lemon/full_graph.h
author Peter Kovacs <kpeter@inf.elte.hu>
Sat, 10 Oct 2009 08:18:46 +0200
changeset 755 134852d7fb0a
parent 617 4137ef9aacc6
child 780 580af8cf2f6a
permissions -rw-r--r--
Insert citations into the doc (#184)

- Add general citations to modules.
- Add specific citations for max flow and min cost flow algorithms.
- Add citations for the supported LP and MIP solvers.
- Extend the main page.
- Replace inproceedings entries with the journal versions.
- Add a new bibtex entry about network simplex.
- Remove unwanted entries.
     1 /* -*- mode: C++; indent-tabs-mode: nil; -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library.
     4  *
     5  * Copyright (C) 2003-2009
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_FULL_GRAPH_H
    20 #define LEMON_FULL_GRAPH_H
    21 
    22 #include <lemon/core.h>
    23 #include <lemon/bits/graph_extender.h>
    24 
    25 ///\ingroup graphs
    26 ///\file
    27 ///\brief FullDigraph and FullGraph classes.
    28 
    29 namespace lemon {
    30 
    31   class FullDigraphBase {
    32   public:
    33 
    34     typedef FullDigraphBase Digraph;
    35 
    36     class Node;
    37     class Arc;
    38 
    39   protected:
    40 
    41     int _node_num;
    42     int _arc_num;
    43 
    44     FullDigraphBase() {}
    45 
    46     void construct(int n) { _node_num = n; _arc_num = n * n; }
    47 
    48   public:
    49 
    50     typedef True NodeNumTag;
    51     typedef True ArcNumTag;
    52 
    53     Node operator()(int ix) const { return Node(ix); }
    54     int index(const Node& node) const { return node._id; }
    55 
    56     Arc arc(const Node& s, const Node& t) const {
    57       return Arc(s._id * _node_num + t._id);
    58     }
    59 
    60     int nodeNum() const { return _node_num; }
    61     int arcNum() const { return _arc_num; }
    62 
    63     int maxNodeId() const { return _node_num - 1; }
    64     int maxArcId() const { return _arc_num - 1; }
    65 
    66     Node source(Arc arc) const { return arc._id / _node_num; }
    67     Node target(Arc arc) const { return arc._id % _node_num; }
    68 
    69     static int id(Node node) { return node._id; }
    70     static int id(Arc arc) { return arc._id; }
    71 
    72     static Node nodeFromId(int id) { return Node(id);}
    73     static Arc arcFromId(int id) { return Arc(id);}
    74 
    75     typedef True FindArcTag;
    76 
    77     Arc findArc(Node s, Node t, Arc prev = INVALID) const {
    78       return prev == INVALID ? arc(s, t) : INVALID;
    79     }
    80 
    81     class Node {
    82       friend class FullDigraphBase;
    83 
    84     protected:
    85       int _id;
    86       Node(int id) : _id(id) {}
    87     public:
    88       Node() {}
    89       Node (Invalid) : _id(-1) {}
    90       bool operator==(const Node node) const {return _id == node._id;}
    91       bool operator!=(const Node node) const {return _id != node._id;}
    92       bool operator<(const Node node) const {return _id < node._id;}
    93     };
    94 
    95     class Arc {
    96       friend class FullDigraphBase;
    97 
    98     protected:
    99       int _id;  // _node_num * source + target;
   100 
   101       Arc(int id) : _id(id) {}
   102 
   103     public:
   104       Arc() { }
   105       Arc (Invalid) { _id = -1; }
   106       bool operator==(const Arc arc) const {return _id == arc._id;}
   107       bool operator!=(const Arc arc) const {return _id != arc._id;}
   108       bool operator<(const Arc arc) const {return _id < arc._id;}
   109     };
   110 
   111     void first(Node& node) const {
   112       node._id = _node_num - 1;
   113     }
   114 
   115     static void next(Node& node) {
   116       --node._id;
   117     }
   118 
   119     void first(Arc& arc) const {
   120       arc._id = _arc_num - 1;
   121     }
   122 
   123     static void next(Arc& arc) {
   124       --arc._id;
   125     }
   126 
   127     void firstOut(Arc& arc, const Node& node) const {
   128       arc._id = (node._id + 1) * _node_num - 1;
   129     }
   130 
   131     void nextOut(Arc& arc) const {
   132       if (arc._id % _node_num == 0) arc._id = 0;
   133       --arc._id;
   134     }
   135 
   136     void firstIn(Arc& arc, const Node& node) const {
   137       arc._id = _arc_num + node._id - _node_num;
   138     }
   139 
   140     void nextIn(Arc& arc) const {
   141       arc._id -= _node_num;
   142       if (arc._id < 0) arc._id = -1;
   143     }
   144 
   145   };
   146 
   147   typedef DigraphExtender<FullDigraphBase> ExtendedFullDigraphBase;
   148 
   149   /// \ingroup graphs
   150   ///
   151   /// \brief A directed full graph class.
