lemon/hartmann_orlin.h
author Peter Kovacs <kpeter@inf.elte.hu>
Wed, 12 Aug 2009 09:45:15 +0200
changeset 768 0a42883c8221
parent 767 11c946fa8d13
child 769 e746fb14e680
permissions -rw-r--r--
Separate group for the min mean cycle classes (#179)
     1 /* -*- C++ -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library
     4  *
     5  * Copyright (C) 2003-2008
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_HARTMANN_ORLIN_H
    20 #define LEMON_HARTMANN_ORLIN_H
    21 
    22 /// \ingroup min_mean_cycle
    23 ///
    24 /// \file
    25 /// \brief Hartmann-Orlin's algorithm for finding a minimum mean cycle.
    26 
    27 #include <vector>
    28 #include <limits>
    29 #include <lemon/core.h>
    30 #include <lemon/path.h>
    31 #include <lemon/tolerance.h>
    32 #include <lemon/connectivity.h>
    33 
    34 namespace lemon {
    35 
    36   /// \brief Default traits class of HartmannOrlin algorithm.
    37   ///
    38   /// Default traits class of HartmannOrlin algorithm.
    39   /// \tparam GR The type of the digraph.
    40   /// \tparam LEN The type of the length map.
    41   /// It must conform to the \ref concepts::Rea_data "Rea_data" concept.
    42 #ifdef DOXYGEN
    43   template <typename GR, typename LEN>
    44 #else
    45   template <typename GR, typename LEN,
    46     bool integer = std::numeric_limits<typename LEN::Value>::is_integer>
    47 #endif
    48   struct HartmannOrlinDefaultTraits
    49   {
    50     /// The type of the digraph
    51     typedef GR Digraph;
    52     /// The type of the length map
    53     typedef LEN LengthMap;
    54     /// The type of the arc lengths
    55     typedef typename LengthMap::Value Value;
    56 
    57     /// \brief The large value type used for internal computations
    58     ///
    59     /// The large value type used for internal computations.
    60     /// It is \c long \c long if the \c Value type is integer,
    61     /// otherwise it is \c double.
    62     /// \c Value must be convertible to \c LargeValue.
    63     typedef double LargeValue;
    64 
    65     /// The tolerance type used for internal computations
    66     typedef lemon::Tolerance<LargeValue> Tolerance;
    67 
    68     /// \brief The path type of the found cycles
    69     ///
    70     /// The path type of the found cycles.
    71     /// It must conform to the \ref lemon::concepts::Path "Path" concept
    72     /// and it must have an \c addBack() function.
    73     typedef lemon::Path<Digraph> Path;
    74   };
    75 
    76   // Default traits class for integer value types
    77   template <typename GR, typename LEN>
    78   struct HartmannOrlinDefaultTraits<GR, LEN, true>
    79   {
    80     typedef GR Digraph;
    81     typedef LEN LengthMap;
    82     typedef typename LengthMap::Value Value;
    83 #ifdef LEMON_HAVE_LONG_LONG
    84     typedef long long LargeValue;
    85 #else
    86     typedef long LargeValue;
    87 #endif
    88     typedef lemon::Tolerance<LargeValue> Tolerance;
    89     typedef lemon::Path<Digraph> Path;
    90   };
    91 
    92 
    93   /// \addtogroup min_mean_cycle
    94   /// @{
    95 
    96   /// \brief Implementation of the Hartmann-Orlin algorithm for finding
    97   /// a minimum mean cycle.
    98   ///
    99   /// This class implements the Hartmann-Orlin algorithm for finding
   100   /// a directed cycle of minimum mean length (cost) in a digraph.
   101   /// It is an improved version of \ref Karp "Karp"'s original algorithm,
   102   /// it applies an efficient early termination scheme.
   103   /// It runs in time O(ne) and uses space O(n<sup>2</sup>+e).
   104   ///
   105   /// \tparam GR The type of the digraph the algorithm runs on.
   106   /// \tparam LEN The type of the length map. The default
   107   /// map type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>".
   108 #ifdef DOXYGEN
   109   template <typename GR, typename LEN, typename TR>
   110 #else
   111   template < typename GR,
   112              typename LEN = typename GR::template ArcMap<int>,
   113              typename TR = HartmannOrlinDefaultTraits<GR, LEN> >
   114 #endif
   115   class HartmannOrlin
   116   {
   117   public:
   118 
   119     /// The type of the digraph
   120     typedef typename TR::Digraph Digraph;
   121     /// The type of the length map
   122     typedef typename TR::LengthMap LengthMap;
   123     /// The type of the arc lengths
   124     typedef typename TR::Value Value;
   125 
   126     /// \brief The large value type
   127     ///
   128     /// The large value type used for internal computations.
