lemon/network_simplex.h
changeset 802 994c7df296c9
parent 643 f3792d5bb294
child 727 cab85bd7859b
child 729 be48a648d28f
child 891 5205145fabf6
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/lemon/network_simplex.h	Thu Dec 10 17:05:35 2009 +0100
     1.3 @@ -0,0 +1,1489 @@
     1.4 +/* -*- mode: C++; indent-tabs-mode: nil; -*-
     1.5 + *
     1.6 + * This file is a part of LEMON, a generic C++ optimization library.
     1.7 + *
     1.8 + * Copyright (C) 2003-2009
     1.9 + * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
    1.10 + * (Egervary Research Group on Combinatorial Optimization, EGRES).
    1.11 + *
    1.12 + * Permission to use, modify and distribute this software is granted
    1.13 + * provided that this copyright notice appears in all copies. For
    1.14 + * precise terms see the accompanying LICENSE file.
    1.15 + *
    1.16 + * This software is provided "AS IS" with no warranty of any kind,
    1.17 + * express or implied, and with no claim as to its suitability for any
    1.18 + * purpose.
    1.19 + *
    1.20 + */
    1.21 +
    1.22 +#ifndef LEMON_NETWORK_SIMPLEX_H
    1.23 +#define LEMON_NETWORK_SIMPLEX_H
    1.24 +
    1.25 +/// \ingroup min_cost_flow_algs
    1.26 +///
    1.27 +/// \file
    1.28 +/// \brief Network Simplex algorithm for finding a minimum cost flow.
    1.29 +
    1.30 +#include <vector>
    1.31 +#include <limits>
    1.32 +#include <algorithm>
    1.33 +
    1.34 +#include <lemon/core.h>
    1.35 +#include <lemon/math.h>
    1.36 +
    1.37 +namespace lemon {
    1.38 +
    1.39 +  /// \addtogroup min_cost_flow_algs
    1.40 +  /// @{
    1.41 +
    1.42 +  /// \brief Implementation of the primal Network Simplex algorithm
    1.43 +  /// for finding a \ref min_cost_flow "minimum cost flow".
    1.44 +  ///
    1.45 +  /// \ref NetworkSimplex implements the primal Network Simplex algorithm
    1.46 +  /// for finding a \ref min_cost_flow "minimum cost flow".
    1.47 +  /// This algorithm is a specialized version of the linear programming
    1.48 +  /// simplex method directly for the minimum cost flow problem.
    1.49 +  /// It is one of the most efficient solution methods.
    1.50 +  ///
    1.51 +  /// In general this class is the fastest implementation available
    1.52 +  /// in LEMON for the minimum cost flow problem.
    1.53 +  /// Moreover it supports both directions of the supply/demand inequality
    1.54 +  /// constraints. For more information see \ref SupplyType.
    1.55 +  ///
    1.56 +  /// Most of the parameters of the problem (except for the digraph)
    1.57 +  /// can be given using separate functions, and the algorithm can be
    1.58 +  /// executed using the \ref run() function. If some parameters are not
    1.59 +  /// specified, then default values will be used.
    1.60 +  ///
    1.61 +  /// \tparam GR The digraph type the algorithm runs on.
    1.62 +  /// \tparam V The value type used for flow amounts, capacity bounds
    1.63 +  /// and supply values in the algorithm. By default it is \c int.
    1.64 +  /// \tparam C The value type used for costs and potentials in the
    1.65 +  /// algorithm. By default it is the same as \c V.
    1.66 +  ///
    1.67 +  /// \warning Both value types must be signed and all input data must
    1.68 +  /// be integer.
    1.69 +  ///
    1.70 +  /// \note %NetworkSimplex provides five different pivot rule
    1.71 +  /// implementations, from which the most efficient one is used
    1.72 +  /// by default. For more information see \ref PivotRule.
    1.73 +  template <typename GR, typename V = int, typename C = V>
    1.74 +  class NetworkSimplex
    1.75 +  {
    1.76 +  public:
    1.77 +
    1.78 +    /// The type of the flow amounts, capacity bounds and supply values
    1.79 +    typedef V Value;
    1.80 +    /// The type of the arc costs
    1.81 +    typedef C Cost;
    1.82 +
    1.83 +  public:
    1.84 +
    1.85 +    /// \brief Problem type constants for the \c run() function.
    1.86 +    ///
    1.87 +    /// Enum type containing the problem type constants that can be
    1.88 +    /// returned by the \ref run() function of the algorithm.
    1.89 +    enum ProblemType {
    1.90 +      /// The problem has no feasible solution (flow).
    1.91 +      INFEASIBLE,
    1.92 +      /// The problem has optimal solution (i.e. it is feasible and
    1.93 +      /// bounded), and the algorithm has found optimal flow and node
    1.94 +      /// potentials (primal and dual solutions).
    1.95 +      OPTIMAL,
    1.96 +      /// The objective function of the problem is unbounded, i.e.
    1.97 +      /// there is a directed cycle having negative total cost and
    1.98 +      /// infinite upper bound.
    1.99 +      UNBOUNDED
   1.100 +    };
   1.101 +    
   1.102 +    /// \brief Constants for selecting the type of the supply constraints.
   1.103 +    ///
   1.104 +    /// Enum type containing constants for selecting the supply type,
   1.105 +    /// i.e. the direction of the inequalities in the supply/demand
   1.106 +    /// constraints of the \ref min_cost_flow "minimum cost flow problem".
   1.107 +    ///
   1.108 +    /// The default supply type is \c GEQ, the \c LEQ type can be
   1.109 +    /// selected using \ref supplyType().
   1.110 +    /// The equality form is a special case of both supply types.
   1.111 +    enum SupplyType {
   1.112 +      /// This option means that there are <em>"greater or equal"</em>
   1.113 +      /// supply/demand constraints in the definition of the problem.
   1.114 +      GEQ,
   1.115 +      /// This option means that there are <em>"less or equal"</em>
   1.116 +      /// supply/demand constraints in the definition of the problem.
   1.117 +      LEQ
   1.118 +    };
   1.119 +    
   1.120 +    /// \brief Constants for selecting the pivot rule.
   1.121 +    ///
   1.122 +    /// Enum type containing constants for selecting the pivot rule for
   1.123 +    /// the \ref run() function.
   1.124 +    ///
   1.125 +    /// \ref NetworkSimplex provides five different pivot rule
   1.126 +    /// implementations that significantly affect the running time
   1.127 +    /// of the algorithm.
   1.128 +    /// By default \ref BLOCK_SEARCH "Block Search" is used, which
   1.129 +    /// proved to be the most efficient and the most robust on various
   1.130 +    /// test inputs according to our benchmark tests.
   1.131 +    /// However another pivot rule can be selected using the \ref run()
   1.132 +    /// function with the proper parameter.
   1.133 +    enum PivotRule {
   1.134 +
   1.135 +      /// The First Eligible pivot rule.
   1.136 +      /// The next eligible arc is selected in a wraparound fashion
   1.137 +      /// in every iteration.
   1.138 +      FIRST_ELIGIBLE,
   1.139 +
   1.140 +      /// The Best Eligible pivot rule.
   1.141 +      /// The best eligible arc is selected in every iteration.
   1.142 +      BEST_ELIGIBLE,
   1.143 +
   1.144 +      /// The Block Search pivot rule.
   1.145 +      /// A specified number of arcs are examined in every iteration
   1.146 +      /// in a wraparound fashion and the best eligible arc is selected
   1.147 +      /// from this block.
   1.148 +      BLOCK_SEARCH,
   1.149 +
   1.150 +      /// The Candidate List pivot rule.
   1.151 +      /// In a major iteration a candidate list is built from eligible arcs
   1.152 +      /// in a wraparound fashion and in the following minor iterations
   1.153 +      /// the best eligible arc is selected from this list.
   1.154 +      CANDIDATE_LIST,
   1.155 +
   1.156 +      /// The Altering Candidate List pivot rule.
   1.157 +      /// It is a modified version of the Candidate List method.
   1.158 +      /// It keeps only the several best eligible arcs from the former
   1.159 +      /// candidate list and extends this list in every iteration.
