lemon/connectivity.h
changeset 784 1a7fe3bef514
parent 647 dcba640438c7
child 877 141f9c0db4a3
child 986 552e3d1242c6
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/lemon/connectivity.h	Thu Nov 05 15:50:01 2009 +0100
     1.3 @@ -0,0 +1,1665 @@
     1.4 +/* -*- mode: C++; indent-tabs-mode: nil; -*-
     1.5 + *
     1.6 + * This file is a part of LEMON, a generic C++ optimization library.
     1.7 + *
     1.8 + * Copyright (C) 2003-2009
     1.9 + * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
    1.10 + * (Egervary Research Group on Combinatorial Optimization, EGRES).
    1.11 + *
    1.12 + * Permission to use, modify and distribute this software is granted
    1.13 + * provided that this copyright notice appears in all copies. For
    1.14 + * precise terms see the accompanying LICENSE file.
    1.15 + *
    1.16 + * This software is provided "AS IS" with no warranty of any kind,
    1.17 + * express or implied, and with no claim as to its suitability for any
    1.18 + * purpose.
    1.19 + *
    1.20 + */
    1.21 +
    1.22 +#ifndef LEMON_CONNECTIVITY_H
    1.23 +#define LEMON_CONNECTIVITY_H
    1.24 +
    1.25 +#include <lemon/dfs.h>
    1.26 +#include <lemon/bfs.h>
    1.27 +#include <lemon/core.h>
    1.28 +#include <lemon/maps.h>
    1.29 +#include <lemon/adaptors.h>
    1.30 +
    1.31 +#include <lemon/concepts/digraph.h>
    1.32 +#include <lemon/concepts/graph.h>
    1.33 +#include <lemon/concept_check.h>
    1.34 +
    1.35 +#include <stack>
    1.36 +#include <functional>
    1.37 +
    1.38 +/// \ingroup graph_properties
    1.39 +/// \file
    1.40 +/// \brief Connectivity algorithms
    1.41 +///
    1.42 +/// Connectivity algorithms
    1.43 +
    1.44 +namespace lemon {
    1.45 +
    1.46 +  /// \ingroup graph_properties
    1.47 +  ///
    1.48 +  /// \brief Check whether an undirected graph is connected.
    1.49 +  ///
    1.50 +  /// This function checks whether the given undirected graph is connected,
    1.51 +  /// i.e. there is a path between any two nodes in the graph.
    1.52 +  ///
    1.53 +  /// \return \c true if the graph is connected.
    1.54 +  /// \note By definition, the empty graph is connected.
    1.55 +  ///
    1.56 +  /// \see countConnectedComponents(), connectedComponents()
    1.57 +  /// \see stronglyConnected()
    1.58 +  template <typename Graph>
    1.59 +  bool connected(const Graph& graph) {
    1.60 +    checkConcept<concepts::Graph, Graph>();
    1.61 +    typedef typename Graph::NodeIt NodeIt;
    1.62 +    if (NodeIt(graph) == INVALID) return true;
    1.63 +    Dfs<Graph> dfs(graph);
    1.64 +    dfs.run(NodeIt(graph));
    1.65 +    for (NodeIt it(graph); it != INVALID; ++it) {
    1.66 +      if (!dfs.reached(it)) {
    1.67 +        return false;
    1.68 +      }
    1.69 +    }
    1.70 +    return true;
    1.71 +  }
    1.72 +
    1.73 +  /// \ingroup graph_properties
    1.74 +  ///
    1.75 +  /// \brief Count the number of connected components of an undirected graph
    1.76 +  ///
    1.77 +  /// This function counts the number of connected components of the given
    1.78 +  /// undirected graph.
    1.79 +  ///
    1.80 +  /// The connected components are the classes of an equivalence relation
    1.81 +  /// on the nodes of an undirected graph. Two nodes are in the same class
    1.82 +  /// if they are connected with a path.
    1.83 +  ///
    1.84 +  /// \return The number of connected components.
    1.85 +  /// \note By definition, the empty graph consists
    1.86 +  /// of zero connected components.
    1.87 +  ///
    1.88 +  /// \see connected(), connectedComponents()
    1.89 +  template <typename Graph>
    1.90 +  int countConnectedComponents(const Graph &graph) {
    1.91 +    checkConcept<concepts::Graph, Graph>();
    1.92 +    typedef typename Graph::Node Node;
    1.93 +    typedef typename Graph::Arc Arc;
    1.94 +
    1.95 +    typedef NullMap<Node, Arc> PredMap;
    1.96 +    typedef NullMap<Node, int> DistMap;
    1.97 +
    1.98 +    int compNum = 0;
    1.99 +    typename Bfs<Graph>::
   1.100 +      template SetPredMap<PredMap>::
   1.101 +      template SetDistMap<DistMap>::
   1.102 +      Create bfs(graph);
   1.103 +
   1.104 +    PredMap predMap;
   1.105 +    bfs.predMap(predMap);
   1.106 +
   1.107 +    DistMap distMap;
   1.108 +    bfs.distMap(distMap);
   1.109 +
   1.110 +    bfs.init();
   1.111 +    for(typename Graph::NodeIt n(graph); n != INVALID; ++n) {
   1.112 +      if (!bfs.reached(n)) {
   1.113 +        bfs.addSource(n);
   1.114 +        bfs.start();
   1.115 +        ++compNum;
   1.116 +      }
   1.117 +    }
   1.118 +    return compNum;
   1.119 +  }
   1.120 +
   1.121 +  /// \ingroup graph_properties
   1.122 +  ///
   1.123 +  /// \brief Find the connected components of an undirected graph
   1.124 +  ///
   1.125 +  /// This function finds the connected components of the given undirected
   1.126 +  /// graph.
   1.127 +  ///
   1.128 +  /// The connected components are the classes of an equivalence relation
   1.129 +  /// on the nodes of an undirected graph. Two nodes are in the same class
   1.130 +  /// if they are connected with a path.
   1.131 +  ///
   1.132 +  /// \image html connected_components.png
   1.133 +  /// \image latex connected_components.eps "Connected components" width=\textwidth
   1.134 +  ///
   1.135 +  /// \param graph The undirected graph.
   1.136 +  /// \retval compMap A writable node map. The values will be set from 0 to
   1.137 +  /// the number of the connected components minus one. Each value of the map
   1.138 +  /// will be set exactly once, and the values of a certain component will be
   1.139 +  /// set continuously.
   1.140 +  /// \return The number of connected components.
   1.141 +  /// \note By definition, the empty graph consists
   1.142 +  /// of zero connected components.
   1.143 +  ///
   1.144 +  /// \see connected(), countConnectedComponents()
   1.145 +  template <class Graph, class NodeMap>
   1.146 +  int connectedComponents(const Graph &graph, NodeMap &compMap) {
   1.147 +    checkConcept<concepts::Graph, Graph>();
   1.148 +    typedef typename Graph::Node Node;
   1.149 +    typedef typename Graph::Arc Arc;
   1.150 +    checkConcept<concepts::WriteMap<Node, int>, NodeMap>();
   1.151 +
   1.152 +    typedef NullMap<Node, Arc> PredMap;
   1.153 +    typedef NullMap<Node, int> DistMap;
   1.154 +
   1.155 +    int compNum = 0;
   1.156 +    typename Bfs<Graph>::
   1.157 +      template SetPredMap<PredMap>::
   1.158 +      template SetDistMap<DistMap>::
   1.159 +      Create bfs(graph);
   1.160 +
   1.161 +    PredMap predMap;
   1.162 +    bfs.predMap(predMap);
   1.163 +
   1.164 +    DistMap distMap;
   1.165 +    bfs.distMap(distMap);
   1.166 +
   1.167 +    bfs.init();
   1.168 +    for(typename Graph::NodeIt n(graph); n != INVALID; ++n) {
   1.169 +      if(!bfs.reached(n)) {
   1.170 +        bfs.addSource(n);
   1.171 +        while (!bfs.emptyQueue()) {
   1.172 +          compMap.set(bfs.nextNode(), compNum);
   1.173 +          bfs.processNextNode();
   1.174 +        }
   1.175 +        ++compNum;
   1.176 +      }
   1.177 +    }
   1.178 +    return compNum;
   1.179 +  }
   1.180 +
   1.181 +  namespace _connectivity_bits {
   1.182 +
   1.183 +    template <typename Digraph, typename Iterator >
   1.184 +    struct LeaveOrderVisitor : public DfsVisitor<Digraph> {
   1.185 +    public:
   1.186 +      typedef typename Digraph::Node Node;
   1.187 +      LeaveOrderVisitor(Iterator it) : _it(it) {}
   1.188 +
   1.189 +      void leave(const Node& node) {
   1.190 +        *(_it++) = node;
   1.191 +      }
   1.192 +
   1.193 +    private:
   1.194 +      Iterator _it;
   1.195 +    };
   1.196 +
   1.197 +    template <typename Digraph, typename Map>
   1.198 +    struct FillMapVisitor : public DfsVisitor<Digraph> {
   1.199 +    public:
   1.200 +      typedef typename Digraph::Node Node;
   1.201 +      typedef typename Map::Value Value;
   1.202 +
   1.203 +      FillMapVisitor(Map& map, Value& value)
   1.204 +        : _map(map), _value(value) {}
   1.205 +
   1.206 +      void reach(const Node& node) {
   1.207 +        _map.set(node, _value);
   1.208 +      }
   1.209 +    private:
   1.210 +      Map& _map;
   1.211 +      Value& _value;
   1.212 +    };
   1.213 +
   1.214 +    template <typename Digraph, typename ArcMap>
   1.215 +    struct StronglyConnectedCutArcsVisitor : public DfsVisitor<Digraph> {
   1.216 +    public:
   1.217 +      typedef typename Digraph::Node Node;
   1.218 +      typedef typename Digraph::Arc Arc;
   1.219 +
   1.220 +      StronglyConnectedCutArcsVisitor(const Digraph& digraph,
   1.221 +                                      ArcMap& cutMap,
   1.222 +                                      int& cutNum)
   1.223 +        : _digraph(digraph), _cutMap(cutMap), _cutNum(cutNum),
   1.224 +          _compMap(digraph, -1), _num(-1) {
   1.225 +      }
   1.226 +
   1.227 +      void start(const Node&) {
   1.228 +        ++_num;
   1.229 +      }
   1.230 +
   1.231 +      void reach(const Node& node) {
   1.232 +        _compMap.set(node, _num);
   1.233 +      }
   1.234 +
   1.235 +      void examine(const Arc& arc) {
   1.236 +         if (_compMap[_digraph.source(arc)] !=
   1.237 +             _compMap[_digraph.target(arc)]) {
   1.238 +           _cutMap.set(arc, true);
   1.239 +           ++_cutNum;
   1.240 +         }
   1.241 +      }
   1.242 +    private:
   1.243 +      const Digraph& _digraph;
   1.244 +      ArcMap& _cutMap;
   1.245 +      int& _cutNum;
   1.246 +
   1.247 +      typename Digraph::template NodeMap<int> _compMap;
   1.248 +      int _num;
   1.249 +    };
   1.250 +
   1.251 +  }
   1.252 +
   1.253 +
   1.254 +  /// \ingroup graph_properties
   1.255 +  ///
   1.256 +  /// \brief Check whether a directed graph is strongly connected.