   129     /// Using the \ref HartmannOrlinDefaultTraits "default traits class",
   130     /// it is \c long \c long if the \c Value type is integer,
   131     /// otherwise it is \c double.
   132     typedef typename TR::LargeValue LargeValue;
   133 
   134     /// The tolerance type
   135     typedef typename TR::Tolerance Tolerance;
   136 
   137     /// \brief The path type of the found cycles
   138     ///
   139     /// The path type of the found cycles.
   140     /// Using the \ref HartmannOrlinDefaultTraits "default traits class",
   141     /// it is \ref lemon::Path "Path<Digraph>".
   142     typedef typename TR::Path Path;
   143 
   144     /// The \ref HartmannOrlinDefaultTraits "traits class" of the algorithm
   145     typedef TR Traits;
   146 
   147   private:
   148 
   149     TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
   150 
   151     // Data sturcture for path data
   152     struct PathData
   153     {
   154       LargeValue dist;
   155       Arc pred;
   156       PathData(LargeValue d, Arc p = INVALID) :
   157         dist(d), pred(p) {}
   158     };
   159 
   160     typedef typename Digraph::template NodeMap<std::vector<PathData> >
   161       PathDataNodeMap;
   162 
   163   private:
   164 
   165     // The digraph the algorithm runs on
   166     const Digraph &_gr;
   167     // The length of the arcs
   168     const LengthMap &_length;
   169 
   170     // Data for storing the strongly connected components
   171     int _comp_num;
   172     typename Digraph::template NodeMap<int> _comp;
   173     std::vector<std::vector<Node> > _comp_nodes;
   174     std::vector<Node>* _nodes;
   175     typename Digraph::template NodeMap<std::vector<Arc> > _out_arcs;
   176 
   177     // Data for the found cycles
   178     bool _curr_found, _best_found;
   179     LargeValue _curr_length, _best_length;
   180     int _curr_size, _best_size;
   181     Node _curr_node, _best_node;
   182     int _curr_level, _best_level;
   183 
   184     Path *_cycle_path;
   185     bool _local_path;
   186 
   187     // Node map for storing path data
   188     PathDataNodeMap _data;
   189     // The processed nodes in the last round
   190     std::vector<Node> _process;
   191 
   192     Tolerance _tolerance;
   193 
   194     // Infinite constant
   195     const LargeValue INF;
   196 
   197   public:
   198 
   199     /// \name Named Template Parameters
   200     /// @{
   201 
   202     template <typename T>
   203     struct SetLargeValueTraits : public Traits {
   204       typedef T LargeValue;
   205       typedef lemon::Tolerance<T> Tolerance;
   206     };
   207 
   208     /// \brief \ref named-templ-param "Named parameter" for setting
   209     /// \c LargeValue type.
   210     ///
   211     /// \ref named-templ-param "Named parameter" for setting \c LargeValue
   212     /// type. It is used for internal computations in the algorithm.
   213     template <typename T>
   214     struct SetLargeValue
   215       : public HartmannOrlin<GR, LEN, SetLargeValueTraits<T> > {
   216       typedef HartmannOrlin<GR, LEN, SetLargeValueTraits<T> > Create;
   217     };
   218 
   219     template <typename T>
   220     struct SetPathTraits : public Traits {
   221       typedef T Path;
   222     };
   223 
   224     /// \brief \ref named-templ-param "Named parameter" for setting
   225     /// \c %Path type.
   226     ///
   227     /// \ref named-templ-param "Named parameter" for setting the \c %Path
   228     /// type of the found cycles.
   229     /// It must conform to the \ref lemon::concepts::Path "Path" concept
   230     /// and it must have an \c addFront() function.
   231     template <typename T>
   232     struct SetPath
   233       : public HartmannOrlin<GR, LEN, SetPathTraits<T> > {
   234       typedef HartmannOrlin<GR, LEN, SetPathTraits<T> > Create;
   235     };
   236 
   237     /// @}
   238 
   239   public:
   240 
   241     /// \brief Constructor.
   242     ///
   243     /// The constructor of the class.
   244     ///
   245     /// \param digraph The digraph the algorithm runs on.
   246     /// \param length The lengths (costs) of the arcs.
