717 +  filterArcs(const DGR& digraph, const AF& arc_filter) {
  1.1718 +    return FilterArcs<const DGR, const AF>(digraph, arc_filter);
  1.1719 +  }
  1.1720 +
  1.1721 +  /// \ingroup graph_adaptors
  1.1722 +  ///
  1.1723 +  /// \brief Adaptor class for hiding edges in a graph.
  1.1724 +  ///
  1.1725 +  /// FilterEdges adaptor can be used for hiding edges in a graph.
  1.1726 +  /// A \c bool edge map must be specified, which defines the filter for
  1.1727 +  /// the edges. Only the edges with \c true filter value are shown in the
  1.1728 +  /// subgraph. This adaptor conforms to the \ref concepts::Graph
  1.1729 +  /// "Graph" concept.
  1.1730 +  ///
  1.1731 +  /// The adapted graph can also be modified through this adaptor
  1.1732 +  /// by adding or removing nodes or edges, unless the \c GR template
  1.1733 +  /// parameter is set to be \c const.
  1.1734 +  ///
  1.1735 +  /// \tparam GR The type of the adapted graph.
  1.1736 +  /// It must conform to the \ref concepts::Graph "Graph" concept.
  1.1737 +  /// It can also be specified to be \c const.
  1.1738 +  /// \tparam EF The type of the edge filter map.
  1.1739 +  /// It must be a \c bool (or convertible) edge map of the
  1.1740 +  /// adapted graph. The default type is
  1.1741 +  /// \ref concepts::Graph::EdgeMap "GR::EdgeMap<bool>".
  1.1742 +  ///
  1.1743 +  /// \note The \c Node, \c Edge and \c Arc types of this adaptor and the
  1.1744 +  /// adapted graph are convertible to each other.
  1.1745 +#ifdef DOXYGEN
  1.1746 +  template<typename GR,
  1.1747 +           typename EF>
  1.1748 +  class FilterEdges {
  1.1749 +#else
  1.1750 +  template<typename GR,
  1.1751 +           typename EF = typename GR::template EdgeMap<bool> >
  1.1752 +  class FilterEdges :
  1.1753 +    public GraphAdaptorExtender<
  1.1754 +      SubGraphBase<GR, ConstMap<typename GR::Node, Const<bool, true> >, 
  1.1755 +                   EF, false> > {
  1.1756 +#endif
  1.1757 +    typedef GraphAdaptorExtender<
  1.1758 +      SubGraphBase<GR, ConstMap<typename GR::Node, Const<bool, true > >, 
  1.1759 +                   EF, false> > Parent;
  1.1760 +
  1.1761 +  public:
  1.1762 +
  1.1763 +    /// The type of the adapted graph.
  1.1764 +    typedef GR Graph;
  1.1765 +    /// The type of the edge filter map.
  1.1766 +    typedef EF EdgeFilterMap;
  1.1767 +
  1.1768 +    typedef typename Parent::Edge Edge;
  1.1769 +
  1.1770 +  protected:
  1.1771 +    ConstMap<typename GR::Node, Const<bool, true> > const_true_map;
  1.1772 +
  1.1773 +    FilterEdges() : const_true_map(true) {
  1.1774 +      Parent::setNodeFilterMap(const_true_map);
  1.1775 +    }
  1.1776 +
  1.1777 +  public:
  1.1778 +
  1.1779 +    /// \brief Constructor
  1.1780 +    ///
  1.1781 +    /// Creates a subgraph for the given graph with the given edge
  1.1782 +    /// filter map.
  1.1783 +    FilterEdges(GR& graph, EF& edge_filter) 
  1.1784 +      : Parent(), const_true_map() {
  1.1785 +      Parent::initialize(graph, const_true_map, edge_filter);
  1.1786 +    }
  1.1787 +
  1.1788 +    /// \brief Sets the status of the given edge
  1.1789 +    ///
  1.1790 +    /// This function sets the status of the given edge.
  1.1791 +    /// It is done by simply setting the assigned value of \c e
  1.1792 +    /// to \c v in the edge filter map.
  1.1793 +    void status(const Edge& e, bool v) const { Parent::status(e, v); }
  1.1794 +
  1.1795 +    /// \brief Returns the status of the given edge
  1.1796 +    ///
  1.1797 +    /// This function returns the status of the given edge.
  1.1798 +    /// It is \c true if the given edge is enabled (i.e. not hidden).
  1.1799 +    bool status(const Edge& e) const { return Parent::status(e); }
  1.1800 +
  1.1801 +    /// \brief Disables the given edge
  1.1802 +    ///
  1.1803 +    /// This function disables the given edge in the subgraph,
  1.1804 +    /// so the iteration jumps over it.
  1.1805 +    /// It is the same as \ref status() "status(e, false)".
  1.1806 +    void disable(const Edge& e) const { Parent::status(e, false); }
  1.1807 +
  1.1808 +    /// \brief Enables the given edge
  1.1809 +    ///
  1.1810 +    /// This function enables the given edge in the subgraph.
  1.1811 +    /// It is the same as \ref status() "status(e, true)".
  1.1812 +    void enable(const Edge& e) const { Parent::status(e, true); }
  1.1813 +
  1.1814 +  };
  1.1815 +
  1.1816 +  /// \brief Returns a read-only FilterEdges adaptor
  1.1817 +  ///
  1.1818 +  /// This function just returns a read-only \ref FilterEdges adaptor.
  1.1819 +  /// \ingroup graph_adaptors
  1.1820 +  /// \relates FilterEdges
  1.1821 +  template<typename GR, typename EF>
  1.1822 +  FilterEdges<const GR, EF>
  1.1823 +  filterEdges(const GR& graph, EF& edge_filter) {
  1.1824 +    return FilterEdges<const GR, EF>(graph, edge_filter);
  1.1825 +  }
  1.1826 +
  1.1827 +  template<typename GR, typename EF>
  1.1828 +  FilterEdges<const GR, const EF>
  1.1829 +  filterEdges(const GR& graph, const EF& edge_filter) {
  1.1830 +    return FilterEdges<const GR, const EF>(graph, edge_filter);
  1.1831 +  }
  1.1832 +
  1.1833 +
  1.1834 +  template <typename DGR>
  1.1835 +  class UndirectorBase {
  1.1836 +  public:
  1.1837 +    typedef DGR Digraph;
  1.1838 +    typedef UndirectorBase Adaptor;
  1.1839 +
  1.1840 +    typedef True UndirectedTag;
  1.1841 +
  1.1842 +    typedef typename Digraph::Arc Edge;
  1.1843 +    typedef typename Digraph::Node Node;
  1.1844 +
  1.1845 +    class Arc {
  1.1846 +      friend class UndirectorBase;
  1.1847 +    protected:
  1.1848 +      Edge _edge;
  1.1849 +      bool _forward;
  1.1850 +
  1.1851 +      Arc(const Edge& edge, bool forward) 
  1.1852 +        : _edge(edge), _forward(forward) {}
  1.1853 +
  1.1854 +    public:
  1.1855 +      Arc() {}
  1.1856 +
  1.1857 +      Arc(Invalid) : _edge(INVALID), _forward(true) {}
  1.1858 +
  1.1859 +      operator const Edge&() const { return _edge; }
  1.1860 +
  1.1861 +      bool operator==(const Arc &other) const {
  1.1862 +        return _forward == other._forward && _edge == other._edge;
  1.1863 +      }
  1.1864 +      bool operator!=(const Arc &other) const {
  1.1865 +        return _forward != other._forward || _edge != other._edge;
  1.1866 +      }
  1.1867 +      bool operator<(const Arc &other) const {
  1.1868 +        return _forward < other._forward ||
  1.1869 +          (_forward == other._forward && _edge < other._edge);
  1.1870 +      }
  1.1871 +    };
  1.1872 +
  1.1873 +    void first(Node& n) const {
  1.1874 +      _digraph->first(n);
  1.1875 +    }
  1.1876 +
  1.1877 +    void next(Node& n) const {
  1.1878 +      _digraph->next(n);
  1.1879 +    }
  1.1880 +
  1.1881 +    void first(Arc& a) const {
  1.1882 +      _digraph->first(a._edge);
  1.1883 +      a._forward = true;
  1.1884 +    }
  1.1885 +
  1.1886 +    void next(Arc& a) const {
  1.1887 +      if (a._forward) {
  1.1888 +        a._forward = false;
  1.1889 +      } else {
  1.1890 +        _digraph->next(a._edge);
  1.1891 +        a._forward = true;
  1.1892 +      }
  1.1893 +    }
  1.1894 +
  1.1895 +    void first(Edge& e) const {
  1.1896 +      _digraph->first(e);
  1.1897 +    }
  1.1898 +
  1.1899 +    void next(Edge& e) const {
  1.1900 +      _digraph->next(e);
  1.1901 +    }
  1.1902 +
  1.1903 +    void firstOut(Arc& a, const Node& n) const {
  1.1904 +      _digraph->firstIn(a._edge, n);
  1.1905 +      if (a._edge != INVALID ) {
  1.1906 +        a._forward = false;
  1.1907 +      } else {
  1.1908 +        _digraph->firstOut(a._edge, n);
  1.1909 +        a._forward = true;
  1.1910 +      }
  1.1911 +    }
  1.1912 +    void nextOut(Arc &a) const {
  1.1913 +      if (!a._forward) {
  1.1914 +        Node n = _digraph->target(a._edge);
  1.1915 +        _digraph->nextIn(a._edge);
  1.1916 +        if (a._edge == INVALID) {
  1.1917 +          _digraph->firstOut(a._edge, n);
  1.1918 +          a._forward = true;
  1.1919 +        }
  1.1920 +      }
  1.1921 +      else {
  1.1922 +        _digraph->nextOut(a._edge);
  1.1923 +      }
  1.1924 +    }
  1.1925 +
  1.1926 +    void firstIn(Arc &a, const Node &n) const {
  1.1927 +      _digraph->firstOut(a._edge, n);
  1.1928 +      if (a._edge != INVALID ) {
  1.1929 +        a._forward = false;
  1.1930 +      } else {
  1.1931 +        _digraph->firstIn(a._edge, n);
  1.1932 +        a._forward = true;
  1.1933 +      }
  1.1934 +    }
  1.1935 +    void nextIn(Arc &a) const {
  1.1936 +      if (!a._forward) {
  1.1937 +        Node n = _digraph->source(a._edge);
  1.1938 +        _digraph->nextOut(a._edge);
  1.1939 +        if (a._edge == INVALID ) {
  1.1940 +          _digraph->firstIn(a._edge, n);
  1.1941 +          a._forward = true;
  1.1942 +        }
  1.1943 +      }
  1.1944 +      else {
  1.1945 +        _digraph->nextIn(a._edge);
  1.1946 +      }
  1.1947 +    }
  1.1948 +
  1.1949 +    void firstInc(Edge &e, bool &d, const Node &n) const {
  1.1950 +      d = true;
  1.1951 +      _digraph->firstOut(e, n);
  1.1952 +      if (e != INVALID) return;
  1.1953 +      d = false;
  1.1954 +      _digraph->firstIn(e, n);
  1.1955 +    }
  1.1956 +
  1.1957 +    void nextInc(Edge &e, bool &d) const {
  1.1958 +      if (d) {
  1.1959 +        Node s = _digraph->source(e);
  1.1960 +        _digraph->nextOut(e);
  1.1961 +        if (e != INVALID) return;
  1.1962 +        d = false;
  1.1963 +        _digraph->firstIn(e, s);
  1.1964 +      } else {
  1.1965 +        _digraph->nextIn(e);
  1.1966 +      }
  1.1967 +    }
  1.1968 +
  1.1969 +    Node u(const Edge& e) const {
  1.1970 +      return _digraph->source(e);
  1.1971 +    }
  1.1972 +
  1.1973 +    Node v(const Edge& e) const {
