lemon/karp.h
author Peter Kovacs <kpeter@inf.elte.hu>
Tue, 11 Aug 2009 22:52:35 +0200
changeset 767 11c946fa8d13
parent 765 3b544a9c92db
child 768 0a42883c8221
permissions -rw-r--r--
Simplify comparisons in min mean cycle classes (#179)
using extreme INF values instead of bool flags.
     1 /* -*- C++ -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library
     4  *
     5  * Copyright (C) 2003-2008
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_KARP_H
    20 #define LEMON_KARP_H
    21 
    22 /// \ingroup shortest_path
    23 ///
    24 /// \file
    25 /// \brief Karp's algorithm for finding a minimum mean cycle.
    26 
    27 #include <vector>
    28 #include <limits>
    29 #include <lemon/core.h>
    30 #include <lemon/path.h>
    31 #include <lemon/tolerance.h>
    32 #include <lemon/connectivity.h>
    33 
    34 namespace lemon {
    35 
    36   /// \brief Default traits class of Karp algorithm.
    37   ///
    38   /// Default traits class of Karp algorithm.
    39   /// \tparam GR The type of the digraph.
    40   /// \tparam LEN The type of the length map.
    41   /// It must conform to the \ref concepts::ReadMap "ReadMap" concept.
    42 #ifdef DOXYGEN
    43   template <typename GR, typename LEN>
    44 #else
    45   template <typename GR, typename LEN,
    46     bool integer = std::numeric_limits<typename LEN::Value>::is_integer>
    47 #endif
    48   struct KarpDefaultTraits
    49   {
    50     /// The type of the digraph
    51     typedef GR Digraph;
    52     /// The type of the length map
    53     typedef LEN LengthMap;
    54     /// The type of the arc lengths
    55     typedef typename LengthMap::Value Value;
    56 
    57     /// \brief The large value type used for internal computations
    58     ///
    59     /// The large value type used for internal computations.
    60     /// It is \c long \c long if the \c Value type is integer,
    61     /// otherwise it is \c double.
    62     /// \c Value must be convertible to \c LargeValue.
    63     typedef double LargeValue;
    64 
    65     /// The tolerance type used for internal computations
    66     typedef lemon::Tolerance<LargeValue> Tolerance;
    67 
    68     /// \brief The path type of the found cycles
    69     ///
    70     /// The path type of the found cycles.
    71     /// It must conform to the \ref lemon::concepts::Path "Path" concept
    72     /// and it must have an \c addBack() function.
    73     typedef lemon::Path<Digraph> Path;
    74   };
    75 
    76   // Default traits class for integer value types
    77   template <typename GR, typename LEN>
    78   struct KarpDefaultTraits<GR, LEN, true>
    79   {
    80     typedef GR Digraph;
    81     typedef LEN LengthMap;
    82     typedef typename LengthMap::Value Value;
    83 #ifdef LEMON_HAVE_LONG_LONG
    84     typedef long long LargeValue;
    85 #else
    86     typedef long LargeValue;
    87 #endif
    88     typedef lemon::Tolerance<LargeValue> Tolerance;
    89     typedef lemon::Path<Digraph> Path;
    90   };
    91 
    92 
    93   /// \addtogroup shortest_path
    94   /// @{
    95 
    96   /// \brief Implementation of Karp's algorithm for finding a minimum
    97   /// mean cycle.
    98   ///
    99   /// This class implements Karp's algorithm for finding a directed
   100   /// cycle of minimum mean length (cost) in a digraph.
   101   ///
   102   /// \tparam GR The type of the digraph the algorithm runs on.
   103   /// \tparam LEN The type of the length map. The default
   104   /// map type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>".