   1.257 +  ///
   1.258 +  /// This function checks whether the given directed graph is strongly
   1.259 +  /// connected, i.e. any two nodes of the digraph are
   1.260 +  /// connected with directed paths in both direction.
   1.261 +  ///
   1.262 +  /// \return \c true if the digraph is strongly connected.
   1.263 +  /// \note By definition, the empty digraph is strongly connected.
   1.264 +  /// 
   1.265 +  /// \see countStronglyConnectedComponents(), stronglyConnectedComponents()
   1.266 +  /// \see connected()
   1.267 +  template <typename Digraph>
   1.268 +  bool stronglyConnected(const Digraph& digraph) {
   1.269 +    checkConcept<concepts::Digraph, Digraph>();
   1.270 +
   1.271 +    typedef typename Digraph::Node Node;
   1.272 +    typedef typename Digraph::NodeIt NodeIt;
   1.273 +
   1.274 +    typename Digraph::Node source = NodeIt(digraph);
   1.275 +    if (source == INVALID) return true;
   1.276 +
   1.277 +    using namespace _connectivity_bits;
   1.278 +
   1.279 +    typedef DfsVisitor<Digraph> Visitor;
   1.280 +    Visitor visitor;
   1.281 +
   1.282 +    DfsVisit<Digraph, Visitor> dfs(digraph, visitor);
   1.283 +    dfs.init();
   1.284 +    dfs.addSource(source);
   1.285 +    dfs.start();
   1.286 +
   1.287 +    for (NodeIt it(digraph); it != INVALID; ++it) {
   1.288 +      if (!dfs.reached(it)) {
   1.289 +        return false;
   1.290 +      }
   1.291 +    }
   1.292 +
   1.293 +    typedef ReverseDigraph<const Digraph> RDigraph;
   1.294 +    typedef typename RDigraph::NodeIt RNodeIt;
   1.295 +    RDigraph rdigraph(digraph);
   1.296 +
   1.297 +    typedef DfsVisitor<RDigraph> RVisitor;
   1.298 +    RVisitor rvisitor;
   1.299 +
   1.300 +    DfsVisit<RDigraph, RVisitor> rdfs(rdigraph, rvisitor);
   1.301 +    rdfs.init();
   1.302 +    rdfs.addSource(source);
   1.303 +    rdfs.start();
   1.304 +
   1.305 +    for (RNodeIt it(rdigraph); it != INVALID; ++it) {
   1.306 +      if (!rdfs.reached(it)) {
   1.307 +        return false;
   1.308 +      }
   1.309 +    }
   1.310 +
   1.311 +    return true;
   1.312 +  }
   1.313 +
   1.314 +  /// \ingroup graph_properties
   1.315 +  ///
   1.316 +  /// \brief Count the number of strongly connected components of a 
   1.317 +  /// directed graph
   1.318 +  ///
   1.319 +  /// This function counts the number of strongly connected components of
   1.320 +  /// the given directed graph.
   1.321 +  ///
   1.322 +  /// The strongly connected components are the classes of an
   1.323 +  /// equivalence relation on the nodes of a digraph. Two nodes are in
   1.324 +  /// the same class if they are connected with directed paths in both
   1.325 +  /// direction.
   1.326 +  ///
   1.327 +  /// \return The number of strongly connected components.
   1.328 +  /// \note By definition, the empty digraph has zero
   1.329 +  /// strongly connected components.
   1.330 +  ///
   1.331 +  /// \see stronglyConnected(), stronglyConnectedComponents()
   1.332 +  template <typename Digraph>
   1.333 +  int countStronglyConnectedComponents(const Digraph& digraph) {
   1.334 +    checkConcept<concepts::Digraph, Digraph>();
   1.335 +
   1.336 +    using namespace _connectivity_bits;
   1.337 +
   1.338 +    typedef typename Digraph::Node Node;
   1.339 +    typedef typename Digraph::Arc Arc;
   1.340 +    typedef typename Digraph::NodeIt NodeIt;
   1.341 +    typedef typename Digraph::ArcIt ArcIt;
   1.342 +
   1.343 +    typedef std::vector<Node> Container;
   1.344 +    typedef typename Container::iterator Iterator;
   1.345 +
   1.346 +    Container nodes(countNodes(digraph));
   1.347 +    typedef LeaveOrderVisitor<Digraph, Iterator> Visitor;
   1.348 +    Visitor visitor(nodes.begin());
   1.349 +
   1.350 +    DfsVisit<Digraph, Visitor> dfs(digraph, visitor);
   1.351 +    dfs.init();
   1.352 +    for (NodeIt it(digraph); it != INVALID; ++it) {
   1.353 +      if (!dfs.reached(it)) {
   1.354 +        dfs.addSource(it);
   1.355 +        dfs.start();
   1.356 +      }
   1.357 +    }
   1.358 +
   1.359 +    typedef typename Container::reverse_iterator RIterator;
   1.360 +    typedef ReverseDigraph<const Digraph> RDigraph;
   1.361 +
   1.362 +    RDigraph rdigraph(digraph);
   1.363 +
   1.364 +    typedef DfsVisitor<Digraph> RVisitor;
   1.365 +    RVisitor rvisitor;
   1.366 +
   1.367 +    DfsVisit<RDigraph, RVisitor> rdfs(rdigraph, rvisitor);
   1.368 +
   1.369 +    int compNum = 0;
   1.370 +
   1.371 +    rdfs.init();
   1.372 +    for (RIterator it = nodes.rbegin(); it != nodes.rend(); ++it) {
   1.373 +      if (!rdfs.reached(*it)) {
   1.374 +        rdfs.addSource(*it);
   1.375 +        rdfs.start();
   1.376 +        ++compNum;
   1.377 +      }
   1.378 +    }
   1.379 +    return compNum;
   1.380 +  }
   1.381 +
   1.382 +  /// \ingroup graph_properties
   1.383 +  ///
   1.384 +  /// \brief Find the strongly connected components of a directed graph
   1.385 +  ///
   1.386 +  /// This function finds the strongly connected components of the given
   1.387 +  /// directed graph. In addition, the numbering of the components will
   1.388 +  /// satisfy that there is no arc going from a higher numbered component
   1.389 +  /// to a lower one (i.e. it provides a topological order of the components).
   1.390 +  ///
   1.391 +  /// The strongly connected components are the classes of an
   1.392 +  /// equivalence relation on the nodes of a digraph. Two nodes are in
   1.393 +  /// the same class if they are connected with directed paths in both
   1.394 +  /// direction.
   1.395 +  ///
   1.396 +  /// \image html strongly_connected_components.png
   1.397 +  /// \image latex strongly_connected_components.eps "Strongly connected components" width=\textwidth
   1.398 +  ///
   1.399 +  /// \param digraph The digraph.
   1.400 +  /// \retval compMap A writable node map. The values will be set from 0 to
   1.401 +  /// the number of the strongly connected components minus one. Each value
   1.402 +  /// of the map will be set exactly once, and the values of a certain
   1.403 +  /// component will be set continuously.
   1.404 +  /// \return The number of strongly connected components.
   1.405 +  /// \note By definition, the empty digraph has zero
   1.406 +  /// strongly connected components.
