3 * This file is a part of LEMON, a generic C++ optimization library
5 * Copyright (C) 2003-2008
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 * (Egervary Research Group on Combinatorial Optimization, EGRES).
9 * Permission to use, modify and distribute this software is granted
10 * provided that this copyright notice appears in all copies. For
11 * precise terms see the accompanying LICENSE file.
13 * This software is provided "AS IS" with no warranty of any kind,
14 * express or implied, and with no claim as to its suitability for any
26 #include <lemon/bits/utility.h>
27 #include <lemon/bits/traits.h>
31 ///\brief Miscellaneous property maps
40 /// Base class of maps.
42 /// Base class of maps. It provides the necessary type definitions
43 /// required by the map %concepts.
44 template<typename K, typename V>
47 /// \biref The key type of the map.
49 /// \brief The value type of the map.
50 /// (The type of objects associated with the keys).
55 /// Null map. (a.k.a. DoNothingMap)
57 /// This map can be used if you have to provide a map only for
58 /// its type definitions, or if you have to provide a writable map,
59 /// but data written to it is not required (i.e. it will be sent to
60 /// <tt>/dev/null</tt>).
61 /// It conforms the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
64 template<typename K, typename V>
65 class NullMap : public MapBase<K, V> {
67 typedef MapBase<K, V> Parent;
68 typedef typename Parent::Key Key;
69 typedef typename Parent::Value Value;
71 /// Gives back a default constructed element.
72 Value operator[](const Key&) const { return Value(); }
73 /// Absorbs the value.
74 void set(const Key&, const Value&) {}
77 /// Returns a \ref NullMap class
79 /// This function just returns a \ref NullMap class.
81 template <typename K, typename V>
82 NullMap<K, V> nullMap() {
83 return NullMap<K, V>();
89 /// This \ref concepts::ReadMap "readable map" assigns a specified
90 /// value to each key.
92 /// In other aspects it is equivalent to \ref NullMap.
93 /// So it conforms the \ref concepts::ReadWriteMap "ReadWriteMap"
94 /// concept, but it absorbs the data written to it.
96 /// The simplest way of using this map is through the constMap()
101 template<typename K, typename V>
102 class ConstMap : public MapBase<K, V> {
106 typedef MapBase<K, V> Parent;
107 typedef typename Parent::Key Key;
108 typedef typename Parent::Value Value;
110 /// Default constructor
112 /// Default constructor.
113 /// The value of the map will be default constructed.
116 /// Constructor with specified initial value
118 /// Constructor with specified initial value.
119 /// \param v is the initial value of the map.
120 ConstMap(const Value &v) : _value(v) {}
122 /// Gives back the specified value.
123 Value operator[](const Key&) const { return _value; }
125 /// Absorbs the value.
126 void set(const Key&, const Value&) {}
128 /// Sets the value that is assigned to each key.
129 void setAll(const Value &v) {
133 template<typename V1>
134 ConstMap(const ConstMap<K, V1> &, const Value &v) : _value(v) {}
137 /// Returns a \ref ConstMap class
139 /// This function just returns a \ref ConstMap class.
140 /// \relates ConstMap
141 template<typename K, typename V>
142 inline ConstMap<K, V> constMap(const V &v) {
143 return ConstMap<K, V>(v);
147 template<typename T, T v>
150 /// Constant map with inlined constant value.
152 /// This \ref concepts::ReadMap "readable map" assigns a specified
153 /// value to each key.
155 /// In other aspects it is equivalent to \ref NullMap.
156 /// So it conforms the \ref concepts::ReadWriteMap "ReadWriteMap"
157 /// concept, but it absorbs the data written to it.
159 /// The simplest way of using this map is through the constMap()
164 template<typename K, typename V, V v>
165 class ConstMap<K, Const<V, v> > : public MapBase<K, V> {
167 typedef MapBase<K, V> Parent;
168 typedef typename Parent::Key Key;
169 typedef typename Parent::Value Value;
174 /// Gives back the specified value.
175 Value operator[](const Key&) const { return v; }
177 /// Absorbs the value.
178 void set(const Key&, const Value&) {}
181 /// Returns a \ref ConstMap class with inlined constant value
183 /// This function just returns a \ref ConstMap class with inlined
185 /// \relates ConstMap
186 template<typename K, typename V, V v>
187 inline ConstMap<K, Const<V, v> > constMap() {
188 return ConstMap<K, Const<V, v> >();
194 /// This \ref concepts::ReadMap "read-only map" gives back the given
195 /// key as value without any modification.
198 template <typename T>
199 class IdentityMap : public MapBase<T, T> {
201 typedef MapBase<T, T> Parent;
202 typedef typename Parent::Key Key;
203 typedef typename Parent::Value Value;
205 /// Gives back the given value without any modification.
206 Value operator[](const Key &k) const {
211 /// Returns an \ref IdentityMap class
213 /// This function just returns an \ref IdentityMap class.
214 /// \relates IdentityMap
216 inline IdentityMap<T> identityMap() {
217 return IdentityMap<T>();
221 /// \brief Map for storing values for integer keys from the range
222 /// <tt>[0..size-1]</tt>.
224 /// This map is essentially a wrapper for \c std::vector. It assigns
225 /// values to integer keys from the range <tt>[0..size-1]</tt>.
226 /// It can be used with some data structures, for example
227 /// \ref UnionFind, \ref BinHeap, when the used items are small
228 /// integers. This map conforms the \ref concepts::ReferenceMap
229 /// "ReferenceMap" concept.
231 /// The simplest way of using this map is through the rangeMap()
233 template <typename V>
234 class RangeMap : public MapBase<int, V> {
235 template <typename V1>
236 friend class RangeMap;
239 typedef std::vector<V> Vector;
244 typedef MapBase<int, V> Parent;
246 typedef typename Parent::Key Key;
248 typedef typename Parent::Value Value;
250 typedef typename Vector::reference Reference;
251 /// Const reference type
252 typedef typename Vector::const_reference ConstReference;
254 typedef True ReferenceMapTag;
258 /// Constructor with specified default value.
