3 * This file is a part of LEMON, a generic C++ optimization library
5 * Copyright (C) 2003-2008
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 * (Egervary Research Group on Combinatorial Optimization, EGRES).
9 * Permission to use, modify and distribute this software is granted
10 * provided that this copyright notice appears in all copies. For
11 * precise terms see the accompanying LICENSE file.
13 * This software is provided "AS IS" with no warranty of any kind,
14 * express or implied, and with no claim as to its suitability for any
19 #ifndef LEMON_CYCLE_CANCELING_H
20 #define LEMON_CYCLE_CANCELING_H
22 /// \ingroup min_cost_flow_algs
24 /// \brief Cycle-canceling algorithms for finding a minimum cost flow.
29 #include <lemon/core.h>
30 #include <lemon/maps.h>
31 #include <lemon/path.h>
32 #include <lemon/math.h>
33 #include <lemon/static_graph.h>
34 #include <lemon/adaptors.h>
35 #include <lemon/circulation.h>
36 #include <lemon/bellman_ford.h>
37 #include <lemon/howard_mmc.h>
41 /// \addtogroup min_cost_flow_algs
44 /// \brief Implementation of cycle-canceling algorithms for
45 /// finding a \ref min_cost_flow "minimum cost flow".
47 /// \ref CycleCanceling implements three different cycle-canceling
48 /// algorithms for finding a \ref min_cost_flow "minimum cost flow"
49 /// \ref amo93networkflows, \ref klein67primal,
50 /// \ref goldberg89cyclecanceling.
51 /// The most efficent one (both theoretically and practically)
52 /// is the \ref CANCEL_AND_TIGHTEN "Cancel and Tighten" algorithm,
53 /// thus it is the default method.
54 /// It is strongly polynomial, but in practice, it is typically much
55 /// slower than the scaling algorithms and NetworkSimplex.
57 /// Most of the parameters of the problem (except for the digraph)
58 /// can be given using separate functions, and the algorithm can be
59 /// executed using the \ref run() function. If some parameters are not
60 /// specified, then default values will be used.
62 /// \tparam GR The digraph type the algorithm runs on.
63 /// \tparam V The number type used for flow amounts, capacity bounds
64 /// and supply values in the algorithm. By default, it is \c int.
65 /// \tparam C The number type used for costs and potentials in the
66 /// algorithm. By default, it is the same as \c V.
68 /// \warning Both number types must be signed and all input data must
70 /// \warning This algorithm does not support negative costs for such
71 /// arcs that have infinite upper bound.
73 /// \note For more information about the three available methods,
76 template <typename GR, typename V, typename C>
78 template <typename GR, typename V = int, typename C = V>
84 /// The type of the digraph
86 /// The type of the flow amounts, capacity bounds and supply values
88 /// The type of the arc costs
93 /// \brief Problem type constants for the \c run() function.
95 /// Enum type containing the problem type constants that can be
96 /// returned by the \ref run() function of the algorithm.
98 /// The problem has no feasible solution (flow).
100 /// The problem has optimal solution (i.e. it is feasible and
101 /// bounded), and the algorithm has found optimal flow and node
102 /// potentials (primal and dual solutions).
104 /// The digraph contains an arc of negative cost and infinite
105 /// upper bound. It means that the objective function is unbounded
106 /// on that arc, however, note that it could actually be bounded
107 /// over the feasible flows, but this algroithm cannot handle
112 /// \brief Constants for selecting the used method.
114 /// Enum type containing constants for selecting the used method
115 /// for the \ref run() function.
117 /// \ref CycleCanceling provides three different cycle-canceling
118 /// methods. By default, \ref CANCEL_AND_TIGHTEN "Cancel and Tighten"
119 /// is used, which proved to be the most efficient and the most robust
120 /// on various test inputs.
121 /// However, the other methods can be selected using the \ref run()
122 /// function with the proper parameter.
124 /// A simple cycle-canceling method, which uses the
125 /// \ref BellmanFord "Bellman-Ford" algorithm with limited iteration
126 /// number for detecting negative cycles in the residual network.
127 SIMPLE_CYCLE_CANCELING,
128 /// The "Minimum Mean Cycle-Canceling" algorithm, which is a
129 /// well-known strongly polynomial method
130 /// \ref goldberg89cyclecanceling. It improves along a
131 /// \ref min_mean_cycle "minimum mean cycle" in each iteration.
