test/min_cost_flow_test.cc
changeset 611 85cb3aa71cce
parent 607 9ad8d2122b50
child 615 e3d9bff447ed
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/test/min_cost_flow_test.cc	Tue Apr 21 15:18:54 2009 +0100
     1.3 @@ -0,0 +1,339 @@
     1.4 +/* -*- mode: C++; indent-tabs-mode: nil; -*-
     1.5 + *
     1.6 + * This file is a part of LEMON, a generic C++ optimization library.
     1.7 + *
     1.8 + * Copyright (C) 2003-2009
     1.9 + * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
    1.10 + * (Egervary Research Group on Combinatorial Optimization, EGRES).
    1.11 + *
    1.12 + * Permission to use, modify and distribute this software is granted
    1.13 + * provided that this copyright notice appears in all copies. For
    1.14 + * precise terms see the accompanying LICENSE file.
    1.15 + *
    1.16 + * This software is provided "AS IS" with no warranty of any kind,
    1.17 + * express or implied, and with no claim as to its suitability for any
    1.18 + * purpose.
    1.19 + *
    1.20 + */
    1.21 +
    1.22 +#include <iostream>
    1.23 +#include <fstream>
    1.24 +
    1.25 +#include <lemon/list_graph.h>
    1.26 +#include <lemon/lgf_reader.h>
    1.27 +
    1.28 +#include <lemon/network_simplex.h>
    1.29 +
    1.30 +#include <lemon/concepts/digraph.h>
    1.31 +#include <lemon/concept_check.h>
    1.32 +
    1.33 +#include "test_tools.h"
    1.34 +
    1.35 +using namespace lemon;
    1.36 +
    1.37 +char test_lgf[] =
    1.38 +  "@nodes\n"
    1.39 +  "label  sup1 sup2 sup3 sup4 sup5\n"
    1.40 +  "    1    20   27    0   20   30\n"
    1.41 +  "    2    -4    0    0   -8   -3\n"
    1.42 +  "    3     0    0    0    0    0\n"
    1.43 +  "    4     0    0    0    0    0\n"
    1.44 +  "    5     9    0    0    6   11\n"
    1.45 +  "    6    -6    0    0   -5   -6\n"
    1.46 +  "    7     0    0    0    0    0\n"
    1.47 +  "    8     0    0    0    0    3\n"
    1.48 +  "    9     3    0    0    0    0\n"
    1.49 +  "   10    -2    0    0   -7   -2\n"
    1.50 +  "   11     0    0    0  -10    0\n"
    1.51 +  "   12   -20  -27    0  -30  -20\n"
    1.52 +  "\n"
    1.53 +  "@arcs\n"
    1.54 +  "       cost  cap low1 low2\n"
    1.55 +  " 1  2    70   11    0    8\n"
    1.56 +  " 1  3   150    3    0    1\n"
    1.57 +  " 1  4    80   15    0    2\n"
    1.58 +  " 2  8    80   12    0    0\n"
    1.59 +  " 3  5   140    5    0    3\n"
    1.60 +  " 4  6    60   10    0    1\n"
    1.61 +  " 4  7    80    2    0    0\n"
    1.62 +  " 4  8   110    3    0    0\n"
    1.63 +  " 5  7    60   14    0    0\n"
    1.64 +  " 5 11   120   12    0    0\n"
    1.65 +  " 6  3     0    3    0    0\n"
    1.66 +  " 6  9   140    4    0    0\n"
    1.67 +  " 6 10    90    8    0    0\n"
    1.68 +  " 7  1    30    5    0    0\n"
    1.69 +  " 8 12    60   16    0    4\n"
    1.70 +  " 9 12    50    6    0    0\n"
    1.71 +  "10 12    70   13    0    5\n"
    1.72 +  "10  2   100    7    0    0\n"
    1.73 +  "10  7    60   10    0    0\n"
    1.74 +  "11 10    20   14    0    6\n"
    1.75 +  "12 11    30   10    0    0\n"
    1.76 +  "\n"
    1.77 +  "@attributes\n"
    1.78 +  "source 1\n"
    1.79 +  "target 12\n";
    1.80 +
    1.81 +
    1.82 +enum ProblemType {
    1.83 +  EQ,
    1.84 +  GEQ,
    1.85 +  LEQ
    1.86 +};
    1.87 +
    1.88 +// Check the interface of an MCF algorithm
    1.89 +template <typename GR, typename Flow, typename Cost>
    1.90 +class McfClassConcept
    1.91 +{