   105 #ifdef DOXYGEN
   106   template <typename GR, typename LEN, typename TR>
   107 #else
   108   template < typename GR,
   109              typename LEN = typename GR::template ArcMap<int>,
   110              typename TR = KarpDefaultTraits<GR, LEN> >
   111 #endif
   112   class Karp
   113   {
   114   public:
   115 
   116     /// The type of the digraph
   117     typedef typename TR::Digraph Digraph;
   118     /// The type of the length map
   119     typedef typename TR::LengthMap LengthMap;
   120     /// The type of the arc lengths
   121     typedef typename TR::Value Value;
   122 
   123     /// \brief The large value type
   124     ///
   125     /// The large value type used for internal computations.
   126     /// Using the \ref KarpDefaultTraits "default traits class",
   127     /// it is \c long \c long if the \c Value type is integer,
   128     /// otherwise it is \c double.
   129     typedef typename TR::LargeValue LargeValue;
   130 
   131     /// The tolerance type
   132     typedef typename TR::Tolerance Tolerance;
   133 
   134     /// \brief The path type of the found cycles
   135     ///
   136     /// The path type of the found cycles.
   137     /// Using the \ref KarpDefaultTraits "default traits class",
   138     /// it is \ref lemon::Path "Path<Digraph>".
   139     typedef typename TR::Path Path;
   140 
   141     /// The \ref KarpDefaultTraits "traits class" of the algorithm
   142     typedef TR Traits;
   143 
   144   private:
   145 
   146     TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
   147 
   148     // Data sturcture for path data
   149     struct PathData
   150     {
   151       LargeValue dist;
   152       Arc pred;
   153       PathData(LargeValue d, Arc p = INVALID) :
   154         dist(d), pred(p) {}
   155     };
   156 
   157     typedef typename Digraph::template NodeMap<std::vector<PathData> >
   158       PathDataNodeMap;
   159 
   160   private:
   161 
   162     // The digraph the algorithm runs on
   163     const Digraph &_gr;
   164     // The length of the arcs
   165     const LengthMap &_length;
   166 
   167     // Data for storing the strongly connected components
   168     int _comp_num;
   169     typename Digraph::template NodeMap<int> _comp;
   170     std::vector<std::vector<Node> > _comp_nodes;
   171     std::vector<Node>* _nodes;
   172     typename Digraph::template NodeMap<std::vector<Arc> > _out_arcs;
   173 
   174     // Data for the found cycle
   175     LargeValue _cycle_length;
   176     int _cycle_size;
   177     Node _cycle_node;
   178 
   179     Path *_cycle_path;
   180     bool _local_path;
   181 
   182     // Node map for storing path data
   183     PathDataNodeMap _data;
   184     // The processed nodes in the last round
   185     std::vector<Node> _process;
   186 
   187     Tolerance _tolerance;
   188     
   189     // Infinite constant
   190     const LargeValue INF;
   191 
   192   public:
   193 
   194     /// \name Named Template Parameters
   195     /// @{
   196 
   197     template <typename T>
   198     struct SetLargeValueTraits : public Traits {
   199       typedef T LargeValue;
   200       typedef lemon::Tolerance<T> Tolerance;
   201     };
   202 
   203     /// \brief \ref named-templ-param "Named parameter" for setting
   204     /// \c LargeValue type.
   205     ///
   206     /// \ref named-templ-param "Named parameter" for setting \c LargeValue
   207     /// type. It is used for internal computations in the algorithm.
   208     template <typename T>
   209     struct SetLargeValue
   210       : public Karp<GR, LEN, SetLargeValueTraits<T> > {
   211       typedef Karp<GR, LEN, SetLargeValueTraits<T> > Create;
   212     };
   213 
   214     template <typename T>
   215     struct SetPathTraits : public Traits {
   216       typedef T Path;
   217     };
   218 
   219     /// \brief \ref named-templ-param "Named parameter" for setting
   220     /// \c %Path type.
   221     ///
   222     /// \ref named-templ-param "Named parameter" for setting the \c %Path
   223     /// type of the found cycles.
   224     /// It must conform to the \ref lemon::concepts::Path "Path" concept
   225     /// and it must have an \c addFront() function.
