1 /* -*- mode: C++; indent-tabs-mode: nil; -*-
3 * This file is a part of LEMON, a generic C++ optimization library.
5 * Copyright (C) 2003-2008
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 * (Egervary Research Group on Combinatorial Optimization, EGRES).
9 * Permission to use, modify and distribute this software is granted
10 * provided that this copyright notice appears in all copies. For
11 * precise terms see the accompanying LICENSE file.
13 * This software is provided "AS IS" with no warranty of any kind,
14 * express or implied, and with no claim as to its suitability for any
19 #ifndef LEMON_DIJKSTRA_H
20 #define LEMON_DIJKSTRA_H
22 ///\ingroup shortest_path
24 ///\brief Dijkstra algorithm.
27 #include <lemon/list_graph.h>
28 #include <lemon/bin_heap.h>
29 #include <lemon/bits/path_dump.h>
30 #include <lemon/core.h>
31 #include <lemon/error.h>
32 #include <lemon/maps.h>
33 #include <lemon/path.h>
37 /// \brief Default operation traits for the Dijkstra algorithm class.
39 /// This operation traits class defines all computational operations and
40 /// constants which are used in the Dijkstra algorithm.
41 template <typename Value>
42 struct DijkstraDefaultOperationTraits {
43 /// \brief Gives back the zero value of the type.
45 return static_cast<Value>(0);
47 /// \brief Gives back the sum of the given two elements.
48 static Value plus(const Value& left, const Value& right) {
51 /// \brief Gives back true only if the first value is less than the second.
52 static bool less(const Value& left, const Value& right) {
57 /// \brief Widest path operation traits for the Dijkstra algorithm class.
59 /// This operation traits class defines all computational operations and
60 /// constants which are used in the Dijkstra algorithm for widest path
63 /// \see DijkstraDefaultOperationTraits
64 template <typename Value>
65 struct DijkstraWidestPathOperationTraits {
66 /// \brief Gives back the maximum value of the type.
68 return std::numeric_limits<Value>::max();
70 /// \brief Gives back the minimum of the given two elements.
71 static Value plus(const Value& left, const Value& right) {
72 return std::min(left, right);
74 /// \brief Gives back true only if the first value is less than the second.
75 static bool less(const Value& left, const Value& right) {
80 ///Default traits class of Dijkstra class.
82 ///Default traits class of Dijkstra class.
83 ///\tparam GR The type of the digraph.
84 ///\tparam LM The type of the length map.
85 template<class GR, class LM>
86 struct DijkstraDefaultTraits
88 ///The type of the digraph the algorithm runs on.
91 ///The type of the map that stores the arc lengths.
93 ///The type of the map that stores the arc lengths.
94 ///It must meet the \ref concepts::ReadMap "ReadMap" concept.
96 ///The type of the length of the arcs.
97 typedef typename LM::Value Value;
99 /// Operation traits for Dijkstra algorithm.
101 /// This class defines the operations that are used in the algorithm.
102 /// \see DijkstraDefaultOperationTraits
103 typedef DijkstraDefaultOperationTraits<Value> OperationTraits;
105 /// The cross reference type used by the heap.
107 /// The cross reference type used by the heap.
108 /// Usually it is \c Digraph::NodeMap<int>.
109 typedef typename Digraph::template NodeMap<int> HeapCrossRef;
110 ///Instantiates a \ref HeapCrossRef.
112 ///This function instantiates a \ref HeapCrossRef.
113 /// \param g is the digraph, to which we would like to define the
114 /// \ref HeapCrossRef.
115 static HeapCrossRef *createHeapCrossRef(const Digraph &g)
117 return new HeapCrossRef(g);
120 ///The heap type used by the Dijkstra algorithm.
122 ///The heap type used by the Dijkstra algorithm.
126 typedef BinHeap<typename LM::Value, HeapCrossRef, std::less<Value> > Heap;
127 ///Instantiates a \ref Heap.
129 ///This function instantiates a \ref Heap.
130 static Heap *createHeap(HeapCrossRef& r)
135 ///\brief The type of the map that stores the predecessor
136 ///arcs of the shortest paths.
138 ///The type of the map that stores the predecessor
139 ///arcs of the shortest paths.
140 ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
141 typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap;
142 ///Instantiates a \ref PredMap.
144 ///This function instantiates a \ref PredMap.
145 ///\param g is the digraph, to which we would like to define the
147 static PredMap *createPredMap(const Digraph &g)
149 return new PredMap(g);
152 ///The type of the map that indicates which nodes are processed.
154 ///The type of the map that indicates which nodes are processed.
155 ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
156 ///By default it is a NullMap.
157 typedef NullMap<typename Digraph::Node,bool> ProcessedMap;
158 ///Instantiates a \ref ProcessedMap.
160 ///This function instantiates a \ref ProcessedMap.
161 ///\param g is the digraph, to which
162 ///we would like to define the \ref ProcessedMap
164 static ProcessedMap *createProcessedMap(const Digraph &g)
166 static ProcessedMap *createProcessedMap(const Digraph &)
169 return new ProcessedMap();
172 ///The type of the map that stores the distances of the nodes.