  1.1974 +      return _digraph->target(e);
  1.1975 +    }
  1.1976 +
  1.1977 +    Node source(const Arc &a) const {
  1.1978 +      return a._forward ? _digraph->source(a._edge) : _digraph->target(a._edge);
  1.1979 +    }
  1.1980 +
  1.1981 +    Node target(const Arc &a) const {
  1.1982 +      return a._forward ? _digraph->target(a._edge) : _digraph->source(a._edge);
  1.1983 +    }
  1.1984 +
  1.1985 +    static Arc direct(const Edge &e, bool d) {
  1.1986 +      return Arc(e, d);
  1.1987 +    }
  1.1988 +
  1.1989 +    static bool direction(const Arc &a) { return a._forward; }
  1.1990 +
  1.1991 +    Node nodeFromId(int ix) const { return _digraph->nodeFromId(ix); }
  1.1992 +    Arc arcFromId(int ix) const {
  1.1993 +      return direct(_digraph->arcFromId(ix >> 1), bool(ix & 1));
  1.1994 +    }
  1.1995 +    Edge edgeFromId(int ix) const { return _digraph->arcFromId(ix); }
  1.1996 +
  1.1997 +    int id(const Node &n) const { return _digraph->id(n); }
  1.1998 +    int id(const Arc &a) const {
  1.1999 +      return  (_digraph->id(a) << 1) | (a._forward ? 1 : 0);
  1.2000 +    }
  1.2001 +    int id(const Edge &e) const { return _digraph->id(e); }
  1.2002 +
  1.2003 +    int maxNodeId() const { return _digraph->maxNodeId(); }
  1.2004 +    int maxArcId() const { return (_digraph->maxArcId() << 1) | 1; }
  1.2005 +    int maxEdgeId() const { return _digraph->maxArcId(); }
  1.2006 +
  1.2007 +    Node addNode() { return _digraph->addNode(); }
  1.2008 +    Edge addEdge(const Node& u, const Node& v) {
  1.2009 +      return _digraph->addArc(u, v);
  1.2010 +    }
  1.2011 +
  1.2012 +    void erase(const Node& i) { _digraph->erase(i); }
  1.2013 +    void erase(const Edge& i) { _digraph->erase(i); }
  1.2014 +
  1.2015 +    void clear() { _digraph->clear(); }
  1.2016 +
  1.2017 +    typedef NodeNumTagIndicator<Digraph> NodeNumTag;
  1.2018 +    int nodeNum() const { return _digraph->nodeNum(); }
  1.2019 +
  1.2020 +    typedef ArcNumTagIndicator<Digraph> ArcNumTag;
  1.2021 +    int arcNum() const { return 2 * _digraph->arcNum(); }
  1.2022 +
  1.2023 +    typedef ArcNumTag EdgeNumTag;
  1.2024 +    int edgeNum() const { return _digraph->arcNum(); }
  1.2025 +
  1.2026 +    typedef FindArcTagIndicator<Digraph> FindArcTag;
  1.2027 +    Arc findArc(Node s, Node t, Arc p = INVALID) const {
  1.2028 +      if (p == INVALID) {
  1.2029 +        Edge arc = _digraph->findArc(s, t);
  1.2030 +        if (arc != INVALID) return direct(arc, true);
  1.2031 +        arc = _digraph->findArc(t, s);
  1.2032 +        if (arc != INVALID) return direct(arc, false);
  1.2033 +      } else if (direction(p)) {
  1.2034 +        Edge arc = _digraph->findArc(s, t, p);
  1.2035 +        if (arc != INVALID) return direct(arc, true);
  1.2036 +        arc = _digraph->findArc(t, s);
  1.2037 +        if (arc != INVALID) return direct(arc, false);
  1.2038 +      } else {
  1.2039 +        Edge arc = _digraph->findArc(t, s, p);
  1.2040 +        if (arc != INVALID) return direct(arc, false);
  1.2041 +      }
  1.2042 +      return INVALID;
  1.2043 +    }
  1.2044 +
  1.2045 +    typedef FindArcTag FindEdgeTag;
  1.2046 +    Edge findEdge(Node s, Node t, Edge p = INVALID) const {
  1.2047 +      if (s != t) {
  1.2048 +        if (p == INVALID) {
  1.2049 +          Edge arc = _digraph->findArc(s, t);
  1.2050 +          if (arc != INVALID) return arc;
  1.2051 +          arc = _digraph->findArc(t, s);
  1.2052 +          if (arc != INVALID) return arc;
  1.2053 +        } else if (_digraph->source(p) == s) {
  1.2054 +          Edge arc = _digraph->findArc(s, t, p);
  1.2055 +          if (arc != INVALID) return arc;
  1.2056 +          arc = _digraph->findArc(t, s);
  1.2057 +          if (arc != INVALID) return arc;
  1.2058 +        } else {
  1.2059 +          Edge arc = _digraph->findArc(t, s, p);
  1.2060 +          if (arc != INVALID) return arc;
  1.2061 +        }
  1.2062 +      } else {
  1.2063 +        return _digraph->findArc(s, t, p);
  1.2064 +      }
  1.2065 +      return INVALID;
  1.2066 +    }
  1.2067 +
  1.2068 +  private:
  1.2069 +
  1.2070 +    template <typename V>
  1.2071 +    class ArcMapBase {
  1.2072 +    private:
  1.2073 +
  1.2074 +      typedef typename DGR::template ArcMap<V> MapImpl;
  1.2075 +
  1.2076 +    public:
  1.2077 +
  1.2078 +      typedef typename MapTraits<MapImpl>::ReferenceMapTag ReferenceMapTag;
  1.2079 +
  1.2080 +      typedef V Value;
  1.2081 +      typedef Arc Key;
  1.2082 +      typedef typename MapTraits<MapImpl>::ConstReturnValue ConstReturnValue;
  1.2083 +      typedef typename MapTraits<MapImpl>::ReturnValue ReturnValue;
  1.2084 +      typedef typename MapTraits<MapImpl>::ConstReturnValue ConstReference;
  1.2085 +      typedef typename MapTraits<MapImpl>::ReturnValue Reference;
  1.2086 +
  1.2087 +      ArcMapBase(const UndirectorBase<DGR>& adaptor) :
  1.2088 +        _forward(*adaptor._digraph), _backward(*adaptor._digraph) {}
  1.2089 +
  1.2090 +      ArcMapBase(const UndirectorBase<DGR>& adaptor, const V& value)
  1.2091 +        : _forward(*adaptor._digraph, value), 
  1.2092 +          _backward(*adaptor._digraph, value) {}
  1.2093 +
  1.2094 +      void set(const Arc& a, const V& value) {
  1.2095 +        if (direction(a)) {
  1.2096 +          _forward.set(a, value);
  1.2097 +        } else {
  1.2098 +          _backward.set(a, value);
  1.2099 +        }
  1.2100 +      }
  1.2101 +
  1.2102 +      ConstReturnValue operator[](const Arc& a) const {
  1.2103 +        if (direction(a)) {
  1.2104 +          return _forward[a];
  1.2105 +        } else {
  1.2106 +          return _backward[a];
  1.2107 +        }
  1.2108 +      }
  1.2109 +
  1.2110 +      ReturnValue operator[](const Arc& a) {
  1.2111 +        if (direction(a)) {
  1.2112 +          return _forward[a];
  1.2113 +        } else {
  1.2114 +          return _backward[a];
  1.2115 +        }
  1.2116 +      }
  1.2117 +
  1.2118 +    protected:
  1.2119 +
  1.2120 +      MapImpl _forward, _backward;
  1.2121 +
  1.2122 +    };
  1.2123 +
  1.2124 +  public:
  1.2125 +
  1.2126 +    template <typename V>
  1.2127 +    class NodeMap : public DGR::template NodeMap<V> {
  1.2128 +      typedef typename DGR::template NodeMap<V> Parent;
  1.2129 +
  1.2130 +    public:
  1.2131 +      typedef V Value;
  1.2132 +
  1.2133 +      explicit NodeMap(const UndirectorBase<DGR>& adaptor)
  1.2134 +        : Parent(*adaptor._digraph) {}
  1.2135 +
  1.2136 +      NodeMap(const UndirectorBase<DGR>& adaptor, const V& value)
  1.2137 +        : Parent(*adaptor._digraph, value) { }
  1.2138 +
  1.2139 +    private:
  1.2140 +      NodeMap& operator=(const NodeMap& cmap) {
  1.2141 +        return operator=<NodeMap>(cmap);
  1.2142 +      }
  1.2143 +
  1.2144 +      template <typename CMap>
  1.2145 +      NodeMap& operator=(const CMap& cmap) {
  1.2146 +        Parent::operator=(cmap);
  1.2147 +        return *this;
  1.2148 +      }
  1.2149 +
  1.2150 +    };
  1.2151 +
  1.2152 +    template <typename V>
  1.2153 +    class ArcMap
  1.2154 +      : public SubMapExtender<UndirectorBase<DGR>, ArcMapBase<V> > {
  1.2155 +      typedef SubMapExtender<UndirectorBase<DGR>, ArcMapBase<V> > Parent;
  1.2156 +
  1.2157 +    public:
  1.2158 +      typedef V Value;
  1.2159 +
  1.2160 +      explicit ArcMap(const UndirectorBase<DGR>& adaptor)
  1.2161 +        : Parent(adaptor) {}
  1.2162 +
  1.2163 +      ArcMap(const UndirectorBase<DGR>& adaptor, const V& value)
  1.2164 +        : Parent(adaptor, value) {}
  1.2165 +
  1.2166 +    private:
  1.2167 +      ArcMap& operator=(const ArcMap& cmap) {
  1.2168 +        return operator=<ArcMap>(cmap);
  1.2169 +      }
  1.2170 +
  1.2171 +      template <typename CMap>
  1.2172 +      ArcMap& operator=(const CMap& cmap) {
  1.2173 +        Parent::operator=(cmap);
  1.2174 +        return *this;
  1.2175 +      }
  1.2176 +    };
  1.2177 +
  1.2178 +    template <typename V>
  1.2179 +    class EdgeMap : public Digraph::template ArcMap<V> {
  1.2180 +      typedef typename Digraph::template ArcMap<V> Parent;
  1.2181 +
  1.2182 +    public:
  1.2183 +      typedef V Value;
  1.2184 +
  1.2185 +      explicit EdgeMap(const UndirectorBase<DGR>& adaptor)
  1.2186 +        : Parent(*adaptor._digraph) {}
  1.2187 +
  1.2188 +      EdgeMap(const UndirectorBase<DGR>& adaptor, const V& value)
  1.2189 +        : Parent(*adaptor._digraph, value) {}
  1.2190 +
  1.2191 +    private:
  1.2192 +      EdgeMap& operator=(const EdgeMap& cmap) {
  1.2193 +        return operator=<EdgeMap>(cmap);
  1.2194 +      }
  1.2195 +
  1.2196 +      template <typename CMap>
  1.2197 +      EdgeMap& operator=(const CMap& cmap) {
  1.2198 +        Parent::operator=(cmap);
  1.2199 +        return *this;
  1.2200 +      }
  1.2201 +
  1.2202 +    };
  1.2203 +
  1.2204 +    typedef typename ItemSetTraits<DGR, Node>::ItemNotifier NodeNotifier;
  1.2205 +    NodeNotifier& notifier(Node) const { return _digraph->notifier(Node()); }
  1.2206 +
  1.2207 +    typedef typename ItemSetTraits<DGR, Edge>::ItemNotifier EdgeNotifier;
  1.2208 +    EdgeNotifier& notifier(Edge) const { return _digraph->notifier(Edge()); }
  1.2209 +    
  1.2210 +    typedef EdgeNotifier ArcNotifier;
  1.2211 +    ArcNotifier& notifier(Arc) const { return _digraph->notifier(Edge()); }
  1.2212 +
  1.2213 +  protected:
  1.2214 +
  1.2215 +    UndirectorBase() : _digraph(0) {}
  1.2216 +
  1.2217 +    DGR* _digraph;
  1.2218 +
  1.2219 +    void initialize(DGR& digraph) {
  1.2220 +      _digraph = &digraph;
  1.2221 +    }
  1.2222 +
  1.2223 +  };
  1.2224 +
  1.2225 +  /// \ingroup graph_adaptors
  1.2226 +  ///
  1.2227 +  /// \brief Adaptor class for viewing a digraph as an undirected graph.
