lemon/capacity_scaling.h
author Peter Kovacs <kpeter@inf.elte.hu>
Wed, 10 Feb 2010 19:05:20 +0100
changeset 830 75c97c3786d6
parent 821 072ec8120958
child 831 cc9e0c15d747
permissions -rw-r--r--
Handle graph changes in the MCF algorithms (#327)

The reset() functions are renamed to resetParams() and the new reset()
functions handle the graph chnages, as well.
     1 /* -*- C++ -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library
     4  *
     5  * Copyright (C) 2003-2008
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_CAPACITY_SCALING_H
    20 #define LEMON_CAPACITY_SCALING_H
    21 
    22 /// \ingroup min_cost_flow_algs
    23 ///
    24 /// \file
    25 /// \brief Capacity Scaling algorithm for finding a minimum cost flow.
    26 
    27 #include <vector>
    28 #include <limits>
    29 #include <lemon/core.h>
    30 #include <lemon/bin_heap.h>
    31 
    32 namespace lemon {
    33 
    34   /// \brief Default traits class of CapacityScaling algorithm.
    35   ///
    36   /// Default traits class of CapacityScaling algorithm.
    37   /// \tparam GR Digraph type.
    38   /// \tparam V The number type used for flow amounts, capacity bounds
    39   /// and supply values. By default it is \c int.
    40   /// \tparam C The number type used for costs and potentials.
    41   /// By default it is the same as \c V.
    42   template <typename GR, typename V = int, typename C = V>
    43   struct CapacityScalingDefaultTraits
    44   {
    45     /// The type of the digraph
    46     typedef GR Digraph;
    47     /// The type of the flow amounts, capacity bounds and supply values
    48     typedef V Value;
    49     /// The type of the arc costs
    50     typedef C Cost;
    51 
    52     /// \brief The type of the heap used for internal Dijkstra computations.
    53     ///
    54     /// The type of the heap used for internal Dijkstra computations.
    55     /// It must conform to the \ref lemon::concepts::Heap "Heap" concept,
    56     /// its priority type must be \c Cost and its cross reference type
    57     /// must be \ref RangeMap "RangeMap<int>".
    58     typedef BinHeap<Cost, RangeMap<int> > Heap;
    59   };
    60 
    61   /// \addtogroup min_cost_flow_algs
    62   /// @{
    63 
    64   /// \brief Implementation of the Capacity Scaling algorithm for
    65   /// finding a \ref min_cost_flow "minimum cost flow".
    66   ///
    67   /// \ref CapacityScaling implements the capacity scaling version
    68   /// of the successive shortest path algorithm for finding a
    69   /// \ref min_cost_flow "minimum cost flow" \ref amo93networkflows,
    70   /// \ref edmondskarp72theoretical. It is an efficient dual
    71   /// solution method.
    72   ///
    73   /// Most of the parameters of the problem (except for the digraph)
    74   /// can be given using separate functions, and the algorithm can be
    75   /// executed using the \ref run() function. If some parameters are not
    76   /// specified, then default values will be used.
    77   ///
    78   /// \tparam GR The digraph type the algorithm runs on.
    79   /// \tparam V The number type used for flow amounts, capacity bounds
    80   /// and supply values in the algorithm. By default it is \c int.
    81   /// \tparam C The number type used for costs and potentials in the
    82   /// algorithm. By default it is the same as \c V.
    83   ///
    84   /// \warning Both number types must be signed and all input data must
    85   /// be integer.
    86   /// \warning This algorithm does not support negative costs for such
    87   /// arcs that have infinite upper bound.
    88 #ifdef DOXYGEN
    89   template <typename GR, typename V, typename C, typename TR>
    90 #else
    91   template < typename GR, typename V = int, typename C = V,
    92              typename TR = CapacityScalingDefaultTraits<GR, V, C> >
    93 #endif
    94   class CapacityScaling
    95   {
    96   public:
    97 
    98     /// The type of the digraph
    99     typedef typename TR::Digraph Digraph;
   100     /// The type of the flow amounts, capacity bounds and supply values
   101     typedef typename TR::Value Value;
   102     /// The type of the arc costs
   103     typedef typename TR::Cost Cost;
   104 
   105     /// The type of the heap used for internal Dijkstra computations
   106     typedef typename TR::Heap Heap;
   107 
   108     /// The \ref CapacityScalingDefaultTraits "traits class" of the algorithm
   109     typedef TR Traits;
   110 
   111   public:
   112 
   113     /// \brief Problem type constants for the \c run() function.
   114     ///
   115     /// Enum type containing the problem type constants that can be
   116     /// returned by the \ref run() function of the algorithm.
   117     enum ProblemType {
   118       /// The problem has no feasible solution (flow).
   119       INFEASIBLE,
   120       /// The problem has optimal solution (i.e. it is feasible and
   121       /// bounded), and the algorithm has found optimal flow and node
   122       /// potentials (primal and dual solutions).
   123       OPTIMAL,
   124       /// The digraph contains an arc of negative cost and infinite
   125       /// upper bound. It means that the objective function is unbounded
   126       /// on that arc, however, note that it could actually be bounded
   127       /// over the feasible flows, but this algroithm cannot handle
   128       /// these cases.