174 ///The type of the map that stores the distances of the nodes.
175 ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
176 typedef typename Digraph::template NodeMap<typename LM::Value> DistMap;
177 ///Instantiates a \ref DistMap.
179 ///This function instantiates a \ref DistMap.
180 ///\param g is the digraph, to which we would like to define
182 static DistMap *createDistMap(const Digraph &g)
184 return new DistMap(g);
188 ///%Dijkstra algorithm class.
190 /// \ingroup shortest_path
191 ///This class provides an efficient implementation of the %Dijkstra algorithm.
193 ///The arc lengths are passed to the algorithm using a
194 ///\ref concepts::ReadMap "ReadMap",
195 ///so it is easy to change it to any kind of length.
196 ///The type of the length is determined by the
197 ///\ref concepts::ReadMap::Value "Value" of the length map.
198 ///It is also possible to change the underlying priority heap.
200 ///There is also a \ref dijkstra() "function-type interface" for the
201 ///%Dijkstra algorithm, which is convenient in the simplier cases and
202 ///it can be used easier.
204 ///\tparam GR The type of the digraph the algorithm runs on.
205 ///The default value is \ref ListDigraph.
206 ///The value of GR is not used directly by \ref Dijkstra, it is only
207 ///passed to \ref DijkstraDefaultTraits.
208 ///\tparam LM A readable arc map that determines the lengths of the
209 ///arcs. It is read once for each arc, so the map may involve in
210 ///relatively time consuming process to compute the arc lengths if
211 ///it is necessary. The default map type is \ref
212 ///concepts::Digraph::ArcMap "Digraph::ArcMap<int>".
213 ///The value of LM is not used directly by \ref Dijkstra, it is only
214 ///passed to \ref DijkstraDefaultTraits.
215 ///\tparam TR Traits class to set various data types used by the algorithm.
216 ///The default traits class is \ref DijkstraDefaultTraits
217 ///"DijkstraDefaultTraits<GR,LM>". See \ref DijkstraDefaultTraits
218 ///for the documentation of a Dijkstra traits class.
220 template <typename GR, typename LM, typename TR>
222 template <typename GR=ListDigraph,
223 typename LM=typename GR::template ArcMap<int>,
224 typename TR=DijkstraDefaultTraits<GR,LM> >
228 ///\ref Exception for uninitialized parameters.
230 ///This error represents problems in the initialization of the
231 ///parameters of the algorithm.
232 class UninitializedParameter : public lemon::UninitializedParameter {
234 virtual const char* what() const throw() {
235 return "lemon::Dijkstra::UninitializedParameter";
239 ///The type of the digraph the algorithm runs on.
240 typedef typename TR::Digraph Digraph;
242 ///The type of the length of the arcs.
243 typedef typename TR::LengthMap::Value Value;
244 ///The type of the map that stores the arc lengths.
245 typedef typename TR::LengthMap LengthMap;
246 ///\brief The type of the map that stores the predecessor arcs of the
248 typedef typename TR::PredMap PredMap;
249 ///The type of the map that stores the distances of the nodes.
250 typedef typename TR::DistMap DistMap;
251 ///The type of the map that indicates which nodes are processed.
252 typedef typename TR::ProcessedMap ProcessedMap;
253 ///The type of the paths.
254 typedef PredMapPath<Digraph, PredMap> Path;
255 ///The cross reference type used for the current heap.
256 typedef typename TR::HeapCrossRef HeapCrossRef;
257 ///The heap type used by the algorithm.
258 typedef typename TR::Heap Heap;
259 ///The operation traits class.
260 typedef typename TR::OperationTraits OperationTraits;
267 typedef typename Digraph::Node Node;
268 typedef typename Digraph::NodeIt NodeIt;
269 typedef typename Digraph::Arc Arc;
270 typedef typename Digraph::OutArcIt OutArcIt;
272 //Pointer to the underlying digraph.
274 //Pointer to the length map.
275 const LengthMap *length;
276 //Pointer to the map of predecessors arcs.
278 //Indicates if _pred is locally allocated (true) or not.
280 //Pointer to the map of distances.
282 //Indicates if _dist is locally allocated (true) or not.
284 //Pointer to the map of processed status of the nodes.
285 ProcessedMap *_processed;
286 //Indicates if _processed is locally allocated (true) or not.
287 bool local_processed;
288 //Pointer to the heap cross references.
289 HeapCrossRef *_heap_cross_ref;
290 //Indicates if _heap_cross_ref is locally allocated (true) or not.
291 bool local_heap_cross_ref;
292 //Pointer to the heap.
294 //Indicates if _heap is locally allocated (true) or not.
297 //Creates the maps if necessary.