259 RangeMap(int size = 0, const Value &value = Value())
260 : _vector(size, value) {}
262 /// Constructs the map from an appropriate \c std::vector.
263 template <typename V1>
264 RangeMap(const std::vector<V1>& vector)
265 : _vector(vector.begin(), vector.end()) {}
267 /// Constructs the map from another \ref RangeMap.
268 template <typename V1>
269 RangeMap(const RangeMap<V1> &c)
270 : _vector(c._vector.begin(), c._vector.end()) {}
272 /// Returns the size of the map.
274 return _vector.size();
279 /// Resizes the underlying \c std::vector container, so changes the
280 /// keyset of the map.
281 /// \param size The new size of the map. The new keyset will be the
282 /// range <tt>[0..size-1]</tt>.
283 /// \param value The default value to assign to the new keys.
284 void resize(int size, const Value &value = Value()) {
285 _vector.resize(size, value);
290 RangeMap& operator=(const RangeMap&);
295 Reference operator[](const Key &k) {
300 ConstReference operator[](const Key &k) const {
305 void set(const Key &k, const Value &v) {
310 /// Returns a \ref RangeMap class
312 /// This function just returns a \ref RangeMap class.
313 /// \relates RangeMap
315 inline RangeMap<V> rangeMap(int size = 0, const V &value = V()) {
316 return RangeMap<V>(size, value);
319 /// \brief Returns a \ref RangeMap class created from an appropriate
322 /// This function just returns a \ref RangeMap class created from an
323 /// appropriate \c std::vector.
324 /// \relates RangeMap
326 inline RangeMap<V> rangeMap(const std::vector<V> &vector) {
327 return RangeMap<V>(vector);
331 /// Map type based on \c std::map
333 /// This map is essentially a wrapper for \c std::map with addition
334 /// that you can specify a default value for the keys that are not
335 /// stored actually. This value can be different from the default
336 /// contructed value (i.e. \c %Value()).
337 /// This type conforms the \ref concepts::ReferenceMap "ReferenceMap"
340 /// This map is useful if a default value should be assigned to most of
341 /// the keys and different values should be assigned only to a few
342 /// keys (i.e. the map is "sparse").
343 /// The name of this type also refers to this important usage.
345 /// Apart form that this map can be used in many other cases since it
346 /// is based on \c std::map, which is a general associative container.
347 /// However keep in mind that it is usually not as efficient as other
350 /// The simplest way of using this map is through the sparseMap()
352 template <typename K, typename V, typename Compare = std::less<K> >
353 class SparseMap : public MapBase<K, V> {
354 template <typename K1, typename V1, typename C1>
355 friend class SparseMap;
358 typedef MapBase<K, V> Parent;
360 typedef typename Parent::Key Key;
362 typedef typename Parent::Value Value;
364 typedef Value& Reference;
365 /// Const reference type
366 typedef const Value& ConstReference;
368 typedef True ReferenceMapTag;
372 typedef std::map<K, V, Compare> Map;
378 /// \brief Constructor with specified default value.
379 SparseMap(const Value &value = Value()) : _value(value) {}
380 /// \brief Constructs the map from an appropriate \c std::map, and
381 /// explicitly specifies a default value.
382 template <typename V1, typename Comp1>
383 SparseMap(const std::map<Key, V1, Comp1> &map,
384 const Value &value = Value())
385 : _map(map.begin(), map.end()), _value(value) {}
387 /// \brief Constructs the map from another \ref SparseMap.
388 template<typename V1, typename Comp1>
389 SparseMap(const SparseMap<Key, V1, Comp1> &c)
390 : _map(c._map.begin(), c._map.end()), _value(c._value) {}
394 SparseMap& operator=(const SparseMap&);
399 Reference operator[](const Key &k) {
400 typename Map::iterator it = _map.lower_bound(k);
401 if (it != _map.end() && !_map.key_comp()(k, it->first))
404 return _map.insert(it, std::make_pair(k, _value))->second;
408 ConstReference operator[](const Key &k) const {
409 typename Map::const_iterator it = _map.find(k);
410 if (it != _map.end())
417 void set(const Key &k, const Value &v) {
418 typename Map::iterator it = _map.lower_bound(k);
419 if (it != _map.end() && !_map.key_comp()(k, it->first))
422 _map.insert(it, std::make_pair(k, v));
426 void setAll(const Value &v) {
432 /// Returns a \ref SparseMap class
434 /// This function just returns a \ref SparseMap class with specified
436 /// \relates SparseMap
437 template<typename K, typename V, typename Compare>
438 inline SparseMap<K, V, Compare> sparseMap(const V& value = V()) {
439 return SparseMap<K, V, Compare>(value);
442 template<typename K, typename V>
443 inline SparseMap<K, V, std::less<K> > sparseMap(const V& value = V()) {
444 return SparseMap<K, V, std::less<K> >(value);
447 /// \brief Returns a \ref SparseMap class created from an appropriate
450 /// This function just returns a \ref SparseMap class created from an
451 /// appropriate \c std::map.
452 /// \relates SparseMap
453 template<typename K, typename V, typename Compare>
454 inline SparseMap<K, V, Compare>
455 sparseMap(const std::map<K, V, Compare> &map, const V& value = V())
457 return SparseMap<K, V, Compare>(map, value);
462 /// \addtogroup map_adaptors
465 /// Composition of two maps
467 /// This \ref concepts::ReadMap "read-only map" returns the
468 /// composition of two given maps. That is to say, if \c m1 is of
469 /// type \c M1 and \c m2 is of \c M2, then for
471 /// ComposeMap<M1, M2> cm(m1,m2);
473 /// <tt>cm[x]</tt> will be equal to <tt>m1[m2[x]]</tt>.
475 /// The \c Key type of the map is inherited from \c M2 and the
476 /// \c Value type is from \c M1.
477 /// \c M2::Value must be convertible to \c M1::Key.
479 /// The simplest way of using this map is through the composeMap()
484 /// \todo Check the requirements.