   152   ///
   153   /// FullDigraph is a simple and fast implmenetation of directed full
   154   /// (complete) graphs. It contains an arc from each node to each node
   155   /// (including a loop for each node), therefore the number of arcs
   156   /// is the square of the number of nodes.
   157   /// This class is completely static and it needs constant memory space.
   158   /// Thus you can neither add nor delete nodes or arcs, however
   159   /// the structure can be resized using resize().
   160   ///
   161   /// This type fully conforms to the \ref concepts::Digraph "Digraph concept".
   162   /// Most of its member functions and nested classes are documented
   163   /// only in the concept class.
   164   ///
   165   /// \note FullDigraph and FullGraph classes are very similar,
   166   /// but there are two differences. While this class conforms only
   167   /// to the \ref concepts::Digraph "Digraph" concept, FullGraph
   168   /// conforms to the \ref concepts::Graph "Graph" concept,
   169   /// moreover FullGraph does not contain a loop for each
   170   /// node as this class does.
   171   ///
   172   /// \sa FullGraph
   173   class FullDigraph : public ExtendedFullDigraphBase {
   174     typedef ExtendedFullDigraphBase Parent;
   175 
   176   public:
   177 
   178     /// \brief Default constructor.
   179     ///
   180     /// Default constructor. The number of nodes and arcs will be zero.
   181     FullDigraph() { construct(0); }
   182 
   183     /// \brief Constructor
   184     ///
   185     /// Constructor.
   186     /// \param n The number of the nodes.
   187     FullDigraph(int n) { construct(n); }
   188 
   189     /// \brief Resizes the digraph
   190     ///
   191     /// This function resizes the digraph. It fully destroys and
   192     /// rebuilds the structure, therefore the maps of the digraph will be
   193     /// reallocated automatically and the previous values will be lost.
   194     void resize(int n) {
   195       Parent::notifier(Arc()).clear();
   196       Parent::notifier(Node()).clear();
   197       construct(n);
   198       Parent::notifier(Node()).build();
   199       Parent::notifier(Arc()).build();
   200     }
   201 
   202     /// \brief Returns the node with the given index.
   203     ///
   204     /// Returns the node with the given index. Since this structure is 
   205     /// completely static, the nodes can be indexed with integers from
   206     /// the range <tt>[0..nodeNum()-1]</tt>.
   207     /// \sa index()
   208     Node operator()(int ix) const { return Parent::operator()(ix); }
   209 
   210     /// \brief Returns the index of the given node.
   211     ///
   212     /// Returns the index of the given node. Since this structure is 
   213     /// completely static, the nodes can be indexed with integers from
   214     /// the range <tt>[0..nodeNum()-1]</tt>.
   215     /// \sa operator()()
   216     int index(Node node) const { return Parent::index(node); }
   217 
   218     /// \brief Returns the arc connecting the given nodes.
   219     ///
   220     /// Returns the arc connecting the given nodes.
   221     Arc arc(Node u, Node v) const {
   222       return Parent::arc(u, v);
   223     }
   224 
   225     /// \brief Number of nodes.
   226     int nodeNum() const { return Parent::nodeNum(); }
   227     /// \brief Number of arcs.