   1.160 +      ALTERING_LIST
   1.161 +    };
   1.162 +    
   1.163 +  private:
   1.164 +
   1.165 +    TEMPLATE_DIGRAPH_TYPEDEFS(GR);
   1.166 +
   1.167 +    typedef std::vector<Arc> ArcVector;
   1.168 +    typedef std::vector<Node> NodeVector;
   1.169 +    typedef std::vector<int> IntVector;
   1.170 +    typedef std::vector<bool> BoolVector;
   1.171 +    typedef std::vector<Value> ValueVector;
   1.172 +    typedef std::vector<Cost> CostVector;
   1.173 +
   1.174 +    // State constants for arcs
   1.175 +    enum ArcStateEnum {
   1.176 +      STATE_UPPER = -1,
   1.177 +      STATE_TREE  =  0,
   1.178 +      STATE_LOWER =  1
   1.179 +    };
   1.180 +
   1.181 +  private:
   1.182 +
   1.183 +    // Data related to the underlying digraph
   1.184 +    const GR &_graph;
   1.185 +    int _node_num;
   1.186 +    int _arc_num;
   1.187 +    int _all_arc_num;
   1.188 +    int _search_arc_num;
   1.189 +
   1.190 +    // Parameters of the problem
   1.191 +    bool _have_lower;
   1.192 +    SupplyType _stype;
   1.193 +    Value _sum_supply;
   1.194 +
   1.195 +    // Data structures for storing the digraph
   1.196 +    IntNodeMap _node_id;
   1.197 +    IntArcMap _arc_id;
   1.198 +    IntVector _source;
   1.199 +    IntVector _target;
   1.200 +
   1.201 +    // Node and arc data
   1.202 +    ValueVector _lower;
   1.203 +    ValueVector _upper;
   1.204 +    ValueVector _cap;
   1.205 +    CostVector _cost;
   1.206 +    ValueVector _supply;
   1.207 +    ValueVector _flow;
   1.208 +    CostVector _pi;
   1.209 +
   1.210 +    // Data for storing the spanning tree structure
   1.211 +    IntVector _parent;
   1.212 +    IntVector _pred;
   1.213 +    IntVector _thread;
   1.214 +    IntVector _rev_thread;
   1.215 +    IntVector _succ_num;
   1.216 +    IntVector _last_succ;
   1.217 +    IntVector _dirty_revs;
   1.218 +    BoolVector _forward;
   1.219 +    IntVector _state;
   1.220 +    int _root;
   1.221 +
   1.222 +    // Temporary data used in the current pivot iteration
   1.223 +    int in_arc, join, u_in, v_in, u_out, v_out;
   1.224 +    int first, second, right, last;
   1.225 +    int stem, par_stem, new_stem;
   1.226 +    Value delta;
   1.227 +
   1.228 +  public:
   1.229 +  
   1.230 +    /// \brief Constant for infinite upper bounds (capacities).
   1.231 +    ///
   1.232 +    /// Constant for infinite upper bounds (capacities).
   1.233 +    /// It is \c std::numeric_limits<Value>::infinity() if available,
   1.234 +    /// \c std::numeric_limits<Value>::max() otherwise.
   1.235 +    const Value INF;
   1.236 +
   1.237 +  private:
   1.238 +
   1.239 +    // Implementation of the First Eligible pivot rule
   1.240 +    class FirstEligiblePivotRule
   1.241 +    {
   1.242 +    private:
   1.243 +
   1.244 +      // References to the NetworkSimplex class
   1.245 +      const IntVector  &_source;
   1.246 +      const IntVector  &_target;
   1.247 +      const CostVector &_cost;
   1.248 +      const IntVector  &_state;
   1.249 +      const CostVector &_pi;
   1.250 +      int &_in_arc;
   1.251 +      int _search_arc_num;
   1.252 +
   1.253 +      // Pivot rule data
   1.254 +      int _next_arc;
   1.255 +
   1.256 +    public:
   1.257 +
   1.258 +      // Constructor
   1.259 +      FirstEligiblePivotRule(NetworkSimplex &ns) :
   1.260 +        _source(ns._source), _target(ns._target),
   1.261 +        _cost(ns._cost), _state(ns._state), _pi(ns._pi),
   1.262 +        _in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num),
   1.263 +        _next_arc(0)
   1.264 +      {}
   1.265 +
   1.266 +      // Find next entering arc
   1.267 +      bool findEnteringArc() {
   1.268 +        Cost c;
   1.269 +        for (int e = _next_arc; e < _search_arc_num; ++e) {
   1.270 +          c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
   1.271 +          if (c < 0) {
   1.272 +            _in_arc = e;
   1.273 +            _next_arc = e + 1;
   1.274 +            return true;
   1.275 +          }
   1.276 +        }
   1.277 +        for (int e = 0; e < _next_arc; ++e) {
   1.278 +          c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
   1.279 +          if (c < 0) {
   1.280 +            _in_arc = e;
   1.281 +            _next_arc = e + 1;
   1.282 +            return true;
   1.283 +          }
   1.284 +        }
   1.285 +        return false;
   1.286 +      }
   1.287 +
   1.288 +    }; //class FirstEligiblePivotRule
   1.289 +
   1.290 +
   1.291 +    // Implementation of the Best Eligible pivot rule
   1.292 +    class BestEligiblePivotRule
   1.293 +    {
   1.294 +    private:
   1.295 +
   1.296 +      // References to the NetworkSimplex class
   1.297 +      const IntVector  &_source;
   1.298 +      const IntVector  &_target;
   1.299 +      const CostVector &_cost;
   1.300 +      const IntVector  &_state;
   1.301 +      const CostVector &_pi;
   1.302 +      int &_in_arc;
   1.303 +      int _search_arc_num;
   1.304 +
   1.305 +    public:
   1.306 +
   1.307 +      // Constructor
   1.308 +      BestEligiblePivotRule(NetworkSimplex &ns) :
   1.309 +        _source(ns._source), _target(ns._target),
   1.310 +        _cost(ns._cost), _state(ns._state), _pi(ns._pi),
   1.311 +        _in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num)
   1.312 +      {}
   1.313 +
   1.314 +      // Find next entering arc
   1.315 +      bool findEnteringArc() {
   1.316 +        Cost c, min = 0;
   1.317 +        for (int e = 0; e < _search_arc_num; ++e) {
   1.318 +          c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
   1.319 +          if (c < min) {
   1.320 +            min = c;
   1.321 +            _in_arc = e;
   1.322 +          }
   1.323 +        }
   1.324 +        return min < 0;
   1.325 +      }
   1.326 +
   1.327 +    }; //class BestEligiblePivotRule
   1.328 +
   1.329 +
   1.330 +    // Implementation of the Block Search pivot rule
   1.331 +    class BlockSearchPivotRule
   1.332 +    {
   1.333 +    private:
   1.334 +
   1.335 +      // References to the NetworkSimplex class
   1.336 +      const IntVector  &_source;
   1.337 +      const IntVector  &_target;
   1.338 +      const CostVector &_cost;
   1.339 +      const IntVector  &_state;
   1.340 +      const CostVector &_pi;
   1.341 +      int &_in_arc;
   1.342 +      int _search_arc_num;
   1.343 +
   1.344 +      // Pivot rule data
   1.345 +      int _block_size;
   1.346 +      int _next_arc;
   1.347 +
   1.348 +    public:
   1.349 +
   1.350 +      // Constructor
   1.351 +      BlockSearchPivotRule(NetworkSimplex &ns) :
   1.352 +        _source(ns._source), _target(ns._target),
   1.353 +        _cost(ns._cost), _state(ns._state), _pi(ns._pi),
   1.354 +        _in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num),
   1.355 +        _next_arc(0)
   1.356 +      {
   1.357 +        // The main parameters of the pivot rule
   1.358 +        const double BLOCK_SIZE_FACTOR = 0.5;
   1.359 +        const int MIN_BLOCK_SIZE = 10;
   1.360 +
   1.361 +        _block_size = std::max( int(BLOCK_SIZE_FACTOR *
   1.362 +                                    std::sqrt(double(_search_arc_num))),
   1.363 +                                MIN_BLOCK_SIZE );
   1.364 +      }
   1.365 +
   1.366 +      // Find next entering arc
   1.367 +      bool findEnteringArc() {
   1.368 +        Cost c, min = 0;
   1.369 +        int cnt = _block_size;
   1.370 +        int e, min_arc = _next_arc;
   1.371 +        for (e = _next_arc; e < _search_arc_num; ++e) {
   1.372 +          c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
   1.373 +          if (c < min) {
   1.374 +            min = c;
   1.375 +            min_arc = e;
   1.376 +          }
   1.377 +          if (--cnt == 0) {
   1.378 +            if (min < 0) break;
   1.379 +            cnt = _block_size;
   1.380 +          }
   1.381 +        }
   1.382 +        if (min == 0 || cnt > 0) {
   1.383 +          for (e = 0; e < _next_arc; ++e) {
   1.384 +            c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
   1.385 +            if (c < min) {
   1.386 +              min = c;
   1.387 +              min_arc = e;
   1.388 +            }
   1.389 +            if (--cnt == 0) {
   1.390 +              if (min < 0) break;
   1.391 +              cnt = _block_size;
   1.392 +            }
   1.393 +          }
   1.394 +        }
   1.395 +        if (min >= 0) return false;
   1.396 +        _in_arc = min_arc;
   1.397 +        _next_arc = e;
   1.398 +        return true;
   1.399 +      }
   1.400 +
   1.401 +    }; //class BlockSearchPivotRule
   1.402 +
   1.403 +
   1.404 +    // Implementation of the Candidate List pivot rule
   1.405 +    class CandidateListPivotRule
   1.406 +    {
   1.407 +    private:
   1.408 +
   1.409 +      // References to the NetworkSimplex class
   1.410 +      const IntVector  &_source;
   1.411 +      const IntVector  &_target;
   1.412 +      const CostVector &_cost;
   1.413 +      const IntVector  &_state;
   1.414 +      const CostVector &_pi;
