lemon/elevator.h
changeset 784 1a7fe3bef514
parent 559 c5fd2d996909
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/lemon/elevator.h	Thu Nov 05 15:50:01 2009 +0100
     1.3 @@ -0,0 +1,982 @@
     1.4 +/* -*- mode: C++; indent-tabs-mode: nil; -*-
     1.5 + *
     1.6 + * This file is a part of LEMON, a generic C++ optimization library.
     1.7 + *
     1.8 + * Copyright (C) 2003-2009
     1.9 + * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
    1.10 + * (Egervary Research Group on Combinatorial Optimization, EGRES).
    1.11 + *
    1.12 + * Permission to use, modify and distribute this software is granted
    1.13 + * provided that this copyright notice appears in all copies. For
    1.14 + * precise terms see the accompanying LICENSE file.
    1.15 + *
    1.16 + * This software is provided "AS IS" with no warranty of any kind,
    1.17 + * express or implied, and with no claim as to its suitability for any
    1.18 + * purpose.
    1.19 + *
    1.20 + */
    1.21 +
    1.22 +#ifndef LEMON_ELEVATOR_H
    1.23 +#define LEMON_ELEVATOR_H
    1.24 +
    1.25 +///\ingroup auxdat
    1.26 +///\file
    1.27 +///\brief Elevator class
    1.28 +///
    1.29 +///Elevator class implements an efficient data structure
    1.30 +///for labeling items in push-relabel type algorithms.
    1.31 +///
    1.32 +
    1.33 +#include <lemon/core.h>
    1.34 +#include <lemon/bits/traits.h>
    1.35 +
    1.36 +namespace lemon {
    1.37 +
    1.38 +  ///Class for handling "labels" in push-relabel type algorithms.
    1.39 +
    1.40 +  ///A class for handling "labels" in push-relabel type algorithms.
    1.41 +  ///
    1.42 +  ///\ingroup auxdat
    1.43 +  ///Using this class you can assign "labels" (nonnegative integer numbers)
    1.44 +  ///to the edges or nodes of a graph, manipulate and query them through
    1.45 +  ///operations typically arising in "push-relabel" type algorithms.
    1.46 +  ///
    1.47 +  ///Each item is either \em active or not, and you can also choose a
    1.48 +  ///highest level active item.
    1.49 +  ///
    1.50 +  ///\sa LinkedElevator
    1.51 +  ///
    1.52 +  ///\param GR Type of the underlying graph.
    1.53 +  ///\param Item Type of the items the data is assigned to (\c GR::Node,
    1.54 +  ///\c GR::Arc or \c GR::Edge).
    1.55 +  template<class GR, class Item>
    1.56 +  class Elevator
    1.57 +  {
    1.58 +  public:
    1.59 +
    1.60 +    typedef Item Key;
    1.61 +    typedef int Value;
    1.62 +
    1.63 +  private:
    1.64 +
    1.65 +    typedef Item *Vit;
    1.66 +    typedef typename ItemSetTraits<GR,Item>::template Map<Vit>::Type VitMap;
    1.67 +    typedef typename ItemSetTraits<GR,Item>::template Map<int>::Type IntMap;
    1.68 +
    1.69 +    const GR &_g;
    1.70 +    int _max_level;
    1.71 +    int _item_num;
    1.72 +    VitMap _where;
    1.73 +    IntMap _level;
    1.74 +    std::vector<Item> _items;
    1.75 +    std::vector<Vit> _first;
    1.76 +    std::vector<Vit> _last_active;
    1.77 +
    1.78 +    int _highest_active;
    1.79 +
    1.80 +    void copy(Item i, Vit p)
    1.81 +    {
    1.82 +      _where[*p=i] = p;
    1.83 +    }
    1.84 +    void copy(Vit s, Vit p)
    1.85 +    {
    1.86 +      if(s!=p)
    1.87 +        {
    1.88 +          Item i=*s;
    1.89 +          *p=i;
    1.90 +          _where[i] = p;
    1.91 +        }
    1.92 +    }
    1.93 +    void swap(Vit i, Vit j)
    1.94 +    {
    1.95 +      Item ti=*i;
    1.96 +      Vit ct = _where[ti];
    1.97 +      _where[ti] = _where[*i=*j];
    1.98 +      _where[*j] = ct;
    1.99 +      *j=ti;
   1.100 +    }
   1.101 +
   1.102 +  public:
   1.103 +
   1.104 +    ///Constructor with given maximum level.
   1.105 +
   1.106 +    ///Constructor with given maximum level.
   1.107 +    ///
   1.108 +    ///\param graph The underlying graph.
   1.109 +    ///\param max_level The maximum allowed level.
   1.110 +    ///Set the range of the possible labels to <tt>[0..max_level]</tt>.
   1.111 +    Elevator(const GR &graph,int max_level) :
   1.112 +      _g(graph),
   1.113 +      _max_level(max_level),
   1.114 +      _item_num(_max_level),
   1.115 +      _where(graph),
   1.116 +      _level(graph,0),
   1.117 +      _items(_max_level),
   1.118 +      _first(_max_level+2),
   1.119 +      _last_active(_max_level+2),
   1.120 +      _highest_active(-1) {}
   1.121 +    ///Constructor.
   1.122 +
   1.123 +    ///Constructor.