  1.2228 +  ///
  1.2229 +  /// Undirector adaptor can be used for viewing a digraph as an undirected
  1.2230 +  /// graph. All arcs of the underlying digraph are showed in the
  1.2231 +  /// adaptor as an edge (and also as a pair of arcs, of course).
  1.2232 +  /// This adaptor conforms to the \ref concepts::Graph "Graph" concept.
  1.2233 +  ///
  1.2234 +  /// The adapted digraph can also be modified through this adaptor
  1.2235 +  /// by adding or removing nodes or edges, unless the \c GR template
  1.2236 +  /// parameter is set to be \c const.
  1.2237 +  ///
  1.2238 +  /// \tparam DGR The type of the adapted digraph.
  1.2239 +  /// It must conform to the \ref concepts::Digraph "Digraph" concept.
  1.2240 +  /// It can also be specified to be \c const.
  1.2241 +  ///
  1.2242 +  /// \note The \c Node type of this adaptor and the adapted digraph are
  1.2243 +  /// convertible to each other, moreover the \c Edge type of the adaptor
  1.2244 +  /// and the \c Arc type of the adapted digraph are also convertible to
  1.2245 +  /// each other.
  1.2246 +  /// (Thus the \c Arc type of the adaptor is convertible to the \c Arc type
  1.2247 +  /// of the adapted digraph.)
  1.2248 +  template<typename DGR>
  1.2249 +#ifdef DOXYGEN
  1.2250 +  class Undirector {
  1.2251 +#else
  1.2252 +  class Undirector :
  1.2253 +    public GraphAdaptorExtender<UndirectorBase<DGR> > {
  1.2254 +#endif
  1.2255 +    typedef GraphAdaptorExtender<UndirectorBase<DGR> > Parent;
  1.2256 +  public:
  1.2257 +    /// The type of the adapted digraph.
  1.2258 +    typedef DGR Digraph;
  1.2259 +  protected:
  1.2260 +    Undirector() { }
  1.2261 +  public:
  1.2262 +
  1.2263 +    /// \brief Constructor
  1.2264 +    ///
  1.2265 +    /// Creates an undirected graph from the given digraph.
  1.2266 +    Undirector(DGR& digraph) {
  1.2267 +      initialize(digraph);
  1.2268 +    }
  1.2269 +
  1.2270 +    /// \brief Arc map combined from two original arc maps
  1.2271 +    ///
  1.2272 +    /// This map adaptor class adapts two arc maps of the underlying
  1.2273 +    /// digraph to get an arc map of the undirected graph.
  1.2274 +    /// Its value type is inherited from the first arc map type (\c FW).
  1.2275 +    /// \tparam FW The type of the "foward" arc map.
  1.2276 +    /// \tparam BK The type of the "backward" arc map.
  1.2277 +    template <typename FW, typename BK>
  1.2278 +    class CombinedArcMap {
  1.2279 +    public:
  1.2280 +
  1.2281 +      /// The key type of the map
  1.2282 +      typedef typename Parent::Arc Key;
  1.2283 +      /// The value type of the map
  1.2284 +      typedef typename FW::Value Value;
  1.2285 +
  1.2286 +      typedef typename MapTraits<FW>::ReferenceMapTag ReferenceMapTag;
  1.2287 +
  1.2288 +      typedef typename MapTraits<FW>::ReturnValue ReturnValue;
  1.2289 +      typedef typename MapTraits<FW>::ConstReturnValue ConstReturnValue;
  1.2290 +      typedef typename MapTraits<FW>::ReturnValue Reference;
  1.2291 +      typedef typename MapTraits<FW>::ConstReturnValue ConstReference;
  1.2292 +
  1.2293 +      /// Constructor
  1.2294 +      CombinedArcMap(FW& forward, BK& backward)
  1.2295 +        : _forward(&forward), _backward(&backward) {}
  1.2296 +
  1.2297 +      /// Sets the value associated with the given key.
  1.2298 +      void set(const Key& e, const Value& a) {
  1.2299 +        if (Parent::direction(e)) {
  1.2300 +          _forward->set(e, a);
  1.2301 +        } else {
  1.2302 +          _backward->set(e, a);
  1.2303 +        }
  1.2304 +      }
  1.2305 +
  1.2306 +      /// Returns the value associated with the given key.
  1.2307 +      ConstReturnValue operator[](const Key& e) const {
  1.2308 +        if (Parent::direction(e)) {
  1.2309 +          return (*_forward)[e];
  1.2310 +        } else {
  1.2311 +          return (*_backward)[e];
  1.2312 +        }
  1.2313 +      }
  1.2314 +
  1.2315 +      /// Returns a reference to the value associated with the given key.
  1.2316 +      ReturnValue operator[](const Key& e) {
  1.2317 +        if (Parent::direction(e)) {
  1.2318 +          return (*_forward)[e];
  1.2319 +        } else {
  1.2320 +          return (*_backward)[e];
  1.2321 +        }
  1.2322 +      }
  1.2323 +
  1.2324 +    protected:
  1.2325 +
  1.2326 +      FW* _forward;
  1.2327 +      BK* _backward;
  1.2328 +
  1.2329 +    };
  1.2330 +
  1.2331 +    /// \brief Returns a combined arc map
  1.2332 +    ///
  1.2333 +    /// This function just returns a combined arc map.
  1.2334 +    template <typename FW, typename BK>
  1.2335 +    static CombinedArcMap<FW, BK>
  1.2336 +    combinedArcMap(FW& forward, BK& backward) {
  1.2337 +      return CombinedArcMap<FW, BK>(forward, backward);
  1.2338 +    }
  1.2339 +
  1.2340 +    template <typename FW, typename BK>
  1.2341 +    static CombinedArcMap<const FW, BK>
  1.2342 +    combinedArcMap(const FW& forward, BK& backward) {
  1.2343 +      return CombinedArcMap<const FW, BK>(forward, backward);
  1.2344 +    }
  1.2345 +
  1.2346 +    template <typename FW, typename BK>
  1.2347 +    static CombinedArcMap<FW, const BK>
  1.2348 +    combinedArcMap(FW& forward, const BK& backward) {
  1.2349 +      return CombinedArcMap<FW, const BK>(forward, backward);
  1.2350 +    }
  1.2351 +
  1.2352 +    template <typename FW, typename BK>
  1.2353 +    static CombinedArcMap<const FW, const BK>
  1.2354 +    combinedArcMap(const FW& forward, const BK& backward) {
  1.2355 +      return CombinedArcMap<const FW, const BK>(forward, backward);
  1.2356 +    }
  1.2357 +
  1.2358 +  };
  1.2359 +
  1.2360 +  /// \brief Returns a read-only Undirector adaptor
  1.2361 +  ///
  1.2362 +  /// This function just returns a read-only \ref Undirector adaptor.
  1.2363 +  /// \ingroup graph_adaptors
  1.2364 +  /// \relates Undirector
  1.2365 +  template<typename DGR>
  1.2366 +  Undirector<const DGR> undirector(const DGR& digraph) {
  1.2367 +    return Undirector<const DGR>(digraph);
  1.2368 +  }
  1.2369 +
  1.2370 +
  1.2371 +  template <typename GR, typename DM>
  1.2372 +  class OrienterBase {
  1.2373 +  public:
  1.2374 +
  1.2375 +    typedef GR Graph;
  1.2376 +    typedef DM DirectionMap;
  1.2377 +
  1.2378 +    typedef typename GR::Node Node;
  1.2379 +    typedef typename GR::Edge Arc;
  1.2380 +
  1.2381 +    void reverseArc(const Arc& arc) {
  1.2382 +      _direction->set(arc, !(*_direction)[arc]);
  1.2383 +    }
  1.2384 +
  1.2385 +    void first(Node& i) const { _graph->first(i); }
  1.2386 +    void first(Arc& i) const { _graph->first(i); }
  1.2387 +    void firstIn(Arc& i, const Node& n) const {
  1.2388 +      bool d = true;
  1.2389 +      _graph->firstInc(i, d, n);
  1.2390 +      while (i != INVALID && d == (*_direction)[i]) _graph->nextInc(i, d);
  1.2391 +    }
  1.2392 +    void firstOut(Arc& i, const Node& n ) const {
  1.2393 +      bool d = true;
  1.2394 +      _graph->firstInc(i, d, n);
  1.2395 +      while (i != INVALID && d != (*_direction)[i]) _graph->nextInc(i, d);
  1.2396 +    }
  1.2397 +
  1.2398 +    void next(Node& i) const { _graph->next(i); }
  1.2399 +    void next(Arc& i) const { _graph->next(i); }
  1.2400 +    void nextIn(Arc& i) const {
  1.2401 +      bool d = !(*_direction)[i];
  1.2402 +      _graph->nextInc(i, d);
  1.2403 +      while (i != INVALID && d == (*_direction)[i]) _graph->nextInc(i, d);
  1.2404 +    }
  1.2405 +    void nextOut(Arc& i) const {
  1.2406 +      bool d = (*_direction)[i];
  1.2407 +      _graph->nextInc(i, d);
  1.2408 +      while (i != INVALID && d != (*_direction)[i]) _graph->nextInc(i, d);
  1.2409 +    }
  1.2410 +
  1.2411 +    Node source(const Arc& e) const {
  1.2412 +      return (*_direction)[e] ? _graph->u(e) : _graph->v(e);
  1.2413 +    }
  1.2414 +    Node target(const Arc& e) const {
  1.2415 +      return (*_direction)[e] ? _graph->v(e) : _graph->u(e);
  1.2416 +    }
  1.2417 +
  1.2418 +    typedef NodeNumTagIndicator<Graph> NodeNumTag;
  1.2419 +    int nodeNum() const { return _graph->nodeNum(); }
  1.2420 +
  1.2421 +    typedef EdgeNumTagIndicator<Graph> ArcNumTag;
  1.2422 +    int arcNum() const { return _graph->edgeNum(); }
  1.2423 +
  1.2424 +    typedef FindEdgeTagIndicator<Graph> FindArcTag;
  1.2425 +    Arc findArc(const Node& u, const Node& v,
  1.2426 +                const Arc& prev = INVALID) const {
  1.2427 +      Arc arc = _graph->findEdge(u, v, prev);
  1.2428 +      while (arc != INVALID && source(arc) != u) {
  1.2429 +        arc = _graph->findEdge(u, v, arc);
  1.2430 +      }
  1.2431 +      return arc;
  1.2432 +    }
  1.2433 +
  1.2434 +    Node addNode() {
  1.2435 +      return Node(_graph->addNode());
  1.2436 +    }
  1.2437 +
  1.2438 +    Arc addArc(const Node& u, const Node& v) {
  1.2439 +      Arc arc = _graph->addEdge(u, v);
  1.2440 +      _direction->set(arc, _graph->u(arc) == u);
  1.2441 +      return arc;
  1.2442 +    }