   1.415 +      int &_in_arc;
   1.416 +      int _search_arc_num;
   1.417 +
   1.418 +      // Pivot rule data
   1.419 +      IntVector _candidates;
   1.420 +      int _list_length, _minor_limit;
   1.421 +      int _curr_length, _minor_count;
   1.422 +      int _next_arc;
   1.423 +
   1.424 +    public:
   1.425 +
   1.426 +      /// Constructor
   1.427 +      CandidateListPivotRule(NetworkSimplex &ns) :
   1.428 +        _source(ns._source), _target(ns._target),
   1.429 +        _cost(ns._cost), _state(ns._state), _pi(ns._pi),
   1.430 +        _in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num),
   1.431 +        _next_arc(0)
   1.432 +      {
   1.433 +        // The main parameters of the pivot rule
   1.434 +        const double LIST_LENGTH_FACTOR = 1.0;
   1.435 +        const int MIN_LIST_LENGTH = 10;
   1.436 +        const double MINOR_LIMIT_FACTOR = 0.1;
   1.437 +        const int MIN_MINOR_LIMIT = 3;
   1.438 +
   1.439 +        _list_length = std::max( int(LIST_LENGTH_FACTOR *
   1.440 +                                     std::sqrt(double(_search_arc_num))),
   1.441 +                                 MIN_LIST_LENGTH );
   1.442 +        _minor_limit = std::max( int(MINOR_LIMIT_FACTOR * _list_length),
   1.443 +                                 MIN_MINOR_LIMIT );
   1.444 +        _curr_length = _minor_count = 0;
   1.445 +        _candidates.resize(_list_length);
   1.446 +      }
   1.447 +
   1.448 +      /// Find next entering arc
   1.449 +      bool findEnteringArc() {
   1.450 +        Cost min, c;
   1.451 +        int e, min_arc = _next_arc;
   1.452 +        if (_curr_length > 0 && _minor_count < _minor_limit) {
   1.453 +          // Minor iteration: select the best eligible arc from the
   1.454 +          // current candidate list
   1.455 +          ++_minor_count;
   1.456 +          min = 0;
   1.457 +          for (int i = 0; i < _curr_length; ++i) {
   1.458 +            e = _candidates[i];
   1.459 +            c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
   1.460 +            if (c < min) {
   1.461 +              min = c;
   1.462 +              min_arc = e;
   1.463 +            }
   1.464 +            if (c >= 0) {
   1.465 +              _candidates[i--] = _candidates[--_curr_length];
   1.466 +            }
   1.467 +          }
   1.468 +          if (min < 0) {
   1.469 +            _in_arc = min_arc;
   1.470 +            return true;
   1.471 +          }
   1.472 +        }
   1.473 +
   1.474 +        // Major iteration: build a new candidate list
   1.475 +        min = 0;
   1.476 +        _curr_length = 0;
   1.477 +        for (e = _next_arc; e < _search_arc_num; ++e) {
   1.478 +          c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
   1.479 +          if (c < 0) {
   1.480 +            _candidates[_curr_length++] = e;
   1.481 +            if (c < min) {
   1.482 +              min = c;
   1.483 +              min_arc = e;
   1.484 +            }
   1.485 +            if (_curr_length == _list_length) break;
   1.486 +          }
   1.487 +        }
   1.488 +        if (_curr_length < _list_length) {
   1.489 +          for (e = 0; e < _next_arc; ++e) {
   1.490 +            c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
   1.491 +            if (c < 0) {
   1.492 +              _candidates[_curr_length++] = e;
   1.493 +              if (c < min) {
   1.494 +                min = c;
   1.495 +                min_arc = e;
   1.496 +              }
   1.497 +              if (_curr_length == _list_length) break;
   1.498 +            }
   1.499 +          }
   1.500 +        }
   1.501 +        if (_curr_length == 0) return false;
   1.502 +        _minor_count = 1;
   1.503 +        _in_arc = min_arc;
   1.504 +        _next_arc = e;
   1.505 +        return true;
   1.506 +      }
   1.507 +
   1.508 +    }; //class CandidateListPivotRule
   1.509 +
   1.510 +
   1.511 +    // Implementation of the Altering Candidate List pivot rule
   1.512 +    class AlteringListPivotRule
   1.513 +    {
   1.514 +    private:
   1.515 +
   1.516 +      // References to the NetworkSimplex class
   1.517 +      const IntVector  &_source;
   1.518 +      const IntVector  &_target;
   1.519 +      const CostVector &_cost;
   1.520 +      const IntVector  &_state;
   1.521 +      const CostVector &_pi;
   1.522 +      int &_in_arc;
   1.523 +      int _search_arc_num;
   1.524 +
   1.525 +      // Pivot rule data
   1.526 +      int _block_size, _head_length, _curr_length;
   1.527 +      int _next_arc;
   1.528 +      IntVector _candidates;
   1.529 +      CostVector _cand_cost;
   1.530 +
   1.531 +      // Functor class to compare arcs during sort of the candidate list
   1.532 +      class SortFunc
   1.533 +      {
   1.534 +      private:
   1.535 +        const CostVector &_map;
   1.536 +      public:
   1.537 +        SortFunc(const CostVector &map) : _map(map) {}
   1.538 +        bool operator()(int left, int right) {
   1.539 +          return _map[left] > _map[right];
   1.540 +        }
   1.541 +      };
   1.542 +
   1.543 +      SortFunc _sort_func;
   1.544 +
   1.545 +    public:
   1.546 +
   1.547 +      // Constructor
   1.548 +      AlteringListPivotRule(NetworkSimplex &ns) :
   1.549 +        _source(ns._source), _target(ns._target),
   1.550 +        _cost(ns._cost), _state(ns._state), _pi(ns._pi),
   1.551 +        _in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num),
   1.552 +        _next_arc(0), _cand_cost(ns._search_arc_num), _sort_func(_cand_cost)
   1.553 +      {
   1.554 +        // The main parameters of the pivot rule
   1.555 +        const double BLOCK_SIZE_FACTOR = 1.5;
   1.556 +        const int MIN_BLOCK_SIZE = 10;
   1.557 +        const double HEAD_LENGTH_FACTOR = 0.1;
   1.558 +        const int MIN_HEAD_LENGTH = 3;
   1.559 +
   1.560 +        _block_size = std::max( int(BLOCK_SIZE_FACTOR *
   1.561 +                                    std::sqrt(double(_search_arc_num))),
   1.562 +                                MIN_BLOCK_SIZE );
   1.563 +        _head_length = std::max( int(HEAD_LENGTH_FACTOR * _block_size),
   1.564 +                                 MIN_HEAD_LENGTH );
   1.565 +        _candidates.resize(_head_length + _block_size);
   1.566 +        _curr_length = 0;
   1.567 +      }
   1.568 +
   1.569 +      // Find next entering arc
   1.570 +      bool findEnteringArc() {
   1.571 +        // Check the current candidate list
   1.572 +        int e;
   1.573 +        for (int i = 0; i < _curr_length; ++i) {
   1.574 +          e = _candidates[i];
   1.575 +          _cand_cost[e] = _state[e] *
   1.576 +            (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
   1.577 +          if (_cand_cost[e] >= 0) {
   1.578 +            _candidates[i--] = _candidates[--_curr_length];
   1.579 +          }
   1.580 +        }
   1.581 +
   1.582 +        // Extend the list
   1.583 +        int cnt = _block_size;
   1.584 +        int last_arc = 0;
   1.585 +        int limit = _head_length;
   1.586 +
   1.587 +        for (int e = _next_arc; e < _search_arc_num; ++e) {
   1.588 +          _cand_cost[e] = _state[e] *
   1.589 +            (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
   1.590 +          if (_cand_cost[e] < 0) {
   1.591 +            _candidates[_curr_length++] = e;
   1.592 +            last_arc = e;
   1.593 +          }
   1.594 +          if (--cnt == 0) {
   1.595 +            if (_curr_length > limit) break;
   1.596 +            limit = 0;
   1.597 +            cnt = _block_size;
   1.598 +          }
   1.599 +        }
   1.600 +        if (_curr_length <= limit) {
   1.601 +          for (int e = 0; e < _next_arc; ++e) {
   1.602 +            _cand_cost[e] = _state[e] *
   1.603 +              (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
   1.604 +            if (_cand_cost[e] < 0) {
   1.605 +              _candidates[_curr_length++] = e;
   1.606 +              last_arc = e;
   1.607 +            }
   1.608 +            if (--cnt == 0) {
   1.609 +              if (_curr_length > limit) break;
   1.610 +              limit = 0;
   1.611 +              cnt = _block_size;
   1.612 +            }
   1.613 +          }
   1.614 +        }
   1.615 +        if (_curr_length == 0) return false;
   1.616 +        _next_arc = last_arc + 1;
   1.617 +
   1.618 +        // Make heap of the candidate list (approximating a partial sort)
   1.619 +        make_heap( _candidates.begin(), _candidates.begin() + _curr_length,
   1.620 +                   _sort_func );
   1.621 +
   1.622 +        // Pop the first element of the heap
   1.623 +        _in_arc = _candidates[0];
   1.624 +        pop_heap( _candidates.begin(), _candidates.begin() + _curr_length,
   1.625 +                  _sort_func );
   1.626 +        _curr_length = std::min(_head_length, _curr_length - 1);
   1.627 +        return true;
   1.628 +      }
   1.629 +
   1.630 +    }; //class AlteringListPivotRule
   1.631 +
   1.632 +  public:
   1.633 +
   1.634 +    /// \brief Constructor.