   1.124 +    ///
   1.125 +    ///\param graph The underlying graph.
   1.126 +    ///Set the range of the possible labels to <tt>[0..max_level]</tt>,
   1.127 +    ///where \c max_level is equal to the number of labeled items in the graph.
   1.128 +    Elevator(const GR &graph) :
   1.129 +      _g(graph),
   1.130 +      _max_level(countItems<GR, Item>(graph)),
   1.131 +      _item_num(_max_level),
   1.132 +      _where(graph),
   1.133 +      _level(graph,0),
   1.134 +      _items(_max_level),
   1.135 +      _first(_max_level+2),
   1.136 +      _last_active(_max_level+2),
   1.137 +      _highest_active(-1)
   1.138 +    {
   1.139 +    }
   1.140 +
   1.141 +    ///Activate item \c i.
   1.142 +
   1.143 +    ///Activate item \c i.
   1.144 +    ///\pre Item \c i shouldn't be active before.
   1.145 +    void activate(Item i)
   1.146 +    {
   1.147 +      const int l=_level[i];
   1.148 +      swap(_where[i],++_last_active[l]);
   1.149 +      if(l>_highest_active) _highest_active=l;
   1.150 +    }
   1.151 +
   1.152 +    ///Deactivate item \c i.
   1.153 +
   1.154 +    ///Deactivate item \c i.
   1.155 +    ///\pre Item \c i must be active before.
   1.156 +    void deactivate(Item i)
   1.157 +    {
   1.158 +      swap(_where[i],_last_active[_level[i]]--);
   1.159 +      while(_highest_active>=0 &&
   1.160 +            _last_active[_highest_active]<_first[_highest_active])
   1.161 +        _highest_active--;
   1.162 +    }
   1.163 +
   1.164 +    ///Query whether item \c i is active
   1.165 +    bool active(Item i) const { return _where[i]<=_last_active[_level[i]]; }
   1.166 +
   1.167 +    ///Return the level of item \c i.
   1.168 +    int operator[](Item i) const { return _level[i]; }
   1.169 +
   1.170 +    ///Return the number of items on level \c l.
   1.171 +    int onLevel(int l) const
   1.172 +    {
   1.173 +      return _first[l+1]-_first[l];
   1.174 +    }
   1.175 +    ///Return true if level \c l is empty.
   1.176 +    bool emptyLevel(int l) const
   1.177 +    {
   1.178 +      return _first[l+1]-_first[l]==0;
   1.179 +    }
   1.180 +    ///Return the number of items above level \c l.
   1.181 +    int aboveLevel(int l) const
   1.182 +    {
   1.183 +      return _first[_max_level+1]-_first[l+1];
   1.184 +    }
   1.185 +    ///Return the number of active items on level \c l.
   1.186 +    int activesOnLevel(int l) const
   1.187 +    {
   1.188 +      return _last_active[l]-_first[l]+1;
   1.189 +    }
   1.190 +    ///Return true if there is no active item on level \c l.
   1.191 +    bool activeFree(int l) const
   1.192 +    {
   1.193 +      return _last_active[l]<_first[l];
   1.194 +    }
   1.195 +    ///Return the maximum allowed level.
   1.196 +    int maxLevel() const
   1.197 +    {
   1.198 +      return _max_level;
   1.199 +    }
   1.200 +
   1.201 +    ///\name Highest Active Item
   1.202 +    ///Functions for working with the highest level
   1.203 +    ///active item.
   1.204 +
   1.205 +    ///@{
   1.206 +
   1.207 +    ///Return a highest level active item.
   1.208 +
   1.209 +    ///Return a highest level active item or INVALID if there is no active
   1.210 +    ///item.
   1.211 +    Item highestActive() const
   1.212 +    {
   1.213 +      return _highest_active>=0?*_last_active[_highest_active]:INVALID;
   1.214 +    }
   1.215 +
   1.216 +    ///Return the highest active level.
   1.217 +
   1.218 +    ///Return the level of the highest active item or -1 if there is no active
   1.219 +    ///item.
   1.220 +    int highestActiveLevel() const
   1.221 +    {
   1.222 +      return _highest_active;
   1.223 +    }
   1.224 +
   1.225 +    ///Lift the highest active item by one.
   1.226 +
   1.227 +    ///Lift the item returned by highestActive() by one.
   1.228 +    ///
   1.229 +    void liftHighestActive()
   1.230 +    {
   1.231 +      Item it = *_last_active[_highest_active];
   1.232 +      ++_level[it];
   1.233 +      swap(_last_active[_highest_active]--,_last_active[_highest_active+1]);
   1.234 +      --_first[++_highest_active];
   1.235 +    }
   1.236 +
   1.237 +    ///Lift the highest active item to the given level.
   1.238 +
   1.239 +    ///Lift the item returned by highestActive() to level \c new_level.
   1.240 +    ///
   1.241 +    ///\warning \c new_level must be strictly higher
   1.242 +    ///than the current level.
   1.243 +    ///
   1.244 +    void liftHighestActive(int new_level)
   1.245 +    {
   1.246 +      const Item li = *_last_active[_highest_active];
   1.247 +
   1.248 +      copy(--_first[_highest_active+1],_last_active[_highest_active]--);
   1.249 +      for(int l=_highest_active+1;l<new_level;l++)
   1.250 +        {
   1.251 +          copy(--_first[l+1],_first[l]);
   1.252 +          --_last_active[l];
   1.253 +        }
   1.254 +      copy(li,_first[new_level]);
   1.255 +      _level[li] = new_level;
   1.256 +      _highest_active=new_level;
   1.257 +    }
   1.258 +
   1.259 +    ///Lift the highest active item to the top level.
