lemon/hartmann_orlin.h
author Alpar Juttner <alpar@cs.elte.hu>
Thu, 05 Nov 2009 15:50:01 +0100
changeset 784 1a7fe3bef514
parent 771 8452ca46e29a
child 795 921d5bf41ac2
permissions -rw-r--r--
Merge #321
     1 /* -*- C++ -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library
     4  *
     5  * Copyright (C) 2003-2008
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_HARTMANN_ORLIN_H
    20 #define LEMON_HARTMANN_ORLIN_H
    21 
    22 /// \ingroup min_mean_cycle
    23 ///
    24 /// \file
    25 /// \brief Hartmann-Orlin's algorithm for finding a minimum mean cycle.
    26 
    27 #include <vector>
    28 #include <limits>
    29 #include <lemon/core.h>
    30 #include <lemon/path.h>
    31 #include <lemon/tolerance.h>
    32 #include <lemon/connectivity.h>
    33 
    34 namespace lemon {
    35 
    36   /// \brief Default traits class of HartmannOrlin algorithm.
    37   ///
    38   /// Default traits class of HartmannOrlin algorithm.
    39   /// \tparam GR The type of the digraph.
    40   /// \tparam LEN The type of the length map.
    41   /// It must conform to the \ref concepts::Rea_data "Rea_data" concept.
    42 #ifdef DOXYGEN
    43   template <typename GR, typename LEN>
    44 #else
    45   template <typename GR, typename LEN,
    46     bool integer = std::numeric_limits<typename LEN::Value>::is_integer>
    47 #endif
    48   struct HartmannOrlinDefaultTraits
    49   {
    50     /// The type of the digraph
    51     typedef GR Digraph;
    52     /// The type of the length map
    53     typedef LEN LengthMap;
    54     /// The type of the arc lengths
    55     typedef typename LengthMap::Value Value;
    56 
    57     /// \brief The large value type used for internal computations
    58     ///
    59     /// The large value type used for internal computations.
    60     /// It is \c long \c long if the \c Value type is integer,
    61     /// otherwise it is \c double.
    62     /// \c Value must be convertible to \c LargeValue.
    63     typedef double LargeValue;
    64 
    65     /// The tolerance type used for internal computations
    66     typedef lemon::Tolerance<LargeValue> Tolerance;
    67 
    68     /// \brief The path type of the found cycles
    69     ///
    70     /// The path type of the found cycles.
    71     /// It must conform to the \ref lemon::concepts::Path "Path" concept
    72     /// and it must have an \c addFront() function.
    73     typedef lemon::Path<Digraph> Path;
    74   };
    75 
    76   // Default traits class for integer value types
    77   template <typename GR, typename LEN>
    78   struct HartmannOrlinDefaultTraits<GR, LEN, true>
    79   {
    80     typedef GR Digraph;
    81     typedef LEN LengthMap;
    82     typedef typename LengthMap::Value Value;
    83 #ifdef LEMON_HAVE_LONG_LONG
    84     typedef long long LargeValue;
    85 #else
    86     typedef long LargeValue;
    87 #endif
    88     typedef lemon::Tolerance<LargeValue> Tolerance;
    89     typedef lemon::Path<Digraph> Path;
    90   };
    91 
    92 
    93   /// \addtogroup min_mean_cycle
    94   /// @{
    95 
    96   /// \brief Implementation of the Hartmann-Orlin algorithm for finding
    97   /// a minimum mean cycle.
    98   ///
    99   /// This class implements the Hartmann-Orlin algorithm for finding
   100   /// a directed cycle of minimum mean length (cost) in a digraph
   101   /// \ref amo93networkflows, \ref dasdan98minmeancycle.
   102   /// It is an improved version of \ref Karp "Karp"'s original algorithm,
   103   /// it applies an efficient early termination scheme.
   104   /// It runs in time O(ne) and uses space O(n<sup>2</sup>+e).
   105   ///
   106   /// \tparam GR The type of the digraph the algorithm runs on.
   107   /// \tparam LEN The type of the length map. The default
   108   /// map type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>".
   109 #ifdef DOXYGEN
   110   template <typename GR, typename LEN, typename TR>
   111 #else
   112   template < typename GR,
   113              typename LEN = typename GR::template ArcMap<int>,
   114              typename TR = HartmannOrlinDefaultTraits<GR, LEN> >
   115 #endif
   116   class HartmannOrlin
   117   {
   118   public:
   119 
   120     /// The type of the digraph
   121     typedef typename TR::Digraph Digraph;
   122     /// The type of the length map
   123     typedef typename TR::LengthMap LengthMap;
   124     /// The type of the arc lengths
   125     typedef typename TR::Value Value;
   126 
   127     /// \brief The large value type
   128     ///
   129     /// The large value type used for internal computations.