   1.635 +    ///
   1.636 +    /// The constructor of the class.
   1.637 +    ///
   1.638 +    /// \param graph The digraph the algorithm runs on.
   1.639 +    NetworkSimplex(const GR& graph) :
   1.640 +      _graph(graph), _node_id(graph), _arc_id(graph),
   1.641 +      INF(std::numeric_limits<Value>::has_infinity ?
   1.642 +          std::numeric_limits<Value>::infinity() :
   1.643 +          std::numeric_limits<Value>::max())
   1.644 +    {
   1.645 +      // Check the value types
   1.646 +      LEMON_ASSERT(std::numeric_limits<Value>::is_signed,
   1.647 +        "The flow type of NetworkSimplex must be signed");
   1.648 +      LEMON_ASSERT(std::numeric_limits<Cost>::is_signed,
   1.649 +        "The cost type of NetworkSimplex must be signed");
   1.650 +        
   1.651 +      // Resize vectors
   1.652 +      _node_num = countNodes(_graph);
   1.653 +      _arc_num = countArcs(_graph);
   1.654 +      int all_node_num = _node_num + 1;
   1.655 +      int max_arc_num = _arc_num + 2 * _node_num;
   1.656 +
   1.657 +      _source.resize(max_arc_num);
   1.658 +      _target.resize(max_arc_num);
   1.659 +
   1.660 +      _lower.resize(_arc_num);
   1.661 +      _upper.resize(_arc_num);
   1.662 +      _cap.resize(max_arc_num);
   1.663 +      _cost.resize(max_arc_num);
   1.664 +      _supply.resize(all_node_num);
   1.665 +      _flow.resize(max_arc_num);
   1.666 +      _pi.resize(all_node_num);
   1.667 +
   1.668 +      _parent.resize(all_node_num);
   1.669 +      _pred.resize(all_node_num);
   1.670 +      _forward.resize(all_node_num);
   1.671 +      _thread.resize(all_node_num);
   1.672 +      _rev_thread.resize(all_node_num);
   1.673 +      _succ_num.resize(all_node_num);
   1.674 +      _last_succ.resize(all_node_num);
   1.675 +      _state.resize(max_arc_num);
   1.676 +
   1.677 +      // Copy the graph (store the arcs in a mixed order)
   1.678 +      int i = 0;
   1.679 +      for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
   1.680 +        _node_id[n] = i;
   1.681 +      }
   1.682 +      int k = std::max(int(std::sqrt(double(_arc_num))), 10);
   1.683 +      i = 0;
   1.684 +      for (ArcIt a(_graph); a != INVALID; ++a) {
   1.685 +        _arc_id[a] = i;
   1.686 +        _source[i] = _node_id[_graph.source(a)];
   1.687 +        _target[i] = _node_id[_graph.target(a)];
   1.688 +        if ((i += k) >= _arc_num) i = (i % k) + 1;
   1.689 +      }
   1.690 +      
   1.691 +      // Initialize maps
   1.692 +      for (int i = 0; i != _node_num; ++i) {
   1.693 +        _supply[i] = 0;
   1.694 +      }
   1.695 +      for (int i = 0; i != _arc_num; ++i) {
   1.696 +        _lower[i] = 0;
   1.697 +        _upper[i] = INF;
   1.698 +        _cost[i] = 1;
   1.699 +      }
   1.700 +      _have_lower = false;
   1.701 +      _stype = GEQ;
   1.702 +    }
   1.703 +
   1.704 +    /// \name Parameters
   1.705 +    /// The parameters of the algorithm can be specified using these
   1.706 +    /// functions.
   1.707 +
   1.708 +    /// @{
   1.709 +
   1.710 +    /// \brief Set the lower bounds on the arcs.
   1.711 +    ///
   1.712 +    /// This function sets the lower bounds on the arcs.
   1.713 +    /// If it is not used before calling \ref run(), the lower bounds
   1.714 +    /// will be set to zero on all arcs.
   1.715 +    ///
   1.716 +    /// \param map An arc map storing the lower bounds.
   1.717 +    /// Its \c Value type must be convertible to the \c Value type
   1.718 +    /// of the algorithm.
   1.719 +    ///
   1.720 +    /// \return <tt>(*this)</tt>
   1.721 +    template <typename LowerMap>
   1.722 +    NetworkSimplex& lowerMap(const LowerMap& map) {
   1.723 +      _have_lower = true;
   1.724 +      for (ArcIt a(_graph); a != INVALID; ++a) {
   1.725 +        _lower[_arc_id[a]] = map[a];
   1.726 +      }
   1.727 +      return *this;
   1.728 +    }
   1.729 +
   1.730 +    /// \brief Set the upper bounds (capacities) on the arcs.
   1.731 +    ///
   1.732 +    /// This function sets the upper bounds (capacities) on the arcs.
   1.733 +    /// If it is not used before calling \ref run(), the upper bounds
   1.734 +    /// will be set to \ref INF on all arcs (i.e. the flow value will be
   1.735 +    /// unbounded from above on each arc).
   1.736 +    ///
   1.737 +    /// \param map An arc map storing the upper bounds.
   1.738 +    /// Its \c Value type must be convertible to the \c Value type
   1.739 +    /// of the algorithm.
   1.740 +    ///
   1.741 +    /// \return <tt>(*this)</tt>
   1.742 +    template<typename UpperMap>
   1.743 +    NetworkSimplex& upperMap(const UpperMap& map) {
   1.744 +      for (ArcIt a(_graph); a != INVALID; ++a) {
   1.745 +        _upper[_arc_id[a]] = map[a];
   1.746 +      }
   1.747 +      return *this;
   1.748 +    }
   1.749 +
   1.750 +    /// \brief Set the costs of the arcs.
   1.751 +    ///
   1.752 +    /// This function sets the costs of the arcs.
   1.753 +    /// If it is not used before calling \ref run(), the costs
   1.754 +    /// will be set to \c 1 on all arcs.
   1.755 +    ///
   1.756 +    /// \param map An arc map storing the costs.
   1.757 +    /// Its \c Value type must be convertible to the \c Cost type
   1.758 +    /// of the algorithm.
   1.759 +    ///
   1.760 +    /// \return <tt>(*this)</tt>
   1.761 +    template<typename CostMap>
   1.762 +    NetworkSimplex& costMap(const CostMap& map) {
   1.763 +      for (ArcIt a(_graph); a != INVALID; ++a) {
   1.764 +        _cost[_arc_id[a]] = map[a];
   1.765 +      }
   1.766 +      return *this;
   1.767 +    }
   1.768 +
   1.769 +    /// \brief Set the supply values of the nodes.
   1.770 +    ///
   1.771 +    /// This function sets the supply values of the nodes.
   1.772 +    /// If neither this function nor \ref stSupply() is used before
   1.773 +    /// calling \ref run(), the supply of each node will be set to zero.