   1.260 +
   1.261 +    ///Lift the item returned by highestActive() to the top level and
   1.262 +    ///deactivate it.
   1.263 +    void liftHighestActiveToTop()
   1.264 +    {
   1.265 +      const Item li = *_last_active[_highest_active];
   1.266 +
   1.267 +      copy(--_first[_highest_active+1],_last_active[_highest_active]--);
   1.268 +      for(int l=_highest_active+1;l<_max_level;l++)
   1.269 +        {
   1.270 +          copy(--_first[l+1],_first[l]);
   1.271 +          --_last_active[l];
   1.272 +        }
   1.273 +      copy(li,_first[_max_level]);
   1.274 +      --_last_active[_max_level];
   1.275 +      _level[li] = _max_level;
   1.276 +
   1.277 +      while(_highest_active>=0 &&
   1.278 +            _last_active[_highest_active]<_first[_highest_active])
   1.279 +        _highest_active--;
   1.280 +    }
   1.281 +
   1.282 +    ///@}
   1.283 +
   1.284 +    ///\name Active Item on Certain Level
   1.285 +    ///Functions for working with the active items.
   1.286 +
   1.287 +    ///@{
   1.288 +
   1.289 +    ///Return an active item on level \c l.
   1.290 +
   1.291 +    ///Return an active item on level \c l or \ref INVALID if there is no such
   1.292 +    ///an item. (\c l must be from the range [0...\c max_level].
   1.293 +    Item activeOn(int l) const
   1.294 +    {
   1.295 +      return _last_active[l]>=_first[l]?*_last_active[l]:INVALID;
   1.296 +    }
   1.297 +
   1.298 +    ///Lift the active item returned by \c activeOn(level) by one.
   1.299 +
   1.300 +    ///Lift the active item returned by \ref activeOn() "activeOn(level)"
   1.301 +    ///by one.
   1.302 +    Item liftActiveOn(int level)
   1.303 +    {
   1.304 +      Item it =*_last_active[level];
   1.305 +      ++_level[it];
   1.306 +      swap(_last_active[level]--, --_first[level+1]);
   1.307 +      if (level+1>_highest_active) ++_highest_active;
   1.308 +    }
   1.309 +
   1.310 +    ///Lift the active item returned by \c activeOn(level) to the given level.
   1.311 +
   1.312 +    ///Lift the active item returned by \ref activeOn() "activeOn(level)"
   1.313 +    ///to the given level.
   1.314 +    void liftActiveOn(int level, int new_level)
   1.315 +    {
   1.316 +      const Item ai = *_last_active[level];
   1.317 +
   1.318 +      copy(--_first[level+1], _last_active[level]--);
   1.319 +      for(int l=level+1;l<new_level;l++)
   1.320 +        {
   1.321 +          copy(_last_active[l],_first[l]);
   1.322 +          copy(--_first[l+1], _last_active[l]--);
   1.323 +        }
   1.324 +      copy(ai,_first[new_level]);
   1.325 +      _level[ai] = new_level;
   1.326 +      if (new_level>_highest_active) _highest_active=new_level;
   1.327 +    }
   1.328 +
   1.329 +    ///Lift the active item returned by \c activeOn(level) to the top level.
   1.330 +
   1.331 +    ///Lift the active item returned by \ref activeOn() "activeOn(level)"
   1.332 +    ///to the top level and deactivate it.
   1.333 +    void liftActiveToTop(int level)
   1.334 +    {
   1.335 +      const Item ai = *_last_active[level];
   1.336 +
   1.337 +      copy(--_first[level+1],_last_active[level]--);
   1.338 +      for(int l=level+1;l<_max_level;l++)
   1.339 +        {
   1.340 +          copy(_last_active[l],_first[l]);
   1.341 +          copy(--_first[l+1], _last_active[l]--);
   1.342 +        }
   1.343 +      copy(ai,_first[_max_level]);
   1.344 +      --_last_active[_max_level];
   1.345 +      _level[ai] = _max_level;
   1.346 +
   1.347 +      if (_highest_active==level) {
   1.348 +        while(_highest_active>=0 &&
   1.349 +              _last_active[_highest_active]<_first[_highest_active])
   1.350 +          _highest_active--;
   1.351 +      }
   1.352 +    }
   1.353 +
   1.354 +    ///@}
   1.355 +
   1.356 +    ///Lift an active item to a higher level.
   1.357 +
   1.358 +    ///Lift an active item to a higher level.
   1.359 +    ///\param i The item to be lifted. It must be active.
   1.360 +    ///\param new_level The new level of \c i. It must be strictly higher
   1.361 +    ///than the current level.