132 /// Its running time complexity is O(n<sup>2</sup>m<sup>3</sup>log(n)).
133 MINIMUM_MEAN_CYCLE_CANCELING,
134 /// The "Cancel And Tighten" algorithm, which can be viewed as an
135 /// improved version of the previous method
136 /// \ref goldberg89cyclecanceling.
137 /// It is faster both in theory and in practice, its running time
138 /// complexity is O(n<sup>2</sup>m<sup>2</sup>log(n)).
144 TEMPLATE_DIGRAPH_TYPEDEFS(GR);
146 typedef std::vector<int> IntVector;
147 typedef std::vector<double> DoubleVector;
148 typedef std::vector<Value> ValueVector;
149 typedef std::vector<Cost> CostVector;
150 typedef std::vector<char> BoolVector;
151 // Note: vector<char> is used instead of vector<bool> for efficiency reasons
155 template <typename KT, typename VT>
156 class StaticVectorMap {
161 StaticVectorMap(std::vector<Value>& v) : _v(v) {}
163 const Value& operator[](const Key& key) const {
164 return _v[StaticDigraph::id(key)];
167 Value& operator[](const Key& key) {
168 return _v[StaticDigraph::id(key)];
171 void set(const Key& key, const Value& val) {
172 _v[StaticDigraph::id(key)] = val;
176 std::vector<Value>& _v;
179 typedef StaticVectorMap<StaticDigraph::Node, Cost> CostNodeMap;
180 typedef StaticVectorMap<StaticDigraph::Arc, Cost> CostArcMap;
185 // Data related to the underlying digraph
193 // Parameters of the problem
197 // Data structures for storing the digraph
201 IntVector _first_out;
213 ValueVector _res_cap;
216 // Data for a StaticDigraph structure
217 typedef std::pair<int, int> IntPair;
219 std::vector<IntPair> _arc_vec;
220 std::vector<Cost> _cost_vec;
222 CostArcMap _cost_map;
227 /// \brief Constant for infinite upper bounds (capacities).
229 /// Constant for infinite upper bounds (capacities).
230 /// It is \c std::numeric_limits<Value>::infinity() if available,
231 /// \c std::numeric_limits<Value>::max() otherwise.
236 /// \brief Constructor.
238 /// The constructor of the class.
240 /// \param graph The digraph the algorithm runs on.
241 CycleCanceling(const GR& graph) :
242 _graph(graph), _node_id(graph), _arc_idf(graph), _arc_idb(graph),
243 _cost_map(_cost_vec), _pi_map(_pi),
244 INF(std::numeric_limits<Value>::has_infinity ?
245 std::numeric_limits<Value>::infinity() :
246 std::numeric_limits<Value>::max())
248 // Check the number types
249 LEMON_ASSERT(std::numeric_limits<Value>::is_signed,
250 "The flow type of CycleCanceling must be signed");
251 LEMON_ASSERT(std::numeric_limits<Cost>::is_signed,
252 "The cost type of CycleCanceling must be signed");
254 // Reset data structures
259 /// The parameters of the algorithm can be specified using these
264 /// \brief Set the lower bounds on the arcs.
266 /// This function sets the lower bounds on the arcs.
267 /// If it is not used before calling \ref run(), the lower bounds
268 /// will be set to zero on all arcs.
270 /// \param map An arc map storing the lower bounds.
271 /// Its \c Value type must be convertible to the \c Value type
272 /// of the algorithm.
274 /// \return <tt>(*this)</tt>
275 template <typename LowerMap>
276 CycleCanceling& lowerMap(const LowerMap& map) {
278 for (ArcIt a(_graph); a != INVALID; ++a) {
279 _lower[_arc_idf[a]] = map[a];
280 _lower[_arc_idb[a]] = map[a];
285 /// \brief Set the upper bounds (capacities) on the arcs.
287 /// This function sets the upper bounds (capacities) on the arcs.
288 /// If it is not used before calling \ref run(), the upper bounds
289 /// will be set to \ref INF on all arcs (i.e. the flow value will be
290 /// unbounded from above).
292 /// \param map An arc map storing the upper bounds.
293 /// Its \c Value type must be convertible to the \c Value type
294 /// of the algorithm.