   130     /// Using the \ref HartmannOrlinDefaultTraits "default traits class",
   131     /// it is \c long \c long if the \c Value type is integer,
   132     /// otherwise it is \c double.
   133     typedef typename TR::LargeValue LargeValue;
   134 
   135     /// The tolerance type
   136     typedef typename TR::Tolerance Tolerance;
   137 
   138     /// \brief The path type of the found cycles
   139     ///
   140     /// The path type of the found cycles.
   141     /// Using the \ref HartmannOrlinDefaultTraits "default traits class",
   142     /// it is \ref lemon::Path "Path<Digraph>".
   143     typedef typename TR::Path Path;
   144 
   145     /// The \ref HartmannOrlinDefaultTraits "traits class" of the algorithm
   146     typedef TR Traits;
   147 
   148   private:
   149 
   150     TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
   151 
   152     // Data sturcture for path data
   153     struct PathData
   154     {
   155       LargeValue dist;
   156       Arc pred;
   157       PathData(LargeValue d, Arc p = INVALID) :
   158         dist(d), pred(p) {}
   159     };
   160 
   161     typedef typename Digraph::template NodeMap<std::vector<PathData> >
   162       PathDataNodeMap;
   163 
   164   private:
   165 
   166     // The digraph the algorithm runs on
   167     const Digraph &_gr;
   168     // The length of the arcs
   169     const LengthMap &_length;
   170 
   171     // Data for storing the strongly connected components
   172     int _comp_num;
   173     typename Digraph::template NodeMap<int> _comp;
   174     std::vector<std::vector<Node> > _comp_nodes;
   175     std::vector<Node>* _nodes;
   176     typename Digraph::template NodeMap<std::vector<Arc> > _out_arcs;
   177 
   178     // Data for the found cycles
   179     bool _curr_found, _best_found;
   180     LargeValue _curr_length, _best_length;
   181     int _curr_size, _best_size;
   182     Node _curr_node, _best_node;
   183     int _curr_level, _best_level;
   184 
   185     Path *_cycle_path;
   186     bool _local_path;
   187 
   188     // Node map for storing path data
   189     PathDataNodeMap _data;
   190     // The processed nodes in the last round
   191     std::vector<Node> _process;
   192 
   193     Tolerance _tolerance;
   194 
   195     // Infinite constant
   196     const LargeValue INF;
   197 
   198   public:
   199 
   200     /// \name Named Template Parameters
   201     /// @{
   202 
   203     template <typename T>
   204     struct SetLargeValueTraits : public Traits {
   205       typedef T LargeValue;
   206       typedef lemon::Tolerance<T> Tolerance;
   207     };
   208 
   209     /// \brief \ref named-templ-param "Named parameter" for setting
   210     /// \c LargeValue type.
   211     ///
   212     /// \ref named-templ-param "Named parameter" for setting \c LargeValue
   213     /// type. It is used for internal computations in the algorithm.
   214     template <typename T>
   215     struct SetLargeValue
   216       : public HartmannOrlin<GR, LEN, SetLargeValueTraits<T> > {
   217       typedef HartmannOrlin<GR, LEN, SetLargeValueTraits<T> > Create;
   218     };
   219 
   220     template <typename T>
   221     struct SetPathTraits : public Traits {
   222       typedef T Path;
   223     };
   224 
   225     /// \brief \ref named-templ-param "Named parameter" for setting
   226     /// \c %Path type.
   227     ///
   228     /// \ref named-templ-param "Named parameter" for setting the \c %Path
   229     /// type of the found cycles.
   230     /// It must conform to the \ref lemon::concepts::Path "Path" concept
   231     /// and it must have an \c addFront() function.
   232     template <typename T>
   233     struct SetPath
   234       : public HartmannOrlin<GR, LEN, SetPathTraits<T> > {
   235       typedef HartmannOrlin<GR, LEN, SetPathTraits<T> > Create;
   236     };
   237 
   238     /// @}
   239 
   240   public:
   241 
   242     /// \brief Constructor.
   243     ///
   244     /// The constructor of the class.
   245     ///
   246     /// \param digraph The digraph the algorithm runs on.
   247     /// \param length The lengths (costs) of the arcs.