   1.362 +    ///
   1.363 +    void lift(Item i, int new_level)
   1.364 +    {
   1.365 +      const int lo = _level[i];
   1.366 +      const Vit w = _where[i];
   1.367 +
   1.368 +      copy(_last_active[lo],w);
   1.369 +      copy(--_first[lo+1],_last_active[lo]--);
   1.370 +      for(int l=lo+1;l<new_level;l++)
   1.371 +        {
   1.372 +          copy(_last_active[l],_first[l]);
   1.373 +          copy(--_first[l+1],_last_active[l]--);
   1.374 +        }
   1.375 +      copy(i,_first[new_level]);
   1.376 +      _level[i] = new_level;
   1.377 +      if(new_level>_highest_active) _highest_active=new_level;
   1.378 +    }
   1.379 +
   1.380 +    ///Move an inactive item to the top but one level (in a dirty way).
   1.381 +
   1.382 +    ///This function moves an inactive item from the top level to the top
   1.383 +    ///but one level (in a dirty way).
   1.384 +    ///\warning It makes the underlying datastructure corrupt, so use it
   1.385 +    ///only if you really know what it is for.
   1.386 +    ///\pre The item is on the top level.
   1.387 +    void dirtyTopButOne(Item i) {
   1.388 +      _level[i] = _max_level - 1;
   1.389 +    }
   1.390 +
   1.391 +    ///Lift all items on and above the given level to the top level.
   1.392 +
   1.393 +    ///This function lifts all items on and above level \c l to the top
   1.394 +    ///level and deactivates them.
   1.395 +    void liftToTop(int l)
   1.396 +    {
   1.397 +      const Vit f=_first[l];
   1.398 +      const Vit tl=_first[_max_level];
   1.399 +      for(Vit i=f;i!=tl;++i)
   1.400 +        _level[*i] = _max_level;
   1.401 +      for(int i=l;i<=_max_level;i++)
   1.402 +        {
   1.403 +          _first[i]=f;
   1.404 +          _last_active[i]=f-1;
   1.405 +        }
   1.406 +      for(_highest_active=l-1;
   1.407 +          _highest_active>=0 &&
   1.408 +            _last_active[_highest_active]<_first[_highest_active];
   1.409 +          _highest_active--) ;
   1.410 +    }
   1.411 +
   1.412 +  private:
   1.413 +    int _init_lev;
   1.414 +    Vit _init_num;
   1.415 +
   1.416 +  public:
   1.417 +
   1.418 +    ///\name Initialization
   1.419 +    ///Using these functions you can initialize the levels of the items.
   1.420 +    ///\n
   1.421 +    ///The initialization must be started with calling \c initStart().
   1.422 +    ///Then the items should be listed level by level starting with the
   1.423 +    ///lowest one (level 0) using \c initAddItem() and \c initNewLevel().
   1.424 +    ///Finally \c initFinish() must be called.
   1.425 +    ///The items not listed are put on the highest level.
   1.426 +    ///@{
   1.427 +
   1.428 +    ///Start the initialization process.
   1.429 +    void initStart()
   1.430 +    {
   1.431 +      _init_lev=0;
   1.432 +      _init_num=&_items[0];
   1.433 +      _first[0]=&_items[0];
   1.434 +      _last_active[0]=&_items[0]-1;
   1.435 +      Vit n=&_items[0];
   1.436 +      for(typename ItemSetTraits<GR,Item>::ItemIt i(_g);i!=INVALID;++i)
   1.437 +        {
   1.438 +          *n=i;
   1.439 +          _where[i] = n;
   1.440 +          _level[i] = _max_level;
   1.441 +          ++n;
   1.442 +        }
   1.443 +    }
   1.444 +
   1.445 +    ///Add an item to the current level.
   1.446 +    void initAddItem(Item i)
   1.447 +    {
   1.448 +      swap(_where[i],_init_num);
   1.449 +      _level[i] = _init_lev;
   1.450 +      ++_init_num;
   1.451 +    }
   1.452 +
   1.453 +    ///Start a new level.
   1.454 +
   1.455 +    ///Start a new level.
   1.456 +    ///It shouldn't be used before the items on level 0 are listed.
   1.457 +    void initNewLevel()
   1.458 +    {
   1.459 +      _init_lev++;
   1.460 +      _first[_init_lev]=_init_num;
   1.461 +      _last_active[_init_lev]=_init_num-1;
   1.462 +    }
   1.463 +
   1.464 +    ///Finalize the initialization process.
   1.465 +    void initFinish()
   1.466 +    {
   1.467 +      for(_init_lev++;_init_lev<=_max_level;_init_lev++)
   1.468 +        {
   1.469 +          _first[_init_lev]=_init_num;
   1.470 +          _last_active[_init_lev]=_init_num-1;
   1.471 +        }
   1.472 +      _first[_max_level+1]=&_items[0]+_item_num;
   1.473 +      _last_active[_max_level+1]=&_items[0]+_item_num-1;
   1.474 +      _highest_active = -1;
   1.475 +    }
   1.476 +
   1.477 +    ///@}
   1.478 +
   1.479 +  };
   1.480 +
   1.481 +  ///Class for handling "labels" in push-relabel type algorithms.
   1.482 +
   1.483 +  ///A class for handling "labels" in push-relabel type algorithms.
   1.484 +  ///
   1.485 +  ///\ingroup auxdat
   1.486 +  ///Using this class you can assign "labels" (nonnegative integer numbers)
   1.487 +  ///to the edges or nodes of a graph, manipulate and query them through
   1.488 +  ///operations typically arising in "push-relabel" type algorithms.