302 _pred = Traits::createPredMap(*G);
306 _dist = Traits::createDistMap(*G);
309 local_processed = true;
310 _processed = Traits::createProcessedMap(*G);
312 if (!_heap_cross_ref) {
313 local_heap_cross_ref = true;
314 _heap_cross_ref = Traits::createHeapCrossRef(*G);
318 _heap = Traits::createHeap(*_heap_cross_ref);
324 typedef Dijkstra Create;
326 ///\name Named template parameters
331 struct SetPredMapTraits : public Traits {
333 static PredMap *createPredMap(const Digraph &)
335 throw UninitializedParameter();
338 ///\brief \ref named-templ-param "Named parameter" for setting
339 ///\ref PredMap type.
341 ///\ref named-templ-param "Named parameter" for setting
342 ///\ref PredMap type.
345 : public Dijkstra< Digraph, LengthMap, SetPredMapTraits<T> > {
346 typedef Dijkstra< Digraph, LengthMap, SetPredMapTraits<T> > Create;
350 struct SetDistMapTraits : public Traits {
352 static DistMap *createDistMap(const Digraph &)
354 throw UninitializedParameter();
357 ///\brief \ref named-templ-param "Named parameter" for setting
358 ///\ref DistMap type.
360 ///\ref named-templ-param "Named parameter" for setting
361 ///\ref DistMap type.
364 : public Dijkstra< Digraph, LengthMap, SetDistMapTraits<T> > {
365 typedef Dijkstra< Digraph, LengthMap, SetDistMapTraits<T> > Create;
369 struct SetProcessedMapTraits : public Traits {
370 typedef T ProcessedMap;
371 static ProcessedMap *createProcessedMap(const Digraph &)
373 throw UninitializedParameter();
376 ///\brief \ref named-templ-param "Named parameter" for setting
377 ///\ref ProcessedMap type.
379 ///\ref named-templ-param "Named parameter" for setting
380 ///\ref ProcessedMap type.
382 struct SetProcessedMap
383 : public Dijkstra< Digraph, LengthMap, SetProcessedMapTraits<T> > {
384 typedef Dijkstra< Digraph, LengthMap, SetProcessedMapTraits<T> > Create;
387 struct SetStandardProcessedMapTraits : public Traits {
388 typedef typename Digraph::template NodeMap<bool> ProcessedMap;
389 static ProcessedMap *createProcessedMap(const Digraph &g)
391 return new ProcessedMap(g);
394 ///\brief \ref named-templ-param "Named parameter" for setting
395 ///\ref ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>.
397 ///\ref named-templ-param "Named parameter" for setting
398 ///\ref ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>.
399 ///If you don't set it explicitly, it will be automatically allocated.
400 struct SetStandardProcessedMap
401 : public Dijkstra< Digraph, LengthMap, SetStandardProcessedMapTraits > {
402 typedef Dijkstra< Digraph, LengthMap, SetStandardProcessedMapTraits >
406 template <class H, class CR>
407 struct SetHeapTraits : public Traits {
408 typedef CR HeapCrossRef;
410 static HeapCrossRef *createHeapCrossRef(const Digraph &) {
411 throw UninitializedParameter();
413 static Heap *createHeap(HeapCrossRef &)
415 throw UninitializedParameter();
418 ///\brief \ref named-templ-param "Named parameter" for setting
419 ///heap and cross reference type
421 ///\ref named-templ-param "Named parameter" for setting heap and cross
423 template <class H, class CR = typename Digraph::template NodeMap<int> >
425 : public Dijkstra< Digraph, LengthMap, SetHeapTraits<H, CR> > {
426 typedef Dijkstra< Digraph, LengthMap, SetHeapTraits<H, CR> > Create;
429 template <class H, class CR>
430 struct SetStandardHeapTraits : public Traits {
431 typedef CR HeapCrossRef;
433 static HeapCrossRef *createHeapCrossRef(const Digraph &G) {
434 return new HeapCrossRef(G);
436 static Heap *createHeap(HeapCrossRef &R)
441 ///\brief \ref named-templ-param "Named parameter" for setting
442 ///heap and cross reference type with automatic allocation
444 ///\ref named-templ-param "Named parameter" for setting heap and cross
445 ///reference type. It can allocate the heap and the cross reference
446 ///object if the cross reference's constructor waits for the digraph as
447 ///parameter and the heap's constructor waits for the cross reference.
448 template <class H, class CR = typename Digraph::template NodeMap<int> >
449 struct SetStandardHeap
450 : public Dijkstra< Digraph, LengthMap, SetStandardHeapTraits<H, CR> > {
451 typedef Dijkstra< Digraph, LengthMap, SetStandardHeapTraits<H, CR> >
456 struct SetOperationTraitsTraits : public Traits {
457 typedef T OperationTraits;
460 /// \brief \ref named-templ-param "Named parameter" for setting
461 ///\ref OperationTraits type
463 ///\ref named-templ-param "Named parameter" for setting
464 ///\ref OperationTraits type.
466 struct SetOperationTraits
467 : public Dijkstra<Digraph, LengthMap, SetOperationTraitsTraits<T> > {
468 typedef Dijkstra<Digraph, LengthMap, SetOperationTraitsTraits<T> >
483 ///\param _g The digraph the algorithm runs on.