    1.92 +public:
    1.93 +
    1.94 +  template <typename MCF>
    1.95 +  struct Constraints {
    1.96 +    void constraints() {
    1.97 +      checkConcept<concepts::Digraph, GR>();
    1.98 +
    1.99 +      MCF mcf(g);
   1.100 +
   1.101 +      b = mcf.reset()
   1.102 +             .lowerMap(lower)
   1.103 +             .upperMap(upper)
   1.104 +             .capacityMap(upper)
   1.105 +             .boundMaps(lower, upper)
   1.106 +             .costMap(cost)
   1.107 +             .supplyMap(sup)
   1.108 +             .stSupply(n, n, k)
   1.109 +             .flowMap(flow)
   1.110 +             .potentialMap(pot)
   1.111 +             .run();
   1.112 +      
   1.113 +      const MCF& const_mcf = mcf;
   1.114 +
   1.115 +      const typename MCF::FlowMap &fm = const_mcf.flowMap();
   1.116 +      const typename MCF::PotentialMap &pm = const_mcf.potentialMap();
   1.117 +
   1.118 +      v = const_mcf.totalCost();
   1.119 +      double x = const_mcf.template totalCost<double>();
   1.120 +      v = const_mcf.flow(a);
   1.121 +      v = const_mcf.potential(n);
   1.122 +
   1.123 +      ignore_unused_variable_warning(fm);
   1.124 +      ignore_unused_variable_warning(pm);
   1.125 +      ignore_unused_variable_warning(x);
   1.126 +    }
   1.127 +
   1.128 +    typedef typename GR::Node Node;
   1.129 +    typedef typename GR::Arc Arc;
   1.130 +    typedef concepts::ReadMap<Node, Flow> NM;
   1.131 +    typedef concepts::ReadMap<Arc, Flow> FAM;
   1.132 +    typedef concepts::ReadMap<Arc, Cost> CAM;
   1.133 +
   1.134 +    const GR &g;
   1.135 +    const FAM &lower;
   1.136 +    const FAM &upper;
   1.137 +    const CAM &cost;
   1.138 +    const NM &sup;
   1.139 +    const Node &n;
   1.140 +    const Arc &a;
   1.141 +    const Flow &k;
   1.142 +    Flow v;
   1.143 +    bool b;
   1.144 +
   1.145 +    typename MCF::FlowMap &flow;
   1.146 +    typename MCF::PotentialMap &pot;
   1.147 +  };
   1.148 +
   1.149 +};
   1.150 +
   1.151 +
   1.152 +// Check the feasibility of the given flow (primal soluiton)
   1.153 +template < typename GR, typename LM, typename UM,
   1.154 +           typename SM, typename FM >
   1.155 +bool checkFlow( const GR& gr, const LM& lower, const UM& upper,
   1.156 +                const SM& supply, const FM& flow,
   1.157 +                ProblemType type = EQ )
   1.158 +{
   1.159 +  TEMPLATE_DIGRAPH_TYPEDEFS(GR);
   1.160 +
   1.161 +  for (ArcIt e(gr); e != INVALID; ++e) {
   1.162 +    if (flow[e] < lower[e] || flow[e] > upper[e]) return false;
   1.163 +  }
   1.164 +
   1.165 +  for (NodeIt n(gr); n != INVALID; ++n) {
   1.166 +    typename SM::Value sum = 0;
   1.167 +    for (OutArcIt e(gr, n); e != INVALID; ++e)
   1.168 +      sum += flow[e];
   1.169 +    for (InArcIt e(gr, n); e != INVALID; ++e)
   1.170 +      sum -= flow[e];
   1.171 +    bool b = (type ==  EQ && sum == supply[n]) ||
   1.172 +             (type == GEQ && sum >= supply[n]) ||
   1.173 +             (type == LEQ && sum <= supply[n]);
   1.174 +    if (!b) return false;
   1.175 +  }
   1.176 +
   1.177 +  return true;
   1.178 +}
   1.179 +
   1.180 +// Check the feasibility of the given potentials (dual soluiton)
   1.181 +// using the "Complementary Slackness" optimality condition
   1.182 +template < typename GR, typename LM, typename UM,
   1.183 +           typename CM, typename SM, typename FM, typename PM >
   1.184 +bool checkPotential( const GR& gr, const LM& lower, const UM& upper,