  1.2443 +
  1.2444 +    void erase(const Node& i) { _graph->erase(i); }
  1.2445 +    void erase(const Arc& i) { _graph->erase(i); }
  1.2446 +
  1.2447 +    void clear() { _graph->clear(); }
  1.2448 +
  1.2449 +    int id(const Node& v) const { return _graph->id(v); }
  1.2450 +    int id(const Arc& e) const { return _graph->id(e); }
  1.2451 +
  1.2452 +    Node nodeFromId(int idx) const { return _graph->nodeFromId(idx); }
  1.2453 +    Arc arcFromId(int idx) const { return _graph->edgeFromId(idx); }
  1.2454 +
  1.2455 +    int maxNodeId() const { return _graph->maxNodeId(); }
  1.2456 +    int maxArcId() const { return _graph->maxEdgeId(); }
  1.2457 +
  1.2458 +    typedef typename ItemSetTraits<GR, Node>::ItemNotifier NodeNotifier;
  1.2459 +    NodeNotifier& notifier(Node) const { return _graph->notifier(Node()); }
  1.2460 +
  1.2461 +    typedef typename ItemSetTraits<GR, Arc>::ItemNotifier ArcNotifier;
  1.2462 +    ArcNotifier& notifier(Arc) const { return _graph->notifier(Arc()); }
  1.2463 +
  1.2464 +    template <typename V>
  1.2465 +    class NodeMap : public GR::template NodeMap<V> {
  1.2466 +      typedef typename GR::template NodeMap<V> Parent;
  1.2467 +
  1.2468 +    public:
  1.2469 +
  1.2470 +      explicit NodeMap(const OrienterBase<GR, DM>& adapter)
  1.2471 +        : Parent(*adapter._graph) {}
  1.2472 +
  1.2473 +      NodeMap(const OrienterBase<GR, DM>& adapter, const V& value)
  1.2474 +        : Parent(*adapter._graph, value) {}
  1.2475 +
  1.2476 +    private:
  1.2477 +      NodeMap& operator=(const NodeMap& cmap) {
  1.2478 +        return operator=<NodeMap>(cmap);
  1.2479 +      }
  1.2480 +
  1.2481 +      template <typename CMap>
  1.2482 +      NodeMap& operator=(const CMap& cmap) {
  1.2483 +        Parent::operator=(cmap);
  1.2484 +        return *this;
  1.2485 +      }
  1.2486 +
  1.2487 +    };
  1.2488 +
  1.2489 +    template <typename V>
  1.2490 +    class ArcMap : public GR::template EdgeMap<V> {
  1.2491 +      typedef typename Graph::template EdgeMap<V> Parent;
  1.2492 +
  1.2493 +    public:
  1.2494 +
  1.2495 +      explicit ArcMap(const OrienterBase<GR, DM>& adapter)
  1.2496 +        : Parent(*adapter._graph) { }
  1.2497 +
  1.2498 +      ArcMap(const OrienterBase<GR, DM>& adapter, const V& value)
  1.2499 +        : Parent(*adapter._graph, value) { }
  1.2500 +
  1.2501 +    private:
  1.2502 +      ArcMap& operator=(const ArcMap& cmap) {
  1.2503 +        return operator=<ArcMap>(cmap);
  1.2504 +      }
  1.2505 +
  1.2506 +      template <typename CMap>
  1.2507 +      ArcMap& operator=(const CMap& cmap) {
  1.2508 +        Parent::operator=(cmap);
  1.2509 +        return *this;
  1.2510 +      }
  1.2511 +    };
  1.2512 +
  1.2513 +
  1.2514 +
  1.2515 +  protected:
  1.2516 +    Graph* _graph;
  1.2517 +    DM* _direction;
  1.2518 +
  1.2519 +    void initialize(GR& graph, DM& direction) {
  1.2520 +      _graph = &graph;
  1.2521 +      _direction = &direction;
  1.2522 +    }
  1.2523 +
  1.2524 +  };
  1.2525 +
  1.2526 +  /// \ingroup graph_adaptors
  1.2527 +  ///
  1.2528 +  /// \brief Adaptor class for orienting the edges of a graph to get a digraph
  1.2529 +  ///
  1.2530 +  /// Orienter adaptor can be used for orienting the edges of a graph to
  1.2531 +  /// get a digraph. A \c bool edge map of the underlying graph must be
  1.2532 +  /// specified, which define the direction of the arcs in the adaptor.
  1.2533 +  /// The arcs can be easily reversed by the \c reverseArc() member function
  1.2534 +  /// of the adaptor.
  1.2535 +  /// This class conforms to the \ref concepts::Digraph "Digraph" concept.
  1.2536 +  ///
  1.2537 +  /// The adapted graph can also be modified through this adaptor
  1.2538 +  /// by adding or removing nodes or arcs, unless the \c GR template
  1.2539 +  /// parameter is set to be \c const.
  1.2540 +  ///
  1.2541 +  /// \tparam GR The type of the adapted graph.
  1.2542 +  /// It must conform to the \ref concepts::Graph "Graph" concept.
  1.2543 +  /// It can also be specified to be \c const.
  1.2544 +  /// \tparam DM The type of the direction map.
  1.2545 +  /// It must be a \c bool (or convertible) edge map of the
  1.2546 +  /// adapted graph. The default type is
  1.2547 +  /// \ref concepts::Graph::EdgeMap "GR::EdgeMap<bool>".
  1.2548 +  ///
  1.2549 +  /// \note The \c Node type of this adaptor and the adapted graph are
  1.2550 +  /// convertible to each other, moreover the \c Arc type of the adaptor
  1.2551 +  /// and the \c Edge type of the adapted graph are also convertible to
  1.2552 +  /// each other.
  1.2553 +#ifdef DOXYGEN
  1.2554 +  template<typename GR,
  1.2555 +           typename DM>
  1.2556 +  class Orienter {
  1.2557 +#else
  1.2558 +  template<typename GR,
  1.2559 +           typename DM = typename GR::template EdgeMap<bool> >
  1.2560 +  class Orienter :
  1.2561 +    public DigraphAdaptorExtender<OrienterBase<GR, DM> > {
  1.2562 +#endif
  1.2563 +    typedef DigraphAdaptorExtender<OrienterBase<GR, DM> > Parent;
  1.2564 +  public:
  1.2565 +
  1.2566 +    /// The type of the adapted graph.
  1.2567 +    typedef GR Graph;
  1.2568 +    /// The type of the direction edge map.
  1.2569 +    typedef DM DirectionMap;
  1.2570 +
  1.2571 +    typedef typename Parent::Arc Arc;
  1.2572 +
  1.2573 +  protected:
  1.2574 +    Orienter() { }
  1.2575 +
  1.2576 +  public:
  1.2577 +
  1.2578 +    /// \brief Constructor
  1.2579 +    ///
  1.2580 +    /// Constructor of the adaptor.
  1.2581 +    Orienter(GR& graph, DM& direction) {
  1.2582 +      Parent::initialize(graph, direction);
  1.2583 +    }
  1.2584 +
  1.2585 +    /// \brief Reverses the given arc
  1.2586 +    ///
  1.2587 +    /// This function reverses the given arc.
  1.2588 +    /// It is done by simply negate the assigned value of \c a
  1.2589 +    /// in the direction map.
  1.2590 +    void reverseArc(const Arc& a) {
  1.2591 +      Parent::reverseArc(a);
  1.2592 +    }
  1.2593 +  };
  1.2594 +
  1.2595 +  /// \brief Returns a read-only Orienter adaptor
  1.2596 +  ///
  1.2597 +  /// This function just returns a read-only \ref Orienter adaptor.
  1.2598 +  /// \ingroup graph_adaptors
  1.2599 +  /// \relates Orienter
  1.2600 +  template<typename GR, typename DM>
  1.2601 +  Orienter<const GR, DM>
  1.2602 +  orienter(const GR& graph, DM& direction) {
  1.2603 +    return Orienter<const GR, DM>(graph, direction);
  1.2604 +  }
  1.2605 +
  1.2606 +  template<typename GR, typename DM>
  1.2607 +  Orienter<const GR, const DM>
  1.2608 +  orienter(const GR& graph, const DM& direction) {
  1.2609 +    return Orienter<const GR, const DM>(graph, direction);
  1.2610 +  }
  1.2611 +
  1.2612 +  namespace _adaptor_bits {
  1.2613 +
  1.2614 +    template <typename DGR, typename CM, typename FM, typename TL>
  1.2615 +    class ResForwardFilter {
  1.2616 +    public:
  1.2617 +
  1.2618 +      typedef typename DGR::Arc Key;
  1.2619 +      typedef bool Value;
  1.2620 +
  1.2621 +    private:
  1.2622 +
  1.2623 +      const CM* _capacity;
  1.2624 +      const FM* _flow;
  1.2625 +      TL _tolerance;
  1.2626 +
  1.2627 +    public:
  1.2628 +
  1.2629 +      ResForwardFilter(const CM& capacity, const FM& flow,
  1.2630 +                       const TL& tolerance = TL())
  1.2631 +        : _capacity(&capacity), _flow(&flow), _tolerance(tolerance) { }
  1.2632 +
  1.2633 +      bool operator[](const typename DGR::Arc& a) const {
  1.2634 +        return _tolerance.positive((*_capacity)[a] - (*_flow)[a]);
  1.2635 +      }
  1.2636 +    };
  1.2637 +
  1.2638 +    template<typename DGR,typename CM, typename FM, typename TL>
  1.2639 +    class ResBackwardFilter {
  1.2640 +    public:
  1.2641 +
  1.2642 +      typedef typename DGR::Arc Key;
  1.2643 +      typedef bool Value;
  1.2644 +
  1.2645 +    private:
  1.2646 +
  1.2647 +      const CM* _capacity;
  1.2648 +      const FM* _flow;
  1.2649 +      TL _tolerance;
  1.2650 +
  1.2651 +    public:
  1.2652 +
  1.2653 +      ResBackwardFilter(const CM& capacity, const FM& flow,
  1.2654 +                        const TL& tolerance = TL())
  1.2655 +        : _capacity(&capacity), _flow(&flow), _tolerance(tolerance) { }
  1.2656 +
  1.2657 +      bool operator[](const typename DGR::Arc& a) const {
  1.2658 +        return _tolerance.positive((*_flow)[a]);
  1.2659 +      }
  1.2660 +    };
  1.2661 +
  1.2662 +  }
  1.2663 +
  1.2664 +  /// \ingroup graph_adaptors
  1.2665 +  ///
  1.2666 +  /// \brief Adaptor class for composing the residual digraph for directed
  1.2667 +  /// flow and circulation problems.
  1.2668 +  ///
  1.2669 +  /// ResidualDigraph can be used for composing the \e residual digraph
  1.2670 +  /// for directed flow and circulation problems. Let \f$ G=(V, A) \f$
  1.2671 +  /// be a directed graph and let \f$ F \f$ be a number type.
  1.2672 +  /// Let \f$ flow, cap: A\to F \f$ be functions on the arcs.