484 ///\param _length The length map used by the algorithm.
485 Dijkstra(const Digraph& _g, const LengthMap& _length) :
486 G(&_g), length(&_length),
487 _pred(NULL), local_pred(false),
488 _dist(NULL), local_dist(false),
489 _processed(NULL), local_processed(false),
490 _heap_cross_ref(NULL), local_heap_cross_ref(false),
491 _heap(NULL), local_heap(false)
497 if(local_pred) delete _pred;
498 if(local_dist) delete _dist;
499 if(local_processed) delete _processed;
500 if(local_heap_cross_ref) delete _heap_cross_ref;
501 if(local_heap) delete _heap;
504 ///Sets the length map.
506 ///Sets the length map.
507 ///\return <tt> (*this) </tt>
508 Dijkstra &lengthMap(const LengthMap &m)
514 ///Sets the map that stores the predecessor arcs.
516 ///Sets the map that stores the predecessor arcs.
517 ///If you don't use this function before calling \ref run(),
518 ///it will allocate one. The destructor deallocates this
519 ///automatically allocated map, of course.
520 ///\return <tt> (*this) </tt>
521 Dijkstra &predMap(PredMap &m)
531 ///Sets the map that indicates which nodes are processed.
533 ///Sets the map that indicates which nodes are processed.
534 ///If you don't use this function before calling \ref run(),
535 ///it will allocate one. The destructor deallocates this
536 ///automatically allocated map, of course.
537 ///\return <tt> (*this) </tt>
538 Dijkstra &processedMap(ProcessedMap &m)
540 if(local_processed) {
542 local_processed=false;
548 ///Sets the map that stores the distances of the nodes.
550 ///Sets the map that stores the distances of the nodes calculated by the
552 ///If you don't use this function before calling \ref run(),
553 ///it will allocate one. The destructor deallocates this
554 ///automatically allocated map, of course.
555 ///\return <tt> (*this) </tt>
556 Dijkstra &distMap(DistMap &m)
566 ///Sets the heap and the cross reference used by algorithm.
568 ///Sets the heap and the cross reference used by algorithm.
569 ///If you don't use this function before calling \ref run(),
570 ///it will allocate one. The destructor deallocates this
571 ///automatically allocated heap and cross reference, of course.
572 ///\return <tt> (*this) </tt>
573 Dijkstra &heap(Heap& hp, HeapCrossRef &cr)
575 if(local_heap_cross_ref) {
576 delete _heap_cross_ref;
577 local_heap_cross_ref=false;
579 _heap_cross_ref = &cr;
590 void finalizeNodeData(Node v,Value dst)
592 _processed->set(v,true);
598 ///\name Execution control
599 ///The simplest way to execute the algorithm is to use one of the
600 ///member functions called \ref lemon::Dijkstra::run() "run()".
602 ///If you need more control on the execution, first you must call
603 ///\ref lemon::Dijkstra::init() "init()", then you can add several
604 ///source nodes with \ref lemon::Dijkstra::addSource() "addSource()".
605 ///Finally \ref lemon::Dijkstra::start() "start()" will perform the
606 ///actual path computation.
610 ///Initializes the internal data structures.
612 ///Initializes the internal data structures.
618 for ( NodeIt u(*G) ; u!=INVALID ; ++u ) {
619 _pred->set(u,INVALID);
620 _processed->set(u,false);
621 _heap_cross_ref->set(u,Heap::PRE_HEAP);
625 ///Adds a new source node.
627 ///Adds a new source node to the priority heap.
628 ///The optional second parameter is the initial distance of the node.
630 ///The function checks if the node has already been added to the heap and
631 ///it is pushed to the heap only if either it was not in the heap
632 ///or the shortest path found till then is shorter than \c dst.
633 void addSource(Node s,Value dst=OperationTraits::zero())
635 if(_heap->state(s) != Heap::IN_HEAP) {
637 } else if(OperationTraits::less((*_heap)[s], dst)) {
639 _pred->set(s,INVALID);
643 ///Processes the next node in the priority heap
645 ///Processes the next node in the priority heap.
647 ///\return The processed node.
649 ///\warning The priority heap must not be empty.
650 Node processNextNode()
653 Value oldvalue=_heap->prio();
655 finalizeNodeData(v,oldvalue);
657 for(OutArcIt e(*G,v); e!=INVALID; ++e) {
659 switch(_heap->state(w)) {
661 _heap->push(w,OperationTraits::plus(oldvalue, (*length)[e]));
666 Value newvalue = OperationTraits::plus(oldvalue, (*length)[e]);
667 if ( OperationTraits::less(newvalue, (*_heap)[w]) ) {
668 _heap->decrease(w, newvalue);
673 case Heap::POST_HEAP:
680 ///The next node to be processed.
682 ///Returns the next node to be processed or \c INVALID if the
683 ///priority heap is empty.
684 Node nextNode() const
686 return !_heap->empty()?_heap->top():INVALID;
689 ///\brief Returns \c false if there are nodes
692 ///Returns \c false if there are nodes
693 ///to be processed in the priority heap.