   228     int arcNum() const { return Parent::arcNum(); }
   229   };
   230 
   231 
   232   class FullGraphBase {
   233   public:
   234 
   235     typedef FullGraphBase Graph;
   236 
   237     class Node;
   238     class Arc;
   239     class Edge;
   240 
   241   protected:
   242 
   243     int _node_num;
   244     int _edge_num;
   245 
   246     FullGraphBase() {}
   247 
   248     void construct(int n) { _node_num = n; _edge_num = n * (n - 1) / 2; }
   249 
   250     int _uid(int e) const {
   251       int u = e / _node_num;
   252       int v = e % _node_num;
   253       return u < v ? u : _node_num - 2 - u;
   254     }
   255 
   256     int _vid(int e) const {
   257       int u = e / _node_num;
   258       int v = e % _node_num;
   259       return u < v ? v : _node_num - 1 - v;
   260     }
   261 
   262     void _uvid(int e, int& u, int& v) const {
   263       u = e / _node_num;
   264       v = e % _node_num;
   265       if  (u >= v) {
   266         u = _node_num - 2 - u;
   267         v = _node_num - 1 - v;
   268       }
   269     }
   270 
   271     void _stid(int a, int& s, int& t) const {
   272       if ((a & 1) == 1) {
   273         _uvid(a >> 1, s, t);
   274       } else {
   275         _uvid(a >> 1, t, s);
   276       }
   277     }
   278 
   279     int _eid(int u, int v) const {
   280       if (u < (_node_num - 1) / 2) {
   281         return u * _node_num + v;
   282       } else {
   283         return (_node_num - 1 - u) * _node_num - v - 1;
   284       }
   285     }
   286 
   287   public:
   288 
   289     Node operator()(int ix) const { return Node(ix); }
   290     int index(const Node& node) const { return node._id; }
   291 
   292     Edge edge(const Node& u, const Node& v) const {
   293       if (u._id < v._id) {
   294         return Edge(_eid(u._id, v._id));
   295       } else if (u._id != v._id) {
   296         return Edge(_eid(v._id, u._id));
   297       } else {
   298         return INVALID;
   299       }
   300     }
   301 
   302     Arc arc(const Node& s, const Node& t) const {
   303       if (s._id < t._id) {
   304         return Arc((_eid(s._id, t._id) << 1) | 1);
   305       } else if (s._id != t._id) {
   306         return Arc(_eid(t._id, s._id) << 1);
   307       } else {
   308         return INVALID;
   309       }
   310     }
   311 
   312     typedef True NodeNumTag;
   313     typedef True ArcNumTag;
   314     typedef True EdgeNumTag;
   315 
   316     int nodeNum() const { return _node_num; }
   317     int arcNum() const { return 2 * _edge_num; }
   318     int edgeNum() const { return _edge_num; }
   319 
   320     static int id(Node node) { return node._id; }
   321     static int id(Arc arc) { return arc._id; }
   322     static int id(Edge edge) { return edge._id; }
   323 
   324     int maxNodeId() const { return _node_num-1; }
   325     int maxArcId() const { return 2 * _edge_num-1; }
   326     int maxEdgeId() const { return _edge_num-1; }
   327 
   328     static Node nodeFromId(int id) { return Node(id);}
   329     static Arc arcFromId(int id) { return Arc(id);}
   330     static Edge edgeFromId(int id) { return Edge(id);}
   331 
   332     Node u(Edge edge) const {
   333       return Node(_uid(edge._id));
   334     }
   335 
   336     Node v(Edge edge) const {
   337       return Node(_vid(edge._id));
   338     }
   339 
   340     Node source(Arc arc) const {
   341       return Node((arc._id & 1) == 1 ?
   342                   _uid(arc._id >> 1) : _vid(arc._id >> 1));
   343     }
   344 
   345     Node target(Arc arc) const {
   346       return Node((arc._id & 1) == 1 ?