   1.407 +  ///
   1.408 +  /// \see stronglyConnected(), countStronglyConnectedComponents()
   1.409 +  template <typename Digraph, typename NodeMap>
   1.410 +  int stronglyConnectedComponents(const Digraph& digraph, NodeMap& compMap) {
   1.411 +    checkConcept<concepts::Digraph, Digraph>();
   1.412 +    typedef typename Digraph::Node Node;
   1.413 +    typedef typename Digraph::NodeIt NodeIt;
   1.414 +    checkConcept<concepts::WriteMap<Node, int>, NodeMap>();
   1.415 +
   1.416 +    using namespace _connectivity_bits;
   1.417 +
   1.418 +    typedef std::vector<Node> Container;
   1.419 +    typedef typename Container::iterator Iterator;
   1.420 +
   1.421 +    Container nodes(countNodes(digraph));
   1.422 +    typedef LeaveOrderVisitor<Digraph, Iterator> Visitor;
   1.423 +    Visitor visitor(nodes.begin());
   1.424 +
   1.425 +    DfsVisit<Digraph, Visitor> dfs(digraph, visitor);
   1.426 +    dfs.init();
   1.427 +    for (NodeIt it(digraph); it != INVALID; ++it) {
   1.428 +      if (!dfs.reached(it)) {
   1.429 +        dfs.addSource(it);
   1.430 +        dfs.start();
   1.431 +      }
   1.432 +    }
   1.433 +
   1.434 +    typedef typename Container::reverse_iterator RIterator;
   1.435 +    typedef ReverseDigraph<const Digraph> RDigraph;
   1.436 +
   1.437 +    RDigraph rdigraph(digraph);
   1.438 +
   1.439 +    int compNum = 0;
   1.440 +
   1.441 +    typedef FillMapVisitor<RDigraph, NodeMap> RVisitor;
   1.442 +    RVisitor rvisitor(compMap, compNum);
   1.443 +
   1.444 +    DfsVisit<RDigraph, RVisitor> rdfs(rdigraph, rvisitor);
   1.445 +
   1.446 +    rdfs.init();
   1.447 +    for (RIterator it = nodes.rbegin(); it != nodes.rend(); ++it) {
   1.448 +      if (!rdfs.reached(*it)) {
   1.449 +        rdfs.addSource(*it);
   1.450 +        rdfs.start();
   1.451 +        ++compNum;
   1.452 +      }
   1.453 +    }
   1.454 +    return compNum;
   1.455 +  }
   1.456 +
   1.457 +  /// \ingroup graph_properties
   1.458 +  ///
   1.459 +  /// \brief Find the cut arcs of the strongly connected components.
   1.460 +  ///
   1.461 +  /// This function finds the cut arcs of the strongly connected components
   1.462 +  /// of the given digraph.
   1.463 +  ///
   1.464 +  /// The strongly connected components are the classes of an
   1.465 +  /// equivalence relation on the nodes of a digraph. Two nodes are in
   1.466 +  /// the same class if they are connected with directed paths in both
   1.467 +  /// direction.
   1.468 +  /// The strongly connected components are separated by the cut arcs.
   1.469 +  ///
   1.470 +  /// \param digraph The digraph.
   1.471 +  /// \retval cutMap A writable arc map. The values will be set to \c true
   1.472 +  /// for the cut arcs (exactly once for each cut arc), and will not be
   1.473 +  /// changed for other arcs.
   1.474 +  /// \return The number of cut arcs.
   1.475 +  ///
   1.476 +  /// \see stronglyConnected(), stronglyConnectedComponents()
   1.477 +  template <typename Digraph, typename ArcMap>
   1.478 +  int stronglyConnectedCutArcs(const Digraph& digraph, ArcMap& cutMap) {
   1.479 +    checkConcept<concepts::Digraph, Digraph>();
   1.480 +    typedef typename Digraph::Node Node;
   1.481 +    typedef typename Digraph::Arc Arc;
   1.482 +    typedef typename Digraph::NodeIt NodeIt;
   1.483 +    checkConcept<concepts::WriteMap<Arc, bool>, ArcMap>();
   1.484 +
   1.485 +    using namespace _connectivity_bits;
   1.486 +
   1.487 +    typedef std::vector<Node> Container;
   1.488 +    typedef typename Container::iterator Iterator;
   1.489 +
   1.490 +    Container nodes(countNodes(digraph));
   1.491 +    typedef LeaveOrderVisitor<Digraph, Iterator> Visitor;
   1.492 +    Visitor visitor(nodes.begin());
   1.493 +
   1.494 +    DfsVisit<Digraph, Visitor> dfs(digraph, visitor);
   1.495 +    dfs.init();
   1.496 +    for (NodeIt it(digraph); it != INVALID; ++it) {
   1.497 +      if (!dfs.reached(it)) {
   1.498 +        dfs.addSource(it);
   1.499 +        dfs.start();
   1.500 +      }
   1.501 +    }
   1.502 +
   1.503 +    typedef typename Container::reverse_iterator RIterator;
   1.504 +    typedef ReverseDigraph<const Digraph> RDigraph;
   1.505 +
   1.506 +    RDigraph rdigraph(digraph);
   1.507 +
   1.508 +    int cutNum = 0;
   1.509 +
   1.510 +    typedef StronglyConnectedCutArcsVisitor<RDigraph, ArcMap> RVisitor;
   1.511 +    RVisitor rvisitor(rdigraph, cutMap, cutNum);
   1.512 +
   1.513 +    DfsVisit<RDigraph, RVisitor> rdfs(rdigraph, rvisitor);
   1.514 +
   1.515 +    rdfs.init();
   1.516 +    for (RIterator it = nodes.rbegin(); it != nodes.rend(); ++it) {
   1.517 +      if (!rdfs.reached(*it)) {
   1.518 +        rdfs.addSource(*it);
   1.519 +        rdfs.start();
   1.520 +      }
   1.521 +    }
   1.522 +    return cutNum;
   1.523 +  }
   1.524 +
   1.525 +  namespace _connectivity_bits {
   1.526 +
   1.527 +    template <typename Digraph>
   1.528 +    class CountBiNodeConnectedComponentsVisitor : public DfsVisitor<Digraph> {
   1.529 +    public:
   1.530 +      typedef typename Digraph::Node Node;
   1.531 +      typedef typename Digraph::Arc Arc;
   1.532 +      typedef typename Digraph::Edge Edge;
   1.533 +
   1.534 +      CountBiNodeConnectedComponentsVisitor(const Digraph& graph, int &compNum)
   1.535 +        : _graph(graph), _compNum(compNum),
   1.536 +          _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {}
   1.537 +
   1.538 +      void start(const Node& node) {
   1.539 +        _predMap.set(node, INVALID);
   1.540 +      }
   1.541 +
   1.542 +      void reach(const Node& node) {
   1.543 +        _numMap.set(node, _num);
   1.544 +        _retMap.set(node, _num);
   1.545 +        ++_num;
   1.546 +      }
   1.547 +
   1.548 +      void discover(const Arc& edge) {
   1.549 +        _predMap.set(_graph.target(edge), _graph.source(edge));
   1.550 +      }
   1.551 +
   1.552 +      void examine(const Arc& edge) {
   1.553 +        if (_graph.source(edge) == _graph.target(edge) &&
   1.554 +            _graph.direction(edge)) {
   1.555 +          ++_compNum;
   1.556 +          return;
   1.557 +        }
   1.558 +        if (_predMap[_graph.source(edge)] == _graph.target(edge)) {
   1.559 +          return;
   1.560 +        }
   1.561 +        if (_retMap[_graph.source(edge)] > _numMap[_graph.target(edge)]) {
   1.562 +          _retMap.set(_graph.source(edge), _numMap[_graph.target(edge)]);
   1.563 +        }
   1.564 +      }
   1.565 +
   1.566 +      void backtrack(const Arc& edge) {
   1.567 +        if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
   1.568 +          _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
   1.569 +        }
   1.570 +        if (_numMap[_graph.source(edge)] <= _retMap[_graph.target(edge)]) {
   1.571 +          ++_compNum;
   1.572 +        }
   1.573 +      }
   1.574 +
   1.575 +    private:
   1.576 +      const Digraph& _graph;
   1.577 +      int& _compNum;
   1.578 +
   1.579 +      typename Digraph::template NodeMap<int> _numMap;
   1.580 +      typename Digraph::template NodeMap<int> _retMap;
   1.581 +      typename Digraph::template NodeMap<Node> _predMap;
   1.582 +      int _num;
   1.583 +    };
   1.584 +
   1.585 +    template <typename Digraph, typename ArcMap>
   1.586 +    class BiNodeConnectedComponentsVisitor : public DfsVisitor<Digraph> {
   1.587 +    public:
   1.588 +      typedef typename Digraph::Node Node;
   1.589 +      typedef typename Digraph::Arc Arc;
   1.590 +      typedef typename Digraph::Edge Edge;
   1.591 +
   1.592 +      BiNodeConnectedComponentsVisitor(const Digraph& graph,
   1.593 +                                       ArcMap& compMap, int &compNum)
   1.594 +        : _graph(graph), _compMap(compMap), _compNum(compNum),
   1.595 +          _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {}
   1.596 +
   1.597 +      void start(const Node& node) {
   1.598 +        _predMap.set(node, INVALID);
   1.599 +      }
   1.600 +
   1.601 +      void reach(const Node& node) {
   1.602 +        _numMap.set(node, _num);
   1.603 +        _retMap.set(node, _num);
   1.604 +        ++_num;
   1.605 +      }
   1.606 +
   1.607 +      void discover(const Arc& edge) {
   1.608 +        Node target = _graph.target(edge);
   1.609 +        _predMap.set(target, edge);
   1.610 +        _edgeStack.push(edge);
   1.611 +      }
   1.612 +
   1.613 +      void examine(const Arc& edge) {
   1.614 +        Node source = _graph.source(edge);
   1.615 +        Node target = _graph.target(edge);
   1.616 +        if (source == target && _graph.direction(edge)) {
   1.617 +          _compMap.set(edge, _compNum);
   1.618 +          ++_compNum;
   1.619 +          return;
   1.620 +        }
   1.621 +        if (_numMap[target] < _numMap[source]) {
   1.622 +          if (_predMap[source] != _graph.oppositeArc(edge)) {
   1.623 +            _edgeStack.push(edge);
   1.624 +          }
   1.625 +        }
   1.626 +        if (_predMap[source] != INVALID &&
   1.627 +            target == _graph.source(_predMap[source])) {
   1.628 +          return;
   1.629 +        }
   1.630 +        if (_retMap[source] > _numMap[target]) {