694 bool emptyQueue() const { return _heap->empty(); }
696 ///Returns the number of the nodes to be processed in the priority heap
698 ///Returns the number of the nodes to be processed in the priority heap.
700 int queueSize() const { return _heap->size(); }
702 ///Executes the algorithm.
704 ///Executes the algorithm.
706 ///This method runs the %Dijkstra algorithm from the root node(s)
707 ///in order to compute the shortest path to each node.
709 ///The algorithm computes
710 ///- the shortest path tree (forest),
711 ///- the distance of each node from the root(s).
713 ///\pre init() must be called and at least one root node should be
714 ///added with addSource() before using this function.
716 ///\note <tt>d.start()</tt> is just a shortcut of the following code.
718 /// while ( !d.emptyQueue() ) {
719 /// d.processNextNode();
724 while ( !emptyQueue() ) processNextNode();
727 ///Executes the algorithm until the given target node is reached.
729 ///Executes the algorithm until the given target node is reached.
731 ///This method runs the %Dijkstra algorithm from the root node(s)
732 ///in order to compute the shortest path to \c dest.
734 ///The algorithm computes
735 ///- the shortest path to \c dest,
736 ///- the distance of \c dest from the root(s).
738 ///\pre init() must be called and at least one root node should be
739 ///added with addSource() before using this function.
740 void start(Node dest)
742 while ( !_heap->empty() && _heap->top()!=dest ) processNextNode();
743 if ( !_heap->empty() ) finalizeNodeData(_heap->top(),_heap->prio());
746 ///Executes the algorithm until a condition is met.
748 ///Executes the algorithm until a condition is met.
750 ///This method runs the %Dijkstra algorithm from the root node(s) in
751 ///order to compute the shortest path to a node \c v with
752 /// <tt>nm[v]</tt> true, if such a node can be found.
754 ///\param nm A \c bool (or convertible) node map. The algorithm
755 ///will stop when it reaches a node \c v with <tt>nm[v]</tt> true.
757 ///\return The reached node \c v with <tt>nm[v]</tt> true or
758 ///\c INVALID if no such node was found.
760 ///\pre init() must be called and at least one root node should be
761 ///added with addSource() before using this function.
762 template<class NodeBoolMap>
763 Node start(const NodeBoolMap &nm)
765 while ( !_heap->empty() && !nm[_heap->top()] ) processNextNode();
766 if ( _heap->empty() ) return INVALID;
767 finalizeNodeData(_heap->top(),_heap->prio());
771 ///Runs the algorithm from the given node.
773 ///This method runs the %Dijkstra algorithm from node \c s
774 ///in order to compute the shortest path to each node.
776 ///The algorithm computes
777 ///- the shortest path tree,
778 ///- the distance of each node from the root.
780 ///\note <tt>d.run(s)</tt> is just a shortcut of the following code.
792 ///Finds the shortest path between \c s and \c t.
794 ///This method runs the %Dijkstra algorithm from node \c s
795 ///in order to compute the shortest path to \c t.
797 ///\return The length of the shortest <tt>s</tt>--<tt>t</tt> path,
798 ///if \c t is reachable form \c s, \c 0 otherwise.
800 ///\note Apart from the return value, <tt>d.run(s,t)</tt> is just a
801 ///shortcut of the following code.
807 Value run(Node s,Node t) {
811 return (*_pred)[t]==INVALID?OperationTraits::zero():(*_dist)[t];
816 ///\name Query Functions
817 ///The result of the %Dijkstra algorithm can be obtained using these
819 ///Either \ref lemon::Dijkstra::run() "run()" or
820 ///\ref lemon::Dijkstra::start() "start()" must be called before
825 ///The shortest path to a node.
827 ///Returns the shortest path to a node.
829 ///\warning \c t should be reachable from the root(s).
831 ///\pre Either \ref run() or \ref start() must be called before
832 ///using this function.
833 Path path(Node t) const { return Path(*G, *_pred, t); }
835 ///The distance of a node from the root(s).
837 ///Returns the distance of a node from the root(s).
839 ///\warning If node \c v is not reachable from the root(s), then
840 ///the return value of this function is undefined.
842 ///\pre Either \ref run() or \ref start() must be called before
843 ///using this function.
844 Value dist(Node v) const { return (*_dist)[v]; }
846 ///Returns the 'previous arc' of the shortest path tree for a node.
848 ///This function returns the 'previous arc' of the shortest path
849 ///tree for the node \c v, i.e. it returns the last arc of a
850 ///shortest path from the root(s) to \c v. It is \c INVALID if \c v
851 ///is not reachable from the root(s) or if \c v is a root.
853 ///The shortest path tree used here is equal to the shortest path
854 ///tree used in \ref predNode().
856 ///\pre Either \ref run() or \ref start() must be called before
857 ///using this function.
858 Arc predArc(Node v) const { return (*_pred)[v]; }
860 ///Returns the 'previous node' of the shortest path tree for a node.