   248     HartmannOrlin( const Digraph &digraph,
   249                    const LengthMap &length ) :
   250       _gr(digraph), _length(length), _comp(digraph), _out_arcs(digraph),
   251       _best_found(false), _best_length(0), _best_size(1),
   252       _cycle_path(NULL), _local_path(false), _data(digraph),
   253       INF(std::numeric_limits<LargeValue>::has_infinity ?
   254           std::numeric_limits<LargeValue>::infinity() :
   255           std::numeric_limits<LargeValue>::max())
   256     {}
   257 
   258     /// Destructor.
   259     ~HartmannOrlin() {
   260       if (_local_path) delete _cycle_path;
   261     }
   262 
   263     /// \brief Set the path structure for storing the found cycle.
   264     ///
   265     /// This function sets an external path structure for storing the
   266     /// found cycle.
   267     ///
   268     /// If you don't call this function before calling \ref run() or
   269     /// \ref findMinMean(), it will allocate a local \ref Path "path"
   270     /// structure. The destuctor deallocates this automatically
   271     /// allocated object, of course.
   272     ///
   273     /// \note The algorithm calls only the \ref lemon::Path::addFront()
   274     /// "addFront()" function of the given path structure.
   275     ///
   276     /// \return <tt>(*this)</tt>
   277     HartmannOrlin& cycle(Path &path) {
   278       if (_local_path) {
   279         delete _cycle_path;
   280         _local_path = false;
   281       }
   282       _cycle_path = &path;
   283       return *this;
   284     }
   285 
   286     /// \brief Set the tolerance used by the algorithm.
   287     ///
   288     /// This function sets the tolerance object used by the algorithm.
   289     ///
   290     /// \return <tt>(*this)</tt>
   291     HartmannOrlin& tolerance(const Tolerance& tolerance) {
   292       _tolerance = tolerance;
   293       return *this;
   294     }
   295 
   296     /// \brief Return a const reference to the tolerance.
   297     ///
   298     /// This function returns a const reference to the tolerance object
   299     /// used by the algorithm.
   300     const Tolerance& tolerance() const {
   301       return _tolerance;
   302     }
   303 
   304     /// \name Execution control
   305     /// The simplest way to execute the algorithm is to call the \ref run()
   306     /// function.\n
   307     /// If you only need the minimum mean length, you may call
   308     /// \ref findMinMean().
   309 
   310     /// @{
   311 
   312     /// \brief Run the algorithm.
   313     ///
   314     /// This function runs the algorithm.
   315     /// It can be called more than once (e.g. if the underlying digraph
   316     /// and/or the arc lengths have been modified).
   317     ///
   318     /// \return \c true if a directed cycle exists in the digraph.
   319     ///
   320     /// \note <tt>mmc.run()</tt> is just a shortcut of the following code.
   321     /// \code
   322     ///   return mmc.findMinMean() && mmc.findCycle();
   323     /// \endcode
   324     bool run() {
   325       return findMinMean() && findCycle();
   326     }
   327 
   328     /// \brief Find the minimum cycle mean.
   329     ///
   330     /// This function finds the minimum mean length of the directed
   331     /// cycles in the digraph.
   332     ///
   333     /// \return \c true if a directed cycle exists in the digraph.
   334     bool findMinMean() {
   335       // Initialization and find strongly connected components
   336       init();
   337       findComponents();
   338       
   339       // Find the minimum cycle mean in the components
   340       for (int comp = 0; comp < _comp_num; ++comp) {
   341         if (!initComponent(comp)) continue;
   342         processRounds();
   343         
   344         // Update the best cycle (global minimum mean cycle)
   345         if ( _curr_found && (!_best_found || 
   346              _curr_length * _best_size < _best_length * _curr_size) ) {
   347           _best_found = true;
   348           _best_length = _curr_length;
   349           _best_size = _curr_size;
   350           _best_node = _curr_node;
   351           _best_level = _curr_level;
   352         }
   353       }
   354       return _best_found;
   355     }
   356 
   357     /// \brief Find a minimum mean directed cycle.
   358     ///
   359     /// This function finds a directed cycle of minimum mean length
   360     /// in the digraph using the data computed by findMinMean().
   361     ///
   362     /// \return \c true if a directed cycle exists in the digraph.
   363     ///
   364     /// \pre \ref findMinMean() must be called before using this function.
   365     bool findCycle() {
   366       if (!_best_found) return false;
   367       IntNodeMap reached(_gr, -1);
   368       int r = _best_level + 1;
   369       Node u = _best_node;
   370       while (reached[u] < 0) {
   371         reached[u] = --r;
   372         u = _gr.source(_data[u][r].pred);
   373       }
   374       r = reached[u];
   375       Arc e = _data[u][r].pred;
   376       _cycle_path->addFront(e);
   377       _best_length = _length[e];
   378       _best_size = 1;
   379       Node v;
   380       while ((v = _gr.source(e)) != u) {
   381         e = _data[v][--r].pred;
   382         _cycle_path->addFront(e);
   383         _best_length += _length[e];
   384         ++_best_size;
   385       }
   386       return true;
   387     }
   388 
   389     /// @}
   390 
   391     /// \name Query Functions
   392     /// The results of the algorithm can be obtained using these
   393     /// functions.\n
   394     /// The algorithm should be executed before using them.