   1.631 +          _retMap.set(source, _numMap[target]);
   1.632 +        }
   1.633 +      }
   1.634 +
   1.635 +      void backtrack(const Arc& edge) {
   1.636 +        Node source = _graph.source(edge);
   1.637 +        Node target = _graph.target(edge);
   1.638 +        if (_retMap[source] > _retMap[target]) {
   1.639 +          _retMap.set(source, _retMap[target]);
   1.640 +        }
   1.641 +        if (_numMap[source] <= _retMap[target]) {
   1.642 +          while (_edgeStack.top() != edge) {
   1.643 +            _compMap.set(_edgeStack.top(), _compNum);
   1.644 +            _edgeStack.pop();
   1.645 +          }
   1.646 +          _compMap.set(edge, _compNum);
   1.647 +          _edgeStack.pop();
   1.648 +          ++_compNum;
   1.649 +        }
   1.650 +      }
   1.651 +
   1.652 +    private:
   1.653 +      const Digraph& _graph;
   1.654 +      ArcMap& _compMap;
   1.655 +      int& _compNum;
   1.656 +
   1.657 +      typename Digraph::template NodeMap<int> _numMap;
   1.658 +      typename Digraph::template NodeMap<int> _retMap;
   1.659 +      typename Digraph::template NodeMap<Arc> _predMap;
   1.660 +      std::stack<Edge> _edgeStack;
   1.661 +      int _num;
   1.662 +    };
   1.663 +
   1.664 +
   1.665 +    template <typename Digraph, typename NodeMap>
   1.666 +    class BiNodeConnectedCutNodesVisitor : public DfsVisitor<Digraph> {
   1.667 +    public:
   1.668 +      typedef typename Digraph::Node Node;
   1.669 +      typedef typename Digraph::Arc Arc;
   1.670 +      typedef typename Digraph::Edge Edge;
   1.671 +
   1.672 +      BiNodeConnectedCutNodesVisitor(const Digraph& graph, NodeMap& cutMap,
   1.673 +                                     int& cutNum)
   1.674 +        : _graph(graph), _cutMap(cutMap), _cutNum(cutNum),
   1.675 +          _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {}
   1.676 +
   1.677 +      void start(const Node& node) {
   1.678 +        _predMap.set(node, INVALID);
   1.679 +        rootCut = false;
   1.680 +      }
   1.681 +
   1.682 +      void reach(const Node& node) {
   1.683 +        _numMap.set(node, _num);
   1.684 +        _retMap.set(node, _num);
   1.685 +        ++_num;
   1.686 +      }
   1.687 +
   1.688 +      void discover(const Arc& edge) {
   1.689 +        _predMap.set(_graph.target(edge), _graph.source(edge));
   1.690 +      }
   1.691 +
   1.692 +      void examine(const Arc& edge) {
   1.693 +        if (_graph.source(edge) == _graph.target(edge) &&
   1.694 +            _graph.direction(edge)) {
   1.695 +          if (!_cutMap[_graph.source(edge)]) {
   1.696 +            _cutMap.set(_graph.source(edge), true);
   1.697 +            ++_cutNum;
   1.698 +          }
   1.699 +          return;
   1.700 +        }
   1.701 +        if (_predMap[_graph.source(edge)] == _graph.target(edge)) return;
   1.702 +        if (_retMap[_graph.source(edge)] > _numMap[_graph.target(edge)]) {
   1.703 +          _retMap.set(_graph.source(edge), _numMap[_graph.target(edge)]);
   1.704 +        }
   1.705 +      }
   1.706 +
   1.707 +      void backtrack(const Arc& edge) {
   1.708 +        if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
   1.709 +          _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
   1.710 +        }
   1.711 +        if (_numMap[_graph.source(edge)] <= _retMap[_graph.target(edge)]) {
   1.712 +          if (_predMap[_graph.source(edge)] != INVALID) {
   1.713 +            if (!_cutMap[_graph.source(edge)]) {
   1.714 +              _cutMap.set(_graph.source(edge), true);
   1.715 +              ++_cutNum;
   1.716 +            }
   1.717 +          } else if (rootCut) {
   1.718 +            if (!_cutMap[_graph.source(edge)]) {
   1.719 +              _cutMap.set(_graph.source(edge), true);
   1.720 +              ++_cutNum;
   1.721 +            }
   1.722 +          } else {
   1.723 +            rootCut = true;
   1.724 +          }
   1.725 +        }
   1.726 +      }
   1.727 +
   1.728 +    private:
   1.729 +      const Digraph& _graph;
   1.730 +      NodeMap& _cutMap;
   1.731 +      int& _cutNum;
   1.732 +
   1.733 +      typename Digraph::template NodeMap<int> _numMap;
   1.734 +      typename Digraph::template NodeMap<int> _retMap;
   1.735 +      typename Digraph::template NodeMap<Node> _predMap;
   1.736 +      std::stack<Edge> _edgeStack;
   1.737 +      int _num;
   1.738 +      bool rootCut;
   1.739 +    };
   1.740 +
   1.741 +  }
   1.742 +
   1.743 +  template <typename Graph>
   1.744 +  int countBiNodeConnectedComponents(const Graph& graph);
   1.745 +
   1.746 +  /// \ingroup graph_properties
   1.747 +  ///
   1.748 +  /// \brief Check whether an undirected graph is bi-node-connected.
   1.749 +  ///
   1.750 +  /// This function checks whether the given undirected graph is 
   1.751 +  /// bi-node-connected, i.e. any two edges are on same circle.
   1.752 +  ///
   1.753 +  /// \return \c true if the graph bi-node-connected.
   1.754 +  /// \note By definition, the empty graph is bi-node-connected.
   1.755 +  ///
   1.756 +  /// \see countBiNodeConnectedComponents(), biNodeConnectedComponents()
   1.757 +  template <typename Graph>
   1.758 +  bool biNodeConnected(const Graph& graph) {
   1.759 +    return countBiNodeConnectedComponents(graph) <= 1;
   1.760 +  }
   1.761 +
   1.762 +  /// \ingroup graph_properties
   1.763 +  ///
   1.764 +  /// \brief Count the number of bi-node-connected components of an 
   1.765 +  /// undirected graph.
   1.766 +  ///
   1.767 +  /// This function counts the number of bi-node-connected components of
   1.768 +  /// the given undirected graph.
   1.769 +  ///
   1.770 +  /// The bi-node-connected components are the classes of an equivalence
   1.771 +  /// relation on the edges of a undirected graph. Two edges are in the
   1.772 +  /// same class if they are on same circle.
   1.773 +  ///
   1.774 +  /// \return The number of bi-node-connected components.
   1.775 +  ///
   1.776 +  /// \see biNodeConnected(), biNodeConnectedComponents()
   1.777 +  template <typename Graph>
   1.778 +  int countBiNodeConnectedComponents(const Graph& graph) {
   1.779 +    checkConcept<concepts::Graph, Graph>();
   1.780 +    typedef typename Graph::NodeIt NodeIt;
   1.781 +
   1.782 +    using namespace _connectivity_bits;
   1.783 +
   1.784 +    typedef CountBiNodeConnectedComponentsVisitor<Graph> Visitor;
   1.785 +
   1.786 +    int compNum = 0;
   1.787 +    Visitor visitor(graph, compNum);
   1.788 +
   1.789 +    DfsVisit<Graph, Visitor> dfs(graph, visitor);
   1.790 +    dfs.init();
   1.791 +
   1.792 +    for (NodeIt it(graph); it != INVALID; ++it) {
   1.793 +      if (!dfs.reached(it)) {
   1.794 +        dfs.addSource(it);
   1.795 +        dfs.start();
   1.796 +      }
   1.797 +    }
   1.798 +    return compNum;
   1.799 +  }
   1.800 +
   1.801 +  /// \ingroup graph_properties
   1.802 +  ///
   1.803 +  /// \brief Find the bi-node-connected components of an undirected graph.
   1.804 +  ///
   1.805 +  /// This function finds the bi-node-connected components of the given
   1.806 +  /// undirected graph.
   1.807 +  ///
   1.808 +  /// The bi-node-connected components are the classes of an equivalence
   1.809 +  /// relation on the edges of a undirected graph. Two edges are in the
   1.810 +  /// same class if they are on same circle.
   1.811 +  ///
   1.812 +  /// \image html node_biconnected_components.png
   1.813 +  /// \image latex node_biconnected_components.eps "bi-node-connected components" width=\textwidth
   1.814 +  ///
   1.815 +  /// \param graph The undirected graph.
   1.816 +  /// \retval compMap A writable edge map. The values will be set from 0
   1.817 +  /// to the number of the bi-node-connected components minus one. Each
   1.818 +  /// value of the map will be set exactly once, and the values of a 
   1.819 +  /// certain component will be set continuously.
   1.820 +  /// \return The number of bi-node-connected components.
   1.821 +  ///
   1.822 +  /// \see biNodeConnected(), countBiNodeConnectedComponents()
   1.823 +  template <typename Graph, typename EdgeMap>
   1.824 +  int biNodeConnectedComponents(const Graph& graph,
   1.825 +                                EdgeMap& compMap) {
   1.826 +    checkConcept<concepts::Graph, Graph>();
   1.827 +    typedef typename Graph::NodeIt NodeIt;
   1.828 +    typedef typename Graph::Edge Edge;
   1.829 +    checkConcept<concepts::WriteMap<Edge, int>, EdgeMap>();
   1.830 +
   1.831 +    using namespace _connectivity_bits;
   1.832 +
   1.833 +    typedef BiNodeConnectedComponentsVisitor<Graph, EdgeMap> Visitor;
   1.834 +
   1.835 +    int compNum = 0;
   1.836 +    Visitor visitor(graph, compMap, compNum);
   1.837 +
   1.838 +    DfsVisit<Graph, Visitor> dfs(graph, visitor);
   1.839 +    dfs.init();
   1.840 +
   1.841 +    for (NodeIt it(graph); it != INVALID; ++it) {
   1.842 +      if (!dfs.reached(it)) {
   1.843 +        dfs.addSource(it);
   1.844 +        dfs.start();
   1.845 +      }
   1.846 +    }
   1.847 +    return compNum;
   1.848 +  }
   1.849 +
   1.850 +  /// \ingroup graph_properties
   1.851 +  ///
   1.852 +  /// \brief Find the bi-node-connected cut nodes in an undirected graph.