862 ///This function returns the 'previous node' of the shortest path
863 ///tree for the node \c v, i.e. it returns the last but one node
864 ///from a shortest path from the root(s) to \c v. It is \c INVALID
865 ///if \c v is not reachable from the root(s) or if \c v is a root.
867 ///The shortest path tree used here is equal to the shortest path
868 ///tree used in \ref predArc().
870 ///\pre Either \ref run() or \ref start() must be called before
871 ///using this function.
872 Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID:
873 G->source((*_pred)[v]); }
875 ///\brief Returns a const reference to the node map that stores the
876 ///distances of the nodes.
878 ///Returns a const reference to the node map that stores the distances
879 ///of the nodes calculated by the algorithm.
881 ///\pre Either \ref run() or \ref init()
882 ///must be called before using this function.
883 const DistMap &distMap() const { return *_dist;}
885 ///\brief Returns a const reference to the node map that stores the
888 ///Returns a const reference to the node map that stores the predecessor
889 ///arcs, which form the shortest path tree.
891 ///\pre Either \ref run() or \ref init()
892 ///must be called before using this function.
893 const PredMap &predMap() const { return *_pred;}
895 ///Checks if a node is reachable from the root(s).
897 ///Returns \c true if \c v is reachable from the root(s).
898 ///\pre Either \ref run() or \ref start()
899 ///must be called before using this function.
900 bool reached(Node v) const { return (*_heap_cross_ref)[v] !=
903 ///Checks if a node is processed.
905 ///Returns \c true if \c v is processed, i.e. the shortest
906 ///path to \c v has already found.
907 ///\pre Either \ref run() or \ref start()
908 ///must be called before using this function.
909 bool processed(Node v) const { return (*_heap_cross_ref)[v] ==
912 ///The current distance of a node from the root(s).
914 ///Returns the current distance of a node from the root(s).
915 ///It may be decreased in the following processes.
916 ///\pre \c v should be reached but not processed.
917 Value currentDist(Node v) const { return (*_heap)[v]; }
923 ///Default traits class of dijkstra() function.
925 ///Default traits class of dijkstra() function.
926 ///\tparam GR The type of the digraph.
927 ///\tparam LM The type of the length map.
928 template<class GR, class LM>
929 struct DijkstraWizardDefaultTraits
931 ///The type of the digraph the algorithm runs on.
933 ///The type of the map that stores the arc lengths.
935 ///The type of the map that stores the arc lengths.
936 ///It must meet the \ref concepts::ReadMap "ReadMap" concept.
937 typedef LM LengthMap;
938 ///The type of the length of the arcs.
939 typedef typename LM::Value Value;
941 /// Operation traits for Dijkstra algorithm.
943 /// This class defines the operations that are used in the algorithm.
944 /// \see DijkstraDefaultOperationTraits
945 typedef DijkstraDefaultOperationTraits<Value> OperationTraits;
947 /// The cross reference type used by the heap.
949 /// The cross reference type used by the heap.
950 /// Usually it is \c Digraph::NodeMap<int>.
951 typedef typename Digraph::template NodeMap<int> HeapCrossRef;
952 ///Instantiates a \ref HeapCrossRef.
954 ///This function instantiates a \ref HeapCrossRef.
955 /// \param g is the digraph, to which we would like to define the
957 static HeapCrossRef *createHeapCrossRef(const Digraph &g)
959 return new HeapCrossRef(g);
962 ///The heap type used by the Dijkstra algorithm.
964 ///The heap type used by the Dijkstra algorithm.
968 typedef BinHeap<Value, typename Digraph::template NodeMap<int>,
969 std::less<Value> > Heap;
971 ///Instantiates a \ref Heap.
973 ///This function instantiates a \ref Heap.
974 /// \param r is the HeapCrossRef which is used.
975 static Heap *createHeap(HeapCrossRef& r)
980 ///\brief The type of the map that stores the predecessor
981 ///arcs of the shortest paths.
983 ///The type of the map that stores the predecessor
984 ///arcs of the shortest paths.
985 ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
986 typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap;
987 ///Instantiates a \ref PredMap.
989 ///This function instantiates a \ref PredMap.
990 ///\param g is the digraph, to which we would like to define the
992 static PredMap *createPredMap(const Digraph &g)
994 return new PredMap(g);
997 ///The type of the map that indicates which nodes are processed.
999 ///The type of the map that indicates which nodes are processed.
1000 ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
1001 ///By default it is a NullMap.
1002 typedef NullMap<typename Digraph::Node,bool> ProcessedMap;
1003 ///Instantiates a \ref ProcessedMap.
1005 ///This function instantiates a \ref ProcessedMap.
1006 ///\param g is the digraph, to which
1007 ///we would like to define the \ref ProcessedMap.
1009 static ProcessedMap *createProcessedMap(const Digraph &g)
1011 static ProcessedMap *createProcessedMap(const Digraph &)
1014 return new ProcessedMap();
1017 ///The type of the map that stores the distances of the nodes.
1019 ///The type of the map that stores the distances of the nodes.