296 /// \return <tt>(*this)</tt>
297 template<typename UpperMap>
298 CycleCanceling& upperMap(const UpperMap& map) {
299 for (ArcIt a(_graph); a != INVALID; ++a) {
300 _upper[_arc_idf[a]] = map[a];
305 /// \brief Set the costs of the arcs.
307 /// This function sets the costs of the arcs.
308 /// If it is not used before calling \ref run(), the costs
309 /// will be set to \c 1 on all arcs.
311 /// \param map An arc map storing the costs.
312 /// Its \c Value type must be convertible to the \c Cost type
313 /// of the algorithm.
315 /// \return <tt>(*this)</tt>
316 template<typename CostMap>
317 CycleCanceling& costMap(const CostMap& map) {
318 for (ArcIt a(_graph); a != INVALID; ++a) {
319 _cost[_arc_idf[a]] = map[a];
320 _cost[_arc_idb[a]] = -map[a];
325 /// \brief Set the supply values of the nodes.
327 /// This function sets the supply values of the nodes.
328 /// If neither this function nor \ref stSupply() is used before
329 /// calling \ref run(), the supply of each node will be set to zero.
331 /// \param map A node map storing the supply values.
332 /// Its \c Value type must be convertible to the \c Value type
333 /// of the algorithm.
335 /// \return <tt>(*this)</tt>
336 template<typename SupplyMap>
337 CycleCanceling& supplyMap(const SupplyMap& map) {
338 for (NodeIt n(_graph); n != INVALID; ++n) {
339 _supply[_node_id[n]] = map[n];
344 /// \brief Set single source and target nodes and a supply value.
346 /// This function sets a single source node and a single target node
347 /// and the required flow value.
348 /// If neither this function nor \ref supplyMap() is used before
349 /// calling \ref run(), the supply of each node will be set to zero.
351 /// Using this function has the same effect as using \ref supplyMap()
352 /// with such a map in which \c k is assigned to \c s, \c -k is
353 /// assigned to \c t and all other nodes have zero supply value.
355 /// \param s The source node.
356 /// \param t The target node.
357 /// \param k The required amount of flow from node \c s to node \c t
358 /// (i.e. the supply of \c s and the demand of \c t).
360 /// \return <tt>(*this)</tt>
361 CycleCanceling& stSupply(const Node& s, const Node& t, Value k) {
362 for (int i = 0; i != _res_node_num; ++i) {
365 _supply[_node_id[s]] = k;
366 _supply[_node_id[t]] = -k;
372 /// \name Execution control
373 /// The algorithm can be executed using \ref run().
377 /// \brief Run the algorithm.
379 /// This function runs the algorithm.
380 /// The paramters can be specified using functions \ref lowerMap(),
381 /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply().
384 /// CycleCanceling<ListDigraph> cc(graph);
385 /// cc.lowerMap(lower).upperMap(upper).costMap(cost)
386 /// .supplyMap(sup).run();
389 /// This function can be called more than once. All the given parameters
390 /// are kept for the next call, unless \ref resetParams() or \ref reset()
391 /// is used, thus only the modified parameters have to be set again.
392 /// If the underlying digraph was also modified after the construction
393 /// of the class (or the last \ref reset() call), then the \ref reset()
394 /// function must be called.
396 /// \param method The cycle-canceling method that will be used.
397 /// For more information, see \ref Method.
399 /// \return \c INFEASIBLE if no feasible flow exists,
400 /// \n \c OPTIMAL if the problem has optimal solution
401 /// (i.e. it is feasible and bounded), and the algorithm has found
402 /// optimal flow and node potentials (primal and dual solutions),
403 /// \n \c UNBOUNDED if the digraph contains an arc of negative cost
404 /// and infinite upper bound. It means that the objective function
405 /// is unbounded on that arc, however, note that it could actually be
406 /// bounded over the feasible flows, but this algroithm cannot handle
409 /// \see ProblemType, Method
410 /// \see resetParams(), reset()
411 ProblemType run(Method method = CANCEL_AND_TIGHTEN) {
412 ProblemType pt = init();
413 if (pt != OPTIMAL) return pt;
418 /// \brief Reset all the parameters that have been given before.
420 /// This function resets all the paramaters that have been given
421 /// before using functions \ref lowerMap(), \ref upperMap(),
422 /// \ref costMap(), \ref supplyMap(), \ref stSupply().