  1.2673 +  /// This adaptor implements a digraph structure with node set \f$ V \f$
  1.2674 +  /// and arc set \f$ A_{forward}\cup A_{backward} \f$,
  1.2675 +  /// where \f$ A_{forward}=\{uv : uv\in A, flow(uv)<cap(uv)\} \f$ and
  1.2676 +  /// \f$ A_{backward}=\{vu : uv\in A, flow(uv)>0\} \f$, i.e. the so
  1.2677 +  /// called residual digraph.
  1.2678 +  /// When the union \f$ A_{forward}\cup A_{backward} \f$ is taken,
  1.2679 +  /// multiplicities are counted, i.e. the adaptor has exactly
  1.2680 +  /// \f$ |A_{forward}| + |A_{backward}|\f$ arcs (it may have parallel
  1.2681 +  /// arcs).
  1.2682 +  /// This class conforms to the \ref concepts::Digraph "Digraph" concept.
  1.2683 +  ///
  1.2684 +  /// \tparam DGR The type of the adapted digraph.
  1.2685 +  /// It must conform to the \ref concepts::Digraph "Digraph" concept.
  1.2686 +  /// It is implicitly \c const.
  1.2687 +  /// \tparam CM The type of the capacity map.
  1.2688 +  /// It must be an arc map of some numerical type, which defines
  1.2689 +  /// the capacities in the flow problem. It is implicitly \c const.
  1.2690 +  /// The default type is
  1.2691 +  /// \ref concepts::Digraph::ArcMap "GR::ArcMap<int>".
  1.2692 +  /// \tparam FM The type of the flow map.
  1.2693 +  /// It must be an arc map of some numerical type, which defines
  1.2694 +  /// the flow values in the flow problem. The default type is \c CM.
  1.2695 +  /// \tparam TL The tolerance type for handling inexact computation.
  1.2696 +  /// The default tolerance type depends on the value type of the
  1.2697 +  /// capacity map.
  1.2698 +  ///
  1.2699 +  /// \note This adaptor is implemented using Undirector and FilterArcs
  1.2700 +  /// adaptors.
  1.2701 +  ///
  1.2702 +  /// \note The \c Node type of this adaptor and the adapted digraph are
  1.2703 +  /// convertible to each other, moreover the \c Arc type of the adaptor
  1.2704 +  /// is convertible to the \c Arc type of the adapted digraph.
  1.2705 +#ifdef DOXYGEN
  1.2706 +  template<typename DGR, typename CM, typename FM, typename TL>
  1.2707 +  class ResidualDigraph
  1.2708 +#else
  1.2709 +  template<typename DGR,
  1.2710 +           typename CM = typename DGR::template ArcMap<int>,
  1.2711 +           typename FM = CM,
  1.2712 +           typename TL = Tolerance<typename CM::Value> >
  1.2713 +  class ResidualDigraph 
  1.2714 +    : public SubDigraph<
  1.2715 +        Undirector<const DGR>,
  1.2716 +        ConstMap<typename DGR::Node, Const<bool, true> >,
  1.2717 +        typename Undirector<const DGR>::template CombinedArcMap<
  1.2718 +          _adaptor_bits::ResForwardFilter<const DGR, CM, FM, TL>,
  1.2719 +          _adaptor_bits::ResBackwardFilter<const DGR, CM, FM, TL> > >
  1.2720 +#endif
  1.2721 +  {
  1.2722 +  public:
  1.2723 +
  1.2724 +    /// The type of the underlying digraph.
  1.2725 +    typedef DGR Digraph;
  1.2726 +    /// The type of the capacity map.
  1.2727 +    typedef CM CapacityMap;
  1.2728 +    /// The type of the flow map.
  1.2729 +    typedef FM FlowMap;
  1.2730 +    /// The tolerance type.
  1.2731 +    typedef TL Tolerance;
  1.2732 +
  1.2733 +    typedef typename CapacityMap::Value Value;
  1.2734 +    typedef ResidualDigraph Adaptor;
  1.2735 +
  1.2736 +  protected:
  1.2737 +
  1.2738 +    typedef Undirector<const Digraph> Undirected;
  1.2739 +
  1.2740 +    typedef ConstMap<typename DGR::Node, Const<bool, true> > NodeFilter;
  1.2741 +
  1.2742 +    typedef _adaptor_bits::ResForwardFilter<const DGR, CM,
  1.2743 +                                            FM, TL> ForwardFilter;
  1.2744 +
  1.2745 +    typedef _adaptor_bits::ResBackwardFilter<const DGR, CM,
  1.2746 +                                             FM, TL> BackwardFilter;
  1.2747 +
  1.2748 +    typedef typename Undirected::
  1.2749 +      template CombinedArcMap<ForwardFilter, BackwardFilter> ArcFilter;
  1.2750 +
  1.2751 +    typedef SubDigraph<Undirected, NodeFilter, ArcFilter> Parent;
  1.2752 +
  1.2753 +    const CapacityMap* _capacity;
  1.2754 +    FlowMap* _flow;
  1.2755 +
  1.2756 +    Undirected _graph;
  1.2757 +    NodeFilter _node_filter;
  1.2758 +    ForwardFilter _forward_filter;
  1.2759 +    BackwardFilter _backward_filter;
  1.2760 +    ArcFilter _arc_filter;
  1.2761 +
  1.2762 +  public:
  1.2763 +
  1.2764 +    /// \brief Constructor
  1.2765 +    ///
  1.2766 +    /// Constructor of the residual digraph adaptor. The parameters are the
  1.2767 +    /// digraph, the capacity map, the flow map, and a tolerance object.
  1.2768 +    ResidualDigraph(const DGR& digraph, const CM& capacity,
  1.2769 +                    FM& flow, const TL& tolerance = Tolerance())
  1.2770 +      : Parent(), _capacity(&capacity), _flow(&flow), 
  1.2771 +        _graph(digraph), _node_filter(),
  1.2772 +        _forward_filter(capacity, flow, tolerance),
  1.2773 +        _backward_filter(capacity, flow, tolerance),
  1.2774 +        _arc_filter(_forward_filter, _backward_filter)
  1.2775 +    {
  1.2776 +      Parent::initialize(_graph, _node_filter, _arc_filter);
  1.2777 +    }
  1.2778 +
  1.2779 +    typedef typename Parent::Arc Arc;
  1.2780 +
  1.2781 +    /// \brief Returns the residual capacity of the given arc.
  1.2782 +    ///
  1.2783 +    /// Returns the residual capacity of the given arc.
  1.2784 +    Value residualCapacity(const Arc& a) const {
  1.2785 +      if (Undirected::direction(a)) {
  1.2786 +        return (*_capacity)[a] - (*_flow)[a];
  1.2787 +      } else {
  1.2788 +        return (*_flow)[a];
  1.2789 +      }
  1.2790 +    }
  1.2791 +
  1.2792 +    /// \brief Augments on the given arc in the residual digraph.
  1.2793 +    ///
  1.2794 +    /// Augments on the given arc in the residual digraph. It increases
  1.2795 +    /// or decreases the flow value on the original arc according to the
  1.2796 +    /// direction of the residual arc.
  1.2797 +    void augment(const Arc& a, const Value& v) const {
  1.2798 +      if (Undirected::direction(a)) {
  1.2799 +        _flow->set(a, (*_flow)[a] + v);
  1.2800 +      } else {
  1.2801 +        _flow->set(a, (*_flow)[a] - v);
  1.2802 +      }
  1.2803 +    }
  1.2804 +
  1.2805 +    /// \brief Returns \c true if the given residual arc is a forward arc.
  1.2806 +    ///
  1.2807 +    /// Returns \c true if the given residual arc has the same orientation
  1.2808 +    /// as the original arc, i.e. it is a so called forward arc.
  1.2809 +    static bool forward(const Arc& a) {
  1.2810 +      return Undirected::direction(a);
  1.2811 +    }
  1.2812 +
  1.2813 +    /// \brief Returns \c true if the given residual arc is a backward arc.
  1.2814 +    ///
  1.2815 +    /// Returns \c true if the given residual arc has the opposite orientation
  1.2816 +    /// than the original arc, i.e. it is a so called backward arc.
  1.2817 +    static bool backward(const Arc& a) {
  1.2818 +      return !Undirected::direction(a);
  1.2819 +    }
  1.2820 +
  1.2821 +    /// \brief Returns the forward oriented residual arc.
  1.2822 +    ///
  1.2823 +    /// Returns the forward oriented residual arc related to the given
  1.2824 +    /// arc of the underlying digraph.
  1.2825 +    static Arc forward(const typename Digraph::Arc& a) {
  1.2826 +      return Undirected::direct(a, true);
  1.2827 +    }
  1.2828 +
  1.2829 +    /// \brief Returns the backward oriented residual arc.
  1.2830 +    ///
  1.2831 +    /// Returns the backward oriented residual arc related to the given
  1.2832 +    /// arc of the underlying digraph.
  1.2833 +    static Arc backward(const typename Digraph::Arc& a) {
  1.2834 +      return Undirected::direct(a, false);
  1.2835 +    }
  1.2836 +
  1.2837 +    /// \brief Residual capacity map.
  1.2838 +    ///
  1.2839 +    /// This map adaptor class can be used for obtaining the residual
  1.2840 +    /// capacities as an arc map of the residual digraph.
  1.2841 +    /// Its value type is inherited from the capacity map.
  1.2842 +    class ResidualCapacity {
  1.2843 +    protected:
  1.2844 +      const Adaptor* _adaptor;
  1.2845 +    public:
  1.2846 +      /// The key type of the map
  1.2847 +      typedef Arc Key;
  1.2848 +      /// The value type of the map
  1.2849 +      typedef typename CapacityMap::Value Value;
  1.2850 +
  1.2851 +      /// Constructor
  1.2852 +      ResidualCapacity(const ResidualDigraph<DGR, CM, FM, TL>& adaptor) 
  1.2853 +        : _adaptor(&adaptor) {}
  1.2854 +
  1.2855 +      /// Returns the value associated with the given residual arc
  1.2856 +      Value operator[](const Arc& a) const {
  1.2857 +        return _adaptor->residualCapacity(a);
  1.2858 +      }
  1.2859 +
  1.2860 +    };
  1.2861 +
  1.2862 +    /// \brief Returns a residual capacity map
  1.2863 +    ///
  1.2864 +    /// This function just returns a residual capacity map.
  1.2865 +    ResidualCapacity residualCapacity() const {
  1.2866 +      return ResidualCapacity(*this);
  1.2867 +    }
  1.2868 +
  1.2869 +  };
  1.2870 +
  1.2871 +  /// \brief Returns a (read-only) Residual adaptor
  1.2872 +  ///
  1.2873 +  /// This function just returns a (read-only) \ref ResidualDigraph adaptor.