485 template <typename M1, typename M2>
486 class ComposeMap : public MapBase<typename M2::Key, typename M1::Value> {
490 typedef MapBase<typename M2::Key, typename M1::Value> Parent;
491 typedef typename Parent::Key Key;
492 typedef typename Parent::Value Value;
495 ComposeMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
498 typename MapTraits<M1>::ConstReturnValue
499 operator[](const Key &k) const { return _m1[_m2[k]]; }
502 /// Returns a \ref ComposeMap class
504 /// This function just returns a \ref ComposeMap class.
506 /// If \c m1 and \c m2 are maps and the \c Value type of \c m2 is
507 /// convertible to the \c Key of \c m1, then <tt>composeMap(m1,m2)[x]</tt>
508 /// will be equal to <tt>m1[m2[x]]</tt>.
510 /// \relates ComposeMap
511 template <typename M1, typename M2>
512 inline ComposeMap<M1, M2> composeMap(const M1 &m1, const M2 &m2) {
513 return ComposeMap<M1, M2>(m1, m2);
517 /// Combination of two maps using an STL (binary) functor.
519 /// This \ref concepts::ReadMap "read-only map" takes two maps and a
520 /// binary functor and returns the combination of the two given maps
521 /// using the functor.
522 /// That is to say, if \c m1 is of type \c M1 and \c m2 is of \c M2
523 /// and \c f is of \c F, then for
525 /// CombineMap<M1,M2,F,V> cm(m1,m2,f);
527 /// <tt>cm[x]</tt> will be equal to <tt>f(m1[x],m2[x])</tt>.
529 /// The \c Key type of the map is inherited from \c M1 (\c M1::Key
530 /// must be convertible to \c M2::Key) and the \c Value type is \c V.
531 /// \c M2::Value and \c M1::Value must be convertible to the
532 /// corresponding input parameter of \c F and the return type of \c F
533 /// must be convertible to \c V.
535 /// The simplest way of using this map is through the combineMap()
540 /// \todo Check the requirements.
541 template<typename M1, typename M2, typename F,
542 typename V = typename F::result_type>
543 class CombineMap : public MapBase<typename M1::Key, V> {
548 typedef MapBase<typename M1::Key, V> Parent;
549 typedef typename Parent::Key Key;
550 typedef typename Parent::Value Value;
553 CombineMap(const M1 &m1, const M2 &m2, const F &f = F())
554 : _m1(m1), _m2(m2), _f(f) {}
556 Value operator[](const Key &k) const { return _f(_m1[k],_m2[k]); }
559 /// Returns a \ref CombineMap class
561 /// This function just returns a \ref CombineMap class.
563 /// For example, if \c m1 and \c m2 are both maps with \c double
566 /// combineMap(m1,m2,std::plus<double>())
573 /// This function is specialized for adaptable binary function
574 /// classes and C++ functions.
576 /// \relates CombineMap
577 template<typename M1, typename M2, typename F, typename V>
578 inline CombineMap<M1, M2, F, V>
579 combineMap(const M1 &m1, const M2 &m2, const F &f) {
580 return CombineMap<M1, M2, F, V>(m1,m2,f);
583 template<typename M1, typename M2, typename F>
584 inline CombineMap<M1, M2, F, typename F::result_type>
585 combineMap(const M1 &m1, const M2 &m2, const F &f) {
586 return combineMap<M1, M2, F, typename F::result_type>(m1,m2,f);
589 template<typename M1, typename M2, typename K1, typename K2, typename V>
590 inline CombineMap<M1, M2, V (*)(K1, K2), V>
591 combineMap(const M1 &m1, const M2 &m2, V (*f)(K1, K2)) {
592 return combineMap<M1, M2, V (*)(K1, K2), V>(m1,m2,f);
596 /// Converts an STL style (unary) functor to a map
598 /// This \ref concepts::ReadMap "read-only map" returns the value
599 /// of a given functor. Actually, it just wraps the functor and
600 /// provides the \c Key and \c Value typedefs.
602 /// Template parameters \c K and \c V will become its \c Key and
603 /// \c Value. In most cases they have to be given explicitly because
604 /// a functor typically does not provide \c argument_type and
605 /// \c result_type typedefs.
606 /// Parameter \c F is the type of the used functor.
608 /// The simplest way of using this map is through the functorToMap()
613 typename K = typename F::argument_type,
614 typename V = typename F::result_type>
615 class FunctorToMap : public MapBase<K, V> {
618 typedef MapBase<K, V> Parent;
619 typedef typename Parent::Key Key;
620 typedef typename Parent::Value Value;
623 FunctorToMap(const F &f = F()) : _f(f) {}
625 Value operator[](const Key &k) const { return _f(k); }
628 /// Returns a \ref FunctorToMap class
630 /// This function just returns a \ref FunctorToMap class.
632 /// This function is specialized for adaptable binary function
633 /// classes and C++ functions.
635 /// \relates FunctorToMap
636 template<typename K, typename V, typename F>
637 inline FunctorToMap<F, K, V> functorToMap(const F &f) {
638 return FunctorToMap<F, K, V>(f);
641 template <typename F>
642 inline FunctorToMap<F, typename F::argument_type, typename F::result_type>
643 functorToMap(const F &f)
645 return FunctorToMap<F, typename F::argument_type,
646 typename F::result_type>(f);
649 template <typename K, typename V>
650 inline FunctorToMap<V (*)(K), K, V> functorToMap(V (*f)(K)) {
651 return FunctorToMap<V (*)(K), K, V>(f);
655 /// Converts a map to an STL style (unary) functor
657 /// This class converts a map to an STL style (unary) functor.
658 /// That is it provides an <tt>operator()</tt> to read its values.
660 /// For the sake of convenience it also works as a usual
661 /// \ref concepts::ReadMap "readable map", i.e. <tt>operator[]</tt>
662 /// and the \c Key and \c Value typedefs also exist.