   1.489 +  ///
   1.490 +  ///Each item is either \em active or not, and you can also choose a
   1.491 +  ///highest level active item.
   1.492 +  ///
   1.493 +  ///\sa Elevator
   1.494 +  ///
   1.495 +  ///\param GR Type of the underlying graph.
   1.496 +  ///\param Item Type of the items the data is assigned to (\c GR::Node,
   1.497 +  ///\c GR::Arc or \c GR::Edge).
   1.498 +  template <class GR, class Item>
   1.499 +  class LinkedElevator {
   1.500 +  public:
   1.501 +
   1.502 +    typedef Item Key;
   1.503 +    typedef int Value;
   1.504 +
   1.505 +  private:
   1.506 +
   1.507 +    typedef typename ItemSetTraits<GR,Item>::
   1.508 +    template Map<Item>::Type ItemMap;
   1.509 +    typedef typename ItemSetTraits<GR,Item>::
   1.510 +    template Map<int>::Type IntMap;
   1.511 +    typedef typename ItemSetTraits<GR,Item>::
   1.512 +    template Map<bool>::Type BoolMap;
   1.513 +
   1.514 +    const GR &_graph;
   1.515 +    int _max_level;
   1.516 +    int _item_num;
   1.517 +    std::vector<Item> _first, _last;
   1.518 +    ItemMap _prev, _next;
   1.519 +    int _highest_active;
   1.520 +    IntMap _level;
   1.521 +    BoolMap _active;
   1.522 +
   1.523 +  public:
   1.524 +    ///Constructor with given maximum level.
   1.525 +
   1.526 +    ///Constructor with given maximum level.
   1.527 +    ///
   1.528 +    ///\param graph The underlying graph.
   1.529 +    ///\param max_level The maximum allowed level.
   1.530 +    ///Set the range of the possible labels to <tt>[0..max_level]</tt>.
   1.531 +    LinkedElevator(const GR& graph, int max_level)
   1.532 +      : _graph(graph), _max_level(max_level), _item_num(_max_level),
   1.533 +        _first(_max_level + 1), _last(_max_level + 1),
   1.534 +        _prev(graph), _next(graph),
   1.535 +        _highest_active(-1), _level(graph), _active(graph) {}
   1.536 +
   1.537 +    ///Constructor.
   1.538 +
   1.539 +    ///Constructor.
   1.540 +    ///
   1.541 +    ///\param graph The underlying graph.
   1.542 +    ///Set the range of the possible labels to <tt>[0..max_level]</tt>,
   1.543 +    ///where \c max_level is equal to the number of labeled items in the graph.
   1.544 +    LinkedElevator(const GR& graph)
   1.545 +      : _graph(graph), _max_level(countItems<GR, Item>(graph)),
   1.546 +        _item_num(_max_level),
   1.547 +        _first(_max_level + 1), _last(_max_level + 1),
   1.548 +        _prev(graph, INVALID), _next(graph, INVALID),
   1.549 +        _highest_active(-1), _level(graph), _active(graph) {}
   1.550 +
   1.551 +
   1.552 +    ///Activate item \c i.
   1.553 +
   1.554 +    ///Activate item \c i.
   1.555 +    ///\pre Item \c i shouldn't be active before.
   1.556 +    void activate(Item i) {
   1.557 +      _active[i] = true;
   1.558 +
   1.559 +      int level = _level[i];
   1.560 +      if (level > _highest_active) {
   1.561 +        _highest_active = level;
   1.562 +      }
   1.563 +
   1.564 +      if (_prev[i] == INVALID || _active[_prev[i]]) return;
   1.565 +      //unlace
   1.566 +      _next[_prev[i]] = _next[i];
   1.567 +      if (_next[i] != INVALID) {
   1.568 +        _prev[_next[i]] = _prev[i];
   1.569 +      } else {
   1.570 +        _last[level] = _prev[i];
   1.571 +      }
   1.572 +      //lace
   1.573 +      _next[i] = _first[level];
   1.574 +      _prev[_first[level]] = i;
   1.575 +      _prev[i] = INVALID;
   1.576 +      _first[level] = i;
   1.577 +
   1.578 +    }
   1.579 +
   1.580 +    ///Deactivate item \c i.
   1.581 +
   1.582 +    ///Deactivate item \c i.
   1.583 +    ///\pre Item \c i must be active before.
   1.584 +    void deactivate(Item i) {
   1.585 +      _active[i] = false;
   1.586 +      int level = _level[i];
   1.587 +
   1.588 +      if (_next[i] == INVALID || !_active[_next[i]])
   1.589 +        goto find_highest_level;
   1.590 +
   1.591 +      //unlace
   1.592 +      _prev[_next[i]] = _prev[i];
   1.593 +      if (_prev[i] != INVALID) {
   1.594 +        _next[_prev[i]] = _next[i];
   1.595 +      } else {
   1.596 +        _first[_level[i]] = _next[i];
   1.597 +      }
   1.598 +      //lace
   1.599 +      _prev[i] = _last[level];
   1.600 +      _next[_last[level]] = i;
   1.601 +      _next[i] = INVALID;
   1.602 +      _last[level] = i;
   1.603 +
   1.604 +    find_highest_level:
   1.605 +      if (level == _highest_active) {
   1.606 +        while (_highest_active >= 0 && activeFree(_highest_active))
   1.607 +          --_highest_active;
   1.608 +      }
   1.609 +    }
   1.610 +
   1.611 +    ///Query whether item \c i is active
   1.612 +    bool active(Item i) const { return _active[i]; }
   1.613 +
   1.614 +    ///Return the level of item \c i.