424 /// It is useful for multiple \ref run() calls. Basically, all the given
425 /// parameters are kept for the next \ref run() call, unless
426 /// \ref resetParams() or \ref reset() is used.
427 /// If the underlying digraph was also modified after the construction
428 /// of the class or the last \ref reset() call, then the \ref reset()
429 /// function must be used, otherwise \ref resetParams() is sufficient.
433 /// CycleCanceling<ListDigraph> cs(graph);
436 /// cc.lowerMap(lower).upperMap(upper).costMap(cost)
437 /// .supplyMap(sup).run();
439 /// // Run again with modified cost map (resetParams() is not called,
440 /// // so only the cost map have to be set again)
442 /// cc.costMap(cost).run();
444 /// // Run again from scratch using resetParams()
445 /// // (the lower bounds will be set to zero on all arcs)
446 /// cc.resetParams();
447 /// cc.upperMap(capacity).costMap(cost)
448 /// .supplyMap(sup).run();
451 /// \return <tt>(*this)</tt>
453 /// \see reset(), run()
454 CycleCanceling& resetParams() {
455 for (int i = 0; i != _res_node_num; ++i) {
458 int limit = _first_out[_root];
459 for (int j = 0; j != limit; ++j) {
462 _cost[j] = _forward[j] ? 1 : -1;
464 for (int j = limit; j != _res_arc_num; ++j) {
468 _cost[_reverse[j]] = 0;
474 /// \brief Reset the internal data structures and all the parameters
475 /// that have been given before.
477 /// This function resets the internal data structures and all the
478 /// paramaters that have been given before using functions \ref lowerMap(),
479 /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply().
481 /// It is useful for multiple \ref run() calls. Basically, all the given
482 /// parameters are kept for the next \ref run() call, unless
483 /// \ref resetParams() or \ref reset() is used.
484 /// If the underlying digraph was also modified after the construction
485 /// of the class or the last \ref reset() call, then the \ref reset()
486 /// function must be used, otherwise \ref resetParams() is sufficient.
488 /// See \ref resetParams() for examples.
490 /// \return <tt>(*this)</tt>
492 /// \see resetParams(), run()
493 CycleCanceling& reset() {
495 _node_num = countNodes(_graph);
496 _arc_num = countArcs(_graph);
497 _res_node_num = _node_num + 1;
498 _res_arc_num = 2 * (_arc_num + _node_num);
501 _first_out.resize(_res_node_num + 1);
502 _forward.resize(_res_arc_num);
503 _source.resize(_res_arc_num);
504 _target.resize(_res_arc_num);
505 _reverse.resize(_res_arc_num);
507 _lower.resize(_res_arc_num);
508 _upper.resize(_res_arc_num);
509 _cost.resize(_res_arc_num);
510 _supply.resize(_res_node_num);
512 _res_cap.resize(_res_arc_num);
513 _pi.resize(_res_node_num);
515 _arc_vec.reserve(_res_arc_num);
516 _cost_vec.reserve(_res_arc_num);
517 _id_vec.reserve(_res_arc_num);
520 int i = 0, j = 0, k = 2 * _arc_num + _node_num;
521 for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
525 for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
527 for (OutArcIt a(_graph, n); a != INVALID; ++a, ++j) {
531 _target[j] = _node_id[_graph.runningNode(a)];
533 for (InArcIt a(_graph, n); a != INVALID; ++a, ++j) {
537 _target[j] = _node_id[_graph.runningNode(a)];
550 _first_out[_res_node_num] = k;
551 for (ArcIt a(_graph); a != INVALID; ++a) {
552 int fi = _arc_idf[a];
553 int bi = _arc_idb[a];
565 /// \name Query Functions
566 /// The results of the algorithm can be obtained using these
568 /// The \ref run() function must be called before using them.
572 /// \brief Return the total cost of the found flow.
574 /// This function returns the total cost of the found flow.
575 /// Its complexity is O(e).
577 /// \note The return type of the function can be specified as a
578 /// template parameter. For example,
580 /// cc.totalCost<double>();
582 /// It is useful if the total cost cannot be stored in the \c Cost
583 /// type of the algorithm, which is the default return type of the
586 /// \pre \ref run() must be called before using this function.