664 /// The simplest way of using this map is through the mapToFunctor()
668 template <typename M>
669 class MapToFunctor : public MapBase<typename M::Key, typename M::Value> {
672 typedef MapBase<typename M::Key, typename M::Value> Parent;
673 typedef typename Parent::Key Key;
674 typedef typename Parent::Value Value;
676 typedef typename Parent::Key argument_type;
677 typedef typename Parent::Value result_type;
680 MapToFunctor(const M &m) : _m(m) {}
682 Value operator()(const Key &k) const { return _m[k]; }
684 Value operator[](const Key &k) const { return _m[k]; }
687 /// Returns a \ref MapToFunctor class
689 /// This function just returns a \ref MapToFunctor class.
690 /// \relates MapToFunctor
692 inline MapToFunctor<M> mapToFunctor(const M &m) {
693 return MapToFunctor<M>(m);
697 /// \brief Map adaptor to convert the \c Value type of a map to
698 /// another type using the default conversion.
700 /// Map adaptor to convert the \c Value type of a \ref concepts::ReadMap
701 /// "readable map" to another type using the default conversion.
702 /// The \c Key type of it is inherited from \c M and the \c Value
704 /// This type conforms the \ref concepts::ReadMap "ReadMap" concept.
706 /// The simplest way of using this map is through the convertMap()
708 template <typename M, typename V>
709 class ConvertMap : public MapBase<typename M::Key, V> {
712 typedef MapBase<typename M::Key, V> Parent;
713 typedef typename Parent::Key Key;
714 typedef typename Parent::Value Value;
719 /// \param m The underlying map.
720 ConvertMap(const M &m) : _m(m) {}
723 Value operator[](const Key &k) const { return _m[k]; }
726 /// Returns a \ref ConvertMap class
728 /// This function just returns a \ref ConvertMap class.
729 /// \relates ConvertMap
730 template<typename V, typename M>
731 inline ConvertMap<M, V> convertMap(const M &map) {
732 return ConvertMap<M, V>(map);
736 /// Applies all map setting operations to two maps
738 /// This map has two \ref concepts::WriteMap "writable map" parameters
739 /// and each write request will be passed to both of them.
740 /// If \c M1 is also \ref concepts::ReadMap "readable", then the read
741 /// operations will return the corresponding values of \c M1.
743 /// The \c Key and \c Value types are inherited from \c M1.
744 /// The \c Key and \c Value of \c M2 must be convertible from those
747 /// The simplest way of using this map is through the forkMap()
749 template<typename M1, typename M2>
750 class ForkMap : public MapBase<typename M1::Key, typename M1::Value> {
754 typedef MapBase<typename M1::Key, typename M1::Value> Parent;
755 typedef typename Parent::Key Key;
756 typedef typename Parent::Value Value;
759 ForkMap(M1 &m1, M2 &m2) : _m1(m1), _m2(m2) {}
760 /// Returns the value associated with the given key in the first map.
761 Value operator[](const Key &k) const { return _m1[k]; }
762 /// Sets the value associated with the given key in both maps.
763 void set(const Key &k, const Value &v) { _m1.set(k,v); _m2.set(k,v); }
766 /// Returns a \ref ForkMap class
768 /// This function just returns a \ref ForkMap class.
770 template <typename M1, typename M2>
771 inline ForkMap<M1,M2> forkMap(M1 &m1, M2 &m2) {
772 return ForkMap<M1,M2>(m1,m2);
778 /// This \ref concepts::ReadMap "read-only map" returns the sum
779 /// of the values of the two given maps.
780 /// Its \c Key and \c Value types are inherited from \c M1.
781 /// The \c Key and \c Value of \c M2 must be convertible to those of
784 /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
786 /// AddMap<M1,M2> am(m1,m2);
788 /// <tt>am[x]</tt> will be equal to <tt>m1[x]+m2[x]</tt>.
790 /// The simplest way of using this map is through the addMap()
793 /// \sa SubMap, MulMap, DivMap
794 /// \sa ShiftMap, ShiftWriteMap
795 template<typename M1, typename M2>
796 class AddMap : public MapBase<typename M1::Key, typename M1::Value> {
800 typedef MapBase<typename M1::Key, typename M1::Value> Parent;
801 typedef typename Parent::Key Key;
802 typedef typename Parent::Value Value;
805 AddMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
807 Value operator[](const Key &k) const { return _m1[k]+_m2[k]; }
810 /// Returns an \ref AddMap class
812 /// This function just returns an \ref AddMap class.
814 /// For example, if \c m1 and \c m2 are both maps with \c double
815 /// values, then <tt>addMap(m1,m2)[x]</tt> will be equal to
816 /// <tt>m1[x]+m2[x]</tt>.
819 template<typename M1, typename M2>
820 inline AddMap<M1, M2> addMap(const M1 &m1, const M2 &m2) {
821 return AddMap<M1, M2>(m1,m2);
825 /// Difference of two maps
827 /// This \ref concepts::ReadMap "read-only map" returns the difference
828 /// of the values of the two given maps.
829 /// Its \c Key and \c Value types are inherited from \c M1.
830 /// The \c Key and \c Value of \c M2 must be convertible to those of
833 /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
835 /// SubMap<M1,M2> sm(m1,m2);
837 /// <tt>sm[x]</tt> will be equal to <tt>m1[x]-m2[x]</tt>.
839 /// The simplest way of using this map is through the subMap()
842 /// \sa AddMap, MulMap, DivMap
843 template<typename M1, typename M2>
844 class SubMap : public MapBase<typename M1::Key, typename M1::Value> {
848 typedef MapBase<typename M1::Key, typename M1::Value> Parent;
849 typedef typename Parent::Key Key;
850 typedef typename Parent::Value Value;
853 SubMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
855 Value operator[](const Key &k) const { return _m1[k]-_m2[k]; }
858 /// Returns a \ref SubMap class
860 /// This function just returns a \ref SubMap class.
862 /// For example, if \c m1 and \c m2 are both maps with \c double
863 /// values, then <tt>subMap(m1,m2)[x]</tt> will be equal to
864 /// <tt>m1[x]-m2[x]</tt>.