   1.774 +    /// (It makes sense only if non-zero lower bounds are given.)
   1.775 +    ///
   1.776 +    /// \param map A node map storing the supply values.
   1.777 +    /// Its \c Value type must be convertible to the \c Value type
   1.778 +    /// of the algorithm.
   1.779 +    ///
   1.780 +    /// \return <tt>(*this)</tt>
   1.781 +    template<typename SupplyMap>
   1.782 +    NetworkSimplex& supplyMap(const SupplyMap& map) {
   1.783 +      for (NodeIt n(_graph); n != INVALID; ++n) {
   1.784 +        _supply[_node_id[n]] = map[n];
   1.785 +      }
   1.786 +      return *this;
   1.787 +    }
   1.788 +
   1.789 +    /// \brief Set single source and target nodes and a supply value.
   1.790 +    ///
   1.791 +    /// This function sets a single source node and a single target node
   1.792 +    /// and the required flow value.
   1.793 +    /// If neither this function nor \ref supplyMap() is used before
   1.794 +    /// calling \ref run(), the supply of each node will be set to zero.
   1.795 +    /// (It makes sense only if non-zero lower bounds are given.)
   1.796 +    ///
   1.797 +    /// Using this function has the same effect as using \ref supplyMap()
   1.798 +    /// with such a map in which \c k is assigned to \c s, \c -k is
   1.799 +    /// assigned to \c t and all other nodes have zero supply value.
   1.800 +    ///
   1.801 +    /// \param s The source node.
   1.802 +    /// \param t The target node.
   1.803 +    /// \param k The required amount of flow from node \c s to node \c t
   1.804 +    /// (i.e. the supply of \c s and the demand of \c t).
   1.805 +    ///
   1.806 +    /// \return <tt>(*this)</tt>
   1.807 +    NetworkSimplex& stSupply(const Node& s, const Node& t, Value k) {
   1.808 +      for (int i = 0; i != _node_num; ++i) {
   1.809 +        _supply[i] = 0;
   1.810 +      }
   1.811 +      _supply[_node_id[s]] =  k;
   1.812 +      _supply[_node_id[t]] = -k;
   1.813 +      return *this;
   1.814 +    }
   1.815 +    
   1.816 +    /// \brief Set the type of the supply constraints.
   1.817 +    ///
   1.818 +    /// This function sets the type of the supply/demand constraints.
   1.819 +    /// If it is not used before calling \ref run(), the \ref GEQ supply
   1.820 +    /// type will be used.
   1.821 +    ///
   1.822 +    /// For more information see \ref SupplyType.
   1.823 +    ///
   1.824 +    /// \return <tt>(*this)</tt>
   1.825 +    NetworkSimplex& supplyType(SupplyType supply_type) {
   1.826 +      _stype = supply_type;
   1.827 +      return *this;
   1.828 +    }
   1.829 +
   1.830 +    /// @}
   1.831 +
   1.832 +    /// \name Execution Control
   1.833 +    /// The algorithm can be executed using \ref run().
   1.834 +
   1.835 +    /// @{
   1.836 +
   1.837 +    /// \brief Run the algorithm.
   1.838 +    ///
   1.839 +    /// This function runs the algorithm.
   1.840 +    /// The paramters can be specified using functions \ref lowerMap(),
   1.841 +    /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(), 
   1.842 +    /// \ref supplyType().
   1.843 +    /// For example,
   1.844 +    /// \code
   1.845 +    ///   NetworkSimplex<ListDigraph> ns(graph);
   1.846 +    ///   ns.lowerMap(lower).upperMap(upper).costMap(cost)
   1.847 +    ///     .supplyMap(sup).run();
   1.848 +    /// \endcode
   1.849 +    ///
   1.850 +    /// This function can be called more than once. All the parameters
   1.851 +    /// that have been given are kept for the next call, unless
   1.852 +    /// \ref reset() is called, thus only the modified parameters
   1.853 +    /// have to be set again. See \ref reset() for examples.
   1.854 +    /// However the underlying digraph must not be modified after this
   1.855 +    /// class have been constructed, since it copies and extends the graph.
   1.856 +    ///
   1.857 +    /// \param pivot_rule The pivot rule that will be used during the
   1.858 +    /// algorithm. For more information see \ref PivotRule.
   1.859 +    ///
   1.860 +    /// \return \c INFEASIBLE if no feasible flow exists,
   1.861 +    /// \n \c OPTIMAL if the problem has optimal solution
   1.862 +    /// (i.e. it is feasible and bounded), and the algorithm has found
   1.863 +    /// optimal flow and node potentials (primal and dual solutions),
   1.864 +    /// \n \c UNBOUNDED if the objective function of the problem is
   1.865 +    /// unbounded, i.e. there is a directed cycle having negative total
   1.866 +    /// cost and infinite upper bound.
   1.867 +    ///
   1.868 +    /// \see ProblemType, PivotRule
   1.869 +    ProblemType run(PivotRule pivot_rule = BLOCK_SEARCH) {
   1.870 +      if (!init()) return INFEASIBLE;
   1.871 +      return start(pivot_rule);
   1.872 +    }
   1.873 +
   1.874 +    /// \brief Reset all the parameters that have been given before.
   1.875 +    ///
   1.876 +    /// This function resets all the paramaters that have been given
   1.877 +    /// before using functions \ref lowerMap(), \ref upperMap(),
   1.878 +    /// \ref costMap(), \ref supplyMap(), \ref stSupply(), \ref supplyType().
   1.879 +    ///
   1.880 +    /// It is useful for multiple run() calls. If this function is not
   1.881 +    /// used, all the parameters given before are kept for the next
   1.882 +    /// \ref run() call.
   1.883 +    /// However the underlying digraph must not be modified after this
   1.884 +    /// class have been constructed, since it copies and extends the graph.
   1.885 +    ///
   1.886 +    /// For example,
   1.887 +    /// \code
   1.888 +    ///   NetworkSimplex<ListDigraph> ns(graph);
   1.889 +    ///
   1.890 +    ///   // First run
   1.891 +    ///   ns.lowerMap(lower).upperMap(upper).costMap(cost)
   1.892 +    ///     .supplyMap(sup).run();
   1.893 +    ///
   1.894 +    ///   // Run again with modified cost map (reset() is not called,
   1.895 +    ///   // so only the cost map have to be set again)
   1.896 +    ///   cost[e] += 100;
   1.897 +    ///   ns.costMap(cost).run();
   1.898 +    ///
   1.899 +    ///   // Run again from scratch using reset()
   1.900 +    ///   // (the lower bounds will be set to zero on all arcs)
   1.901 +    ///   ns.reset();
   1.902 +    ///   ns.upperMap(capacity).costMap(cost)
   1.903 +    ///     .supplyMap(sup).run();
   1.904 +    /// \endcode
   1.905 +    ///
   1.906 +    /// \return <tt>(*this)</tt>
   1.907 +    NetworkSimplex& reset() {
   1.908 +      for (int i = 0; i != _node_num; ++i) {
   1.909 +        _supply[i] = 0;
   1.910 +      }
   1.911 +      for (int i = 0; i != _arc_num; ++i) {
   1.912 +        _lower[i] = 0;
   1.913 +        _upper[i] = INF;
   1.914 +        _cost[i] = 1;
   1.915 +      }
   1.916 +      _have_lower = false;
   1.917 +      _stype = GEQ;
   1.918 +      return *this;
   1.919 +    }
   1.920 +
   1.921 +    /// @}
   1.922 +
   1.923 +    /// \name Query Functions
   1.924 +    /// The results of the algorithm can be obtained using these
   1.925 +    /// functions.\n
   1.926 +    /// The \ref run() function must be called before using them.
   1.927 +
   1.928 +    /// @{
   1.929 +
   1.930 +    /// \brief Return the total cost of the found flow.
   1.931 +    ///
   1.932 +    /// This function returns the total cost of the found flow.
   1.933 +    /// Its complexity is O(e).
   1.934 +    ///
   1.935 +    /// \note The return type of the function can be specified as a
   1.936 +    /// template parameter. For example,
   1.937 +    /// \code
   1.938 +    ///   ns.totalCost<double>();
   1.939 +    /// \endcode
   1.940 +    /// It is useful if the total cost cannot be stored in the \c Cost
   1.941 +    /// type of the algorithm, which is the default return type of the
   1.942 +    /// function.
   1.943 +    ///
   1.944 +    /// \pre \ref run() must be called before using this function.