   1.853 +  ///
   1.854 +  /// This function finds the bi-node-connected cut nodes in the given
   1.855 +  /// undirected graph.
   1.856 +  ///
   1.857 +  /// The bi-node-connected components are the classes of an equivalence
   1.858 +  /// relation on the edges of a undirected graph. Two edges are in the
   1.859 +  /// same class if they are on same circle.
   1.860 +  /// The bi-node-connected components are separted by the cut nodes of
   1.861 +  /// the components.
   1.862 +  ///
   1.863 +  /// \param graph The undirected graph.
   1.864 +  /// \retval cutMap A writable node map. The values will be set to 
   1.865 +  /// \c true for the nodes that separate two or more components
   1.866 +  /// (exactly once for each cut node), and will not be changed for
   1.867 +  /// other nodes.
   1.868 +  /// \return The number of the cut nodes.
   1.869 +  ///
   1.870 +  /// \see biNodeConnected(), biNodeConnectedComponents()
   1.871 +  template <typename Graph, typename NodeMap>
   1.872 +  int biNodeConnectedCutNodes(const Graph& graph, NodeMap& cutMap) {
   1.873 +    checkConcept<concepts::Graph, Graph>();
   1.874 +    typedef typename Graph::Node Node;
   1.875 +    typedef typename Graph::NodeIt NodeIt;
   1.876 +    checkConcept<concepts::WriteMap<Node, bool>, NodeMap>();
   1.877 +
   1.878 +    using namespace _connectivity_bits;
   1.879 +
   1.880 +    typedef BiNodeConnectedCutNodesVisitor<Graph, NodeMap> Visitor;
   1.881 +
   1.882 +    int cutNum = 0;
   1.883 +    Visitor visitor(graph, cutMap, cutNum);
   1.884 +
   1.885 +    DfsVisit<Graph, Visitor> dfs(graph, visitor);
   1.886 +    dfs.init();
   1.887 +
   1.888 +    for (NodeIt it(graph); it != INVALID; ++it) {
   1.889 +      if (!dfs.reached(it)) {
   1.890 +        dfs.addSource(it);
   1.891 +        dfs.start();
   1.892 +      }
   1.893 +    }
   1.894 +    return cutNum;
   1.895 +  }
   1.896 +
   1.897 +  namespace _connectivity_bits {
   1.898 +
   1.899 +    template <typename Digraph>
   1.900 +    class CountBiEdgeConnectedComponentsVisitor : public DfsVisitor<Digraph> {
   1.901 +    public:
   1.902 +      typedef typename Digraph::Node Node;
   1.903 +      typedef typename Digraph::Arc Arc;
   1.904 +      typedef typename Digraph::Edge Edge;
   1.905 +
   1.906 +      CountBiEdgeConnectedComponentsVisitor(const Digraph& graph, int &compNum)
   1.907 +        : _graph(graph), _compNum(compNum),
   1.908 +          _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {}
   1.909 +
   1.910 +      void start(const Node& node) {
   1.911 +        _predMap.set(node, INVALID);
   1.912 +      }
   1.913 +
   1.914 +      void reach(const Node& node) {
   1.915 +        _numMap.set(node, _num);
   1.916 +        _retMap.set(node, _num);
   1.917 +        ++_num;
   1.918 +      }
   1.919 +
   1.920 +      void leave(const Node& node) {
   1.921 +        if (_numMap[node] <= _retMap[node]) {
   1.922 +          ++_compNum;
   1.923 +        }
   1.924 +      }
   1.925 +
   1.926 +      void discover(const Arc& edge) {
   1.927 +        _predMap.set(_graph.target(edge), edge);
   1.928 +      }
   1.929 +
   1.930 +      void examine(const Arc& edge) {
   1.931 +        if (_predMap[_graph.source(edge)] == _graph.oppositeArc(edge)) {
   1.932 +          return;
   1.933 +        }
   1.934 +        if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
   1.935 +          _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
   1.936 +        }
   1.937 +      }
   1.938 +
   1.939 +      void backtrack(const Arc& edge) {
   1.940 +        if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
   1.941 +          _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
   1.942 +        }
   1.943 +      }
   1.944 +
   1.945 +    private:
   1.946 +      const Digraph& _graph;
   1.947 +      int& _compNum;
   1.948 +
   1.949 +      typename Digraph::template NodeMap<int> _numMap;
   1.950 +      typename Digraph::template NodeMap<int> _retMap;
   1.951 +      typename Digraph::template NodeMap<Arc> _predMap;
   1.952 +      int _num;
   1.953 +    };
   1.954 +
   1.955 +    template <typename Digraph, typename NodeMap>
   1.956 +    class BiEdgeConnectedComponentsVisitor : public DfsVisitor<Digraph> {
   1.957 +    public:
   1.958 +      typedef typename Digraph::Node Node;
   1.959 +      typedef typename Digraph::Arc Arc;
   1.960 +      typedef typename Digraph::Edge Edge;
   1.961 +
   1.962 +      BiEdgeConnectedComponentsVisitor(const Digraph& graph,
   1.963 +                                       NodeMap& compMap, int &compNum)
   1.964 +        : _graph(graph), _compMap(compMap), _compNum(compNum),
   1.965 +          _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {}
   1.966 +
   1.967 +      void start(const Node& node) {
   1.968 +        _predMap.set(node, INVALID);
   1.969 +      }
   1.970 +
   1.971 +      void reach(const Node& node) {
   1.972 +        _numMap.set(node, _num);
   1.973 +        _retMap.set(node, _num);
   1.974 +        _nodeStack.push(node);
   1.975 +        ++_num;
   1.976 +      }
   1.977 +
   1.978 +      void leave(const Node& node) {
   1.979 +        if (_numMap[node] <= _retMap[node]) {
   1.980 +          while (_nodeStack.top() != node) {
   1.981 +            _compMap.set(_nodeStack.top(), _compNum);
   1.982 +            _nodeStack.pop();
   1.983 +          }
   1.984 +          _compMap.set(node, _compNum);
   1.985 +          _nodeStack.pop();
   1.986 +          ++_compNum;
   1.987 +        }
   1.988 +      }
   1.989 +
   1.990 +      void discover(const Arc& edge) {
   1.991 +        _predMap.set(_graph.target(edge), edge);
   1.992 +      }
   1.993 +
   1.994 +      void examine(const Arc& edge) {
   1.995 +        if (_predMap[_graph.source(edge)] == _graph.oppositeArc(edge)) {
   1.996 +          return;
   1.997 +        }
   1.998 +        if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
   1.999 +          _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
  1.1000 +        }
  1.1001 +      }
  1.1002 +
  1.1003 +      void backtrack(const Arc& edge) {
  1.1004 +        if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
  1.1005 +          _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
  1.1006 +        }
  1.1007 +      }
  1.1008 +
  1.1009 +    private:
  1.1010 +      const Digraph& _graph;
  1.1011 +      NodeMap& _compMap;
  1.1012 +      int& _compNum;
  1.1013 +
  1.1014 +      typename Digraph::template NodeMap<int> _numMap;
  1.1015 +      typename Digraph::template NodeMap<int> _retMap;
  1.1016 +      typename Digraph::template NodeMap<Arc> _predMap;
  1.1017 +      std::stack<Node> _nodeStack;
  1.1018 +      int _num;
  1.1019 +    };
  1.1020 +
  1.1021 +
  1.1022 +    template <typename Digraph, typename ArcMap>
  1.1023 +    class BiEdgeConnectedCutEdgesVisitor : public DfsVisitor<Digraph> {
  1.1024 +    public:
  1.1025 +      typedef typename Digraph::Node Node;
  1.1026 +      typedef typename Digraph::Arc Arc;
  1.1027 +      typedef typename Digraph::Edge Edge;
  1.1028 +
  1.1029 +      BiEdgeConnectedCutEdgesVisitor(const Digraph& graph,
  1.1030 +                                     ArcMap& cutMap, int &cutNum)
  1.1031 +        : _graph(graph), _cutMap(cutMap), _cutNum(cutNum),
  1.1032 +          _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {}
  1.1033 +
  1.1034 +      void start(const Node& node) {
  1.1035 +        _predMap[node] = INVALID;
  1.1036 +      }
  1.1037 +
  1.1038 +      void reach(const Node& node) {
  1.1039 +        _numMap.set(node, _num);
  1.1040 +        _retMap.set(node, _num);
  1.1041 +        ++_num;
  1.1042 +      }
  1.1043 +
  1.1044 +      void leave(const Node& node) {
  1.1045 +        if (_numMap[node] <= _retMap[node]) {
  1.1046 +          if (_predMap[node] != INVALID) {
  1.1047 +            _cutMap.set(_predMap[node], true);
  1.1048 +            ++_cutNum;
  1.1049 +          }
  1.1050 +        }
  1.1051 +      }
  1.1052 +
  1.1053 +      void discover(const Arc& edge) {
  1.1054 +        _predMap.set(_graph.target(edge), edge);
  1.1055 +      }
  1.1056 +
  1.1057 +      void examine(const Arc& edge) {
  1.1058 +        if (_predMap[_graph.source(edge)] == _graph.oppositeArc(edge)) {
  1.1059 +          return;
  1.1060 +        }
  1.1061 +        if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
  1.1062 +          _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
  1.1063 +        }
  1.1064 +      }
  1.1065 +
  1.1066 +      void backtrack(const Arc& edge) {
  1.1067 +        if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
  1.1068 +          _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
  1.1069 +        }
  1.1070 +      }
  1.1071 +
  1.1072 +    private:
  1.1073 +      const Digraph& _graph;
  1.1074 +      ArcMap& _cutMap;
  1.1075 +      int& _cutNum;
  1.1076 +
  1.1077 +      typename Digraph::template NodeMap<int> _numMap;
  1.1078 +      typename Digraph::template NodeMap<int> _retMap;
  1.1079 +      typename Digraph::template NodeMap<Arc> _predMap;
  1.1080 +      int _num;
  1.1081 +    };
  1.1082 +  }
  1.1083 +
  1.1084 +  template <typename Graph>
  1.1085 +  int countBiEdgeConnectedComponents(const Graph& graph);
  1.1086 +
  1.1087 +  /// \ingroup graph_properties
  1.1088 +  ///
  1.1089 +  /// \brief Check whether an undirected graph is bi-edge-connected.