   226     template <typename T>
   227     struct SetPath
   228       : public Karp<GR, LEN, SetPathTraits<T> > {
   229       typedef Karp<GR, LEN, SetPathTraits<T> > Create;
   230     };
   231 
   232     /// @}
   233 
   234   public:
   235 
   236     /// \brief Constructor.
   237     ///
   238     /// The constructor of the class.
   239     ///
   240     /// \param digraph The digraph the algorithm runs on.
   241     /// \param length The lengths (costs) of the arcs.
   242     Karp( const Digraph &digraph,
   243           const LengthMap &length ) :
   244       _gr(digraph), _length(length), _comp(digraph), _out_arcs(digraph),
   245       _cycle_length(0), _cycle_size(1), _cycle_node(INVALID),
   246       _cycle_path(NULL), _local_path(false), _data(digraph),
   247       INF(std::numeric_limits<LargeValue>::has_infinity ?
   248           std::numeric_limits<LargeValue>::infinity() :
   249           std::numeric_limits<LargeValue>::max())
   250     {}
   251 
   252     /// Destructor.
   253     ~Karp() {
   254       if (_local_path) delete _cycle_path;
   255     }
   256 
   257     /// \brief Set the path structure for storing the found cycle.
   258     ///
   259     /// This function sets an external path structure for storing the
   260     /// found cycle.
   261     ///
   262     /// If you don't call this function before calling \ref run() or
   263     /// \ref findMinMean(), it will allocate a local \ref Path "path"
   264     /// structure. The destuctor deallocates this automatically
   265     /// allocated object, of course.
   266     ///
   267     /// \note The algorithm calls only the \ref lemon::Path::addFront()
   268     /// "addFront()" function of the given path structure.
   269     ///
   270     /// \return <tt>(*this)</tt>
   271     Karp& cycle(Path &path) {
   272       if (_local_path) {
   273         delete _cycle_path;
   274         _local_path = false;
   275       }
   276       _cycle_path = &path;
   277       return *this;
   278     }
   279 
   280     /// \name Execution control
   281     /// The simplest way to execute the algorithm is to call the \ref run()
   282     /// function.\n
   283     /// If you only need the minimum mean length, you may call
   284     /// \ref findMinMean().
   285 
   286     /// @{
   287 
   288     /// \brief Run the algorithm.
   289     ///
   290     /// This function runs the algorithm.
   291     /// It can be called more than once (e.g. if the underlying digraph
   292     /// and/or the arc lengths have been modified).
   293     ///
   294     /// \return \c true if a directed cycle exists in the digraph.
   295     ///
   296     /// \note <tt>mmc.run()</tt> is just a shortcut of the following code.
   297     /// \code
   298     ///   return mmc.findMinMean() && mmc.findCycle();
   299     /// \endcode
   300     bool run() {
   301       return findMinMean() && findCycle();
   302     }
   303 
   304     /// \brief Find the minimum cycle mean.
   305     ///
   306     /// This function finds the minimum mean length of the directed
   307     /// cycles in the digraph.
   308     ///
   309     /// \return \c true if a directed cycle exists in the digraph.
   310     bool findMinMean() {
   311       // Initialization and find strongly connected components
   312       init();
   313       findComponents();
   314       
   315       // Find the minimum cycle mean in the components
   316       for (int comp = 0; comp < _comp_num; ++comp) {
   317         if (!initComponent(comp)) continue;
   318         processRounds();
   319         updateMinMean();
   320       }
   321       return (_cycle_node != INVALID);
   322     }
   323 
   324     /// \brief Find a minimum mean directed cycle.
   325     ///
   326     /// This function finds a directed cycle of minimum mean length
   327     /// in the digraph using the data computed by findMinMean().
   328     ///
   329     /// \return \c true if a directed cycle exists in the digraph.
   330     ///
   331     /// \pre \ref findMinMean() must be called before using this function.