   1.185 +                     const CM& cost, const SM& supply, const FM& flow, 
   1.186 +                     const PM& pi )
   1.187 +{
   1.188 +  TEMPLATE_DIGRAPH_TYPEDEFS(GR);
   1.189 +
   1.190 +  bool opt = true;
   1.191 +  for (ArcIt e(gr); opt && e != INVALID; ++e) {
   1.192 +    typename CM::Value red_cost =
   1.193 +      cost[e] + pi[gr.source(e)] - pi[gr.target(e)];
   1.194 +    opt = red_cost == 0 ||
   1.195 +          (red_cost > 0 && flow[e] == lower[e]) ||
   1.196 +          (red_cost < 0 && flow[e] == upper[e]);
   1.197 +  }
   1.198 +  
   1.199 +  for (NodeIt n(gr); opt && n != INVALID; ++n) {
   1.200 +    typename SM::Value sum = 0;
   1.201 +    for (OutArcIt e(gr, n); e != INVALID; ++e)
   1.202 +      sum += flow[e];
   1.203 +    for (InArcIt e(gr, n); e != INVALID; ++e)
   1.204 +      sum -= flow[e];
   1.205 +    opt = (sum == supply[n]) || (pi[n] == 0);
   1.206 +  }
   1.207 +  
   1.208 +  return opt;
   1.209 +}
   1.210 +
   1.211 +// Run a minimum cost flow algorithm and check the results
   1.212 +template < typename MCF, typename GR,
   1.213 +           typename LM, typename UM,
   1.214 +           typename CM, typename SM >
   1.215 +void checkMcf( const MCF& mcf, bool mcf_result,
   1.216 +               const GR& gr, const LM& lower, const UM& upper,
   1.217 +               const CM& cost, const SM& supply,
   1.218 +               bool result, typename CM::Value total,
   1.219 +               const std::string &test_id = "",
   1.220 +               ProblemType type = EQ )
   1.221 +{
   1.222 +  check(mcf_result == result, "Wrong result " + test_id);
   1.223 +  if (result) {
   1.224 +    check(checkFlow(gr, lower, upper, supply, mcf.flowMap(), type),
   1.225 +          "The flow is not feasible " + test_id);
   1.226 +    check(mcf.totalCost() == total, "The flow is not optimal " + test_id);
   1.227 +    check(checkPotential(gr, lower, upper, cost, supply, mcf.flowMap(),
   1.228 +                         mcf.potentialMap()),
   1.229 +          "Wrong potentials " + test_id);
   1.230 +  }
   1.231 +}
   1.232 +
   1.233 +int main()
   1.234 +{
   1.235 +  // Check the interfaces
   1.236 +  {
   1.237 +    typedef int Flow;
   1.238 +    typedef int Cost;
   1.239 +    // TODO: This typedef should be enabled if the standard maps are
   1.240 +    // reference maps in the graph concepts (See #190).
   1.241 +/**/
   1.242 +    //typedef concepts::Digraph GR;
   1.243 +    typedef ListDigraph GR;
   1.244 +/**/
   1.245 +    checkConcept< McfClassConcept<GR, Flow, Cost>,
   1.246 +                  NetworkSimplex<GR, Flow, Cost> >();
   1.247 +  }
   1.248 +
   1.249 +  // Run various MCF tests
   1.250 +  typedef ListDigraph Digraph;
   1.251 +  DIGRAPH_TYPEDEFS(ListDigraph);
   1.252 +
   1.253 +  // Read the test digraph
   1.254 +  Digraph gr;
   1.255 +  Digraph::ArcMap<int> c(gr), l1(gr), l2(gr), u(gr);
   1.256 +  Digraph::NodeMap<int> s1(gr), s2(gr), s3(gr), s4(gr), s5(gr);
   1.257 +  ConstMap<Arc, int> cc(1), cu(std::numeric_limits<int>::max());
   1.258 +  Node v, w;
   1.259 +
   1.260 +  std::istringstream input(test_lgf);
   1.261 +  DigraphReader<Digraph>(gr, input)
   1.262 +    .arcMap("cost", c)
   1.263 +    .arcMap("cap", u)
   1.264 +    .arcMap("low1", l1)
   1.265 +    .arcMap("low2", l2)
   1.266 +    .nodeMap("sup1", s1)
   1.267 +    .nodeMap("sup2", s2)
   1.268 +    .nodeMap("sup3", s3)
   1.269 +    .nodeMap("sup4", s4)
   1.270 +    .nodeMap("sup5", s5)