   1.615 +    int operator[](Item i) const { return _level[i]; }
   1.616 +
   1.617 +    ///Return the number of items on level \c l.
   1.618 +    int onLevel(int l) const {
   1.619 +      int num = 0;
   1.620 +      Item n = _first[l];
   1.621 +      while (n != INVALID) {
   1.622 +        ++num;
   1.623 +        n = _next[n];
   1.624 +      }
   1.625 +      return num;
   1.626 +    }
   1.627 +
   1.628 +    ///Return true if the level is empty.
   1.629 +    bool emptyLevel(int l) const {
   1.630 +      return _first[l] == INVALID;
   1.631 +    }
   1.632 +
   1.633 +    ///Return the number of items above level \c l.
   1.634 +    int aboveLevel(int l) const {
   1.635 +      int num = 0;
   1.636 +      for (int level = l + 1; level < _max_level; ++level)
   1.637 +        num += onLevel(level);
   1.638 +      return num;
   1.639 +    }
   1.640 +
   1.641 +    ///Return the number of active items on level \c l.
   1.642 +    int activesOnLevel(int l) const {
   1.643 +      int num = 0;
   1.644 +      Item n = _first[l];
   1.645 +      while (n != INVALID && _active[n]) {
   1.646 +        ++num;
   1.647 +        n = _next[n];
   1.648 +      }
   1.649 +      return num;
   1.650 +    }
   1.651 +
   1.652 +    ///Return true if there is no active item on level \c l.
   1.653 +    bool activeFree(int l) const {
   1.654 +      return _first[l] == INVALID || !_active[_first[l]];
   1.655 +    }
   1.656 +
   1.657 +    ///Return the maximum allowed level.
   1.658 +    int maxLevel() const {
   1.659 +      return _max_level;
   1.660 +    }
   1.661 +
   1.662 +    ///\name Highest Active Item
   1.663 +    ///Functions for working with the highest level
   1.664 +    ///active item.
   1.665 +
   1.666 +    ///@{
   1.667 +
   1.668 +    ///Return a highest level active item.
   1.669 +
   1.670 +    ///Return a highest level active item or INVALID if there is no active
   1.671 +    ///item.
   1.672 +    Item highestActive() const {
   1.673 +      return _highest_active >= 0 ? _first[_highest_active] : INVALID;
   1.674 +    }
   1.675 +
   1.676 +    ///Return the highest active level.
   1.677 +
   1.678 +    ///Return the level of the highest active item or -1 if there is no active
   1.679 +    ///item.
   1.680 +    int highestActiveLevel() const {
   1.681 +      return _highest_active;
   1.682 +    }
   1.683 +
   1.684 +    ///Lift the highest active item by one.
   1.685 +
   1.686 +    ///Lift the item returned by highestActive() by one.
   1.687 +    ///
   1.688 +    void liftHighestActive() {
   1.689 +      Item i = _first[_highest_active];
   1.690 +      if (_next[i] != INVALID) {
   1.691 +        _prev[_next[i]] = INVALID;
   1.692 +        _first[_highest_active] = _next[i];
   1.693 +      } else {
   1.694 +        _first[_highest_active] = INVALID;
   1.695 +        _last[_highest_active] = INVALID;
   1.696 +      }
   1.697 +      _level[i] = ++_highest_active;
   1.698 +      if (_first[_highest_active] == INVALID) {
   1.699 +        _first[_highest_active] = i;
   1.700 +        _last[_highest_active] = i;
   1.701 +        _prev[i] = INVALID;
   1.702 +        _next[i] = INVALID;
   1.703 +      } else {
   1.704 +        _prev[_first[_highest_active]] = i;
   1.705 +        _next[i] = _first[_highest_active];
   1.706 +        _first[_highest_active] = i;
   1.707 +      }
   1.708 +    }
   1.709 +
   1.710 +    ///Lift the highest active item to the given level.
   1.711 +
   1.712 +    ///Lift the item returned by highestActive() to level \c new_level.
   1.713 +    ///
   1.714 +    ///\warning \c new_level must be strictly higher
   1.715 +    ///than the current level.
   1.716 +    ///
   1.717 +    void liftHighestActive(int new_level) {
   1.718 +      Item i = _first[_highest_active];
   1.719 +      if (_next[i] != INVALID) {
   1.720 +        _prev[_next[i]] = INVALID;
   1.721 +        _first[_highest_active] = _next[i];
   1.722 +      } else {
   1.723 +        _first[_highest_active] = INVALID;
   1.724 +        _last[_highest_active] = INVALID;
   1.725 +      }
   1.726 +      _level[i] = _highest_active = new_level;
   1.727 +      if (_first[_highest_active] == INVALID) {
   1.728 +        _first[_highest_active] = _last[_highest_active] = i;
   1.729 +        _prev[i] = INVALID;
   1.730 +        _next[i] = INVALID;
   1.731 +      } else {
   1.732 +        _prev[_first[_highest_active]] = i;
   1.733 +        _next[i] = _first[_highest_active];
   1.734 +        _first[_highest_active] = i;
   1.735 +      }
   1.736 +    }
   1.737 +
   1.738 +    ///Lift the highest active item to the top level.