867 template<typename M1, typename M2>
868 inline SubMap<M1, M2> subMap(const M1 &m1, const M2 &m2) {
869 return SubMap<M1, M2>(m1,m2);
873 /// Product of two maps
875 /// This \ref concepts::ReadMap "read-only map" returns the product
876 /// of the values of the two given maps.
877 /// Its \c Key and \c Value types are inherited from \c M1.
878 /// The \c Key and \c Value of \c M2 must be convertible to those of
881 /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
883 /// MulMap<M1,M2> mm(m1,m2);
885 /// <tt>mm[x]</tt> will be equal to <tt>m1[x]*m2[x]</tt>.
887 /// The simplest way of using this map is through the mulMap()
890 /// \sa AddMap, SubMap, DivMap
891 /// \sa ScaleMap, ScaleWriteMap
892 template<typename M1, typename M2>
893 class MulMap : public MapBase<typename M1::Key, typename M1::Value> {
897 typedef MapBase<typename M1::Key, typename M1::Value> Parent;
898 typedef typename Parent::Key Key;
899 typedef typename Parent::Value Value;
902 MulMap(const M1 &m1,const M2 &m2) : _m1(m1), _m2(m2) {}
904 Value operator[](const Key &k) const { return _m1[k]*_m2[k]; }
907 /// Returns a \ref MulMap class
909 /// This function just returns a \ref MulMap class.
911 /// For example, if \c m1 and \c m2 are both maps with \c double
912 /// values, then <tt>mulMap(m1,m2)[x]</tt> will be equal to
913 /// <tt>m1[x]*m2[x]</tt>.
916 template<typename M1, typename M2>
917 inline MulMap<M1, M2> mulMap(const M1 &m1,const M2 &m2) {
918 return MulMap<M1, M2>(m1,m2);
922 /// Quotient of two maps
924 /// This \ref concepts::ReadMap "read-only map" returns the quotient
925 /// of the values of the two given maps.
926 /// Its \c Key and \c Value types are inherited from \c M1.
927 /// The \c Key and \c Value of \c M2 must be convertible to those of
930 /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
932 /// DivMap<M1,M2> dm(m1,m2);
934 /// <tt>dm[x]</tt> will be equal to <tt>m1[x]/m2[x]</tt>.
936 /// The simplest way of using this map is through the divMap()
939 /// \sa AddMap, SubMap, MulMap
940 template<typename M1, typename M2>
941 class DivMap : public MapBase<typename M1::Key, typename M1::Value> {
945 typedef MapBase<typename M1::Key, typename M1::Value> Parent;
946 typedef typename Parent::Key Key;
947 typedef typename Parent::Value Value;
950 DivMap(const M1 &m1,const M2 &m2) : _m1(m1), _m2(m2) {}
952 Value operator[](const Key &k) const { return _m1[k]/_m2[k]; }
955 /// Returns a \ref DivMap class
957 /// This function just returns a \ref DivMap class.
959 /// For example, if \c m1 and \c m2 are both maps with \c double
960 /// values, then <tt>divMap(m1,m2)[x]</tt> will be equal to
961 /// <tt>m1[x]/m2[x]</tt>.
964 template<typename M1, typename M2>
965 inline DivMap<M1, M2> divMap(const M1 &m1,const M2 &m2) {
966 return DivMap<M1, M2>(m1,m2);
970 /// Shifts a map with a constant.
972 /// This \ref concepts::ReadMap "read-only map" returns the sum of
973 /// the given map and a constant value (i.e. it shifts the map with
974 /// the constant). Its \c Key and \c Value are inherited from \c M.
978 /// ShiftMap<M> sh(m,v);
982 /// ConstMap<M::Key, M::Value> cm(v);
983 /// AddMap<M, ConstMap<M::Key, M::Value> > sh(m,cm);
986 /// The simplest way of using this map is through the shiftMap()
989 /// \sa ShiftWriteMap
990 template<typename M, typename C = typename M::Value>
991 class ShiftMap : public MapBase<typename M::Key, typename M::Value> {
995 typedef MapBase<typename M::Key, typename M::Value> Parent;
996 typedef typename Parent::Key Key;
997 typedef typename Parent::Value Value;
1002 /// \param m The undelying map.
1003 /// \param v The constant value.
1004 ShiftMap(const M &m, const C &v) : _m(m), _v(v) {}
1006 Value operator[](const Key &k) const { return _m[k]+_v; }
1009 /// Shifts a map with a constant (read-write version).
1011 /// This \ref concepts::ReadWriteMap "read-write map" returns the sum
1012 /// of the given map and a constant value (i.e. it shifts the map with
1013 /// the constant). Its \c Key and \c Value are inherited from \c M.
1014 /// It makes also possible to write the map.
1016 /// The simplest way of using this map is through the shiftWriteMap()
1020 template<typename M, typename C = typename M::Value>
1021 class ShiftWriteMap : public MapBase<typename M::Key, typename M::Value> {
1025 typedef MapBase<typename M::Key, typename M::Value> Parent;
1026 typedef typename Parent::Key Key;
1027 typedef typename Parent::Value Value;
1032 /// \param m The undelying map.
1033 /// \param v The constant value.
1034 ShiftWriteMap(M &m, const C &v) : _m(m), _v(v) {}
1036 Value operator[](const Key &k) const { return _m[k]+_v; }
1038 void set(const Key &k, const Value &v) { _m.set(k, v-_v); }
1041 /// Returns a \ref ShiftMap class
1043 /// This function just returns a \ref ShiftMap class.
1045 /// For example, if \c m is a map with \c double values and \c v is
1046 /// \c double, then <tt>shiftMap(m,v)[x]</tt> will be equal to
1047 /// <tt>m[x]+v</tt>.
1049 /// \relates ShiftMap
1050 template<typename M, typename C>
1051 inline ShiftMap<M, C> shiftMap(const M &m, const C &v) {
1052 return ShiftMap<M, C>(m,v);
1055 /// Returns a \ref ShiftWriteMap class
1057 /// This function just returns a \ref ShiftWriteMap class.