587 template <typename Number>
588 Number totalCost() const {
590 for (ArcIt a(_graph); a != INVALID; ++a) {
592 c += static_cast<Number>(_res_cap[i]) *
593 (-static_cast<Number>(_cost[i]));
599 Cost totalCost() const {
600 return totalCost<Cost>();
604 /// \brief Return the flow on the given arc.
606 /// This function returns the flow on the given arc.
608 /// \pre \ref run() must be called before using this function.
609 Value flow(const Arc& a) const {
610 return _res_cap[_arc_idb[a]];
613 /// \brief Return the flow map (the primal solution).
615 /// This function copies the flow value on each arc into the given
616 /// map. The \c Value type of the algorithm must be convertible to
617 /// the \c Value type of the map.
619 /// \pre \ref run() must be called before using this function.
620 template <typename FlowMap>
621 void flowMap(FlowMap &map) const {
622 for (ArcIt a(_graph); a != INVALID; ++a) {
623 map.set(a, _res_cap[_arc_idb[a]]);
627 /// \brief Return the potential (dual value) of the given node.
629 /// This function returns the potential (dual value) of the
632 /// \pre \ref run() must be called before using this function.
633 Cost potential(const Node& n) const {
634 return static_cast<Cost>(_pi[_node_id[n]]);
637 /// \brief Return the potential map (the dual solution).
639 /// This function copies the potential (dual value) of each node
640 /// into the given map.
641 /// The \c Cost type of the algorithm must be convertible to the
642 /// \c Value type of the map.
644 /// \pre \ref run() must be called before using this function.
645 template <typename PotentialMap>
646 void potentialMap(PotentialMap &map) const {
647 for (NodeIt n(_graph); n != INVALID; ++n) {
648 map.set(n, static_cast<Cost>(_pi[_node_id[n]]));
656 // Initialize the algorithm
658 if (_res_node_num <= 1) return INFEASIBLE;
660 // Check the sum of supply values
662 for (int i = 0; i != _root; ++i) {
663 _sum_supply += _supply[i];
665 if (_sum_supply > 0) return INFEASIBLE;
668 // Initialize vectors
669 for (int i = 0; i != _res_node_num; ++i) {
672 ValueVector excess(_supply);
674 // Remove infinite upper bounds and check negative arcs
675 const Value MAX = std::numeric_limits<Value>::max();
678 for (int i = 0; i != _root; ++i) {
679 last_out = _first_out[i+1];
680 for (int j = _first_out[i]; j != last_out; ++j) {
682 Value c = _cost[j] < 0 ? _upper[j] : _lower[j];
683 if (c >= MAX) return UNBOUNDED;
685 excess[_target[j]] += c;
690 for (int i = 0; i != _root; ++i) {
691 last_out = _first_out[i+1];
692 for (int j = _first_out[i]; j != last_out; ++j) {
693 if (_forward[j] && _cost[j] < 0) {
695 if (c >= MAX) return UNBOUNDED;
697 excess[_target[j]] += c;
702 Value ex, max_cap = 0;
703 for (int i = 0; i != _res_node_num; ++i) {
705 if (ex < 0) max_cap -= ex;
707 for (int j = 0; j != _res_arc_num; ++j) {
708 if (_upper[j] >= MAX) _upper[j] = max_cap;
711 // Initialize maps for Circulation and remove non-zero lower bounds
712 ConstMap<Arc, Value> low(0);
713 typedef typename Digraph::template ArcMap<Value> ValueArcMap;
714 typedef typename Digraph::template NodeMap<Value> ValueNodeMap;
715 ValueArcMap cap(_graph), flow(_graph);
716 ValueNodeMap sup(_graph);
717 for (NodeIt n(_graph); n != INVALID; ++n) {
718 sup[n] = _supply[_node_id[n]];
721 for (ArcIt a(_graph); a != INVALID; ++a) {
724 cap[a] = _upper[j] - c;
725 sup[_graph.source(a)] -= c;
726 sup[_graph.target(a)] += c;
729 for (ArcIt a(_graph); a != INVALID; ++a) {
730 cap[a] = _upper[_arc_idf[a]];
734 // Find a feasible flow using Circulation
735 Circulation<Digraph, ConstMap<Arc, Value>, ValueArcMap, ValueNodeMap>