   247     HartmannOrlin( const Digraph &digraph,
   248                    const LengthMap &length ) :
   249       _gr(digraph), _length(length), _comp(digraph), _out_arcs(digraph),
   250       _best_found(false), _best_length(0), _best_size(1),
   251       _cycle_path(NULL), _local_path(false), _data(digraph),
   252       INF(std::numeric_limits<LargeValue>::has_infinity ?
   253           std::numeric_limits<LargeValue>::infinity() :
   254           std::numeric_limits<LargeValue>::max())
   255     {}
   256 
   257     /// Destructor.
   258     ~HartmannOrlin() {
   259       if (_local_path) delete _cycle_path;
   260     }
   261 
   262     /// \brief Set the path structure for storing the found cycle.
   263     ///
   264     /// This function sets an external path structure for storing the
   265     /// found cycle.
   266     ///
   267     /// If you don't call this function before calling \ref run() or
   268     /// \ref findMinMean(), it will allocate a local \ref Path "path"
   269     /// structure. The destuctor deallocates this automatically
   270     /// allocated object, of course.
   271     ///
   272     /// \note The algorithm calls only the \ref lemon::Path::addFront()
   273     /// "addFront()" function of the given path structure.
   274     ///
   275     /// \return <tt>(*this)</tt>
   276     HartmannOrlin& cycle(Path &path) {
   277       if (_local_path) {
   278         delete _cycle_path;
   279         _local_path = false;
   280       }
   281       _cycle_path = &path;
   282       return *this;
   283     }
   284 
   285     /// \name Execution control
   286     /// The simplest way to execute the algorithm is to call the \ref run()
   287     /// function.\n
   288     /// If you only need the minimum mean length, you may call
   289     /// \ref findMinMean().
   290 
   291     /// @{
   292 
   293     /// \brief Run the algorithm.
   294     ///
   295     /// This function runs the algorithm.
   296     /// It can be called more than once (e.g. if the underlying digraph
   297     /// and/or the arc lengths have been modified).
   298     ///
   299     /// \return \c true if a directed cycle exists in the digraph.
   300     ///
   301     /// \note <tt>mmc.run()</tt> is just a shortcut of the following code.
   302     /// \code
   303     ///   return mmc.findMinMean() && mmc.findCycle();
   304     /// \endcode
   305     bool run() {
   306       return findMinMean() && findCycle();
   307     }
   308 
   309     /// \brief Find the minimum cycle mean.
   310     ///
   311     /// This function finds the minimum mean length of the directed
   312     /// cycles in the digraph.
   313     ///
   314     /// \return \c true if a directed cycle exists in the digraph.
   315     bool findMinMean() {
   316       // Initialization and find strongly connected components
   317       init();
   318       findComponents();
   319       
   320       // Find the minimum cycle mean in the components
   321       for (int comp = 0; comp < _comp_num; ++comp) {
   322         if (!initComponent(comp)) continue;
   323         processRounds();
   324         
   325         // Update the best cycle (global minimum mean cycle)
   326         if ( _curr_found && (!_best_found || 
   327              _curr_length * _best_size < _best_length * _curr_size) ) {
   328           _best_found = true;
   329           _best_length = _curr_length;
   330           _best_size = _curr_size;
   331           _best_node = _curr_node;
   332           _best_level = _curr_level;
   333         }
   334       }
   335       return _best_found;
   336     }
   337 
   338     /// \brief Find a minimum mean directed cycle.
   339     ///
   340     /// This function finds a directed cycle of minimum mean length
   341     /// in the digraph using the data computed by findMinMean().
   342     ///
   343     /// \return \c true if a directed cycle exists in the digraph.
   344     ///
   345     /// \pre \ref findMinMean() must be called before using this function.
   346     bool findCycle() {
   347       if (!_best_found) return false;
   348       IntNodeMap reached(_gr, -1);
   349       int r = _best_level + 1;
   350       Node u = _best_node;
   351       while (reached[u] < 0) {
   352         reached[u] = --r;
   353         u = _gr.source(_data[u][r].pred);
   354       }
   355       r = reached[u];
   356       Arc e = _data[u][r].pred;
   357       _cycle_path->addFront(e);
   358       _best_length = _length[e];
   359       _best_size = 1;
   360       Node v;
   361       while ((v = _gr.source(e)) != u) {
   362         e = _data[v][--r].pred;
   363         _cycle_path->addFront(e);
   364         _best_length += _length[e];
   365         ++_best_size;
   366       }
   367       return true;
   368     }
   369 
   370     /// @}
   371 
   372     /// \name Query Functions
   373     /// The results of the algorithm can be obtained using these
   374     /// functions.\n
   375     /// The algorithm should be executed before using them.