1020 ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
1021 typedef typename Digraph::template NodeMap<typename LM::Value> DistMap;
1022 ///Instantiates a \ref DistMap.
1024 ///This function instantiates a \ref DistMap.
1025 ///\param g is the digraph, to which we would like to define
1027 static DistMap *createDistMap(const Digraph &g)
1029 return new DistMap(g);
1032 ///The type of the shortest paths.
1034 ///The type of the shortest paths.
1035 ///It must meet the \ref concepts::Path "Path" concept.
1036 typedef lemon::Path<Digraph> Path;
1039 /// Default traits class used by \ref DijkstraWizard
1041 /// To make it easier to use Dijkstra algorithm
1042 /// we have created a wizard class.
1043 /// This \ref DijkstraWizard class needs default traits,
1044 /// as well as the \ref Dijkstra class.
1045 /// The \ref DijkstraWizardBase is a class to be the default traits of the
1046 /// \ref DijkstraWizard class.
1047 template<class GR,class LM>
1048 class DijkstraWizardBase : public DijkstraWizardDefaultTraits<GR,LM>
1050 typedef DijkstraWizardDefaultTraits<GR,LM> Base;
1052 //The type of the nodes in the digraph.
1053 typedef typename Base::Digraph::Node Node;
1055 //Pointer to the digraph the algorithm runs on.
1057 //Pointer to the length map.
1059 //Pointer to the map of processed nodes.
1061 //Pointer to the map of predecessors arcs.
1063 //Pointer to the map of distances.
1065 //Pointer to the shortest path to the target node.
1067 //Pointer to the distance of the target node.
1073 /// This constructor does not require parameters, therefore it initiates
1074 /// all of the attributes to \c 0.
1075 DijkstraWizardBase() : _g(0), _length(0), _processed(0), _pred(0),
1076 _dist(0), _path(0), _di(0) {}
1080 /// This constructor requires two parameters,
1081 /// others are initiated to \c 0.
1082 /// \param g The digraph the algorithm runs on.
1083 /// \param l The length map.
1084 DijkstraWizardBase(const GR &g,const LM &l) :
1085 _g(reinterpret_cast<void*>(const_cast<GR*>(&g))),
1086 _length(reinterpret_cast<void*>(const_cast<LM*>(&l))),
1087 _processed(0), _pred(0), _dist(0), _path(0), _di(0) {}
1091 /// Auxiliary class for the function-type interface of Dijkstra algorithm.
1093 /// This auxiliary class is created to implement the
1094 /// \ref dijkstra() "function-type interface" of \ref Dijkstra algorithm.
1095 /// It does not have own \ref run() method, it uses the functions
1096 /// and features of the plain \ref Dijkstra.
1098 /// This class should only be used through the \ref dijkstra() function,
1099 /// which makes it easier to use the algorithm.
1101 class DijkstraWizard : public TR
1105 ///The type of the digraph the algorithm runs on.
1106 typedef typename TR::Digraph Digraph;
1108 typedef typename Digraph::Node Node;
1109 typedef typename Digraph::NodeIt NodeIt;
1110 typedef typename Digraph::Arc Arc;
1111 typedef typename Digraph::OutArcIt OutArcIt;
1113 ///The type of the map that stores the arc lengths.
1114 typedef typename TR::LengthMap LengthMap;
1115 ///The type of the length of the arcs.
1116 typedef typename LengthMap::Value Value;
1117 ///\brief The type of the map that stores the predecessor
1118 ///arcs of the shortest paths.
1119 typedef typename TR::PredMap PredMap;
1120 ///The type of the map that stores the distances of the nodes.
1121 typedef typename TR::DistMap DistMap;
1122 ///The type of the map that indicates which nodes are processed.
1123 typedef typename TR::ProcessedMap ProcessedMap;
1124 ///The type of the shortest paths
1125 typedef typename TR::Path Path;
1126 ///The heap type used by the dijkstra algorithm.
1127 typedef typename TR::Heap Heap;
1132 DijkstraWizard() : TR() {}
1134 /// Constructor that requires parameters.
1136 /// Constructor that requires parameters.
1137 /// These parameters will be the default values for the traits class.
1138 /// \param g The digraph the algorithm runs on.
1139 /// \param l The length map.
1140 DijkstraWizard(const Digraph &g, const LengthMap &l) :
1144 DijkstraWizard(const TR &b) : TR(b) {}
1146 ~DijkstraWizard() {}
1148 ///Runs Dijkstra algorithm from the given source node.
1150 ///This method runs %Dijkstra algorithm from the given source node
1151 ///in order to compute the shortest path to each node.
1154 if (s==INVALID) throw UninitializedParameter();
1155 Dijkstra<Digraph,LengthMap,TR>
1156 dijk(*reinterpret_cast<const Digraph*>(Base::_g),
1157 *reinterpret_cast<const LengthMap*>(Base::_length));
1159 dijk.predMap(*reinterpret_cast<PredMap*>(Base::_pred));
1161 dijk.distMap(*reinterpret_cast<DistMap*>(Base::_dist));
1162 if (Base::_processed)
1163 dijk.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed));
1167 ///Finds the shortest path between \c s and \c t.