1059 /// For example, if \c m is a map with \c double values and \c v is
1060 /// \c double, then <tt>shiftWriteMap(m,v)[x]</tt> will be equal to
1061 /// <tt>m[x]+v</tt>.
1062 /// Moreover it makes also possible to write the map.
1064 /// \relates ShiftWriteMap
1065 template<typename M, typename C>
1066 inline ShiftWriteMap<M, C> shiftWriteMap(M &m, const C &v) {
1067 return ShiftWriteMap<M, C>(m,v);
1071 /// Scales a map with a constant.
1073 /// This \ref concepts::ReadMap "read-only map" returns the value of
1074 /// the given map multiplied from the left side with a constant value.
1075 /// Its \c Key and \c Value are inherited from \c M.
1079 /// ScaleMap<M> sc(m,v);
1081 /// is equivalent to
1083 /// ConstMap<M::Key, M::Value> cm(v);
1084 /// MulMap<ConstMap<M::Key, M::Value>, M> sc(cm,m);
1087 /// The simplest way of using this map is through the scaleMap()
1090 /// \sa ScaleWriteMap
1091 template<typename M, typename C = typename M::Value>
1092 class ScaleMap : public MapBase<typename M::Key, typename M::Value> {
1096 typedef MapBase<typename M::Key, typename M::Value> Parent;
1097 typedef typename Parent::Key Key;
1098 typedef typename Parent::Value Value;
1103 /// \param m The undelying map.
1104 /// \param v The constant value.
1105 ScaleMap(const M &m, const C &v) : _m(m), _v(v) {}
1107 Value operator[](const Key &k) const { return _v*_m[k]; }
1110 /// Scales a map with a constant (read-write version).
1112 /// This \ref concepts::ReadWriteMap "read-write map" returns the value of
1113 /// the given map multiplied from the left side with a constant value.
1114 /// Its \c Key and \c Value are inherited from \c M.
1115 /// It can also be used as write map if the \c / operator is defined
1116 /// between \c Value and \c C and the given multiplier is not zero.
1118 /// The simplest way of using this map is through the scaleWriteMap()
1122 template<typename M, typename C = typename M::Value>
1123 class ScaleWriteMap : public MapBase<typename M::Key, typename M::Value> {
1127 typedef MapBase<typename M::Key, typename M::Value> Parent;
1128 typedef typename Parent::Key Key;
1129 typedef typename Parent::Value Value;
1134 /// \param m The undelying map.
1135 /// \param v The constant value.
1136 ScaleWriteMap(M &m, const C &v) : _m(m), _v(v) {}
1138 Value operator[](const Key &k) const { return _v*_m[k]; }
1140 void set(const Key &k, const Value &v) { _m.set(k, v/_v); }
1143 /// Returns a \ref ScaleMap class
1145 /// This function just returns a \ref ScaleMap class.
1147 /// For example, if \c m is a map with \c double values and \c v is
1148 /// \c double, then <tt>scaleMap(m,v)[x]</tt> will be equal to
1149 /// <tt>v*m[x]</tt>.
1151 /// \relates ScaleMap
1152 template<typename M, typename C>
1153 inline ScaleMap<M, C> scaleMap(const M &m, const C &v) {
1154 return ScaleMap<M, C>(m,v);
1157 /// Returns a \ref ScaleWriteMap class
1159 /// This function just returns a \ref ScaleWriteMap class.
1161 /// For example, if \c m is a map with \c double values and \c v is
1162 /// \c double, then <tt>scaleWriteMap(m,v)[x]</tt> will be equal to
1163 /// <tt>v*m[x]</tt>.
1164 /// Moreover it makes also possible to write the map.
1166 /// \relates ScaleWriteMap
1167 template<typename M, typename C>
1168 inline ScaleWriteMap<M, C> scaleWriteMap(M &m, const C &v) {
1169 return ScaleWriteMap<M, C>(m,v);
1173 /// Negative of a map
1175 /// This \ref concepts::ReadMap "read-only map" returns the negative
1176 /// of the values of the given map (using the unary \c - operator).
1177 /// Its \c Key and \c Value are inherited from \c M.
1179 /// If M::Value is \c int, \c double etc., then
1181 /// NegMap<M> neg(m);
1183 /// is equivalent to
1185 /// ScaleMap<M> neg(m,-1);
1188 /// The simplest way of using this map is through the negMap()
1192 template<typename M>
1193 class NegMap : public MapBase<typename M::Key, typename M::Value> {
1196 typedef MapBase<typename M::Key, typename M::Value> Parent;
1197 typedef typename Parent::Key Key;
1198 typedef typename Parent::Value Value;
1201 NegMap(const M &m) : _m(m) {}
1203 Value operator[](const Key &k) const { return -_m[k]; }
1206 /// Negative of a map (read-write version)
1208 /// This \ref concepts::ReadWriteMap "read-write map" returns the
1209 /// negative of the values of the given map (using the unary \c -
1211 /// Its \c Key and \c Value are inherited from \c M.
1212 /// It makes also possible to write the map.
1214 /// If M::Value is \c int, \c double etc., then
1216 /// NegWriteMap<M> neg(m);
1218 /// is equivalent to
1220 /// ScaleWriteMap<M> neg(m,-1);
1223 /// The simplest way of using this map is through the negWriteMap()
1227 template<typename M>
1228 class NegWriteMap : public MapBase<typename M::Key, typename M::Value> {
1231 typedef MapBase<typename M::Key, typename M::Value> Parent;
1232 typedef typename Parent::Key Key;
1233 typedef typename Parent::Value Value;
1236 NegWriteMap(M &m) : _m(m) {}
1238 Value operator[](const Key &k) const { return -_m[k]; }
1240 void set(const Key &k, const Value &v) { _m.set(k, -v); }
1243 /// Returns a \ref NegMap class
1245 /// This function just returns a \ref NegMap class.
1247 /// For example, if \c m is a map with \c double values, then
1248 /// <tt>negMap(m)[x]</tt> will be equal to <tt>-m[x]</tt>.