   332     bool findCycle() {
   333       if (_cycle_node == INVALID) return false;
   334       IntNodeMap reached(_gr, -1);
   335       int r = _data[_cycle_node].size();
   336       Node u = _cycle_node;
   337       while (reached[u] < 0) {
   338         reached[u] = --r;
   339         u = _gr.source(_data[u][r].pred);
   340       }
   341       r = reached[u];
   342       Arc e = _data[u][r].pred;
   343       _cycle_path->addFront(e);
   344       _cycle_length = _length[e];
   345       _cycle_size = 1;
   346       Node v;
   347       while ((v = _gr.source(e)) != u) {
   348         e = _data[v][--r].pred;
   349         _cycle_path->addFront(e);
   350         _cycle_length += _length[e];
   351         ++_cycle_size;
   352       }
   353       return true;
   354     }
   355 
   356     /// @}
   357 
   358     /// \name Query Functions
   359     /// The results of the algorithm can be obtained using these
   360     /// functions.\n
   361     /// The algorithm should be executed before using them.
   362 
   363     /// @{
   364 
   365     /// \brief Return the total length of the found cycle.
   366     ///
   367     /// This function returns the total length of the found cycle.
   368     ///
   369     /// \pre \ref run() or \ref findMinMean() must be called before
   370     /// using this function.
   371     LargeValue cycleLength() const {
   372       return _cycle_length;
   373     }
   374 
   375     /// \brief Return the number of arcs on the found cycle.
   376     ///
   377     /// This function returns the number of arcs on the found cycle.
   378     ///
   379     /// \pre \ref run() or \ref findMinMean() must be called before
   380     /// using this function.
   381     int cycleArcNum() const {
   382       return _cycle_size;
   383     }
   384 
   385     /// \brief Return the mean length of the found cycle.
   386     ///
   387     /// This function returns the mean length of the found cycle.
   388     ///
   389     /// \note <tt>alg.cycleMean()</tt> is just a shortcut of the
   390     /// following code.
   391     /// \code
   392     ///   return static_cast<double>(alg.cycleLength()) / alg.cycleArcNum();
   393     /// \endcode
   394     ///
   395     /// \pre \ref run() or \ref findMinMean() must be called before
   396     /// using this function.
   397     double cycleMean() const {
   398       return static_cast<double>(_cycle_length) / _cycle_size;
   399     }
   400 
   401     /// \brief Return the found cycle.
   402     ///
   403     /// This function returns a const reference to the path structure
   404     /// storing the found cycle.
   405     ///
   406     /// \pre \ref run() or \ref findCycle() must be called before using
   407     /// this function.
   408     const Path& cycle() const {
   409       return *_cycle_path;
   410     }
   411 
   412     ///@}
   413 
   414   private:
   415 
   416     // Initialization
   417     void init() {
   418       if (!_cycle_path) {
   419         _local_path = true;
   420         _cycle_path = new Path;
   421       }
   422       _cycle_path->clear();
   423       _cycle_length = 0;
   424       _cycle_size = 1;
   425       _cycle_node = INVALID;
   426       for (NodeIt u(_gr); u != INVALID; ++u)
   427         _data[u].clear();
   428     }
   429 
   430     // Find strongly connected components and initialize _comp_nodes
   431     // and _out_arcs
   432     void findComponents() {
   433       _comp_num = stronglyConnectedComponents(_gr, _comp);
   434       _comp_nodes.resize(_comp_num);
   435       if (_comp_num == 1) {
   436         _comp_nodes[0].clear();
   437         for (NodeIt n(_gr); n != INVALID; ++n) {
   438           _comp_nodes[0].push_back(n);
   439           _out_arcs[n].clear();
   440           for (OutArcIt a(_gr, n); a != INVALID; ++a) {
   441             _out_arcs[n].push_back(a);
   442           }
   443         }
   444       } else {
   445         for (int i = 0; i < _comp_num; ++i)
   446           _comp_nodes[i].clear();
   447         for (NodeIt n(_gr); n != INVALID; ++n) {
   448           int k = _comp[n];
   449           _comp_nodes[k].push_back(n);
   450           _out_arcs[n].clear();
   451           for (OutArcIt a(_gr, n); a != INVALID; ++a) {
   452             if (_comp[_gr.target(a)] == k) _out_arcs[n].push_back(a);
   453           }
   454         }
   455       }
   456     }
   457 
   458     // Initialize path data for the current component
   459     bool initComponent(int comp) {
   460       _nodes = &(_comp_nodes[comp]);
   461       int n = _nodes->size();
   462       if (n < 1 || (n == 1 && _out_arcs[(*_nodes)[0]].size() == 0)) {
   463         return false;
   464       }      
   465       for (int i = 0; i < n; ++i) {
   466         _data[(*_nodes)[i]].resize(n + 1, PathData(INF));
   467       }
   468       return true;
   469     }
   470 
   471     // Process all rounds of computing path data for the current component.