736 circ(_graph, low, cap, sup);
737 if (!circ.flowMap(flow).run()) return INFEASIBLE;
739 // Set residual capacities and handle GEQ supply type
740 if (_sum_supply < 0) {
741 for (ArcIt a(_graph); a != INVALID; ++a) {
743 _res_cap[_arc_idf[a]] = cap[a] - fa;
744 _res_cap[_arc_idb[a]] = fa;
745 sup[_graph.source(a)] -= fa;
746 sup[_graph.target(a)] += fa;
748 for (NodeIt n(_graph); n != INVALID; ++n) {
749 excess[_node_id[n]] = sup[n];
751 for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
753 int ra = _reverse[a];
754 _res_cap[a] = -_sum_supply + 1;
755 _res_cap[ra] = -excess[u];
760 for (ArcIt a(_graph); a != INVALID; ++a) {
762 _res_cap[_arc_idf[a]] = cap[a] - fa;
763 _res_cap[_arc_idb[a]] = fa;
765 for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
766 int ra = _reverse[a];
777 // Build a StaticDigraph structure containing the current
779 void buildResidualNetwork() {
783 for (int j = 0; j != _res_arc_num; ++j) {
784 if (_res_cap[j] > 0) {
785 _arc_vec.push_back(IntPair(_source[j], _target[j]));
786 _cost_vec.push_back(_cost[j]);
787 _id_vec.push_back(j);
790 _sgr.build(_res_node_num, _arc_vec.begin(), _arc_vec.end());
793 // Execute the algorithm and transform the results
794 void start(Method method) {
795 // Execute the algorithm
797 case SIMPLE_CYCLE_CANCELING:
798 startSimpleCycleCanceling();
800 case MINIMUM_MEAN_CYCLE_CANCELING:
801 startMinMeanCycleCanceling();
803 case CANCEL_AND_TIGHTEN:
804 startCancelAndTighten();
808 // Compute node potentials
809 if (method != SIMPLE_CYCLE_CANCELING) {
810 buildResidualNetwork();
811 typename BellmanFord<StaticDigraph, CostArcMap>
812 ::template SetDistMap<CostNodeMap>::Create bf(_sgr, _cost_map);
818 // Handle non-zero lower bounds
820 int limit = _first_out[_root];
821 for (int j = 0; j != limit; ++j) {
822 if (!_forward[j]) _res_cap[j] += _lower[j];
827 // Execute the "Simple Cycle Canceling" method
828 void startSimpleCycleCanceling() {
829 // Constants for computing the iteration limits
830 const int BF_FIRST_LIMIT = 2;
831 const double BF_LIMIT_FACTOR = 1.5;
833 typedef StaticVectorMap<StaticDigraph::Arc, Value> FilterMap;
834 typedef FilterArcs<StaticDigraph, FilterMap> ResDigraph;
835 typedef StaticVectorMap<StaticDigraph::Node, StaticDigraph::Arc> PredMap;
836 typedef typename BellmanFord<ResDigraph, CostArcMap>
837 ::template SetDistMap<CostNodeMap>
838 ::template SetPredMap<PredMap>::Create BF;
840 // Build the residual network
843 for (int j = 0; j != _res_arc_num; ++j) {
844 _arc_vec.push_back(IntPair(_source[j], _target[j]));
845 _cost_vec.push_back(_cost[j]);
847 _sgr.build(_res_node_num, _arc_vec.begin(), _arc_vec.end());
849 FilterMap filter_map(_res_cap);
850 ResDigraph rgr(_sgr, filter_map);
851 std::vector<int> cycle;
852 std::vector<StaticDigraph::Arc> pred(_res_arc_num);
853 PredMap pred_map(pred);
854 BF bf(rgr, _cost_map);
855 bf.distMap(_pi_map).predMap(pred_map);
857 int length_bound = BF_FIRST_LIMIT;
858 bool optimal = false;
862 bool cycle_found = false;
863 while (!cycle_found) {
864 // Perform some iterations of the Bellman-Ford algorithm
865 int curr_iter_num = iter_num + length_bound <= _node_num ?
866 length_bound : _node_num - iter_num;
867 iter_num += curr_iter_num;
868 int real_iter_num = curr_iter_num;
869 for (int i = 0; i < curr_iter_num; ++i) {
870 if (bf.processNextWeakRound()) {
875 if (real_iter_num < curr_iter_num) {
876 // Optimal flow is found
880 // Search for node disjoint negative cycles
881 std::vector<int> state(_res_node_num, 0);
883 for (int u = 0; u != _res_node_num; ++u) {
884 if (state[u] != 0) continue;
887 for (; v != -1 && state[v] == 0; v = pred[v] == INVALID ?