   1.945 +    template <typename Number>
   1.946 +    Number totalCost() const {
   1.947 +      Number c = 0;
   1.948 +      for (ArcIt a(_graph); a != INVALID; ++a) {
   1.949 +        int i = _arc_id[a];
   1.950 +        c += Number(_flow[i]) * Number(_cost[i]);
   1.951 +      }
   1.952 +      return c;
   1.953 +    }
   1.954 +
   1.955 +#ifndef DOXYGEN
   1.956 +    Cost totalCost() const {
   1.957 +      return totalCost<Cost>();
   1.958 +    }
   1.959 +#endif
   1.960 +
   1.961 +    /// \brief Return the flow on the given arc.
   1.962 +    ///
   1.963 +    /// This function returns the flow on the given arc.
   1.964 +    ///
   1.965 +    /// \pre \ref run() must be called before using this function.
   1.966 +    Value flow(const Arc& a) const {
   1.967 +      return _flow[_arc_id[a]];
   1.968 +    }
   1.969 +
   1.970 +    /// \brief Return the flow map (the primal solution).
   1.971 +    ///
   1.972 +    /// This function copies the flow value on each arc into the given
   1.973 +    /// map. The \c Value type of the algorithm must be convertible to
   1.974 +    /// the \c Value type of the map.
   1.975 +    ///
   1.976 +    /// \pre \ref run() must be called before using this function.
   1.977 +    template <typename FlowMap>
   1.978 +    void flowMap(FlowMap &map) const {
   1.979 +      for (ArcIt a(_graph); a != INVALID; ++a) {
   1.980 +        map.set(a, _flow[_arc_id[a]]);
   1.981 +      }
   1.982 +    }
   1.983 +
   1.984 +    /// \brief Return the potential (dual value) of the given node.
   1.985 +    ///
   1.986 +    /// This function returns the potential (dual value) of the
   1.987 +    /// given node.
   1.988 +    ///
   1.989 +    /// \pre \ref run() must be called before using this function.
   1.990 +    Cost potential(const Node& n) const {
   1.991 +      return _pi[_node_id[n]];
   1.992 +    }
   1.993 +
   1.994 +    /// \brief Return the potential map (the dual solution).
   1.995 +    ///
   1.996 +    /// This function copies the potential (dual value) of each node
   1.997 +    /// into the given map.
   1.998 +    /// The \c Cost type of the algorithm must be convertible to the
   1.999 +    /// \c Value type of the map.
  1.1000 +    ///
  1.1001 +    /// \pre \ref run() must be called before using this function.
  1.1002 +    template <typename PotentialMap>
  1.1003 +    void potentialMap(PotentialMap &map) const {
  1.1004 +      for (NodeIt n(_graph); n != INVALID; ++n) {
  1.1005 +        map.set(n, _pi[_node_id[n]]);
  1.1006 +      }
  1.1007 +    }
  1.1008 +
  1.1009 +    /// @}
  1.1010 +
  1.1011 +  private:
  1.1012 +
  1.1013 +    // Initialize internal data structures
  1.1014 +    bool init() {
  1.1015 +      if (_node_num == 0) return false;
  1.1016 +
  1.1017 +      // Check the sum of supply values
  1.1018 +      _sum_supply = 0;
  1.1019 +      for (int i = 0; i != _node_num; ++i) {
  1.1020 +        _sum_supply += _supply[i];
  1.1021 +      }
  1.1022 +      if ( !((_stype == GEQ && _sum_supply <= 0) ||
  1.1023 +             (_stype == LEQ && _sum_supply >= 0)) ) return false;
  1.1024 +
  1.1025 +      // Remove non-zero lower bounds
  1.1026 +      if (_have_lower) {
  1.1027 +        for (int i = 0; i != _arc_num; ++i) {
  1.1028 +          Value c = _lower[i];
  1.1029 +          if (c >= 0) {
  1.1030 +            _cap[i] = _upper[i] < INF ? _upper[i] - c : INF;
  1.1031 +          } else {
  1.1032 +            _cap[i] = _upper[i] < INF + c ? _upper[i] - c : INF;
  1.1033 +          }
  1.1034 +          _supply[_source[i]] -= c;
  1.1035 +          _supply[_target[i]] += c;
  1.1036 +        }
  1.1037 +      } else {
  1.1038 +        for (int i = 0; i != _arc_num; ++i) {
  1.1039 +          _cap[i] = _upper[i];
  1.1040 +        }
  1.1041 +      }
  1.1042 +
  1.1043 +      // Initialize artifical cost
  1.1044 +      Cost ART_COST;
  1.1045 +      if (std::numeric_limits<Cost>::is_exact) {
  1.1046 +        ART_COST = std::numeric_limits<Cost>::max() / 2 + 1;
  1.1047 +      } else {
  1.1048 +        ART_COST = std::numeric_limits<Cost>::min();
  1.1049 +        for (int i = 0; i != _arc_num; ++i) {
  1.1050 +          if (_cost[i] > ART_COST) ART_COST = _cost[i];
  1.1051 +        }
  1.1052 +        ART_COST = (ART_COST + 1) * _node_num;
  1.1053 +      }
  1.1054 +
  1.1055 +      // Initialize arc maps
  1.1056 +      for (int i = 0; i != _arc_num; ++i) {
  1.1057 +        _flow[i] = 0;
  1.1058 +        _state[i] = STATE_LOWER;
  1.1059 +      }
  1.1060 +      
  1.1061 +      // Set data for the artificial root node
  1.1062 +      _root = _node_num;
  1.1063 +      _parent[_root] = -1;
  1.1064 +      _pred[_root] = -1;
  1.1065 +      _thread[_root] = 0;
  1.1066 +      _rev_thread[0] = _root;
  1.1067 +      _succ_num[_root] = _node_num + 1;
  1.1068 +      _last_succ[_root] = _root - 1;
  1.1069 +      _supply[_root] = -_sum_supply;
  1.1070 +      _pi[_root] = 0;
  1.1071 +
  1.1072 +      // Add artificial arcs and initialize the spanning tree data structure
  1.1073 +      if (_sum_supply == 0) {
  1.1074 +        // EQ supply constraints
  1.1075 +        _search_arc_num = _arc_num;
  1.1076 +        _all_arc_num = _arc_num + _node_num;
  1.1077 +        for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
  1.1078 +          _parent[u] = _root;
  1.1079 +          _pred[u] = e;
  1.1080 +          _thread[u] = u + 1;
  1.1081 +          _rev_thread[u + 1] = u;
  1.1082 +          _succ_num[u] = 1;
  1.1083 +          _last_succ[u] = u;
  1.1084 +          _cap[e] = INF;
  1.1085 +          _state[e] = STATE_TREE;
  1.1086 +          if (_supply[u] >= 0) {
  1.1087 +            _forward[u] = true;
  1.1088 +            _pi[u] = 0;
  1.1089 +            _source[e] = u;
  1.1090 +            _target[e] = _root;
  1.1091 +            _flow[e] = _supply[u];
  1.1092 +            _cost[e] = 0;
  1.1093 +          } else {
  1.1094 +            _forward[u] = false;
  1.1095 +            _pi[u] = ART_COST;
  1.1096 +            _source[e] = _root;
  1.1097 +            _target[e] = u;
  1.1098 +            _flow[e] = -_supply[u];
  1.1099 +            _cost[e] = ART_COST;
  1.1100 +          }
  1.1101 +        }
  1.1102 +      }
  1.1103 +      else if (_sum_supply > 0) {
  1.1104 +        // LEQ supply constraints
  1.1105 +        _search_arc_num = _arc_num + _node_num;
  1.1106 +        int f = _arc_num + _node_num;
  1.1107 +        for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
  1.1108 +          _parent[u] = _root;
  1.1109 +          _thread[u] = u + 1;
  1.1110 +          _rev_thread[u + 1] = u;
  1.1111 +          _succ_num[u] = 1;
  1.1112 +          _last_succ[u] = u;
  1.1113 +          if (_supply[u] >= 0) {
  1.1114 +            _forward[u] = true;
  1.1115 +            _pi[u] = 0;
  1.1116 +            _pred[u] = e;
  1.1117 +            _source[e] = u;
  1.1118 +            _target[e] = _root;
  1.1119 +            _cap[e] = INF;
  1.1120 +            _flow[e] = _supply[u];
  1.1121 +            _cost[e] = 0;
  1.1122 +            _state[e] = STATE_TREE;
  1.1123 +          } else {
  1.1124 +            _forward[u] = false;
  1.1125 +            _pi[u] = ART_COST;
  1.1126 +            _pred[u] = f;
  1.1127 +            _source[f] = _root;
  1.1128 +            _target[f] = u;