   1.739 +
   1.740 +    ///Lift the item returned by highestActive() to the top level and
   1.741 +    ///deactivate it.
   1.742 +    void liftHighestActiveToTop() {
   1.743 +      Item i = _first[_highest_active];
   1.744 +      _level[i] = _max_level;
   1.745 +      if (_next[i] != INVALID) {
   1.746 +        _prev[_next[i]] = INVALID;
   1.747 +        _first[_highest_active] = _next[i];
   1.748 +      } else {
   1.749 +        _first[_highest_active] = INVALID;
   1.750 +        _last[_highest_active] = INVALID;
   1.751 +      }
   1.752 +      while (_highest_active >= 0 && activeFree(_highest_active))
   1.753 +        --_highest_active;
   1.754 +    }
   1.755 +
   1.756 +    ///@}
   1.757 +
   1.758 +    ///\name Active Item on Certain Level
   1.759 +    ///Functions for working with the active items.
   1.760 +
   1.761 +    ///@{
   1.762 +
   1.763 +    ///Return an active item on level \c l.
   1.764 +
   1.765 +    ///Return an active item on level \c l or \ref INVALID if there is no such
   1.766 +    ///an item. (\c l must be from the range [0...\c max_level].
   1.767 +    Item activeOn(int l) const
   1.768 +    {
   1.769 +      return _active[_first[l]] ? _first[l] : INVALID;
   1.770 +    }
   1.771 +
   1.772 +    ///Lift the active item returned by \c activeOn(l) by one.
   1.773 +
   1.774 +    ///Lift the active item returned by \ref activeOn() "activeOn(l)"
   1.775 +    ///by one.
   1.776 +    Item liftActiveOn(int l)
   1.777 +    {
   1.778 +      Item i = _first[l];
   1.779 +      if (_next[i] != INVALID) {
   1.780 +        _prev[_next[i]] = INVALID;
   1.781 +        _first[l] = _next[i];
   1.782 +      } else {
   1.783 +        _first[l] = INVALID;
   1.784 +        _last[l] = INVALID;
   1.785 +      }
   1.786 +      _level[i] = ++l;
   1.787 +      if (_first[l] == INVALID) {
   1.788 +        _first[l] = _last[l] = i;
   1.789 +        _prev[i] = INVALID;
   1.790 +        _next[i] = INVALID;
   1.791 +      } else {
   1.792 +        _prev[_first[l]] = i;
   1.793 +        _next[i] = _first[l];
   1.794 +        _first[l] = i;
   1.795 +      }
   1.796 +      if (_highest_active < l) {
   1.797 +        _highest_active = l;
   1.798 +      }
   1.799 +    }
   1.800 +
   1.801 +    ///Lift the active item returned by \c activeOn(l) to the given level.
   1.802 +
   1.803 +    ///Lift the active item returned by \ref activeOn() "activeOn(l)"
   1.804 +    ///to the given level.
   1.805 +    void liftActiveOn(int l, int new_level)
   1.806 +    {
   1.807 +      Item i = _first[l];
   1.808 +      if (_next[i] != INVALID) {
   1.809 +        _prev[_next[i]] = INVALID;
   1.810 +        _first[l] = _next[i];
   1.811 +      } else {
   1.812 +        _first[l] = INVALID;
   1.813 +        _last[l] = INVALID;
   1.814 +      }
   1.815 +      _level[i] = l = new_level;
   1.816 +      if (_first[l] == INVALID) {
   1.817 +        _first[l] = _last[l] = i;
   1.818 +        _prev[i] = INVALID;
   1.819 +        _next[i] = INVALID;
   1.820 +      } else {
   1.821 +        _prev[_first[l]] = i;
   1.822 +        _next[i] = _first[l];
   1.823 +        _first[l] = i;
   1.824 +      }
   1.825 +      if (_highest_active < l) {
   1.826 +        _highest_active = l;
   1.827 +      }
   1.828 +    }
   1.829 +
   1.830 +    ///Lift the active item returned by \c activeOn(l) to the top level.
   1.831 +
   1.832 +    ///Lift the active item returned by \ref activeOn() "activeOn(l)"
   1.833 +    ///to the top level and deactivate it.
   1.834 +    void liftActiveToTop(int l)
   1.835 +    {
   1.836 +      Item i = _first[l];
   1.837 +      if (_next[i] != INVALID) {
   1.838 +        _prev[_next[i]] = INVALID;
   1.839 +        _first[l] = _next[i];
   1.840 +      } else {
   1.841 +        _first[l] = INVALID;
   1.842 +        _last[l] = INVALID;
   1.843 +      }
   1.844 +      _level[i] = _max_level;
   1.845 +      if (l == _highest_active) {
   1.846 +        while (_highest_active >= 0 && activeFree(_highest_active))
   1.847 +          --_highest_active;
   1.848 +      }
   1.849 +    }
   1.850 +
   1.851 +    ///@}
   1.852 +
   1.853 +    /// \brief Lift an active item to a higher level.
   1.854 +    ///
   1.855 +    /// Lift an active item to a higher level.
   1.856 +    /// \param i The item to be lifted. It must be active.
   1.857 +    /// \param new_level The new level of \c i. It must be strictly higher
   1.858 +    /// than the current level.