888 -1 : rgr.id(rgr.source(pred[v]))) {
891 if (v != -1 && state[v] == id) {
892 // A negative cycle is found
895 StaticDigraph::Arc a = pred[v];
896 Value d, delta = _res_cap[rgr.id(a)];
897 cycle.push_back(rgr.id(a));
898 while (rgr.id(rgr.source(a)) != v) {
899 a = pred_map[rgr.source(a)];
900 d = _res_cap[rgr.id(a)];
901 if (d < delta) delta = d;
902 cycle.push_back(rgr.id(a));
905 // Augment along the cycle
906 for (int i = 0; i < int(cycle.size()); ++i) {
908 _res_cap[j] -= delta;
909 _res_cap[_reverse[j]] += delta;
915 // Increase iteration limit if no cycle is found
917 length_bound = static_cast<int>(length_bound * BF_LIMIT_FACTOR);
923 // Execute the "Minimum Mean Cycle Canceling" method
924 void startMinMeanCycleCanceling() {
925 typedef SimplePath<StaticDigraph> SPath;
926 typedef typename SPath::ArcIt SPathArcIt;
927 typedef typename HowardMmc<StaticDigraph, CostArcMap>
928 ::template SetPath<SPath>::Create MMC;
931 MMC mmc(_sgr, _cost_map);
933 buildResidualNetwork();
934 while (mmc.findCycleMean() && mmc.cycleCost() < 0) {
938 // Compute delta value
940 for (SPathArcIt a(cycle); a != INVALID; ++a) {
941 Value d = _res_cap[_id_vec[_sgr.id(a)]];
942 if (d < delta) delta = d;
945 // Augment along the cycle
946 for (SPathArcIt a(cycle); a != INVALID; ++a) {
947 int j = _id_vec[_sgr.id(a)];
948 _res_cap[j] -= delta;
949 _res_cap[_reverse[j]] += delta;
952 // Rebuild the residual network
953 buildResidualNetwork();
957 // Execute the "Cancel And Tighten" method
958 void startCancelAndTighten() {
959 // Constants for the min mean cycle computations
960 const double LIMIT_FACTOR = 1.0;
961 const int MIN_LIMIT = 5;
963 // Contruct auxiliary data vectors
964 DoubleVector pi(_res_node_num, 0.0);
965 IntVector level(_res_node_num);
966 BoolVector reached(_res_node_num);
967 BoolVector processed(_res_node_num);
968 IntVector pred_node(_res_node_num);
969 IntVector pred_arc(_res_node_num);
970 std::vector<int> stack(_res_node_num);
971 std::vector<int> proc_vector(_res_node_num);
973 // Initialize epsilon
975 for (int a = 0; a != _res_arc_num; ++a) {
976 if (_res_cap[a] > 0 && -_cost[a] > epsilon)
981 Tolerance<double> tol;
983 int limit = int(LIMIT_FACTOR * std::sqrt(double(_res_node_num)));
984 if (limit < MIN_LIMIT) limit = MIN_LIMIT;
986 while (epsilon * _res_node_num >= 1) {
987 // Find and cancel cycles in the admissible network using DFS
988 for (int u = 0; u != _res_node_num; ++u) {
990 processed[u] = false;
994 for (int start = 0; start != _res_node_num; ++start) {
995 if (reached[start]) continue;
998 reached[start] = true;
999 pred_arc[start] = -1;
1000 pred_node[start] = -1;
1002 // Find the first admissible outgoing arc
1003 double p = pi[start];
1004 int a = _first_out[start];
1005 int last_out = _first_out[start+1];
1006 for (; a != last_out && (_res_cap[a] == 0 ||
1007 !tol.negative(_cost[a] + p - pi[_target[a]])); ++a) ;
1008 if (a == last_out) {
1009 processed[start] = true;
1010 proc_vector[++proc_head] = start;
1013 stack[++stack_head] = a;
1015 while (stack_head >= 0) {
1016 int sa = stack[stack_head];
1017 int u = _source[sa];
1018 int v = _target[sa];
1021 // A new node is reached
1027 last_out = _first_out[v+1];
1028 for (; a != last_out && (_res_cap[a] == 0 ||