  1.1129 +            _cap[f] = INF;
  1.1130 +            _flow[f] = -_supply[u];
  1.1131 +            _cost[f] = ART_COST;
  1.1132 +            _state[f] = STATE_TREE;
  1.1133 +            _source[e] = u;
  1.1134 +            _target[e] = _root;
  1.1135 +            _cap[e] = INF;
  1.1136 +            _flow[e] = 0;
  1.1137 +            _cost[e] = 0;
  1.1138 +            _state[e] = STATE_LOWER;
  1.1139 +            ++f;
  1.1140 +          }
  1.1141 +        }
  1.1142 +        _all_arc_num = f;
  1.1143 +      }
  1.1144 +      else {
  1.1145 +        // GEQ supply constraints
  1.1146 +        _search_arc_num = _arc_num + _node_num;
  1.1147 +        int f = _arc_num + _node_num;
  1.1148 +        for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
  1.1149 +          _parent[u] = _root;
  1.1150 +          _thread[u] = u + 1;
  1.1151 +          _rev_thread[u + 1] = u;
  1.1152 +          _succ_num[u] = 1;
  1.1153 +          _last_succ[u] = u;
  1.1154 +          if (_supply[u] <= 0) {
  1.1155 +            _forward[u] = false;
  1.1156 +            _pi[u] = 0;
  1.1157 +            _pred[u] = e;
  1.1158 +            _source[e] = _root;
  1.1159 +            _target[e] = u;
  1.1160 +            _cap[e] = INF;
  1.1161 +            _flow[e] = -_supply[u];
  1.1162 +            _cost[e] = 0;
  1.1163 +            _state[e] = STATE_TREE;
  1.1164 +          } else {
  1.1165 +            _forward[u] = true;
  1.1166 +            _pi[u] = -ART_COST;
  1.1167 +            _pred[u] = f;
  1.1168 +            _source[f] = u;
  1.1169 +            _target[f] = _root;
  1.1170 +            _cap[f] = INF;
  1.1171 +            _flow[f] = _supply[u];
  1.1172 +            _state[f] = STATE_TREE;
  1.1173 +            _cost[f] = ART_COST;
  1.1174 +            _source[e] = _root;
  1.1175 +            _target[e] = u;
  1.1176 +            _cap[e] = INF;
  1.1177 +            _flow[e] = 0;
  1.1178 +            _cost[e] = 0;
  1.1179 +            _state[e] = STATE_LOWER;
  1.1180 +            ++f;
  1.1181 +          }
  1.1182 +        }
  1.1183 +        _all_arc_num = f;
  1.1184 +      }
  1.1185 +
  1.1186 +      return true;
  1.1187 +    }
  1.1188 +
  1.1189 +    // Find the join node
  1.1190 +    void findJoinNode() {
  1.1191 +      int u = _source[in_arc];
  1.1192 +      int v = _target[in_arc];
  1.1193 +      while (u != v) {
  1.1194 +        if (_succ_num[u] < _succ_num[v]) {
  1.1195 +          u = _parent[u];
  1.1196 +        } else {
  1.1197 +          v = _parent[v];
  1.1198 +        }
  1.1199 +      }
  1.1200 +      join = u;
  1.1201 +    }
  1.1202 +
  1.1203 +    // Find the leaving arc of the cycle and returns true if the
  1.1204 +    // leaving arc is not the same as the entering arc
  1.1205 +    bool findLeavingArc() {
  1.1206 +      // Initialize first and second nodes according to the direction
  1.1207 +      // of the cycle
  1.1208 +      if (_state[in_arc] == STATE_LOWER) {
  1.1209 +        first  = _source[in_arc];
  1.1210 +        second = _target[in_arc];
  1.1211 +      } else {
  1.1212 +        first  = _target[in_arc];
  1.1213 +        second = _source[in_arc];
  1.1214 +      }
  1.1215 +      delta = _cap[in_arc];
  1.1216 +      int result = 0;
  1.1217 +      Value d;
  1.1218 +      int e;
  1.1219 +
  1.1220 +      // Search the cycle along the path form the first node to the root
  1.1221 +      for (int u = first; u != join; u = _parent[u]) {
  1.1222 +        e = _pred[u];
  1.1223 +        d = _forward[u] ?
  1.1224 +          _flow[e] : (_cap[e] == INF ? INF : _cap[e] - _flow[e]);
  1.1225 +        if (d < delta) {
  1.1226 +          delta = d;
  1.1227 +          u_out = u;
  1.1228 +          result = 1;
  1.1229 +        }
  1.1230 +      }
  1.1231 +      // Search the cycle along the path form the second node to the root
  1.1232 +      for (int u = second; u != join; u = _parent[u]) {
  1.1233 +        e = _pred[u];
  1.1234 +        d = _forward[u] ? 
  1.1235 +          (_cap[e] == INF ? INF : _cap[e] - _flow[e]) : _flow[e];
  1.1236 +        if (d <= delta) {
  1.1237 +          delta = d;
  1.1238 +          u_out = u;
  1.1239 +          result = 2;
  1.1240 +        }
  1.1241 +      }
  1.1242 +
  1.1243 +      if (result == 1) {
  1.1244 +        u_in = first;
  1.1245 +        v_in = second;
  1.1246 +      } else {
  1.1247 +        u_in = second;
  1.1248 +        v_in = first;
  1.1249 +      }
  1.1250 +      return result != 0;
  1.1251 +    }
  1.1252 +
  1.1253 +    // Change _flow and _state vectors
  1.1254 +    void changeFlow(bool change) {
  1.1255 +      // Augment along the cycle
  1.1256 +      if (delta > 0) {
  1.1257 +        Value val = _state[in_arc] * delta;
  1.1258 +        _flow[in_arc] += val;
  1.1259 +        for (int u = _source[in_arc]; u != join; u = _parent[u]) {
  1.1260 +          _flow[_pred[u]] += _forward[u] ? -val : val;
  1.1261 +        }
  1.1262 +        for (int u = _target[in_arc]; u != join; u = _parent[u]) {
  1.1263 +          _flow[_pred[u]] += _forward[u] ? val : -val;
  1.1264 +        }
  1.1265 +      }
  1.1266 +      // Update the state of the entering and leaving arcs
  1.1267 +      if (change) {
  1.1268 +        _state[in_arc] = STATE_TREE;
  1.1269 +        _state[_pred[u_out]] =
  1.1270 +          (_flow[_pred[u_out]] == 0) ? STATE_LOWER : STATE_UPPER;
  1.1271 +      } else {
  1.1272 +        _state[in_arc] = -_state[in_arc];
  1.1273 +      }
  1.1274 +    }
  1.1275 +
  1.1276 +    // Update the tree structure
  1.1277 +    void updateTreeStructure() {
  1.1278 +      int u, w;
  1.1279 +      int old_rev_thread = _rev_thread[u_out];
  1.1280 +      int old_succ_num = _succ_num[u_out];
  1.1281 +      int old_last_succ = _last_succ[u_out];
  1.1282 +      v_out = _parent[u_out];
  1.1283 +
  1.1284 +      u = _last_succ[u_in];  // the last successor of u_in
  1.1285 +      right = _thread[u];    // the node after it
  1.1286 +
  1.1287 +      // Handle the case when old_rev_thread equals to v_in
  1.1288 +      // (it also means that join and v_out coincide)
  1.1289 +      if (old_rev_thread == v_in) {
  1.1290 +        last = _thread[_last_succ[u_out]];
  1.1291 +      } else {
  1.1292 +        last = _thread[v_in];
  1.1293 +      }
  1.1294 +
  1.1295 +      // Update _thread and _parent along the stem nodes (i.e. the nodes
  1.1296 +      // between u_in and u_out, whose parent have to be changed)
  1.1297 +      _thread[v_in] = stem = u_in;
  1.1298 +      _dirty_revs.clear();
  1.1299 +      _dirty_revs.push_back(v_in);
  1.1300 +      par_stem = v_in;
  1.1301 +      while (stem != u_out) {
  1.1302 +        // Insert the next stem node into the thread list
  1.1303 +        new_stem = _parent[stem];
  1.1304 +        _thread[u] = new_stem;
  1.1305 +        _dirty_revs.push_back(u);
  1.1306 +
  1.1307 +        // Remove the subtree of stem from the thread list
  1.1308 +        w = _rev_thread[stem];
  1.1309 +        _thread[w] = right;
  1.1310 +        _rev_thread[right] = w;
  1.1311 +
  1.1312 +        // Change the parent node and shift stem nodes
  1.1313 +        _parent[stem] = par_stem;
  1.1314 +        par_stem = stem;
  1.1315 +        stem = new_stem;
  1.1316 +
  1.1317 +        // Update u and right
  1.1318 +        u = _last_succ[stem] == _last_succ[par_stem] ?