  1.1090 +  ///
  1.1091 +  /// This function checks whether the given undirected graph is 
  1.1092 +  /// bi-edge-connected, i.e. any two nodes are connected with at least
  1.1093 +  /// two edge-disjoint paths.
  1.1094 +  ///
  1.1095 +  /// \return \c true if the graph is bi-edge-connected.
  1.1096 +  /// \note By definition, the empty graph is bi-edge-connected.
  1.1097 +  ///
  1.1098 +  /// \see countBiEdgeConnectedComponents(), biEdgeConnectedComponents()
  1.1099 +  template <typename Graph>
  1.1100 +  bool biEdgeConnected(const Graph& graph) {
  1.1101 +    return countBiEdgeConnectedComponents(graph) <= 1;
  1.1102 +  }
  1.1103 +
  1.1104 +  /// \ingroup graph_properties
  1.1105 +  ///
  1.1106 +  /// \brief Count the number of bi-edge-connected components of an
  1.1107 +  /// undirected graph.
  1.1108 +  ///
  1.1109 +  /// This function counts the number of bi-edge-connected components of
  1.1110 +  /// the given undirected graph.
  1.1111 +  ///
  1.1112 +  /// The bi-edge-connected components are the classes of an equivalence
  1.1113 +  /// relation on the nodes of an undirected graph. Two nodes are in the
  1.1114 +  /// same class if they are connected with at least two edge-disjoint
  1.1115 +  /// paths.
  1.1116 +  ///
  1.1117 +  /// \return The number of bi-edge-connected components.
  1.1118 +  ///
  1.1119 +  /// \see biEdgeConnected(), biEdgeConnectedComponents()
  1.1120 +  template <typename Graph>
  1.1121 +  int countBiEdgeConnectedComponents(const Graph& graph) {
  1.1122 +    checkConcept<concepts::Graph, Graph>();
  1.1123 +    typedef typename Graph::NodeIt NodeIt;
  1.1124 +
  1.1125 +    using namespace _connectivity_bits;
  1.1126 +
  1.1127 +    typedef CountBiEdgeConnectedComponentsVisitor<Graph> Visitor;
  1.1128 +
  1.1129 +    int compNum = 0;
  1.1130 +    Visitor visitor(graph, compNum);
  1.1131 +
  1.1132 +    DfsVisit<Graph, Visitor> dfs(graph, visitor);
  1.1133 +    dfs.init();
  1.1134 +
  1.1135 +    for (NodeIt it(graph); it != INVALID; ++it) {
  1.1136 +      if (!dfs.reached(it)) {
  1.1137 +        dfs.addSource(it);
  1.1138 +        dfs.start();
  1.1139 +      }
  1.1140 +    }
  1.1141 +    return compNum;
  1.1142 +  }
  1.1143 +
  1.1144 +  /// \ingroup graph_properties
  1.1145 +  ///
  1.1146 +  /// \brief Find the bi-edge-connected components of an undirected graph.
  1.1147 +  ///
  1.1148 +  /// This function finds the bi-edge-connected components of the given
  1.1149 +  /// undirected graph.
  1.1150 +  ///
  1.1151 +  /// The bi-edge-connected components are the classes of an equivalence
  1.1152 +  /// relation on the nodes of an undirected graph. Two nodes are in the
  1.1153 +  /// same class if they are connected with at least two edge-disjoint
  1.1154 +  /// paths.
  1.1155 +  ///
  1.1156 +  /// \image html edge_biconnected_components.png
  1.1157 +  /// \image latex edge_biconnected_components.eps "bi-edge-connected components" width=\textwidth
  1.1158 +  ///
  1.1159 +  /// \param graph The undirected graph.
  1.1160 +  /// \retval compMap A writable node map. The values will be set from 0 to
  1.1161 +  /// the number of the bi-edge-connected components minus one. Each value
  1.1162 +  /// of the map will be set exactly once, and the values of a certain
  1.1163 +  /// component will be set continuously.
  1.1164 +  /// \return The number of bi-edge-connected components.
  1.1165 +  ///
  1.1166 +  /// \see biEdgeConnected(), countBiEdgeConnectedComponents()
  1.1167 +  template <typename Graph, typename NodeMap>
  1.1168 +  int biEdgeConnectedComponents(const Graph& graph, NodeMap& compMap) {
  1.1169 +    checkConcept<concepts::Graph, Graph>();
  1.1170 +    typedef typename Graph::NodeIt NodeIt;
  1.1171 +    typedef typename Graph::Node Node;
  1.1172 +    checkConcept<concepts::WriteMap<Node, int>, NodeMap>();
  1.1173 +
  1.1174 +    using namespace _connectivity_bits;
  1.1175 +
  1.1176 +    typedef BiEdgeConnectedComponentsVisitor<Graph, NodeMap> Visitor;
  1.1177 +
  1.1178 +    int compNum = 0;
  1.1179 +    Visitor visitor(graph, compMap, compNum);
  1.1180 +
  1.1181 +    DfsVisit<Graph, Visitor> dfs(graph, visitor);
  1.1182 +    dfs.init();
  1.1183 +
  1.1184 +    for (NodeIt it(graph); it != INVALID; ++it) {
  1.1185 +      if (!dfs.reached(it)) {
  1.1186 +        dfs.addSource(it);
  1.1187 +        dfs.start();
  1.1188 +      }
  1.1189 +    }
  1.1190 +    return compNum;
  1.1191 +  }
  1.1192 +
  1.1193 +  /// \ingroup graph_properties
  1.1194 +  ///
  1.1195 +  /// \brief Find the bi-edge-connected cut edges in an undirected graph.
  1.1196 +  ///
  1.1197 +  /// This function finds the bi-edge-connected cut edges in the given
  1.1198 +  /// undirected graph. 
  1.1199 +  ///
  1.1200 +  /// The bi-edge-connected components are the classes of an equivalence
  1.1201 +  /// relation on the nodes of an undirected graph. Two nodes are in the
  1.1202 +  /// same class if they are connected with at least two edge-disjoint
  1.1203 +  /// paths.
  1.1204 +  /// The bi-edge-connected components are separted by the cut edges of
  1.1205 +  /// the components.
  1.1206 +  ///
  1.1207 +  /// \param graph The undirected graph.
  1.1208 +  /// \retval cutMap A writable edge map. The values will be set to \c true
  1.1209 +  /// for the cut edges (exactly once for each cut edge), and will not be
  1.1210 +  /// changed for other edges.
  1.1211 +  /// \return The number of cut edges.
  1.1212 +  ///
  1.1213 +  /// \see biEdgeConnected(), biEdgeConnectedComponents()
  1.1214 +  template <typename Graph, typename EdgeMap>
  1.1215 +  int biEdgeConnectedCutEdges(const Graph& graph, EdgeMap& cutMap) {
  1.1216 +    checkConcept<concepts::Graph, Graph>();
  1.1217 +    typedef typename Graph::NodeIt NodeIt;
  1.1218 +    typedef typename Graph::Edge Edge;
  1.1219 +    checkConcept<concepts::WriteMap<Edge, bool>, EdgeMap>();
  1.1220 +
  1.1221 +    using namespace _connectivity_bits;
  1.1222 +
  1.1223 +    typedef BiEdgeConnectedCutEdgesVisitor<Graph, EdgeMap> Visitor;
  1.1224 +
  1.1225 +    int cutNum = 0;
  1.1226 +    Visitor visitor(graph, cutMap, cutNum);
  1.1227 +
  1.1228 +    DfsVisit<Graph, Visitor> dfs(graph, visitor);
  1.1229 +    dfs.init();
  1.1230 +
  1.1231 +    for (NodeIt it(graph); it != INVALID; ++it) {
  1.1232 +      if (!dfs.reached(it)) {
  1.1233 +        dfs.addSource(it);
  1.1234 +        dfs.start();
  1.1235 +      }
  1.1236 +    }
  1.1237 +    return cutNum;
  1.1238 +  }
  1.1239 +
  1.1240 +
  1.1241 +  namespace _connectivity_bits {
  1.1242 +
  1.1243 +    template <typename Digraph, typename IntNodeMap>
  1.1244 +    class TopologicalSortVisitor : public DfsVisitor<Digraph> {
  1.1245 +    public:
  1.1246 +      typedef typename Digraph::Node Node;
  1.1247 +      typedef typename Digraph::Arc edge;
  1.1248 +
  1.1249 +      TopologicalSortVisitor(IntNodeMap& order, int num)
  1.1250 +        : _order(order), _num(num) {}
  1.1251 +
  1.1252 +      void leave(const Node& node) {
  1.1253 +        _order.set(node, --_num);
  1.1254 +      }
  1.1255 +
  1.1256 +    private:
  1.1257 +      IntNodeMap& _order;
  1.1258 +      int _num;
  1.1259 +    };
  1.1260 +
  1.1261 +  }
  1.1262 +
  1.1263 +  /// \ingroup graph_properties
  1.1264 +  ///
  1.1265 +  /// \brief Check whether a digraph is DAG.
  1.1266 +  ///
  1.1267 +  /// This function checks whether the given digraph is DAG, i.e.
  1.1268 +  /// \e Directed \e Acyclic \e Graph.
  1.1269 +  /// \return \c true if there is no directed cycle in the digraph.