  1.2874 +  /// \ingroup graph_adaptors
  1.2875 +  /// \relates ResidualDigraph
  1.2876 +    template<typename DGR, typename CM, typename FM>
  1.2877 +  ResidualDigraph<DGR, CM, FM>
  1.2878 +  residualDigraph(const DGR& digraph, const CM& capacity_map, FM& flow_map) {
  1.2879 +    return ResidualDigraph<DGR, CM, FM> (digraph, capacity_map, flow_map);
  1.2880 +  }
  1.2881 +
  1.2882 +
  1.2883 +  template <typename DGR>
  1.2884 +  class SplitNodesBase {
  1.2885 +    typedef DigraphAdaptorBase<const DGR> Parent;
  1.2886 +
  1.2887 +  public:
  1.2888 +
  1.2889 +    typedef DGR Digraph;
  1.2890 +    typedef SplitNodesBase Adaptor;
  1.2891 +
  1.2892 +    typedef typename DGR::Node DigraphNode;
  1.2893 +    typedef typename DGR::Arc DigraphArc;
  1.2894 +
  1.2895 +    class Node;
  1.2896 +    class Arc;
  1.2897 +
  1.2898 +  private:
  1.2899 +
  1.2900 +    template <typename T> class NodeMapBase;
  1.2901 +    template <typename T> class ArcMapBase;
  1.2902 +
  1.2903 +  public:
  1.2904 +
  1.2905 +    class Node : public DigraphNode {
  1.2906 +      friend class SplitNodesBase;
  1.2907 +      template <typename T> friend class NodeMapBase;
  1.2908 +    private:
  1.2909 +
  1.2910 +      bool _in;
  1.2911 +      Node(DigraphNode node, bool in)
  1.2912 +        : DigraphNode(node), _in(in) {}
  1.2913 +
  1.2914 +    public:
  1.2915 +
  1.2916 +      Node() {}
  1.2917 +      Node(Invalid) : DigraphNode(INVALID), _in(true) {}
  1.2918 +
  1.2919 +      bool operator==(const Node& node) const {
  1.2920 +        return DigraphNode::operator==(node) && _in == node._in;
  1.2921 +      }
  1.2922 +
  1.2923 +      bool operator!=(const Node& node) const {
  1.2924 +        return !(*this == node);
  1.2925 +      }
  1.2926 +
  1.2927 +      bool operator<(const Node& node) const {
  1.2928 +        return DigraphNode::operator<(node) ||
  1.2929 +          (DigraphNode::operator==(node) && _in < node._in);
  1.2930 +      }
  1.2931 +    };
  1.2932 +
  1.2933 +    class Arc {
  1.2934 +      friend class SplitNodesBase;
  1.2935 +      template <typename T> friend class ArcMapBase;
  1.2936 +    private:
  1.2937 +      typedef BiVariant<DigraphArc, DigraphNode> ArcImpl;
  1.2938 +
  1.2939 +      explicit Arc(const DigraphArc& arc) : _item(arc) {}
  1.2940 +      explicit Arc(const DigraphNode& node) : _item(node) {}
  1.2941 +
  1.2942 +      ArcImpl _item;
  1.2943 +
  1.2944 +    public:
  1.2945 +      Arc() {}
  1.2946 +      Arc(Invalid) : _item(DigraphArc(INVALID)) {}
  1.2947 +
  1.2948 +      bool operator==(const Arc& arc) const {
  1.2949 +        if (_item.firstState()) {
  1.2950 +          if (arc._item.firstState()) {
  1.2951 +            return _item.first() == arc._item.first();
  1.2952 +          }
  1.2953 +        } else {
  1.2954 +          if (arc._item.secondState()) {
  1.2955 +            return _item.second() == arc._item.second();
  1.2956 +          }
  1.2957 +        }
  1.2958 +        return false;
  1.2959 +      }
  1.2960 +
  1.2961 +      bool operator!=(const Arc& arc) const {
  1.2962 +        return !(*this == arc);
  1.2963 +      }
  1.2964 +
  1.2965 +      bool operator<(const Arc& arc) const {
  1.2966 +        if (_item.firstState()) {
  1.2967 +          if (arc._item.firstState()) {
  1.2968 +            return _item.first() < arc._item.first();
  1.2969 +          }
  1.2970 +          return false;
  1.2971 +        } else {
  1.2972 +          if (arc._item.secondState()) {
  1.2973 +            return _item.second() < arc._item.second();
  1.2974 +          }
  1.2975 +          return true;
  1.2976 +        }
  1.2977 +      }
  1.2978 +
  1.2979 +      operator DigraphArc() const { return _item.first(); }
  1.2980 +      operator DigraphNode() const { return _item.second(); }
  1.2981 +
  1.2982 +    };
  1.2983 +
  1.2984 +    void first(Node& n) const {
  1.2985 +      _digraph->first(n);
  1.2986 +      n._in = true;
  1.2987 +    }
  1.2988 +
  1.2989 +    void next(Node& n) const {
  1.2990 +      if (n._in) {
  1.2991 +        n._in = false;
  1.2992 +      } else {
  1.2993 +        n._in = true;
  1.2994 +        _digraph->next(n);
  1.2995 +      }
  1.2996 +    }
  1.2997 +
  1.2998 +    void first(Arc& e) const {
  1.2999 +      e._item.setSecond();
  1.3000 +      _digraph->first(e._item.second());
  1.3001 +      if (e._item.second() == INVALID) {
  1.3002 +        e._item.setFirst();
  1.3003 +        _digraph->first(e._item.first());
  1.3004 +      }
  1.3005 +    }
  1.3006 +
  1.3007 +    void next(Arc& e) const {
  1.3008 +      if (e._item.secondState()) {
  1.3009 +        _digraph->next(e._item.second());
  1.3010 +        if (e._item.second() == INVALID) {
  1.3011 +          e._item.setFirst();
  1.3012 +          _digraph->first(e._item.first());
  1.3013 +        }
  1.3014 +      } else {
  1.3015 +        _digraph->next(e._item.first());
  1.3016 +      }
  1.3017 +    }
  1.3018 +
  1.3019 +    void firstOut(Arc& e, const Node& n) const {
  1.3020 +      if (n._in) {
  1.3021 +        e._item.setSecond(n);
  1.3022 +      } else {
  1.3023 +        e._item.setFirst();
  1.3024 +        _digraph->firstOut(e._item.first(), n);
  1.3025 +      }
  1.3026 +    }
  1.3027 +
  1.3028 +    void nextOut(Arc& e) const {
  1.3029 +      if (!e._item.firstState()) {
  1.3030 +        e._item.setFirst(INVALID);
  1.3031 +      } else {
  1.3032 +        _digraph->nextOut(e._item.first());
  1.3033 +      }
  1.3034 +    }
  1.3035 +
  1.3036 +    void firstIn(Arc& e, const Node& n) const {
  1.3037 +      if (!n._in) {
  1.3038 +        e._item.setSecond(n);
  1.3039 +      } else {
  1.3040 +        e._item.setFirst();
  1.3041 +        _digraph->firstIn(e._item.first(), n);
  1.3042 +      }
  1.3043 +    }
  1.3044 +
  1.3045 +    void nextIn(Arc& e) const {
  1.3046 +      if (!e._item.firstState()) {
  1.3047 +        e._item.setFirst(INVALID);
  1.3048 +      } else {
  1.3049 +        _digraph->nextIn(e._item.first());
  1.3050 +      }
  1.3051 +    }
  1.3052 +
  1.3053 +    Node source(const Arc& e) const {
  1.3054 +      if (e._item.firstState()) {
  1.3055 +        return Node(_digraph->source(e._item.first()), false);
  1.3056 +      } else {
  1.3057 +        return Node(e._item.second(), true);
  1.3058 +      }
  1.3059 +    }
  1.3060 +
  1.3061 +    Node target(const Arc& e) const {
  1.3062 +      if (e._item.firstState()) {
  1.3063 +        return Node(_digraph->target(e._item.first()), true);
  1.3064 +      } else {
  1.3065 +        return Node(e._item.second(), false);
  1.3066 +      }
  1.3067 +    }
  1.3068 +
  1.3069 +    int id(const Node& n) const {
  1.3070 +      return (_digraph->id(n) << 1) | (n._in ? 0 : 1);
  1.3071 +    }
  1.3072 +    Node nodeFromId(int ix) const {
  1.3073 +      return Node(_digraph->nodeFromId(ix >> 1), (ix & 1) == 0);
  1.3074 +    }
  1.3075 +    int maxNodeId() const {
  1.3076 +      return 2 * _digraph->maxNodeId() + 1;
  1.3077 +    }
  1.3078 +
  1.3079 +    int id(const Arc& e) const {
  1.3080 +      if (e._item.firstState()) {
  1.3081 +        return _digraph->id(e._item.first()) << 1;
  1.3082 +      } else {
  1.3083 +        return (_digraph->id(e._item.second()) << 1) | 1;
  1.3084 +      }
  1.3085 +    }
  1.3086 +    Arc arcFromId(int ix) const {
  1.3087 +      if ((ix & 1) == 0) {
  1.3088 +        return Arc(_digraph->arcFromId(ix >> 1));
  1.3089 +      } else {
  1.3090 +        return Arc(_digraph->nodeFromId(ix >> 1));
  1.3091 +      }
  1.3092 +    }
  1.3093 +    int maxArcId() const {
  1.3094 +      return std::max(_digraph->maxNodeId() << 1,
  1.3095 +                      (_digraph->maxArcId() << 1) | 1);
  1.3096 +    }
  1.3097 +
  1.3098 +    static bool inNode(const Node& n) {
  1.3099 +      return n._in;
  1.3100 +    }
  1.3101 +
  1.3102 +    static bool outNode(const Node& n) {
  1.3103 +      return !n._in;
  1.3104 +    }
  1.3105 +
  1.3106 +    static bool origArc(const Arc& e) {
  1.3107 +      return e._item.firstState();
  1.3108 +    }
  1.3109 +
  1.3110 +    static bool bindArc(const Arc& e) {
  1.3111 +      return e._item.secondState();
  1.3112 +    }
  1.3113 +
  1.3114 +    static Node inNode(const DigraphNode& n) {
  1.3115 +      return Node(n, true);
  1.3116 +    }
  1.3117 +
  1.3118 +    static Node outNode(const DigraphNode& n) {
  1.3119 +      return Node(n, false);
  1.3120 +    }
  1.3121 +
  1.3122 +    static Arc arc(const DigraphNode& n) {
  1.3123 +      return Arc(n);
  1.3124 +    }
  1.3125 +
  1.3126 +    static Arc arc(const DigraphArc& e) {
  1.3127 +      return Arc(e);
  1.3128 +    }
  1.3129 +
  1.3130 +    typedef True NodeNumTag;
  1.3131 +    int nodeNum() const {
  1.3132 +      return  2 * countNodes(*_digraph);
  1.3133 +    }
  1.3134 +
  1.3135 +    typedef True ArcNumTag;
  1.3136 +    int arcNum() const {
  1.3137 +      return countArcs(*_digraph) + countNodes(*_digraph);
  1.3138 +    }
  1.3139 +
  1.3140 +    typedef True FindArcTag;
  1.3141 +    Arc findArc(const Node& u, const Node& v,
  1.3142 +                const Arc& prev = INVALID) const {
  1.3143 +      if (inNode(u) && outNode(v)) {
  1.3144 +        if (static_cast<const DigraphNode&>(u) ==
  1.3145 +            static_cast<const DigraphNode&>(v) && prev == INVALID) {
  1.3146 +          return Arc(u);
  1.3147 +        }
  1.3148 +      }
  1.3149 +      else if (outNode(u) && inNode(v)) {
  1.3150 +        return Arc(::lemon::findArc(*_digraph, u, v, prev));
  1.3151 +      }
  1.3152 +      return INVALID;
  1.3153 +    }
  1.3154 +
  1.3155 +  private:
  1.3156 +
  1.3157 +    template <typename V>
  1.3158 +    class NodeMapBase