   347                   _vid(arc._id >> 1) : _uid(arc._id >> 1));
   348     }
   349 
   350     typedef True FindEdgeTag;
   351     typedef True FindArcTag;
   352 
   353     Edge findEdge(Node u, Node v, Edge prev = INVALID) const {
   354       return prev != INVALID ? INVALID : edge(u, v);
   355     }
   356 
   357     Arc findArc(Node s, Node t, Arc prev = INVALID) const {
   358       return prev != INVALID ? INVALID : arc(s, t);
   359     }
   360 
   361     class Node {
   362       friend class FullGraphBase;
   363 
   364     protected:
   365       int _id;
   366       Node(int id) : _id(id) {}
   367     public:
   368       Node() {}
   369       Node (Invalid) { _id = -1; }
   370       bool operator==(const Node node) const {return _id == node._id;}
   371       bool operator!=(const Node node) const {return _id != node._id;}
   372       bool operator<(const Node node) const {return _id < node._id;}
   373     };
   374 
   375     class Edge {
   376       friend class FullGraphBase;
   377       friend class Arc;
   378 
   379     protected:
   380       int _id;
   381 
   382       Edge(int id) : _id(id) {}
   383 
   384     public:
   385       Edge() { }
   386       Edge (Invalid) { _id = -1; }
   387 
   388       bool operator==(const Edge edge) const {return _id == edge._id;}
   389       bool operator!=(const Edge edge) const {return _id != edge._id;}
   390       bool operator<(const Edge edge) const {return _id < edge._id;}
   391     };
   392 
   393     class Arc {
   394       friend class FullGraphBase;
   395 
   396     protected:
   397       int _id;
   398 
   399       Arc(int id) : _id(id) {}
   400 
   401     public:
   402       Arc() { }
   403       Arc (Invalid) { _id = -1; }
   404 
   405       operator Edge() const { return Edge(_id != -1 ? (_id >> 1) : -1); }
   406 
   407       bool operator==(const Arc arc) const {return _id == arc._id;}
   408       bool operator!=(const Arc arc) const {return _id != arc._id;}
   409       bool operator<(const Arc arc) const {return _id < arc._id;}
   410     };
   411 
   412     static bool direction(Arc arc) {
   413       return (arc._id & 1) == 1;
   414     }
   415 
   416     static Arc direct(Edge edge, bool dir) {
   417       return Arc((edge._id << 1) | (dir ? 1 : 0));
   418     }
   419 
   420     void first(Node& node) const {
   421       node._id = _node_num - 1;
   422     }
   423 
   424     static void next(Node& node) {
   425       --node._id;
   426     }
   427 
   428     void first(Arc& arc) const {
   429       arc._id = (_edge_num << 1) - 1;
   430     }
   431 
   432     static void next(Arc& arc) {
   433       --arc._id;
   434     }
   435 
   436     void first(Edge& edge) const {
   437       edge._id = _edge_num - 1;
   438     }
   439 
   440     static void next(Edge& edge) {
   441       --edge._id;
   442     }
   443 
   444     void firstOut(Arc& arc, const Node& node) const {
   445       int s = node._id, t = _node_num - 1;
   446       if (s < t) {
   447         arc._id = (_eid(s, t) << 1) | 1;
   448       } else {
   449         --t;
   450         arc._id = (t != -1 ? (_eid(t, s) << 1) : -1);
   451       }
   452     }
   453 
   454     void nextOut(Arc& arc) const {
   455       int s, t;
   456       _stid(arc._id, s, t);
   457       --t;
   458       if (s < t) {
   459         arc._id = (_eid(s, t) << 1) | 1;
   460       } else {
   461         if (s == t) --t;
   462         arc._id = (t != -1 ? (_eid(t, s) << 1) : -1);
   463       }
   464     }
   465 
   466     void firstIn(Arc& arc, const Node& node) const {
   467       int s = _node_num - 1, t = node._id;
   468       if (s > t) {
   469         arc._id = (_eid(t, s) << 1);
   470       } else {
   471         --s;
   472         arc._id = (s != -1 ? (_eid(s, t) << 1) | 1 : -1);
   473       }
   474     }
   475 
   476     void nextIn(Arc& arc) const {
   477       int s, t;
   478       _stid(arc._id, s, t);
   479       --s;
   480       if (s > t) {
   481         arc._id = (_eid(t, s) << 1);
   482       } else {
   483         if (s == t) --s;
   484         arc._id = (s != -1 ? (_eid(s, t) << 1) | 1 : -1);
   485       }
   486     }
   487 
   488     void firstInc(Edge& edge, bool& dir, const Node& node) const {
   489       int u = node._id, v = _node_num - 1;
   490       if (u < v) {
   491         edge._id = _eid(u, v);
   492         dir = true;
   493       } else {
   494         --v;
   495         edge._id = (v != -1 ? _eid(v, u) : -1);
   496         dir = false;
   497       }
   498     }
   499 
   500     void nextInc(Edge& edge, bool& dir) const {
   501       int u, v;
   502       if (dir) {
   503         _uvid(edge._id, u, v);
   504         --v;
   505         if (u < v) {
   506           edge._id = _eid(u, v);
   507         } else {
   508           --v;
   509           edge._id = (v != -1 ? _eid(v, u) : -1);
   510           dir = false;
   511         }
   512       } else {
   513         _uvid(edge._id, v, u);
   514         --v;
   515         edge._id = (v != -1 ? _eid(v, u) : -1);
   516       }
   517     }
   518 
   519   };
   520 
   521   typedef GraphExtender<FullGraphBase> ExtendedFullGraphBase;
   522 
   523   /// \ingroup graphs
   524   ///
   525   /// \brief An undirected full graph class.