  1.1270 +  /// \see acyclic()
  1.1271 +  template <typename Digraph>
  1.1272 +  bool dag(const Digraph& digraph) {
  1.1273 +
  1.1274 +    checkConcept<concepts::Digraph, Digraph>();
  1.1275 +
  1.1276 +    typedef typename Digraph::Node Node;
  1.1277 +    typedef typename Digraph::NodeIt NodeIt;
  1.1278 +    typedef typename Digraph::Arc Arc;
  1.1279 +
  1.1280 +    typedef typename Digraph::template NodeMap<bool> ProcessedMap;
  1.1281 +
  1.1282 +    typename Dfs<Digraph>::template SetProcessedMap<ProcessedMap>::
  1.1283 +      Create dfs(digraph);
  1.1284 +
  1.1285 +    ProcessedMap processed(digraph);
  1.1286 +    dfs.processedMap(processed);
  1.1287 +
  1.1288 +    dfs.init();
  1.1289 +    for (NodeIt it(digraph); it != INVALID; ++it) {
  1.1290 +      if (!dfs.reached(it)) {
  1.1291 +        dfs.addSource(it);
  1.1292 +        while (!dfs.emptyQueue()) {
  1.1293 +          Arc arc = dfs.nextArc();
  1.1294 +          Node target = digraph.target(arc);
  1.1295 +          if (dfs.reached(target) && !processed[target]) {
  1.1296 +            return false;
  1.1297 +          }
  1.1298 +          dfs.processNextArc();
  1.1299 +        }
  1.1300 +      }
  1.1301 +    }
  1.1302 +    return true;
  1.1303 +  }
  1.1304 +
  1.1305 +  /// \ingroup graph_properties
  1.1306 +  ///
  1.1307 +  /// \brief Sort the nodes of a DAG into topolgical order.
  1.1308 +  ///
  1.1309 +  /// This function sorts the nodes of the given acyclic digraph (DAG)
  1.1310 +  /// into topolgical order.
  1.1311 +  ///
  1.1312 +  /// \param digraph The digraph, which must be DAG.
  1.1313 +  /// \retval order A writable node map. The values will be set from 0 to
  1.1314 +  /// the number of the nodes in the digraph minus one. Each value of the
  1.1315 +  /// map will be set exactly once, and the values will be set descending
  1.1316 +  /// order.
  1.1317 +  ///
  1.1318 +  /// \see dag(), checkedTopologicalSort()
  1.1319 +  template <typename Digraph, typename NodeMap>
  1.1320 +  void topologicalSort(const Digraph& digraph, NodeMap& order) {
  1.1321 +    using namespace _connectivity_bits;
  1.1322 +
  1.1323 +    checkConcept<concepts::Digraph, Digraph>();
  1.1324 +    checkConcept<concepts::WriteMap<typename Digraph::Node, int>, NodeMap>();
  1.1325 +
  1.1326 +    typedef typename Digraph::Node Node;
  1.1327 +    typedef typename Digraph::NodeIt NodeIt;
  1.1328 +    typedef typename Digraph::Arc Arc;
  1.1329 +
  1.1330 +    TopologicalSortVisitor<Digraph, NodeMap>
  1.1331 +      visitor(order, countNodes(digraph));
  1.1332 +
  1.1333 +    DfsVisit<Digraph, TopologicalSortVisitor<Digraph, NodeMap> >
  1.1334 +      dfs(digraph, visitor);
  1.1335 +
  1.1336 +    dfs.init();
  1.1337 +    for (NodeIt it(digraph); it != INVALID; ++it) {
  1.1338 +      if (!dfs.reached(it)) {
  1.1339 +        dfs.addSource(it);
  1.1340 +        dfs.start();
  1.1341 +      }
  1.1342 +    }
  1.1343 +  }
  1.1344 +
  1.1345 +  /// \ingroup graph_properties
  1.1346 +  ///
  1.1347 +  /// \brief Sort the nodes of a DAG into topolgical order.
  1.1348 +  ///
  1.1349 +  /// This function sorts the nodes of the given acyclic digraph (DAG)
  1.1350 +  /// into topolgical order and also checks whether the given digraph
  1.1351 +  /// is DAG.
  1.1352 +  ///
  1.1353 +  /// \param digraph The digraph.
  1.1354 +  /// \retval order A readable and writable node map. The values will be
  1.1355 +  /// set from 0 to the number of the nodes in the digraph minus one. 
  1.1356 +  /// Each value of the map will be set exactly once, and the values will
  1.1357 +  /// be set descending order.
  1.1358 +  /// \return \c false if the digraph is not DAG.
  1.1359 +  ///
  1.1360 +  /// \see dag(), topologicalSort()
  1.1361 +  template <typename Digraph, typename NodeMap>
  1.1362 +  bool checkedTopologicalSort(const Digraph& digraph, NodeMap& order) {
  1.1363 +    using namespace _connectivity_bits;
  1.1364 +
  1.1365 +    checkConcept<concepts::Digraph, Digraph>();
  1.1366 +    checkConcept<concepts::ReadWriteMap<typename Digraph::Node, int>,
  1.1367 +      NodeMap>();
  1.1368 +
  1.1369 +    typedef typename Digraph::Node Node;
  1.1370 +    typedef typename Digraph::NodeIt NodeIt;
  1.1371 +    typedef typename Digraph::Arc Arc;
  1.1372 +
  1.1373 +    for (NodeIt it(digraph); it != INVALID; ++it) {
  1.1374 +      order.set(it, -1);
  1.1375 +    }
  1.1376 +
  1.1377 +    TopologicalSortVisitor<Digraph, NodeMap>
  1.1378 +      visitor(order, countNodes(digraph));
  1.1379 +
  1.1380 +    DfsVisit<Digraph, TopologicalSortVisitor<Digraph, NodeMap> >
  1.1381 +      dfs(digraph, visitor);
  1.1382 +
  1.1383 +    dfs.init();
  1.1384 +    for (NodeIt it(digraph); it != INVALID; ++it) {
  1.1385 +      if (!dfs.reached(it)) {
  1.1386 +        dfs.addSource(it);
  1.1387 +        while (!dfs.emptyQueue()) {
  1.1388 +           Arc arc = dfs.nextArc();
  1.1389 +           Node target = digraph.target(arc);
  1.1390 +           if (dfs.reached(target) && order[target] == -1) {
  1.1391 +             return false;
  1.1392 +           }
  1.1393 +           dfs.processNextArc();
  1.1394 +         }
  1.1395 +      }
  1.1396 +    }
  1.1397 +    return true;
  1.1398 +  }
  1.1399 +
  1.1400 +  /// \ingroup graph_properties
  1.1401 +  ///
  1.1402 +  /// \brief Check whether an undirected graph is acyclic.
  1.1403 +  ///
  1.1404 +  /// This function checks whether the given undirected graph is acyclic.
  1.1405 +  /// \return \c true if there is no cycle in the graph.
  1.1406 +  /// \see dag()
  1.1407 +  template <typename Graph>
  1.1408 +  bool acyclic(const Graph& graph) {
  1.1409 +    checkConcept<concepts::Graph, Graph>();
  1.1410 +    typedef typename Graph::Node Node;
  1.1411 +    typedef typename Graph::NodeIt NodeIt;
  1.1412 +    typedef typename Graph::Arc Arc;
  1.1413 +    Dfs<Graph> dfs(graph);
  1.1414 +    dfs.init();
  1.1415 +    for (NodeIt it(graph); it != INVALID; ++it) {
  1.1416 +      if (!dfs.reached(it)) {
  1.1417 +        dfs.addSource(it);
  1.1418 +        while (!dfs.emptyQueue()) {
  1.1419 +          Arc arc = dfs.nextArc();
  1.1420 +          Node source = graph.source(arc);
  1.1421 +          Node target = graph.target(arc);
  1.1422 +          if (dfs.reached(target) &&
  1.1423 +              dfs.predArc(source) != graph.oppositeArc(arc)) {
  1.1424 +            return false;
  1.1425 +          }
  1.1426 +          dfs.processNextArc();
  1.1427 +        }
  1.1428 +      }
  1.1429 +    }
  1.1430 +    return true;
  1.1431 +  }
  1.1432 +
  1.1433 +  /// \ingroup graph_properties
  1.1434 +  ///
  1.1435 +  /// \brief Check whether an undirected graph is tree.
  1.1436 +  ///
  1.1437 +  /// This function checks whether the given undirected graph is tree.
  1.1438 +  /// \return \c true if the graph is acyclic and connected.