  1.3159 +      : public MapTraits<typename Parent::template NodeMap<V> > {
  1.3160 +      typedef typename Parent::template NodeMap<V> NodeImpl;
  1.3161 +    public:
  1.3162 +      typedef Node Key;
  1.3163 +      typedef V Value;
  1.3164 +      typedef typename MapTraits<NodeImpl>::ReferenceMapTag ReferenceMapTag;
  1.3165 +      typedef typename MapTraits<NodeImpl>::ReturnValue ReturnValue;
  1.3166 +      typedef typename MapTraits<NodeImpl>::ConstReturnValue ConstReturnValue;
  1.3167 +      typedef typename MapTraits<NodeImpl>::ReturnValue Reference;
  1.3168 +      typedef typename MapTraits<NodeImpl>::ConstReturnValue ConstReference;
  1.3169 +
  1.3170 +      NodeMapBase(const SplitNodesBase<DGR>& adaptor)
  1.3171 +        : _in_map(*adaptor._digraph), _out_map(*adaptor._digraph) {}
  1.3172 +      NodeMapBase(const SplitNodesBase<DGR>& adaptor, const V& value)
  1.3173 +        : _in_map(*adaptor._digraph, value),
  1.3174 +          _out_map(*adaptor._digraph, value) {}
  1.3175 +
  1.3176 +      void set(const Node& key, const V& val) {
  1.3177 +        if (SplitNodesBase<DGR>::inNode(key)) { _in_map.set(key, val); }
  1.3178 +        else {_out_map.set(key, val); }
  1.3179 +      }
  1.3180 +
  1.3181 +      ReturnValue operator[](const Node& key) {
  1.3182 +        if (SplitNodesBase<DGR>::inNode(key)) { return _in_map[key]; }
  1.3183 +        else { return _out_map[key]; }
  1.3184 +      }
  1.3185 +
  1.3186 +      ConstReturnValue operator[](const Node& key) const {
  1.3187 +        if (Adaptor::inNode(key)) { return _in_map[key]; }
  1.3188 +        else { return _out_map[key]; }
  1.3189 +      }
  1.3190 +
  1.3191 +    private:
  1.3192 +      NodeImpl _in_map, _out_map;
  1.3193 +    };
  1.3194 +
  1.3195 +    template <typename V>
  1.3196 +    class ArcMapBase
  1.3197 +      : public MapTraits<typename Parent::template ArcMap<V> > {
  1.3198 +      typedef typename Parent::template ArcMap<V> ArcImpl;
  1.3199 +      typedef typename Parent::template NodeMap<V> NodeImpl;
  1.3200 +    public:
  1.3201 +      typedef Arc Key;
  1.3202 +      typedef V Value;
  1.3203 +      typedef typename MapTraits<ArcImpl>::ReferenceMapTag ReferenceMapTag;
  1.3204 +      typedef typename MapTraits<ArcImpl>::ReturnValue ReturnValue;
  1.3205 +      typedef typename MapTraits<ArcImpl>::ConstReturnValue ConstReturnValue;
  1.3206 +      typedef typename MapTraits<ArcImpl>::ReturnValue Reference;
  1.3207 +      typedef typename MapTraits<ArcImpl>::ConstReturnValue ConstReference;
  1.3208 +
  1.3209 +      ArcMapBase(const SplitNodesBase<DGR>& adaptor)
  1.3210 +        : _arc_map(*adaptor._digraph), _node_map(*adaptor._digraph) {}
  1.3211 +      ArcMapBase(const SplitNodesBase<DGR>& adaptor, const V& value)
  1.3212 +        : _arc_map(*adaptor._digraph, value),
  1.3213 +          _node_map(*adaptor._digraph, value) {}
  1.3214 +
  1.3215 +      void set(const Arc& key, const V& val) {
  1.3216 +        if (SplitNodesBase<DGR>::origArc(key)) {
  1.3217 +          _arc_map.set(static_cast<const DigraphArc&>(key), val);
  1.3218 +        } else {
  1.3219 +          _node_map.set(static_cast<const DigraphNode&>(key), val);
  1.3220 +        }
  1.3221 +      }
  1.3222 +
  1.3223 +      ReturnValue operator[](const Arc& key) {
  1.3224 +        if (SplitNodesBase<DGR>::origArc(key)) {
  1.3225 +          return _arc_map[static_cast<const DigraphArc&>(key)];
  1.3226 +        } else {
  1.3227 +          return _node_map[static_cast<const DigraphNode&>(key)];
  1.3228 +        }
  1.3229 +      }
  1.3230 +
  1.3231 +      ConstReturnValue operator[](const Arc& key) const {
  1.3232 +        if (SplitNodesBase<DGR>::origArc(key)) {
  1.3233 +          return _arc_map[static_cast<const DigraphArc&>(key)];
  1.3234 +        } else {
  1.3235 +          return _node_map[static_cast<const DigraphNode&>(key)];
  1.3236 +        }
  1.3237 +      }
  1.3238 +
  1.3239 +    private:
  1.3240 +      ArcImpl _arc_map;
  1.3241 +      NodeImpl _node_map;
  1.3242 +    };
  1.3243 +
  1.3244 +  public:
  1.3245 +
  1.3246 +    template <typename V>
  1.3247 +    class NodeMap
  1.3248 +      : public SubMapExtender<SplitNodesBase<DGR>, NodeMapBase<V> > {
  1.3249 +      typedef SubMapExtender<SplitNodesBase<DGR>, NodeMapBase<V> > Parent;
  1.3250 +
  1.3251 +    public:
  1.3252 +      typedef V Value;
  1.3253 +
  1.3254 +      NodeMap(const SplitNodesBase<DGR>& adaptor)
  1.3255 +        : Parent(adaptor) {}
  1.3256 +
  1.3257 +      NodeMap(const SplitNodesBase<DGR>& adaptor, const V& value)
  1.3258 +        : Parent(adaptor, value) {}
  1.3259 +
  1.3260 +    private:
  1.3261 +      NodeMap& operator=(const NodeMap& cmap) {
  1.3262 +        return operator=<NodeMap>(cmap);
  1.3263 +      }
  1.3264 +
  1.3265 +      template <typename CMap>
  1.3266 +      NodeMap& operator=(const CMap& cmap) {
  1.3267 +        Parent::operator=(cmap);
  1.3268 +        return *this;
  1.3269 +      }
  1.3270 +    };
  1.3271 +
  1.3272 +    template <typename V>
  1.3273 +    class ArcMap
  1.3274 +      : public SubMapExtender<SplitNodesBase<DGR>, ArcMapBase<V> > {
  1.3275 +      typedef SubMapExtender<SplitNodesBase<DGR>, ArcMapBase<V> > Parent;
  1.3276 +
  1.3277 +    public:
  1.3278 +      typedef V Value;
  1.3279 +
  1.3280 +      ArcMap(const SplitNodesBase<DGR>& adaptor)
  1.3281 +        : Parent(adaptor) {}
  1.3282 +
  1.3283 +      ArcMap(const SplitNodesBase<DGR>& adaptor, const V& value)
  1.3284 +        : Parent(adaptor, value) {}
  1.3285 +
  1.3286 +    private:
  1.3287 +      ArcMap& operator=(const ArcMap& cmap) {
  1.3288 +        return operator=<ArcMap>(cmap);
  1.3289 +      }
  1.3290 +
  1.3291 +      template <typename CMap>
  1.3292 +      ArcMap& operator=(const CMap& cmap) {
  1.3293 +        Parent::operator=(cmap);
  1.3294 +        return *this;
  1.3295 +      }
  1.3296 +    };
  1.3297 +
  1.3298 +  protected:
  1.3299 +
  1.3300 +    SplitNodesBase() : _digraph(0) {}
  1.3301 +
  1.3302 +    DGR* _digraph;
  1.3303 +
  1.3304 +    void initialize(Digraph& digraph) {
  1.3305 +      _digraph = &digraph;
  1.3306 +    }
  1.3307 +
  1.3308 +  };
  1.3309 +
  1.3310 +  /// \ingroup graph_adaptors
  1.3311 +  ///
  1.3312 +  /// \brief Adaptor class for splitting the nodes of a digraph.
  1.3313 +  ///
  1.3314 +  /// SplitNodes adaptor can be used for splitting each node into an
  1.3315 +  /// \e in-node and an \e out-node in a digraph. Formaly, the adaptor
  1.3316 +  /// replaces each node \f$ u \f$ in the digraph with two nodes,
  1.3317 +  /// namely node \f$ u_{in} \f$ and node \f$ u_{out} \f$.
  1.3318 +  /// If there is a \f$ (v, u) \f$ arc in the original digraph, then the
  1.3319 +  /// new target of the arc will be \f$ u_{in} \f$ and similarly the
  1.3320 +  /// source of each original \f$ (u, v) \f$ arc will be \f$ u_{out} \f$.
  1.3321 +  /// The adaptor adds an additional \e bind \e arc from \f$ u_{in} \f$
  1.3322 +  /// to \f$ u_{out} \f$ for each node \f$ u \f$ of the original digraph.
  1.3323 +  ///
  1.3324 +  /// The aim of this class is running an algorithm with respect to node
  1.3325 +  /// costs or capacities if the algorithm considers only arc costs or
  1.3326 +  /// capacities directly.
  1.3327 +  /// In this case you can use \c SplitNodes adaptor, and set the node
  1.3328 +  /// costs/capacities of the original digraph to the \e bind \e arcs
  1.3329 +  /// in the adaptor.
  1.3330 +  ///
  1.3331 +  /// \tparam DGR The type of the adapted digraph.
  1.3332 +  /// It must conform to the \ref concepts::Digraph "Digraph" concept.
  1.3333 +  /// It is implicitly \c const.
  1.3334 +  ///
  1.3335 +  /// \note The \c Node type of this adaptor is converible to the \c Node
  1.3336 +  /// type of the adapted digraph.
  1.3337 +  template <typename DGR>
  1.3338 +#ifdef DOXYGEN
  1.3339 +  class SplitNodes {
  1.3340 +#else
  1.3341 +  class SplitNodes
  1.3342 +    : public DigraphAdaptorExtender<SplitNodesBase<const DGR> > {
  1.3343 +#endif
  1.3344 +    typedef DigraphAdaptorExtender<SplitNodesBase<const DGR> > Parent;
  1.3345 +
  1.3346 +  public:
  1.3347 +    typedef DGR Digraph;
  1.3348 +
  1.3349 +    typedef typename DGR::Node DigraphNode;
  1.3350 +    typedef typename DGR::Arc DigraphArc;
  1.3351 +
  1.3352 +    typedef typename Parent::Node Node;
  1.3353 +    typedef typename Parent::Arc Arc;
  1.3354 +
  1.3355 +    /// \brief Constructor
  1.3356 +    ///
  1.3357 +    /// Constructor of the adaptor.
  1.3358 +    SplitNodes(const DGR& g) {
  1.3359 +      Parent::initialize(g);
  1.3360 +    }
  1.3361 +
  1.3362 +    /// \brief Returns \c true if the given node is an in-node.
  1.3363 +    ///
  1.3364 +    /// Returns \c true if the given node is an in-node.
  1.3365 +    static bool inNode(const Node& n) {
  1.3366 +      return Parent::inNode(n);
  1.3367 +    }
  1.3368 +
  1.3369 +    /// \brief Returns \c true if the given node is an out-node.
  1.3370 +    ///
  1.3371 +    /// Returns \c true if the given node is an out-node.
  1.3372 +    static bool outNode(const Node& n) {
  1.3373 +      return Parent::outNode(n);
  1.3374 +    }
  1.3375 +
  1.3376 +    /// \brief Returns \c true if the given arc is an original arc.
  1.3377 +    ///
  1.3378 +    /// Returns \c true if the given arc is one of the arcs in the
  1.3379 +    /// original digraph.
  1.3380 +    static bool origArc(const Arc& a) {
  1.3381 +      return Parent::origArc(a);
  1.3382 +    }
  1.3383 +
  1.3384 +    /// \brief Returns \c true if the given arc is a bind arc.
  1.3385 +    ///
  1.3386 +    /// Returns \c true if the given arc is a bind arc, i.e. it connects
  1.3387 +    /// an in-node and an out-node.