   526   ///
   527   /// FullGraph is a simple and fast implmenetation of undirected full
   528   /// (complete) graphs. It contains an edge between every distinct pair
   529   /// of nodes, therefore the number of edges is <tt>n(n-1)/2</tt>.
   530   /// This class is completely static and it needs constant memory space.
   531   /// Thus you can neither add nor delete nodes or edges, however
   532   /// the structure can be resized using resize().
   533   ///
   534   /// This type fully conforms to the \ref concepts::Graph "Graph concept".
   535   /// Most of its member functions and nested classes are documented
   536   /// only in the concept class.
   537   ///
   538   /// \note FullDigraph and FullGraph classes are very similar,
   539   /// but there are two differences. While FullDigraph
   540   /// conforms only to the \ref concepts::Digraph "Digraph" concept,
   541   /// this class conforms to the \ref concepts::Graph "Graph" concept,
   542   /// moreover this class does not contain a loop for each
   543   /// node as FullDigraph does.
   544   ///
   545   /// \sa FullDigraph
   546   class FullGraph : public ExtendedFullGraphBase {
   547     typedef ExtendedFullGraphBase Parent;
   548 
   549   public:
   550 
   551     /// \brief Default constructor.
   552     ///
   553     /// Default constructor. The number of nodes and edges will be zero.
   554     FullGraph() { construct(0); }
   555 
   556     /// \brief Constructor
   557     ///
   558     /// Constructor.
   559     /// \param n The number of the nodes.
   560     FullGraph(int n) { construct(n); }
   561 
   562     /// \brief Resizes the graph
   563     ///
   564     /// This function resizes the graph. It fully destroys and
   565     /// rebuilds the structure, therefore the maps of the graph will be
   566     /// reallocated automatically and the previous values will be lost.
   567     void resize(int n) {
   568       Parent::notifier(Arc()).clear();
   569       Parent::notifier(Edge()).clear();
   570       Parent::notifier(Node()).clear();
   571       construct(n);
   572       Parent::notifier(Node()).build();
   573       Parent::notifier(Edge()).build();
   574       Parent::notifier(Arc()).build();
   575     }
   576 
   577     /// \brief Returns the node with the given index.
   578     ///
   579     /// Returns the node with the given index. Since this structure is 
   580     /// completely static, the nodes can be indexed with integers from
   581     /// the range <tt>[0..nodeNum()-1]</tt>.
   582     /// \sa index()
   583     Node operator()(int ix) const { return Parent::operator()(ix); }
   584 
   585     /// \brief Returns the index of the given node.
   586     ///
   587     /// Returns the index of the given node. Since this structure is 
   588     /// completely static, the nodes can be indexed with integers from
   589     /// the range <tt>[0..nodeNum()-1]</tt>.
   590     /// \sa operator()()
   591     int index(Node node) const { return Parent::index(node); }
   592 
   593     /// \brief Returns the arc connecting the given nodes.
   594     ///
   595     /// Returns the arc connecting the given nodes.
   596     Arc arc(Node s, Node t) const {
   597       return Parent::arc(s, t);
   598     }
   599 
   600     /// \brief Returns the edge connecting the given nodes.
   601     ///
   602     /// Returns the edge connecting the given nodes.
   603     Edge edge(Node u, Node v) const {
   604       return Parent::edge(u, v);
   605     }
   606 
   607     /// \brief Number of nodes.
   608     int nodeNum() const { return Parent::nodeNum(); }
   609     /// \brief Number of arcs.
   610     int arcNum() const { return Parent::arcNum(); }
   611     /// \brief Number of edges.
   612     int edgeNum() const { return Parent::edgeNum(); }
   613 
   614   };
   615 
   616 
   617 } //namespace lemon
   618 
   619 
   620 #endif //LEMON_FULL_GRAPH_H