  1.1439 +  /// \see acyclic(), connected()
  1.1440 +  template <typename Graph>
  1.1441 +  bool tree(const Graph& graph) {
  1.1442 +    checkConcept<concepts::Graph, Graph>();
  1.1443 +    typedef typename Graph::Node Node;
  1.1444 +    typedef typename Graph::NodeIt NodeIt;
  1.1445 +    typedef typename Graph::Arc Arc;
  1.1446 +    if (NodeIt(graph) == INVALID) return true;
  1.1447 +    Dfs<Graph> dfs(graph);
  1.1448 +    dfs.init();
  1.1449 +    dfs.addSource(NodeIt(graph));
  1.1450 +    while (!dfs.emptyQueue()) {
  1.1451 +      Arc arc = dfs.nextArc();
  1.1452 +      Node source = graph.source(arc);
  1.1453 +      Node target = graph.target(arc);
  1.1454 +      if (dfs.reached(target) &&
  1.1455 +          dfs.predArc(source) != graph.oppositeArc(arc)) {
  1.1456 +        return false;
  1.1457 +      }
  1.1458 +      dfs.processNextArc();
  1.1459 +    }
  1.1460 +    for (NodeIt it(graph); it != INVALID; ++it) {
  1.1461 +      if (!dfs.reached(it)) {
  1.1462 +        return false;
  1.1463 +      }
  1.1464 +    }
  1.1465 +    return true;
  1.1466 +  }
  1.1467 +
  1.1468 +  namespace _connectivity_bits {
  1.1469 +
  1.1470 +    template <typename Digraph>
  1.1471 +    class BipartiteVisitor : public BfsVisitor<Digraph> {
  1.1472 +    public:
  1.1473 +      typedef typename Digraph::Arc Arc;
  1.1474 +      typedef typename Digraph::Node Node;
  1.1475 +
  1.1476 +      BipartiteVisitor(const Digraph& graph, bool& bipartite)
  1.1477 +        : _graph(graph), _part(graph), _bipartite(bipartite) {}
  1.1478 +
  1.1479 +      void start(const Node& node) {
  1.1480 +        _part[node] = true;
  1.1481 +      }
  1.1482 +      void discover(const Arc& edge) {
  1.1483 +        _part.set(_graph.target(edge), !_part[_graph.source(edge)]);
  1.1484 +      }
  1.1485 +      void examine(const Arc& edge) {
  1.1486 +        _bipartite = _bipartite &&
  1.1487 +          _part[_graph.target(edge)] != _part[_graph.source(edge)];
  1.1488 +      }
  1.1489 +
  1.1490 +    private:
  1.1491 +
  1.1492 +      const Digraph& _graph;
  1.1493 +      typename Digraph::template NodeMap<bool> _part;
  1.1494 +      bool& _bipartite;
  1.1495 +    };
  1.1496 +
  1.1497 +    template <typename Digraph, typename PartMap>
  1.1498 +    class BipartitePartitionsVisitor : public BfsVisitor<Digraph> {
  1.1499 +    public:
  1.1500 +      typedef typename Digraph::Arc Arc;
  1.1501 +      typedef typename Digraph::Node Node;
  1.1502 +
  1.1503 +      BipartitePartitionsVisitor(const Digraph& graph,
  1.1504 +                                 PartMap& part, bool& bipartite)
  1.1505 +        : _graph(graph), _part(part), _bipartite(bipartite) {}
  1.1506 +
  1.1507 +      void start(const Node& node) {
  1.1508 +        _part.set(node, true);
  1.1509 +      }
  1.1510 +      void discover(const Arc& edge) {
  1.1511 +        _part.set(_graph.target(edge), !_part[_graph.source(edge)]);
  1.1512 +      }
  1.1513 +      void examine(const Arc& edge) {
  1.1514 +        _bipartite = _bipartite &&
  1.1515 +          _part[_graph.target(edge)] != _part[_graph.source(edge)];
  1.1516 +      }
  1.1517 +
  1.1518 +    private:
  1.1519 +
  1.1520 +      const Digraph& _graph;
  1.1521 +      PartMap& _part;
  1.1522 +      bool& _bipartite;
  1.1523 +    };
  1.1524 +  }
  1.1525 +
  1.1526 +  /// \ingroup graph_properties
  1.1527 +  ///
  1.1528 +  /// \brief Check whether an undirected graph is bipartite.
  1.1529 +  ///
  1.1530 +  /// The function checks whether the given undirected graph is bipartite.
  1.1531 +  /// \return \c true if the graph is bipartite.
  1.1532 +  ///
  1.1533 +  /// \see bipartitePartitions()
  1.1534 +  template<typename Graph>
  1.1535 +  bool bipartite(const Graph &graph){
  1.1536 +    using namespace _connectivity_bits;
  1.1537 +
  1.1538 +    checkConcept<concepts::Graph, Graph>();
  1.1539 +
  1.1540 +    typedef typename Graph::NodeIt NodeIt;
  1.1541 +    typedef typename Graph::ArcIt ArcIt;
  1.1542 +
  1.1543 +    bool bipartite = true;
  1.1544 +
  1.1545 +    BipartiteVisitor<Graph>
  1.1546 +      visitor(graph, bipartite);
  1.1547 +    BfsVisit<Graph, BipartiteVisitor<Graph> >
  1.1548 +      bfs(graph, visitor);
  1.1549 +    bfs.init();
  1.1550 +    for(NodeIt it(graph); it != INVALID; ++it) {
  1.1551 +      if(!bfs.reached(it)){
  1.1552 +        bfs.addSource(it);
  1.1553 +        while (!bfs.emptyQueue()) {
  1.1554 +          bfs.processNextNode();
  1.1555 +          if (!bipartite) return false;
  1.1556 +        }
  1.1557 +      }
  1.1558 +    }
  1.1559 +    return true;
  1.1560 +  }
  1.1561 +
  1.1562 +  /// \ingroup graph_properties
  1.1563 +  ///
  1.1564 +  /// \brief Find the bipartite partitions of an undirected graph.
  1.1565 +  ///
  1.1566 +  /// This function checks whether the given undirected graph is bipartite
  1.1567 +  /// and gives back the bipartite partitions.
  1.1568 +  ///
  1.1569 +  /// \image html bipartite_partitions.png
  1.1570 +  /// \image latex bipartite_partitions.eps "Bipartite partititions" width=\textwidth
  1.1571 +  ///
  1.1572 +  /// \param graph The undirected graph.
  1.1573 +  /// \retval partMap A writable node map of \c bool (or convertible) value
  1.1574 +  /// type. The values will be set to \c true for one component and
  1.1575 +  /// \c false for the other one.
  1.1576 +  /// \return \c true if the graph is bipartite, \c false otherwise.
  1.1577 +  ///
  1.1578 +  /// \see bipartite()
  1.1579 +  template<typename Graph, typename NodeMap>
  1.1580 +  bool bipartitePartitions(const Graph &graph, NodeMap &partMap){
  1.1581 +    using namespace _connectivity_bits;
  1.1582 +
  1.1583 +    checkConcept<concepts::Graph, Graph>();
  1.1584 +    checkConcept<concepts::WriteMap<typename Graph::Node, bool>, NodeMap>();
  1.1585 +
  1.1586 +    typedef typename Graph::Node Node;
  1.1587 +    typedef typename Graph::NodeIt NodeIt;
  1.1588 +    typedef typename Graph::ArcIt ArcIt;
  1.1589 +
  1.1590 +    bool bipartite = true;
  1.1591 +
  1.1592 +    BipartitePartitionsVisitor<Graph, NodeMap>
  1.1593 +      visitor(graph, partMap, bipartite);
  1.1594 +    BfsVisit<Graph, BipartitePartitionsVisitor<Graph, NodeMap> >
  1.1595 +      bfs(graph, visitor);
  1.1596 +    bfs.init();
  1.1597 +    for(NodeIt it(graph); it != INVALID; ++it) {
  1.1598 +      if(!bfs.reached(it)){
  1.1599 +        bfs.addSource(it);
  1.1600 +        while (!bfs.emptyQueue()) {
  1.1601 +          bfs.processNextNode();
  1.1602 +          if (!bipartite) return false;
  1.1603 +        }
  1.1604 +      }
  1.1605 +    }
  1.1606 +    return true;
  1.1607 +  }
  1.1608 +
  1.1609 +  /// \ingroup graph_properties
  1.1610 +  ///
  1.1611 +  /// \brief Check whether the given graph contains no loop arcs/edges.
  1.1612 +  ///
  1.1613 +  /// This function returns \c true if there are no loop arcs/edges in
  1.1614 +  /// the given graph. It works for both directed and undirected graphs.
  1.1615 +  template <typename Graph>
  1.1616 +  bool loopFree(const Graph& graph) {
  1.1617 +    for (typename Graph::ArcIt it(graph); it != INVALID; ++it) {
  1.1618 +      if (graph.source(it) == graph.target(it)) return false;
  1.1619 +    }
  1.1620 +    return true;
  1.1621 +  }
  1.1622 +
  1.1623 +  /// \ingroup graph_properties
  1.1624 +  ///
  1.1625 +  /// \brief Check whether the given graph contains no parallel arcs/edges.
  1.1626 +  ///
  1.1627 +  /// This function returns \c true if there are no parallel arcs/edges in
  1.1628 +  /// the given graph. It works for both directed and undirected graphs.
  1.1629 +  template <typename Graph>
  1.1630 +  bool parallelFree(const Graph& graph) {
  1.1631 +    typename Graph::template NodeMap<int> reached(graph, 0);
  1.1632 +    int cnt = 1;
  1.1633 +    for (typename Graph::NodeIt n(graph); n != INVALID; ++n) {
  1.1634 +      for (typename Graph::OutArcIt a(graph, n); a != INVALID; ++a) {
  1.1635 +        if (reached[graph.target(a)] == cnt) return false;
  1.1636 +        reached[graph.target(a)] = cnt;
  1.1637 +      }
  1.1638 +      ++cnt;
  1.1639 +    }
  1.1640 +    return true;
  1.1641 +  }
  1.1642 +
  1.1643 +  /// \ingroup graph_properties
  1.1644 +  ///
  1.1645 +  /// \brief Check whether the given graph is simple.
  1.1646 +  ///
  1.1647 +  /// This function returns \c true if the given graph is simple, i.e.
  1.1648 +  /// it contains no loop arcs/edges and no parallel arcs/edges.
  1.1649 +  /// The function works for both directed and undirected graphs.
  1.1650 +  /// \see loopFree(), parallelFree()
  1.1651 +  template <typename Graph>
  1.1652 +  bool simpleGraph(const Graph& graph) {
  1.1653 +    typename Graph::template NodeMap<int> reached(graph, 0);
  1.1654 +    int cnt = 1;
  1.1655 +    for (typename Graph::NodeIt n(graph); n != INVALID; ++n) {
  1.1656 +      reached[n] = cnt;
  1.1657 +      for (typename Graph::OutArcIt a(graph, n); a != INVALID; ++a) {
  1.1658 +        if (reached[graph.target(a)] == cnt) return false;
  1.1659 +        reached[graph.target(a)] = cnt;
  1.1660 +      }
  1.1661 +      ++cnt;
  1.1662 +    }
  1.1663 +    return true;
  1.1664 +  }
  1.1665 +
  1.1666 +} //namespace lemon
  1.1667 +
  1.1668 +#endif //LEMON_CONNECTIVITY_H