1251 template <typename M>
1252 inline NegMap<M> negMap(const M &m) {
1253 return NegMap<M>(m);
1256 /// Returns a \ref NegWriteMap class
1258 /// This function just returns a \ref NegWriteMap class.
1260 /// For example, if \c m is a map with \c double values, then
1261 /// <tt>negWriteMap(m)[x]</tt> will be equal to <tt>-m[x]</tt>.
1262 /// Moreover it makes also possible to write the map.
1264 /// \relates NegWriteMap
1265 template <typename M>
1266 inline NegWriteMap<M> negWriteMap(M &m) {
1267 return NegWriteMap<M>(m);
1271 /// Absolute value of a map
1273 /// This \ref concepts::ReadMap "read-only map" returns the absolute
1274 /// value of the values of the given map.
1275 /// Its \c Key and \c Value are inherited from \c M.
1276 /// \c Value must be comparable to \c 0 and the unary \c -
1277 /// operator must be defined for it, of course.
1279 /// The simplest way of using this map is through the absMap()
1281 template<typename M>
1282 class AbsMap : public MapBase<typename M::Key, typename M::Value> {
1285 typedef MapBase<typename M::Key, typename M::Value> Parent;
1286 typedef typename Parent::Key Key;
1287 typedef typename Parent::Value Value;
1290 AbsMap(const M &m) : _m(m) {}
1292 Value operator[](const Key &k) const {
1294 return tmp >= 0 ? tmp : -tmp;
1299 /// Returns an \ref AbsMap class
1301 /// This function just returns an \ref AbsMap class.
1303 /// For example, if \c m is a map with \c double values, then
1304 /// <tt>absMap(m)[x]</tt> will be equal to <tt>m[x]</tt> if
1305 /// it is positive or zero and <tt>-m[x]</tt> if <tt>m[x]</tt> is
1309 template<typename M>
1310 inline AbsMap<M> absMap(const M &m) {
1311 return AbsMap<M>(m);
1316 // Logical maps and map adaptors:
1318 /// \addtogroup maps
1321 /// Constant \c true map.
1323 /// This \ref concepts::ReadMap "read-only map" assigns \c true to
1330 /// is equivalent to
1332 /// ConstMap<K,bool> tm(true);
1337 template <typename K>
1338 class TrueMap : public MapBase<K, bool> {
1340 typedef MapBase<K, bool> Parent;
1341 typedef typename Parent::Key Key;
1342 typedef typename Parent::Value Value;
1344 /// Gives back \c true.
1345 Value operator[](const Key&) const { return true; }
1348 /// Returns a \ref TrueMap class
1350 /// This function just returns a \ref TrueMap class.
1351 /// \relates TrueMap
1352 template<typename K>
1353 inline TrueMap<K> trueMap() {
1354 return TrueMap<K>();
1358 /// Constant \c false map.
1360 /// This \ref concepts::ReadMap "read-only map" assigns \c false to
1367 /// is equivalent to
1369 /// ConstMap<K,bool> fm(false);
1374 template <typename K>
1375 class FalseMap : public MapBase<K, bool> {
1377 typedef MapBase<K, bool> Parent;
1378 typedef typename Parent::Key Key;
1379 typedef typename Parent::Value Value;
1381 /// Gives back \c false.
1382 Value operator[](const Key&) const { return false; }
1385 /// Returns a \ref FalseMap class
1387 /// This function just returns a \ref FalseMap class.
1388 /// \relates FalseMap
1389 template<typename K>
1390 inline FalseMap<K> falseMap() {
1391 return FalseMap<K>();
1396 /// \addtogroup map_adaptors
1399 /// Logical 'and' of two maps
1401 /// This \ref concepts::ReadMap "read-only map" returns the logical
1402 /// 'and' of the values of the two given maps.
1403 /// Its \c Key type is inherited from \c M1 and its \c Value type is
1404 /// \c bool. \c M2::Key must be convertible to \c M1::Key.
1406 /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
1408 /// AndMap<M1,M2> am(m1,m2);
1410 /// <tt>am[x]</tt> will be equal to <tt>m1[x]&&m2[x]</tt>.
1412 /// The simplest way of using this map is through the andMap()
1416 /// \sa NotMap, NotWriteMap
1417 template<typename M1, typename M2>
1418 class AndMap : public MapBase<typename M1::Key, bool> {
1422 typedef MapBase<typename M1::Key, bool> Parent;
1423 typedef typename Parent::Key Key;
1424 typedef typename Parent::Value Value;
1427 AndMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
1429 Value operator[](const Key &k) const { return _m1[k]&&_m2[k]; }
1432 /// Returns an \ref AndMap class
1434 /// This function just returns an \ref AndMap class.
1436 /// For example, if \c m1 and \c m2 are both maps with \c bool values,
1437 /// then <tt>andMap(m1,m2)[x]</tt> will be equal to
1438 /// <tt>m1[x]&&m2[x]</tt>.
1441 template<typename M1, typename M2>
1442 inline AndMap<M1, M2> andMap(const M1 &m1, const M2 &m2) {
1443 return AndMap<M1, M2>(m1,m2);
1447 /// Logical 'or' of two maps
1449 /// This \ref concepts::ReadMap "read-only map" returns the logical
1450 /// 'or' of the values of the two given maps.
1451 /// Its \c Key type is inherited from \c M1 and its \c Value type is
1452 /// \c bool. \c M2::Key must be convertible to \c M1::Key.
1454 /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
1456 /// OrMap<M1,M2> om(m1,m2);
1458 /// <tt>om[x]</tt> will be equal to <tt>m1[x]||m2[x]</tt>.
1460 /// The simplest way of using this map is through the orMap()
1464 /// \sa NotMap, NotWriteMap
1465 template<typename M1, typename M2>
1466 class OrMap : public MapBase<typename M1::Key, bool> {
1470 typedef MapBase<typename M1::Key, bool> Parent;
1471 typedef typename Parent::Key Key;
1472 typedef typename Parent::Value Value;
1475 OrMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
1477 Value operator[](const Key &k) const { return _m1[k]||_m2[k]; }
1480 /// Returns an \ref OrMap class
1482 /// This function just returns an \ref OrMap class.