1029 !tol.negative(_cost[a] + p - pi[_target[a]])); ++a) ;
1030 stack[++stack_head] = a == last_out ? -1 : a;
1032 if (!processed[v]) {
1035 Value d, delta = _res_cap[sa];
1036 for (n = u; n != v; n = pred_node[n]) {
1037 d = _res_cap[pred_arc[n]];
1044 // Augment along the cycle
1045 _res_cap[sa] -= delta;
1046 _res_cap[_reverse[sa]] += delta;
1047 for (n = u; n != v; n = pred_node[n]) {
1048 int pa = pred_arc[n];
1049 _res_cap[pa] -= delta;
1050 _res_cap[_reverse[pa]] += delta;
1052 for (n = u; stack_head > 0 && n != w; n = pred_node[n]) {
1060 // Find the next admissible outgoing arc
1062 a = stack[stack_head] + 1;
1063 last_out = _first_out[v+1];
1064 for (; a != last_out && (_res_cap[a] == 0 ||
1065 !tol.negative(_cost[a] + p - pi[_target[a]])); ++a) ;
1066 stack[stack_head] = a == last_out ? -1 : a;
1069 while (stack_head >= 0 && stack[stack_head] == -1) {
1070 processed[v] = true;
1071 proc_vector[++proc_head] = v;
1072 if (--stack_head >= 0) {
1073 // Find the next admissible outgoing arc
1074 v = _source[stack[stack_head]];
1076 a = stack[stack_head] + 1;
1077 last_out = _first_out[v+1];
1078 for (; a != last_out && (_res_cap[a] == 0 ||
1079 !tol.negative(_cost[a] + p - pi[_target[a]])); ++a) ;
1080 stack[stack_head] = a == last_out ? -1 : a;
1086 // Tighten potentials and epsilon
1088 for (int u = 0; u != _res_node_num; ++u) {
1091 for (int i = proc_head; i > 0; --i) {
1092 int u = proc_vector[i];
1094 int l = level[u] + 1;
1095 int last_out = _first_out[u+1];
1096 for (int a = _first_out[u]; a != last_out; ++a) {
1098 if (_res_cap[a] > 0 && tol.negative(_cost[a] + p - pi[v]) &&
1099 l > level[v]) level[v] = l;
1103 // Modify potentials
1104 double q = std::numeric_limits<double>::max();
1105 for (int u = 0; u != _res_node_num; ++u) {
1107 double p, pu = pi[u];
1108 int last_out = _first_out[u+1];
1109 for (int a = _first_out[u]; a != last_out; ++a) {
1110 if (_res_cap[a] == 0) continue;
1112 int ld = lu - level[v];
1114 p = (_cost[a] + pu - pi[v] + epsilon) / (ld + 1);
1119 for (int u = 0; u != _res_node_num; ++u) {
1120 pi[u] -= q * level[u];
1125 for (int u = 0; u != _res_node_num; ++u) {
1126 double curr, pu = pi[u];
1127 int last_out = _first_out[u+1];
1128 for (int a = _first_out[u]; a != last_out; ++a) {
1129 if (_res_cap[a] == 0) continue;
1130 curr = _cost[a] + pu - pi[_target[a]];
1131 if (-curr > epsilon) epsilon = -curr;
1135 typedef HowardMmc<StaticDigraph, CostArcMap> MMC;
1136 typedef typename BellmanFord<StaticDigraph, CostArcMap>
1137 ::template SetDistMap<CostNodeMap>::Create BF;
1139 // Set epsilon to the minimum cycle mean
1140 buildResidualNetwork();
1141 MMC mmc(_sgr, _cost_map);
1142 mmc.findCycleMean();
1143 epsilon = -mmc.cycleMean();
1144 Cost cycle_cost = mmc.cycleCost();
1145 int cycle_size = mmc.cycleSize();
1147 // Compute feasible potentials for the current epsilon
1148 for (int i = 0; i != int(_cost_vec.size()); ++i) {
1149 _cost_vec[i] = cycle_size * _cost_vec[i] - cycle_cost;
1151 BF bf(_sgr, _cost_map);
1152 bf.distMap(_pi_map);
1155 for (int u = 0; u != _res_node_num; ++u) {
1156 pi[u] = static_cast<double>(_pi[u]) / cycle_size;
1164 }; //class CycleCanceling
1170 #endif //LEMON_CYCLE_CANCELING_H