1169 ///This method runs the %Dijkstra algorithm from node \c s
1170 ///in order to compute the shortest path to node \c t
1171 ///(it stops searching when \c t is processed).
1173 ///\return \c true if \c t is reachable form \c s.
1174 bool run(Node s, Node t)
1176 if (s==INVALID || t==INVALID) throw UninitializedParameter();
1177 Dijkstra<Digraph,LengthMap,TR>
1178 dijk(*reinterpret_cast<const Digraph*>(Base::_g),
1179 *reinterpret_cast<const LengthMap*>(Base::_length));
1181 dijk.predMap(*reinterpret_cast<PredMap*>(Base::_pred));
1183 dijk.distMap(*reinterpret_cast<DistMap*>(Base::_dist));
1184 if (Base::_processed)
1185 dijk.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed));
1188 *reinterpret_cast<Path*>(Base::_path) = dijk.path(t);
1190 *reinterpret_cast<Value*>(Base::_di) = dijk.dist(t);
1191 return dijk.reached(t);
1195 struct SetPredMapBase : public Base {
1197 static PredMap *createPredMap(const Digraph &) { return 0; };
1198 SetPredMapBase(const TR &b) : TR(b) {}
1200 ///\brief \ref named-func-param "Named parameter"
1201 ///for setting \ref PredMap object.
1203 ///\ref named-func-param "Named parameter"
1204 ///for setting \ref PredMap object.
1206 DijkstraWizard<SetPredMapBase<T> > predMap(const T &t)
1208 Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t));
1209 return DijkstraWizard<SetPredMapBase<T> >(*this);
1213 struct SetDistMapBase : public Base {
1215 static DistMap *createDistMap(const Digraph &) { return 0; };
1216 SetDistMapBase(const TR &b) : TR(b) {}
1218 ///\brief \ref named-func-param "Named parameter"
1219 ///for setting \ref DistMap object.
1221 ///\ref named-func-param "Named parameter"
1222 ///for setting \ref DistMap object.
1224 DijkstraWizard<SetDistMapBase<T> > distMap(const T &t)
1226 Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t));
1227 return DijkstraWizard<SetDistMapBase<T> >(*this);
1231 struct SetProcessedMapBase : public Base {
1232 typedef T ProcessedMap;
1233 static ProcessedMap *createProcessedMap(const Digraph &) { return 0; };
1234 SetProcessedMapBase(const TR &b) : TR(b) {}
1236 ///\brief \ref named-func-param "Named parameter"
1237 ///for setting \ref ProcessedMap object.
1239 /// \ref named-func-param "Named parameter"
1240 ///for setting \ref ProcessedMap object.
1242 DijkstraWizard<SetProcessedMapBase<T> > processedMap(const T &t)
1244 Base::_processed=reinterpret_cast<void*>(const_cast<T*>(&t));
1245 return DijkstraWizard<SetProcessedMapBase<T> >(*this);
1249 struct SetPathBase : public Base {
1251 SetPathBase(const TR &b) : TR(b) {}
1253 ///\brief \ref named-func-param "Named parameter"
1254 ///for getting the shortest path to the target node.
1256 ///\ref named-func-param "Named parameter"
1257 ///for getting the shortest path to the target node.
1259 DijkstraWizard<SetPathBase<T> > path(const T &t)
1261 Base::_path=reinterpret_cast<void*>(const_cast<T*>(&t));
1262 return DijkstraWizard<SetPathBase<T> >(*this);
1265 ///\brief \ref named-func-param "Named parameter"
1266 ///for getting the distance of the target node.
1268 ///\ref named-func-param "Named parameter"
1269 ///for getting the distance of the target node.
1270 DijkstraWizard dist(const Value &d)
1272 Base::_di=reinterpret_cast<void*>(const_cast<Value*>(&d));
1278 ///Function-type interface for Dijkstra algorithm.
1280 /// \ingroup shortest_path
1281 ///Function-type interface for Dijkstra algorithm.
1283 ///This function also has several \ref named-func-param "named parameters",
1284 ///they are declared as the members of class \ref DijkstraWizard.
1285 ///The following examples show how to use these parameters.
1287 /// // Compute shortest path from node s to each node
1288 /// dijkstra(g,length).predMap(preds).distMap(dists).run(s);
1290 /// // Compute shortest path from s to t
1291 /// bool reached = dijkstra(g,length).path(p).dist(d).run(s,t);
1293 ///\warning Don't forget to put the \ref DijkstraWizard::run() "run()"
1294 ///to the end of the parameter list.
1295 ///\sa DijkstraWizard
1297 template<class GR, class LM>
1298 DijkstraWizard<DijkstraWizardBase<GR,LM> >
1299 dijkstra(const GR &digraph, const LM &length)
1301 return DijkstraWizard<DijkstraWizardBase<GR,LM> >(digraph,length);
1304 } //END OF NAMESPACE LEMON