1484 /// For example, if \c m1 and \c m2 are both maps with \c bool values,
1485 /// then <tt>orMap(m1,m2)[x]</tt> will be equal to
1486 /// <tt>m1[x]||m2[x]</tt>.
1489 template<typename M1, typename M2>
1490 inline OrMap<M1, M2> orMap(const M1 &m1, const M2 &m2) {
1491 return OrMap<M1, M2>(m1,m2);
1495 /// Logical 'not' of a map
1497 /// This \ref concepts::ReadMap "read-only map" returns the logical
1498 /// negation of the values of the given map.
1499 /// Its \c Key is inherited from \c M and its \c Value is \c bool.
1501 /// The simplest way of using this map is through the notMap()
1505 template <typename M>
1506 class NotMap : public MapBase<typename M::Key, bool> {
1509 typedef MapBase<typename M::Key, bool> Parent;
1510 typedef typename Parent::Key Key;
1511 typedef typename Parent::Value Value;
1514 NotMap(const M &m) : _m(m) {}
1516 Value operator[](const Key &k) const { return !_m[k]; }
1519 /// Logical 'not' of a map (read-write version)
1521 /// This \ref concepts::ReadWriteMap "read-write map" returns the
1522 /// logical negation of the values of the given map.
1523 /// Its \c Key is inherited from \c M and its \c Value is \c bool.
1524 /// It makes also possible to write the map. When a value is set,
1525 /// the opposite value is set to the original map.
1527 /// The simplest way of using this map is through the notWriteMap()
1531 template <typename M>
1532 class NotWriteMap : public MapBase<typename M::Key, bool> {
1535 typedef MapBase<typename M::Key, bool> Parent;
1536 typedef typename Parent::Key Key;
1537 typedef typename Parent::Value Value;
1540 NotWriteMap(M &m) : _m(m) {}
1542 Value operator[](const Key &k) const { return !_m[k]; }
1544 void set(const Key &k, bool v) { _m.set(k, !v); }
1547 /// Returns a \ref NotMap class
1549 /// This function just returns a \ref NotMap class.
1551 /// For example, if \c m is a map with \c bool values, then
1552 /// <tt>notMap(m)[x]</tt> will be equal to <tt>!m[x]</tt>.
1555 template <typename M>
1556 inline NotMap<M> notMap(const M &m) {
1557 return NotMap<M>(m);
1560 /// Returns a \ref NotWriteMap class
1562 /// This function just returns a \ref NotWriteMap class.
1564 /// For example, if \c m is a map with \c bool values, then
1565 /// <tt>notWriteMap(m)[x]</tt> will be equal to <tt>!m[x]</tt>.
1566 /// Moreover it makes also possible to write the map.
1568 /// \relates NotWriteMap
1569 template <typename M>
1570 inline NotWriteMap<M> notWriteMap(M &m) {
1571 return NotWriteMap<M>(m);
1575 /// Combination of two maps using the \c == operator
1577 /// This \ref concepts::ReadMap "read-only map" assigns \c true to
1578 /// the keys for which the corresponding values of the two maps are
1580 /// Its \c Key type is inherited from \c M1 and its \c Value type is
1581 /// \c bool. \c M2::Key must be convertible to \c M1::Key.
1583 /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
1585 /// EqualMap<M1,M2> em(m1,m2);
1587 /// <tt>em[x]</tt> will be equal to <tt>m1[x]==m2[x]</tt>.
1589 /// The simplest way of using this map is through the equalMap()
1593 template<typename M1, typename M2>
1594 class EqualMap : public MapBase<typename M1::Key, bool> {
1598 typedef MapBase<typename M1::Key, bool> Parent;
1599 typedef typename Parent::Key Key;
1600 typedef typename Parent::Value Value;
1603 EqualMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
1605 Value operator[](const Key &k) const { return _m1[k]==_m2[k]; }
1608 /// Returns an \ref EqualMap class
1610 /// This function just returns an \ref EqualMap class.
1612 /// For example, if \c m1 and \c m2 are maps with keys and values of
1613 /// the same type, then <tt>equalMap(m1,m2)[x]</tt> will be equal to
1614 /// <tt>m1[x]==m2[x]</tt>.
1616 /// \relates EqualMap
1617 template<typename M1, typename M2>
1618 inline EqualMap<M1, M2> equalMap(const M1 &m1, const M2 &m2) {
1619 return EqualMap<M1, M2>(m1,m2);
1623 /// Combination of two maps using the \c < operator
1625 /// This \ref concepts::ReadMap "read-only map" assigns \c true to
1626 /// the keys for which the corresponding value of the first map is
1627 /// less then the value of the second map.
1628 /// Its \c Key type is inherited from \c M1 and its \c Value type is
1629 /// \c bool. \c M2::Key must be convertible to \c M1::Key.
1631 /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
1633 /// LessMap<M1,M2> lm(m1,m2);
1635 /// <tt>lm[x]</tt> will be equal to <tt>m1[x]<m2[x]</tt>.
1637 /// The simplest way of using this map is through the lessMap()
1641 template<typename M1, typename M2>
1642 class LessMap : public MapBase<typename M1::Key, bool> {
1646 typedef MapBase<typename M1::Key, bool> Parent;
1647 typedef typename Parent::Key Key;
1648 typedef typename Parent::Value Value;
1651 LessMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
1653 Value operator[](const Key &k) const { return _m1[k]<_m2[k]; }
1656 /// Returns an \ref LessMap class
1658 /// This function just returns an \ref LessMap class.
1660 /// For example, if \c m1 and \c m2 are maps with keys and values of
1661 /// the same type, then <tt>lessMap(m1,m2)[x]</tt> will be equal to
1662 /// <tt>m1[x]<m2[x]</tt>.
1664 /// \relates LessMap
1665 template<typename M1, typename M2>
1666 inline LessMap<M1, M2> lessMap(const M1 &m1, const M2 &m2) {
1667 return LessMap<M1, M2>(m1,m2);
1673 #endif // LEMON_MAPS_H