   376 
   377     /// @{
   378 
   379     /// \brief Return the total length of the found cycle.
   380     ///
   381     /// This function returns the total length of the found cycle.
   382     ///
   383     /// \pre \ref run() or \ref findMinMean() must be called before
   384     /// using this function.
   385     LargeValue cycleLength() const {
   386       return _best_length;
   387     }
   388 
   389     /// \brief Return the number of arcs on the found cycle.
   390     ///
   391     /// This function returns the number of arcs on the found cycle.
   392     ///
   393     /// \pre \ref run() or \ref findMinMean() must be called before
   394     /// using this function.
   395     int cycleArcNum() const {
   396       return _best_size;
   397     }
   398 
   399     /// \brief Return the mean length of the found cycle.
   400     ///
   401     /// This function returns the mean length of the found cycle.
   402     ///
   403     /// \note <tt>alg.cycleMean()</tt> is just a shortcut of the
   404     /// following code.
   405     /// \code
   406     ///   return static_cast<double>(alg.cycleLength()) / alg.cycleArcNum();
   407     /// \endcode
   408     ///
   409     /// \pre \ref run() or \ref findMinMean() must be called before
   410     /// using this function.
   411     double cycleMean() const {
   412       return static_cast<double>(_best_length) / _best_size;
   413     }
   414 
   415     /// \brief Return the found cycle.
   416     ///
   417     /// This function returns a const reference to the path structure
   418     /// storing the found cycle.
   419     ///
   420     /// \pre \ref run() or \ref findCycle() must be called before using
   421     /// this function.
   422     const Path& cycle() const {
   423       return *_cycle_path;
   424     }
   425 
   426     ///@}
   427 
   428   private:
   429 
   430     // Initialization
   431     void init() {
   432       if (!_cycle_path) {
   433         _local_path = true;
   434         _cycle_path = new Path;
   435       }
   436       _cycle_path->clear();
   437       _best_found = false;
   438       _best_length = 0;
   439       _best_size = 1;
   440       _cycle_path->clear();
   441       for (NodeIt u(_gr); u != INVALID; ++u)
   442         _data[u].clear();
   443     }
   444 
   445     // Find strongly connected components and initialize _comp_nodes
   446     // and _out_arcs
   447     void findComponents() {
   448       _comp_num = stronglyConnectedComponents(_gr, _comp);
   449       _comp_nodes.resize(_comp_num);
   450       if (_comp_num == 1) {
   451         _comp_nodes[0].clear();
   452         for (NodeIt n(_gr); n != INVALID; ++n) {
   453           _comp_nodes[0].push_back(n);
   454           _out_arcs[n].clear();
   455           for (OutArcIt a(_gr, n); a != INVALID; ++a) {
   456             _out_arcs[n].push_back(a);
   457           }
   458         }
   459       } else {
   460         for (int i = 0; i < _comp_num; ++i)
   461           _comp_nodes[i].clear();
   462         for (NodeIt n(_gr); n != INVALID; ++n) {
   463           int k = _comp[n];
   464           _comp_nodes[k].push_back(n);
   465           _out_arcs[n].clear();
   466           for (OutArcIt a(_gr, n); a != INVALID; ++a) {
   467             if (_comp[_gr.target(a)] == k) _out_arcs[n].push_back(a);
   468           }
   469         }
   470       }
   471     }
   472 
   473     // Initialize path data for the current component
   474     bool initComponent(int comp) {
   475       _nodes = &(_comp_nodes[comp]);
   476       int n = _nodes->size();
   477       if (n < 1 || (n == 1 && _out_arcs[(*_nodes)[0]].size() == 0)) {
   478         return false;
   479       }      
   480       for (int i = 0; i < n; ++i) {
   481         _data[(*_nodes)[i]].resize(n + 1, PathData(INF));
   482       }
   483       return true;
   484     }
   485 
   486     // Process all rounds of computing path data for the current component.
   487     // _data[v][k] is the length of a shortest directed walk from the root
   488     // node to node v containing exactly k arcs.