  1.3388 +    static bool bindArc(const Arc& a) {
  1.3389 +      return Parent::bindArc(a);
  1.3390 +    }
  1.3391 +
  1.3392 +    /// \brief Returns the in-node created from the given original node.
  1.3393 +    ///
  1.3394 +    /// Returns the in-node created from the given original node.
  1.3395 +    static Node inNode(const DigraphNode& n) {
  1.3396 +      return Parent::inNode(n);
  1.3397 +    }
  1.3398 +
  1.3399 +    /// \brief Returns the out-node created from the given original node.
  1.3400 +    ///
  1.3401 +    /// Returns the out-node created from the given original node.
  1.3402 +    static Node outNode(const DigraphNode& n) {
  1.3403 +      return Parent::outNode(n);
  1.3404 +    }
  1.3405 +
  1.3406 +    /// \brief Returns the bind arc that corresponds to the given
  1.3407 +    /// original node.
  1.3408 +    ///
  1.3409 +    /// Returns the bind arc in the adaptor that corresponds to the given
  1.3410 +    /// original node, i.e. the arc connecting the in-node and out-node
  1.3411 +    /// of \c n.
  1.3412 +    static Arc arc(const DigraphNode& n) {
  1.3413 +      return Parent::arc(n);
  1.3414 +    }
  1.3415 +
  1.3416 +    /// \brief Returns the arc that corresponds to the given original arc.
  1.3417 +    ///
  1.3418 +    /// Returns the arc in the adaptor that corresponds to the given
  1.3419 +    /// original arc.
  1.3420 +    static Arc arc(const DigraphArc& a) {
  1.3421 +      return Parent::arc(a);
  1.3422 +    }
  1.3423 +
  1.3424 +    /// \brief Node map combined from two original node maps
  1.3425 +    ///
  1.3426 +    /// This map adaptor class adapts two node maps of the original digraph
  1.3427 +    /// to get a node map of the split digraph.
  1.3428 +    /// Its value type is inherited from the first node map type (\c IN).
  1.3429 +    /// \tparam IN The type of the node map for the in-nodes. 
  1.3430 +    /// \tparam OUT The type of the node map for the out-nodes.
  1.3431 +    template <typename IN, typename OUT>
  1.3432 +    class CombinedNodeMap {
  1.3433 +    public:
  1.3434 +
  1.3435 +      /// The key type of the map
  1.3436 +      typedef Node Key;
  1.3437 +      /// The value type of the map
  1.3438 +      typedef typename IN::Value Value;
  1.3439 +
  1.3440 +      typedef typename MapTraits<IN>::ReferenceMapTag ReferenceMapTag;
  1.3441 +      typedef typename MapTraits<IN>::ReturnValue ReturnValue;
  1.3442 +      typedef typename MapTraits<IN>::ConstReturnValue ConstReturnValue;
  1.3443 +      typedef typename MapTraits<IN>::ReturnValue Reference;
  1.3444 +      typedef typename MapTraits<IN>::ConstReturnValue ConstReference;
  1.3445 +
  1.3446 +      /// Constructor
  1.3447 +      CombinedNodeMap(IN& in_map, OUT& out_map)
  1.3448 +        : _in_map(in_map), _out_map(out_map) {}
  1.3449 +
  1.3450 +      /// Returns the value associated with the given key.
  1.3451 +      Value operator[](const Key& key) const {
  1.3452 +        if (SplitNodesBase<const DGR>::inNode(key)) {
  1.3453 +          return _in_map[key];
  1.3454 +        } else {
  1.3455 +          return _out_map[key];
  1.3456 +        }
  1.3457 +      }
  1.3458 +
  1.3459 +      /// Returns a reference to the value associated with the given key.
  1.3460 +      Value& operator[](const Key& key) {
  1.3461 +        if (SplitNodesBase<const DGR>::inNode(key)) {
  1.3462 +          return _in_map[key];
  1.3463 +        } else {
  1.3464 +          return _out_map[key];
  1.3465 +        }
  1.3466 +      }
  1.3467 +
  1.3468 +      /// Sets the value associated with the given key.
  1.3469 +      void set(const Key& key, const Value& value) {
  1.3470 +        if (SplitNodesBase<const DGR>::inNode(key)) {
  1.3471 +          _in_map.set(key, value);
  1.3472 +        } else {
  1.3473 +          _out_map.set(key, value);
  1.3474 +        }
  1.3475 +      }
  1.3476 +
  1.3477 +    private:
  1.3478 +
  1.3479 +      IN& _in_map;
  1.3480 +      OUT& _out_map;
  1.3481 +
  1.3482 +    };
  1.3483 +
  1.3484 +
  1.3485 +    /// \brief Returns a combined node map
  1.3486 +    ///
  1.3487 +    /// This function just returns a combined node map.
  1.3488 +    template <typename IN, typename OUT>
  1.3489 +    static CombinedNodeMap<IN, OUT>
  1.3490 +    combinedNodeMap(IN& in_map, OUT& out_map) {
  1.3491 +      return CombinedNodeMap<IN, OUT>(in_map, out_map);
  1.3492 +    }
  1.3493 +
  1.3494 +    template <typename IN, typename OUT>
  1.3495 +    static CombinedNodeMap<const IN, OUT>
  1.3496 +    combinedNodeMap(const IN& in_map, OUT& out_map) {
  1.3497 +      return CombinedNodeMap<const IN, OUT>(in_map, out_map);
  1.3498 +    }
  1.3499 +
  1.3500 +    template <typename IN, typename OUT>
  1.3501 +    static CombinedNodeMap<IN, const OUT>
  1.3502 +    combinedNodeMap(IN& in_map, const OUT& out_map) {
  1.3503 +      return CombinedNodeMap<IN, const OUT>(in_map, out_map);
  1.3504 +    }
  1.3505 +
  1.3506 +    template <typename IN, typename OUT>
  1.3507 +    static CombinedNodeMap<const IN, const OUT>
  1.3508 +    combinedNodeMap(const IN& in_map, const OUT& out_map) {
  1.3509 +      return CombinedNodeMap<const IN, const OUT>(in_map, out_map);
  1.3510 +    }
  1.3511 +
  1.3512 +    /// \brief Arc map combined from an arc map and a node map of the
  1.3513 +    /// original digraph.
  1.3514 +    ///
  1.3515 +    /// This map adaptor class adapts an arc map and a node map of the
  1.3516 +    /// original digraph to get an arc map of the split digraph.
  1.3517 +    /// Its value type is inherited from the original arc map type (\c AM).
  1.3518 +    /// \tparam AM The type of the arc map.
  1.3519 +    /// \tparam NM the type of the node map.
  1.3520 +    template <typename AM, typename NM>
  1.3521 +    class CombinedArcMap {
  1.3522 +    public:
  1.3523 +
  1.3524 +      /// The key type of the map
  1.3525 +      typedef Arc Key;
  1.3526 +      /// The value type of the map
  1.3527 +      typedef typename AM::Value Value;
  1.3528 +
  1.3529 +      typedef typename MapTraits<AM>::ReferenceMapTag ReferenceMapTag;
  1.3530 +      typedef typename MapTraits<AM>::ReturnValue ReturnValue;
  1.3531 +      typedef typename MapTraits<AM>::ConstReturnValue ConstReturnValue;
  1.3532 +      typedef typename MapTraits<AM>::ReturnValue Reference;
  1.3533 +      typedef typename MapTraits<AM>::ConstReturnValue ConstReference;
  1.3534 +
  1.3535 +      /// Constructor
  1.3536 +      CombinedArcMap(AM& arc_map, NM& node_map)
  1.3537 +        : _arc_map(arc_map), _node_map(node_map) {}
  1.3538 +
  1.3539 +      /// Returns the value associated with the given key.
  1.3540 +      Value operator[](const Key& arc) const {
  1.3541 +        if (SplitNodesBase<const DGR>::origArc(arc)) {
  1.3542 +          return _arc_map[arc];
  1.3543 +        } else {
  1.3544 +          return _node_map[arc];
  1.3545 +        }
  1.3546 +      }
  1.3547 +
  1.3548 +      /// Returns a reference to the value associated with the given key.
  1.3549 +      Value& operator[](const Key& arc) {
  1.3550 +        if (SplitNodesBase<const DGR>::origArc(arc)) {
  1.3551 +          return _arc_map[arc];
  1.3552 +        } else {
  1.3553 +          return _node_map[arc];
  1.3554 +        }
  1.3555 +      }
  1.3556 +
  1.3557 +      /// Sets the value associated with the given key.
  1.3558 +      void set(const Arc& arc, const Value& val) {
  1.3559 +        if (SplitNodesBase<const DGR>::origArc(arc)) {
  1.3560 +          _arc_map.set(arc, val);
  1.3561 +        } else {
  1.3562 +          _node_map.set(arc, val);
  1.3563 +        }
  1.3564 +      }
  1.3565 +
  1.3566 +    private:
  1.3567 +
  1.3568 +      AM& _arc_map;
  1.3569 +      NM& _node_map;
  1.3570 +
  1.3571 +    };
  1.3572 +
  1.3573 +    /// \brief Returns a combined arc map
  1.3574 +    ///
  1.3575 +    /// This function just returns a combined arc map.
  1.3576 +    template <typename ArcMap, typename NodeMap>
  1.3577 +    static CombinedArcMap<ArcMap, NodeMap>
  1.3578 +    combinedArcMap(ArcMap& arc_map, NodeMap& node_map) {
  1.3579 +      return CombinedArcMap<ArcMap, NodeMap>(arc_map, node_map);
  1.3580 +    }
  1.3581 +
  1.3582 +    template <typename ArcMap, typename NodeMap>
  1.3583 +    static CombinedArcMap<const ArcMap, NodeMap>
  1.3584 +    combinedArcMap(const ArcMap& arc_map, NodeMap& node_map) {
  1.3585 +      return CombinedArcMap<const ArcMap, NodeMap>(arc_map, node_map);
  1.3586 +    }
  1.3587 +
  1.3588 +    template <typename ArcMap, typename NodeMap>
  1.3589 +    static CombinedArcMap<ArcMap, const NodeMap>
  1.3590 +    combinedArcMap(ArcMap& arc_map, const NodeMap& node_map) {
  1.3591 +      return CombinedArcMap<ArcMap, const NodeMap>(arc_map, node_map);
  1.3592 +    }
  1.3593 +
  1.3594 +    template <typename ArcMap, typename NodeMap>
  1.3595 +    static CombinedArcMap<const ArcMap, const NodeMap>
  1.3596 +    combinedArcMap(const ArcMap& arc_map, const NodeMap& node_map) {
  1.3597 +      return CombinedArcMap<const ArcMap, const NodeMap>(arc_map, node_map);
  1.3598 +    }
  1.3599 +
  1.3600 +  };
  1.3601 +
  1.3602 +  /// \brief Returns a (read-only) SplitNodes adaptor
  1.3603 +  ///
  1.3604 +  /// This function just returns a (read-only) \ref SplitNodes adaptor.
  1.3605 +  /// \ingroup graph_adaptors
  1.3606 +  /// \relates SplitNodes
  1.3607 +  template<typename DGR>
  1.3608 +  SplitNodes<DGR>
  1.3609 +  splitNodes(const DGR& digraph) {
  1.3610 +    return SplitNodes<DGR>(digraph);
  1.3611 +  }
  1.3612 +
  1.3613 +#undef LEMON_SCOPE_FIX
  1.3614 +
  1.3615 +} //namespace lemon
  1.3616 +
  1.3617 +#endif //LEMON_ADAPTORS_H