   395 
   396     /// @{
   397 
   398     /// \brief Return the total length of the found cycle.
   399     ///
   400     /// This function returns the total length of the found cycle.
   401     ///
   402     /// \pre \ref run() or \ref findMinMean() must be called before
   403     /// using this function.
   404     LargeValue cycleLength() const {
   405       return _best_length;
   406     }
   407 
   408     /// \brief Return the number of arcs on the found cycle.
   409     ///
   410     /// This function returns the number of arcs on the found cycle.
   411     ///
   412     /// \pre \ref run() or \ref findMinMean() must be called before
   413     /// using this function.
   414     int cycleArcNum() const {
   415       return _best_size;
   416     }
   417 
   418     /// \brief Return the mean length of the found cycle.
   419     ///
   420     /// This function returns the mean length of the found cycle.
   421     ///
   422     /// \note <tt>alg.cycleMean()</tt> is just a shortcut of the
   423     /// following code.
   424     /// \code
   425     ///   return static_cast<double>(alg.cycleLength()) / alg.cycleArcNum();
   426     /// \endcode
   427     ///
   428     /// \pre \ref run() or \ref findMinMean() must be called before
   429     /// using this function.
   430     double cycleMean() const {
   431       return static_cast<double>(_best_length) / _best_size;
   432     }
   433 
   434     /// \brief Return the found cycle.
   435     ///
   436     /// This function returns a const reference to the path structure
   437     /// storing the found cycle.
   438     ///
   439     /// \pre \ref run() or \ref findCycle() must be called before using
   440     /// this function.
   441     const Path& cycle() const {
   442       return *_cycle_path;
   443     }
   444 
   445     ///@}
   446 
   447   private:
   448 
   449     // Initialization
   450     void init() {
   451       if (!_cycle_path) {
   452         _local_path = true;
   453         _cycle_path = new Path;
   454       }
   455       _cycle_path->clear();
   456       _best_found = false;
   457       _best_length = 0;
   458       _best_size = 1;
   459       _cycle_path->clear();
   460       for (NodeIt u(_gr); u != INVALID; ++u)
   461         _data[u].clear();
   462     }
   463 
   464     // Find strongly connected components and initialize _comp_nodes
   465     // and _out_arcs
   466     void findComponents() {
   467       _comp_num = stronglyConnectedComponents(_gr, _comp);
   468       _comp_nodes.resize(_comp_num);
   469       if (_comp_num == 1) {
   470         _comp_nodes[0].clear();
   471         for (NodeIt n(_gr); n != INVALID; ++n) {
   472           _comp_nodes[0].push_back(n);
   473           _out_arcs[n].clear();
   474           for (OutArcIt a(_gr, n); a != INVALID; ++a) {
   475             _out_arcs[n].push_back(a);
   476           }
   477         }
   478       } else {
   479         for (int i = 0; i < _comp_num; ++i)
   480           _comp_nodes[i].clear();
   481         for (NodeIt n(_gr); n != INVALID; ++n) {
   482           int k = _comp[n];
   483           _comp_nodes[k].push_back(n);
   484           _out_arcs[n].clear();
   485           for (OutArcIt a(_gr, n); a != INVALID; ++a) {
   486             if (_comp[_gr.target(a)] == k) _out_arcs[n].push_back(a);
   487           }
   488         }
   489       }
   490     }
   491 
   492     // Initialize path data for the current component
   493     bool initComponent(int comp) {
   494       _nodes = &(_comp_nodes[comp]);
   495       int n = _nodes->size();
   496       if (n < 1 || (n == 1 && _out_arcs[(*_nodes)[0]].size() == 0)) {
   497         return false;
   498       }      
   499       for (int i = 0; i < n; ++i) {
   500         _data[(*_nodes)[i]].resize(n + 1, PathData(INF));
   501       }
   502       return true;
   503     }
   504 
   505     // Process all rounds of computing path data for the current component.
   506     // _data[v][k] is the length of a shortest directed walk from the root
   507     // node to node v containing exactly k arcs.