   472     // _data[v][k] is the length of a shortest directed walk from the root
   473     // node to node v containing exactly k arcs.
   474     void processRounds() {
   475       Node start = (*_nodes)[0];
   476       _data[start][0] = PathData(0);
   477       _process.clear();
   478       _process.push_back(start);
   479 
   480       int k, n = _nodes->size();
   481       for (k = 1; k <= n && int(_process.size()) < n; ++k) {
   482         processNextBuildRound(k);
   483       }
   484       for ( ; k <= n; ++k) {
   485         processNextFullRound(k);
   486       }
   487     }
   488 
   489     // Process one round and rebuild _process
   490     void processNextBuildRound(int k) {
   491       std::vector<Node> next;
   492       Node u, v;
   493       Arc e;
   494       LargeValue d;
   495       for (int i = 0; i < int(_process.size()); ++i) {
   496         u = _process[i];
   497         for (int j = 0; j < int(_out_arcs[u].size()); ++j) {
   498           e = _out_arcs[u][j];
   499           v = _gr.target(e);
   500           d = _data[u][k-1].dist + _length[e];
   501           if (_tolerance.less(d, _data[v][k].dist)) {
   502             if (_data[v][k].dist == INF) next.push_back(v);
   503             _data[v][k] = PathData(d, e);
   504           }
   505         }
   506       }
   507       _process.swap(next);
   508     }
   509 
   510     // Process one round using _nodes instead of _process
   511     void processNextFullRound(int k) {
   512       Node u, v;
   513       Arc e;
   514       LargeValue d;
   515       for (int i = 0; i < int(_nodes->size()); ++i) {
   516         u = (*_nodes)[i];
   517         for (int j = 0; j < int(_out_arcs[u].size()); ++j) {
   518           e = _out_arcs[u][j];
   519           v = _gr.target(e);
   520           d = _data[u][k-1].dist + _length[e];
   521           if (_tolerance.less(d, _data[v][k].dist)) {
   522             _data[v][k] = PathData(d, e);
   523           }
   524         }
   525       }
   526     }
   527 
   528     // Update the minimum cycle mean
   529     void updateMinMean() {
   530       int n = _nodes->size();
   531       for (int i = 0; i < n; ++i) {
   532         Node u = (*_nodes)[i];
   533         if (_data[u][n].dist == INF) continue;
   534         LargeValue length, max_length = 0;
   535         int size, max_size = 1;
   536         bool found_curr = false;
   537         for (int k = 0; k < n; ++k) {
   538           if (_data[u][k].dist == INF) continue;
   539           length = _data[u][n].dist - _data[u][k].dist;
   540           size = n - k;
   541           if (!found_curr || length * max_size > max_length * size) {
   542             found_curr = true;
   543             max_length = length;
   544             max_size = size;
   545           }
   546         }
   547         if ( found_curr && (_cycle_node == INVALID ||
   548              max_length * _cycle_size < _cycle_length * max_size) ) {
   549           _cycle_length = max_length;
   550           _cycle_size = max_size;
   551           _cycle_node = u;
   552         }
   553       }
   554     }
   555 
   556   }; //class Karp
   557 
   558   ///@}
   559 
   560 } //namespace lemon
   561 
   562 #endif //LEMON_KARP_H