   489     void processRounds() {
   490       Node start = (*_nodes)[0];
   491       _data[start][0] = PathData(0);
   492       _process.clear();
   493       _process.push_back(start);
   494 
   495       int k, n = _nodes->size();
   496       int next_check = 4;
   497       bool terminate = false;
   498       for (k = 1; k <= n && int(_process.size()) < n && !terminate; ++k) {
   499         processNextBuildRound(k);
   500         if (k == next_check || k == n) {
   501           terminate = checkTermination(k);
   502           next_check = next_check * 3 / 2;
   503         }
   504       }
   505       for ( ; k <= n && !terminate; ++k) {
   506         processNextFullRound(k);
   507         if (k == next_check || k == n) {
   508           terminate = checkTermination(k);
   509           next_check = next_check * 3 / 2;
   510         }
   511       }
   512     }
   513 
   514     // Process one round and rebuild _process
   515     void processNextBuildRound(int k) {
   516       std::vector<Node> next;
   517       Node u, v;
   518       Arc e;
   519       LargeValue d;
   520       for (int i = 0; i < int(_process.size()); ++i) {
   521         u = _process[i];
   522         for (int j = 0; j < int(_out_arcs[u].size()); ++j) {
   523           e = _out_arcs[u][j];
   524           v = _gr.target(e);
   525           d = _data[u][k-1].dist + _length[e];
   526           if (_tolerance.less(d, _data[v][k].dist)) {
   527             if (_data[v][k].dist == INF) next.push_back(v);
   528             _data[v][k] = PathData(d, e);
   529           }
   530         }
   531       }
   532       _process.swap(next);
   533     }
   534 
   535     // Process one round using _nodes instead of _process
   536     void processNextFullRound(int k) {
   537       Node u, v;
   538       Arc e;
   539       LargeValue d;
   540       for (int i = 0; i < int(_nodes->size()); ++i) {
   541         u = (*_nodes)[i];
   542         for (int j = 0; j < int(_out_arcs[u].size()); ++j) {
   543           e = _out_arcs[u][j];
   544           v = _gr.target(e);
   545           d = _data[u][k-1].dist + _length[e];
   546           if (_tolerance.less(d, _data[v][k].dist)) {
   547             _data[v][k] = PathData(d, e);
   548           }
   549         }
   550       }
   551     }
   552     
   553     // Check early termination
   554     bool checkTermination(int k) {
   555       typedef std::pair<int, int> Pair;
   556       typename GR::template NodeMap<Pair> level(_gr, Pair(-1, 0));
   557       typename GR::template NodeMap<LargeValue> pi(_gr);
   558       int n = _nodes->size();
   559       LargeValue length;
   560       int size;
   561       Node u;
   562       
   563       // Search for cycles that are already found
   564       _curr_found = false;
   565       for (int i = 0; i < n; ++i) {
   566         u = (*_nodes)[i];
   567         if (_data[u][k].dist == INF) continue;
   568         for (int j = k; j >= 0; --j) {
   569           if (level[u].first == i && level[u].second > 0) {
   570             // A cycle is found
   571             length = _data[u][level[u].second].dist - _data[u][j].dist;
   572             size = level[u].second - j;
   573             if (!_curr_found || length * _curr_size < _curr_length * size) {
   574               _curr_length = length;
   575               _curr_size = size;
   576               _curr_node = u;
   577               _curr_level = level[u].second;
   578               _curr_found = true;
   579             }
   580           }
   581           level[u] = Pair(i, j);
   582           u = _gr.source(_data[u][j].pred);
   583         }
   584       }
   585 
   586       // If at least one cycle is found, check the optimality condition
   587       LargeValue d;
   588       if (_curr_found && k < n) {
   589         // Find node potentials
   590         for (int i = 0; i < n; ++i) {
   591           u = (*_nodes)[i];
   592           pi[u] = INF;
   593           for (int j = 0; j <= k; ++j) {
   594             if (_data[u][j].dist < INF) {
   595               d = _data[u][j].dist * _curr_size - j * _curr_length;
   596               if (_tolerance.less(d, pi[u])) pi[u] = d;
   597             }
   598           }
   599         }
   600 
   601         // Check the optimality condition for all arcs
   602         bool done = true;
   603         for (ArcIt a(_gr); a != INVALID; ++a) {
   604           if (_tolerance.less(_length[a] * _curr_size - _curr_length,
   605                               pi[_gr.target(a)] - pi[_gr.source(a)]) ) {
   606             done = false;
   607             break;
   608           }
   609         }
   610         return done;
   611       }
   612       return (k == n);
   613     }
   614 
   615   }; //class HartmannOrlin
   616 
   617   ///@}
   618 
   619 } //namespace lemon
   620 
   621 #endif //LEMON_HARTMANN_ORLIN_H