   508     void processRounds() {
   509       Node start = (*_nodes)[0];
   510       _data[start][0] = PathData(0);
   511       _process.clear();
   512       _process.push_back(start);
   513 
   514       int k, n = _nodes->size();
   515       int next_check = 4;
   516       bool terminate = false;
   517       for (k = 1; k <= n && int(_process.size()) < n && !terminate; ++k) {
   518         processNextBuildRound(k);
   519         if (k == next_check || k == n) {
   520           terminate = checkTermination(k);
   521           next_check = next_check * 3 / 2;
   522         }
   523       }
   524       for ( ; k <= n && !terminate; ++k) {
   525         processNextFullRound(k);
   526         if (k == next_check || k == n) {
   527           terminate = checkTermination(k);
   528           next_check = next_check * 3 / 2;
   529         }
   530       }
   531     }
   532 
   533     // Process one round and rebuild _process
   534     void processNextBuildRound(int k) {
   535       std::vector<Node> next;
   536       Node u, v;
   537       Arc e;
   538       LargeValue d;
   539       for (int i = 0; i < int(_process.size()); ++i) {
   540         u = _process[i];
   541         for (int j = 0; j < int(_out_arcs[u].size()); ++j) {
   542           e = _out_arcs[u][j];
   543           v = _gr.target(e);
   544           d = _data[u][k-1].dist + _length[e];
   545           if (_tolerance.less(d, _data[v][k].dist)) {
   546             if (_data[v][k].dist == INF) next.push_back(v);
   547             _data[v][k] = PathData(d, e);
   548           }
   549         }
   550       }
   551       _process.swap(next);
   552     }
   553 
   554     // Process one round using _nodes instead of _process
   555     void processNextFullRound(int k) {
   556       Node u, v;
   557       Arc e;
   558       LargeValue d;
   559       for (int i = 0; i < int(_nodes->size()); ++i) {
   560         u = (*_nodes)[i];
   561         for (int j = 0; j < int(_out_arcs[u].size()); ++j) {
   562           e = _out_arcs[u][j];
   563           v = _gr.target(e);
   564           d = _data[u][k-1].dist + _length[e];
   565           if (_tolerance.less(d, _data[v][k].dist)) {
   566             _data[v][k] = PathData(d, e);
   567           }
   568         }
   569       }
   570     }
   571     
   572     // Check early termination
   573     bool checkTermination(int k) {
   574       typedef std::pair<int, int> Pair;
   575       typename GR::template NodeMap<Pair> level(_gr, Pair(-1, 0));
   576       typename GR::template NodeMap<LargeValue> pi(_gr);
   577       int n = _nodes->size();
   578       LargeValue length;
   579       int size;
   580       Node u;
   581       
   582       // Search for cycles that are already found
   583       _curr_found = false;
   584       for (int i = 0; i < n; ++i) {
   585         u = (*_nodes)[i];
   586         if (_data[u][k].dist == INF) continue;
   587         for (int j = k; j >= 0; --j) {
   588           if (level[u].first == i && level[u].second > 0) {
   589             // A cycle is found
   590             length = _data[u][level[u].second].dist - _data[u][j].dist;
   591             size = level[u].second - j;
   592             if (!_curr_found || length * _curr_size < _curr_length * size) {
   593               _curr_length = length;
   594               _curr_size = size;
   595               _curr_node = u;
   596               _curr_level = level[u].second;
   597               _curr_found = true;
   598             }
   599           }
   600           level[u] = Pair(i, j);
   601           u = _gr.source(_data[u][j].pred);
   602         }
   603       }
   604 
   605       // If at least one cycle is found, check the optimality condition
   606       LargeValue d;
   607       if (_curr_found && k < n) {
   608         // Find node potentials
   609         for (int i = 0; i < n; ++i) {
   610           u = (*_nodes)[i];
   611           pi[u] = INF;
   612           for (int j = 0; j <= k; ++j) {
   613             if (_data[u][j].dist < INF) {
   614               d = _data[u][j].dist * _curr_size - j * _curr_length;
   615               if (_tolerance.less(d, pi[u])) pi[u] = d;
   616             }
   617           }
   618         }
   619 
   620         // Check the optimality condition for all arcs
   621         bool done = true;
   622         for (ArcIt a(_gr); a != INVALID; ++a) {
   623           if (_tolerance.less(_length[a] * _curr_size - _curr_length,
   624                               pi[_gr.target(a)] - pi[_gr.source(a)]) ) {
   625             done = false;
   626             break;
   627           }
   628         }
   629         return done;
   630       }
   631       return (k == n);
   632     }
   633 
   634   }; //class HartmannOrlin
   635 
   636   ///@}
   637 
   638 } //namespace lemon
   639 
   640 #endif //LEMON_HARTMANN_ORLIN_H