   1.271 +    .node("source", v)
   1.272 +    .node("target", w)
   1.273 +    .run();
   1.274 +
   1.275 +  // A. Test NetworkSimplex with the default pivot rule
   1.276 +  {
   1.277 +    NetworkSimplex<Digraph> mcf(gr);
   1.278 +
   1.279 +    // Check the equality form
   1.280 +    mcf.upperMap(u).costMap(c);
   1.281 +    checkMcf(mcf, mcf.supplyMap(s1).run(),
   1.282 +             gr, l1, u, c, s1, true,  5240, "#A1");
   1.283 +    checkMcf(mcf, mcf.stSupply(v, w, 27).run(),
   1.284 +             gr, l1, u, c, s2, true,  7620, "#A2");
   1.285 +    mcf.lowerMap(l2);
   1.286 +    checkMcf(mcf, mcf.supplyMap(s1).run(),
   1.287 +             gr, l2, u, c, s1, true,  5970, "#A3");
   1.288 +    checkMcf(mcf, mcf.stSupply(v, w, 27).run(),
   1.289 +             gr, l2, u, c, s2, true,  8010, "#A4");
   1.290 +    mcf.reset();
   1.291 +    checkMcf(mcf, mcf.supplyMap(s1).run(),
   1.292 +             gr, l1, cu, cc, s1, true,  74, "#A5");
   1.293 +    checkMcf(mcf, mcf.lowerMap(l2).stSupply(v, w, 27).run(),
   1.294 +             gr, l2, cu, cc, s2, true,  94, "#A6");
   1.295 +    mcf.reset();
   1.296 +    checkMcf(mcf, mcf.run(),
   1.297 +             gr, l1, cu, cc, s3, true,   0, "#A7");
   1.298 +    checkMcf(mcf, mcf.boundMaps(l2, u).run(),
   1.299 +             gr, l2, u, cc, s3, false,   0, "#A8");
   1.300 +
   1.301 +    // Check the GEQ form
   1.302 +    mcf.reset().upperMap(u).costMap(c).supplyMap(s4);
   1.303 +    checkMcf(mcf, mcf.run(),
   1.304 +             gr, l1, u, c, s4, true,  3530, "#A9", GEQ);
   1.305 +    mcf.problemType(mcf.GEQ);
   1.306 +    checkMcf(mcf, mcf.lowerMap(l2).run(),
   1.307 +             gr, l2, u, c, s4, true,  4540, "#A10", GEQ);
   1.308 +    mcf.problemType(mcf.CARRY_SUPPLIES).supplyMap(s5);
   1.309 +    checkMcf(mcf, mcf.run(),
   1.310 +             gr, l2, u, c, s5, false,    0, "#A11", GEQ);
   1.311 +
   1.312 +    // Check the LEQ form
   1.313 +    mcf.reset().problemType(mcf.LEQ);
   1.314 +    mcf.upperMap(u).costMap(c).supplyMap(s5);
   1.315 +    checkMcf(mcf, mcf.run(),
   1.316 +             gr, l1, u, c, s5, true,  5080, "#A12", LEQ);
   1.317 +    checkMcf(mcf, mcf.lowerMap(l2).run(),
   1.318 +             gr, l2, u, c, s5, true,  5930, "#A13", LEQ);
   1.319 +    mcf.problemType(mcf.SATISFY_DEMANDS).supplyMap(s4);
   1.320 +    checkMcf(mcf, mcf.run(),
   1.321 +             gr, l2, u, c, s4, false,    0, "#A14", LEQ);
   1.322 +  }
   1.323 +
   1.324 +  // B. Test NetworkSimplex with each pivot rule
   1.325 +  {
   1.326 +    NetworkSimplex<Digraph> mcf(gr);
   1.327 +    mcf.supplyMap(s1).costMap(c).capacityMap(u).lowerMap(l2);
   1.328 +
   1.329 +    checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::FIRST_ELIGIBLE),
   1.330 +             gr, l2, u, c, s1, true,  5970, "#B1");
   1.331 +    checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::BEST_ELIGIBLE),
   1.332 +             gr, l2, u, c, s1, true,  5970, "#B2");
   1.333 +    checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::BLOCK_SEARCH),
   1.334 +             gr, l2, u, c, s1, true,  5970, "#B3");
   1.335 +    checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::CANDIDATE_LIST),
   1.336 +             gr, l2, u, c, s1, true,  5970, "#B4");
   1.337 +    checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::ALTERING_LIST),
   1.338 +             gr, l2, u, c, s1, true,  5970, "#B5");
   1.339 +  }
   1.340 +
   1.341 +  return 0;
   1.342 +}