  1.1319 +          _rev_thread[par_stem] : _last_succ[stem];
  1.1320 +        right = _thread[u];
  1.1321 +      }
  1.1322 +      _parent[u_out] = par_stem;
  1.1323 +      _thread[u] = last;
  1.1324 +      _rev_thread[last] = u;
  1.1325 +      _last_succ[u_out] = u;
  1.1326 +
  1.1327 +      // Remove the subtree of u_out from the thread list except for
  1.1328 +      // the case when old_rev_thread equals to v_in
  1.1329 +      // (it also means that join and v_out coincide)
  1.1330 +      if (old_rev_thread != v_in) {
  1.1331 +        _thread[old_rev_thread] = right;
  1.1332 +        _rev_thread[right] = old_rev_thread;
  1.1333 +      }
  1.1334 +
  1.1335 +      // Update _rev_thread using the new _thread values
  1.1336 +      for (int i = 0; i < int(_dirty_revs.size()); ++i) {
  1.1337 +        u = _dirty_revs[i];
  1.1338 +        _rev_thread[_thread[u]] = u;
  1.1339 +      }
  1.1340 +
  1.1341 +      // Update _pred, _forward, _last_succ and _succ_num for the
  1.1342 +      // stem nodes from u_out to u_in
  1.1343 +      int tmp_sc = 0, tmp_ls = _last_succ[u_out];
  1.1344 +      u = u_out;
  1.1345 +      while (u != u_in) {
  1.1346 +        w = _parent[u];
  1.1347 +        _pred[u] = _pred[w];
  1.1348 +        _forward[u] = !_forward[w];
  1.1349 +        tmp_sc += _succ_num[u] - _succ_num[w];
  1.1350 +        _succ_num[u] = tmp_sc;
  1.1351 +        _last_succ[w] = tmp_ls;
  1.1352 +        u = w;
  1.1353 +      }
  1.1354 +      _pred[u_in] = in_arc;
  1.1355 +      _forward[u_in] = (u_in == _source[in_arc]);
  1.1356 +      _succ_num[u_in] = old_succ_num;
  1.1357 +
  1.1358 +      // Set limits for updating _last_succ form v_in and v_out
  1.1359 +      // towards the root
  1.1360 +      int up_limit_in = -1;
  1.1361 +      int up_limit_out = -1;
  1.1362 +      if (_last_succ[join] == v_in) {
  1.1363 +        up_limit_out = join;
  1.1364 +      } else {
  1.1365 +        up_limit_in = join;
  1.1366 +      }
  1.1367 +
  1.1368 +      // Update _last_succ from v_in towards the root
  1.1369 +      for (u = v_in; u != up_limit_in && _last_succ[u] == v_in;
  1.1370 +           u = _parent[u]) {
  1.1371 +        _last_succ[u] = _last_succ[u_out];
  1.1372 +      }
  1.1373 +      // Update _last_succ from v_out towards the root
  1.1374 +      if (join != old_rev_thread && v_in != old_rev_thread) {
  1.1375 +        for (u = v_out; u != up_limit_out && _last_succ[u] == old_last_succ;
  1.1376 +             u = _parent[u]) {
  1.1377 +          _last_succ[u] = old_rev_thread;
  1.1378 +        }
  1.1379 +      } else {
  1.1380 +        for (u = v_out; u != up_limit_out && _last_succ[u] == old_last_succ;
  1.1381 +             u = _parent[u]) {
  1.1382 +          _last_succ[u] = _last_succ[u_out];
  1.1383 +        }
  1.1384 +      }
  1.1385 +
  1.1386 +      // Update _succ_num from v_in to join
  1.1387 +      for (u = v_in; u != join; u = _parent[u]) {
  1.1388 +        _succ_num[u] += old_succ_num;
  1.1389 +      }
  1.1390 +      // Update _succ_num from v_out to join
  1.1391 +      for (u = v_out; u != join; u = _parent[u]) {
  1.1392 +        _succ_num[u] -= old_succ_num;
  1.1393 +      }
  1.1394 +    }
  1.1395 +
  1.1396 +    // Update potentials
  1.1397 +    void updatePotential() {
  1.1398 +      Cost sigma = _forward[u_in] ?
  1.1399 +        _pi[v_in] - _pi[u_in] - _cost[_pred[u_in]] :
  1.1400 +        _pi[v_in] - _pi[u_in] + _cost[_pred[u_in]];
  1.1401 +      // Update potentials in the subtree, which has been moved
  1.1402 +      int end = _thread[_last_succ[u_in]];
  1.1403 +      for (int u = u_in; u != end; u = _thread[u]) {
  1.1404 +        _pi[u] += sigma;
  1.1405 +      }
  1.1406 +    }
  1.1407 +
  1.1408 +    // Execute the algorithm
  1.1409 +    ProblemType start(PivotRule pivot_rule) {
  1.1410 +      // Select the pivot rule implementation
  1.1411 +      switch (pivot_rule) {
  1.1412 +        case FIRST_ELIGIBLE:
  1.1413 +          return start<FirstEligiblePivotRule>();
  1.1414 +        case BEST_ELIGIBLE:
  1.1415 +          return start<BestEligiblePivotRule>();
  1.1416 +        case BLOCK_SEARCH:
  1.1417 +          return start<BlockSearchPivotRule>();
  1.1418 +        case CANDIDATE_LIST:
  1.1419 +          return start<CandidateListPivotRule>();
  1.1420 +        case ALTERING_LIST:
  1.1421 +          return start<AlteringListPivotRule>();
  1.1422 +      }
  1.1423 +      return INFEASIBLE; // avoid warning
  1.1424 +    }
  1.1425 +
  1.1426 +    template <typename PivotRuleImpl>
  1.1427 +    ProblemType start() {
  1.1428 +      PivotRuleImpl pivot(*this);
  1.1429 +
  1.1430 +      // Execute the Network Simplex algorithm
  1.1431 +      while (pivot.findEnteringArc()) {
  1.1432 +        findJoinNode();
  1.1433 +        bool change = findLeavingArc();
  1.1434 +        if (delta >= INF) return UNBOUNDED;
  1.1435 +        changeFlow(change);
  1.1436 +        if (change) {
  1.1437 +          updateTreeStructure();
  1.1438 +          updatePotential();
  1.1439 +        }
  1.1440 +      }
  1.1441 +      
  1.1442 +      // Check feasibility
  1.1443 +      for (int e = _search_arc_num; e != _all_arc_num; ++e) {
  1.1444 +        if (_flow[e] != 0) return INFEASIBLE;
  1.1445 +      }
  1.1446 +
  1.1447 +      // Transform the solution and the supply map to the original form
  1.1448 +      if (_have_lower) {
  1.1449 +        for (int i = 0; i != _arc_num; ++i) {
  1.1450 +          Value c = _lower[i];
  1.1451 +          if (c != 0) {
  1.1452 +            _flow[i] += c;
  1.1453 +            _supply[_source[i]] += c;
  1.1454 +            _supply[_target[i]] -= c;
  1.1455 +          }
  1.1456 +        }
  1.1457 +      }
  1.1458 +      
  1.1459 +      // Shift potentials to meet the requirements of the GEQ/LEQ type
  1.1460 +      // optimality conditions
  1.1461 +      if (_sum_supply == 0) {
  1.1462 +        if (_stype == GEQ) {
  1.1463 +          Cost max_pot = std::numeric_limits<Cost>::min();
  1.1464 +          for (int i = 0; i != _node_num; ++i) {
  1.1465 +            if (_pi[i] > max_pot) max_pot = _pi[i];
  1.1466 +          }
  1.1467 +          if (max_pot > 0) {
  1.1468 +            for (int i = 0; i != _node_num; ++i)
  1.1469 +              _pi[i] -= max_pot;
  1.1470 +          }
  1.1471 +        } else {
  1.1472 +          Cost min_pot = std::numeric_limits<Cost>::max();
  1.1473 +          for (int i = 0; i != _node_num; ++i) {
  1.1474 +            if (_pi[i] < min_pot) min_pot = _pi[i];
  1.1475 +          }
  1.1476 +          if (min_pot < 0) {
  1.1477 +            for (int i = 0; i != _node_num; ++i)
  1.1478 +              _pi[i] -= min_pot;
  1.1479 +          }
  1.1480 +        }
  1.1481 +      }
  1.1482 +
  1.1483 +      return OPTIMAL;
  1.1484 +    }
  1.1485 +
  1.1486 +  }; //class NetworkSimplex
  1.1487 +
  1.1488 +  ///@}
  1.1489 +
  1.1490 +} //namespace lemon
  1.1491 +
  1.1492 +#endif //LEMON_NETWORK_SIMPLEX_H