   1.859 +    ///
   1.860 +    void lift(Item i, int new_level) {
   1.861 +      if (_next[i] != INVALID) {
   1.862 +        _prev[_next[i]] = _prev[i];
   1.863 +      } else {
   1.864 +        _last[new_level] = _prev[i];
   1.865 +      }
   1.866 +      if (_prev[i] != INVALID) {
   1.867 +        _next[_prev[i]] = _next[i];
   1.868 +      } else {
   1.869 +        _first[new_level] = _next[i];
   1.870 +      }
   1.871 +      _level[i] = new_level;
   1.872 +      if (_first[new_level] == INVALID) {
   1.873 +        _first[new_level] = _last[new_level] = i;
   1.874 +        _prev[i] = INVALID;
   1.875 +        _next[i] = INVALID;
   1.876 +      } else {
   1.877 +        _prev[_first[new_level]] = i;
   1.878 +        _next[i] = _first[new_level];
   1.879 +        _first[new_level] = i;
   1.880 +      }
   1.881 +      if (_highest_active < new_level) {
   1.882 +        _highest_active = new_level;
   1.883 +      }
   1.884 +    }
   1.885 +
   1.886 +    ///Move an inactive item to the top but one level (in a dirty way).
   1.887 +
   1.888 +    ///This function moves an inactive item from the top level to the top
   1.889 +    ///but one level (in a dirty way).
   1.890 +    ///\warning It makes the underlying datastructure corrupt, so use it
   1.891 +    ///only if you really know what it is for.
   1.892 +    ///\pre The item is on the top level.
   1.893 +    void dirtyTopButOne(Item i) {
   1.894 +      _level[i] = _max_level - 1;
   1.895 +    }
   1.896 +
   1.897 +    ///Lift all items on and above the given level to the top level.
   1.898 +
   1.899 +    ///This function lifts all items on and above level \c l to the top
   1.900 +    ///level and deactivates them.
   1.901 +    void liftToTop(int l)  {
   1.902 +      for (int i = l + 1; _first[i] != INVALID; ++i) {
   1.903 +        Item n = _first[i];
   1.904 +        while (n != INVALID) {
   1.905 +          _level[n] = _max_level;
   1.906 +          n = _next[n];
   1.907 +        }
   1.908 +        _first[i] = INVALID;
   1.909 +        _last[i] = INVALID;
   1.910 +      }
   1.911 +      if (_highest_active > l - 1) {
   1.912 +        _highest_active = l - 1;
   1.913 +        while (_highest_active >= 0 && activeFree(_highest_active))
   1.914 +          --_highest_active;
   1.915 +      }
   1.916 +    }
   1.917 +
   1.918 +  private:
   1.919 +
   1.920 +    int _init_level;
   1.921 +
   1.922 +  public:
   1.923 +
   1.924 +    ///\name Initialization
   1.925 +    ///Using these functions you can initialize the levels of the items.
   1.926 +    ///\n
   1.927 +    ///The initialization must be started with calling \c initStart().
   1.928 +    ///Then the items should be listed level by level starting with the
   1.929 +    ///lowest one (level 0) using \c initAddItem() and \c initNewLevel().
   1.930 +    ///Finally \c initFinish() must be called.
   1.931 +    ///The items not listed are put on the highest level.
   1.932 +    ///@{
   1.933 +
   1.934 +    ///Start the initialization process.
   1.935 +    void initStart() {
   1.936 +
   1.937 +      for (int i = 0; i <= _max_level; ++i) {
   1.938 +        _first[i] = _last[i] = INVALID;
   1.939 +      }
   1.940 +      _init_level = 0;
   1.941 +      for(typename ItemSetTraits<GR,Item>::ItemIt i(_graph);
   1.942 +          i != INVALID; ++i) {
   1.943 +        _level[i] = _max_level;
   1.944 +        _active[i] = false;
   1.945 +      }
   1.946 +    }
   1.947 +
   1.948 +    ///Add an item to the current level.
   1.949 +    void initAddItem(Item i) {
   1.950 +      _level[i] = _init_level;
   1.951 +      if (_last[_init_level] == INVALID) {
   1.952 +        _first[_init_level] = i;
   1.953 +        _last[_init_level] = i;
   1.954 +        _prev[i] = INVALID;
   1.955 +        _next[i] = INVALID;
   1.956 +      } else {
   1.957 +        _prev[i] = _last[_init_level];
   1.958 +        _next[i] = INVALID;
   1.959 +        _next[_last[_init_level]] = i;
   1.960 +        _last[_init_level] = i;
   1.961 +      }
   1.962 +    }
   1.963 +
   1.964 +    ///Start a new level.
   1.965 +
   1.966 +    ///Start a new level.
   1.967 +    ///It shouldn't be used before the items on level 0 are listed.
   1.968 +    void initNewLevel() {
   1.969 +      ++_init_level;
   1.970 +    }
   1.971 +
   1.972 +    ///Finalize the initialization process.
   1.973 +    void initFinish() {
   1.974 +      _highest_active = -1;
   1.975 +    }
   1.976 +
   1.977 +    ///@}
   1.978 +
   1.979 +  };
   1.980 +
   1.981 +
   1.982 +} //END OF NAMESPACE LEMON
   1.983 +
   1.984 +#endif
   1.985 +