   129       UNBOUNDED
   130     };
   131   
   132   private:
   133 
   134     TEMPLATE_DIGRAPH_TYPEDEFS(GR);
   135 
   136     typedef std::vector<int> IntVector;
   137     typedef std::vector<char> BoolVector;
   138     typedef std::vector<Value> ValueVector;
   139     typedef std::vector<Cost> CostVector;
   140 
   141   private:
   142 
   143     // Data related to the underlying digraph
   144     const GR &_graph;
   145     int _node_num;
   146     int _arc_num;
   147     int _res_arc_num;
   148     int _root;
   149 
   150     // Parameters of the problem
   151     bool _have_lower;
   152     Value _sum_supply;
   153 
   154     // Data structures for storing the digraph
   155     IntNodeMap _node_id;
   156     IntArcMap _arc_idf;
   157     IntArcMap _arc_idb;
   158     IntVector _first_out;
   159     BoolVector _forward;
   160     IntVector _source;
   161     IntVector _target;
   162     IntVector _reverse;
   163 
   164     // Node and arc data
   165     ValueVector _lower;
   166     ValueVector _upper;
   167     CostVector _cost;
   168     ValueVector _supply;
   169 
   170     ValueVector _res_cap;
   171     CostVector _pi;
   172     ValueVector _excess;
   173     IntVector _excess_nodes;
   174     IntVector _deficit_nodes;
   175 
   176     Value _delta;
   177     int _factor;
   178     IntVector _pred;
   179 
   180   public:
   181   
   182     /// \brief Constant for infinite upper bounds (capacities).
   183     ///
   184     /// Constant for infinite upper bounds (capacities).
   185     /// It is \c std::numeric_limits<Value>::infinity() if available,
   186     /// \c std::numeric_limits<Value>::max() otherwise.
   187     const Value INF;
   188 
   189   private:
   190 
   191     // Special implementation of the Dijkstra algorithm for finding
   192     // shortest paths in the residual network of the digraph with
   193     // respect to the reduced arc costs and modifying the node
   194     // potentials according to the found distance labels.
   195     class ResidualDijkstra
   196     {
   197     private:
   198 
   199       int _node_num;
   200       bool _geq;
   201       const IntVector &_first_out;
   202       const IntVector &_target;
   203       const CostVector &_cost;
   204       const ValueVector &_res_cap;
   205       const ValueVector &_excess;
   206       CostVector &_pi;
   207       IntVector &_pred;
   208       
   209       IntVector _proc_nodes;
   210       CostVector _dist;
   211       
   212     public:
   213 
   214       ResidualDijkstra(CapacityScaling& cs) :
   215         _node_num(cs._node_num), _geq(cs._sum_supply < 0),
   216         _first_out(cs._first_out), _target(cs._target), _cost(cs._cost),
   217         _res_cap(cs._res_cap), _excess(cs._excess), _pi(cs._pi),
   218         _pred(cs._pred), _dist(cs._node_num)
   219       {}
   220 
   221       int run(int s, Value delta = 1) {
   222         RangeMap<int> heap_cross_ref(_node_num, Heap::PRE_HEAP);
   223         Heap heap(heap_cross_ref);
   224         heap.push(s, 0);
   225         _pred[s] = -1;
   226         _proc_nodes.clear();
   227 
   228         // Process nodes
   229         while (!heap.empty() && _excess[heap.top()] > -delta) {
   230           int u = heap.top(), v;
   231           Cost d = heap.prio() + _pi[u], dn;
   232           _dist[u] = heap.prio();
   233           _proc_nodes.push_back(u);
   234           heap.pop();
   235 
   236           // Traverse outgoing residual arcs
   237           int last_out = _geq ? _first_out[u+1] : _first_out[u+1] - 1;
   238           for (int a = _first_out[u]; a != last_out; ++a) {
   239             if (_res_cap[a] < delta) continue;
   240             v = _target[a];
   241             switch (heap.state(v)) {
   242               case Heap::PRE_HEAP:
   243                 heap.push(v, d + _cost[a] - _pi[v]);
   244                 _pred[v] = a;
   245                 break;
   246               case Heap::IN_HEAP:
   247                 dn = d + _cost[a] - _pi[v];
   248                 if (dn < heap[v]) {
   249                   heap.decrease(v, dn);
   250                   _pred[v] = a;
   251                 }
   252                 break;
   253               case Heap::POST_HEAP:
   254                 break;
   255             }
   256           }
   257         }
   258         if (heap.empty()) return -1;
   259 
   260         // Update potentials of processed nodes
   261         int t = heap.top();
   262         Cost dt = heap.prio();
   263         for (int i = 0; i < int(_proc_nodes.size()); ++i) {
   264           _pi[_proc_nodes[i]] += _dist[_proc_nodes[i]] - dt;
   265         }
   266 
   267         return t;
   268       }
   269 
   270     }; //class ResidualDijkstra
   271 
   272   public:
   273 
   274     /// \name Named Template Parameters
   275     /// @{
   276 
   277     template <typename T>
   278     struct SetHeapTraits : public Traits {
   279       typedef T Heap;
   280     };
   281 
   282     /// \brief \ref named-templ-param "Named parameter" for setting
   283     /// \c Heap type.
   284     ///
   285     /// \ref named-templ-param "Named parameter" for setting \c Heap
   286     /// type, which is used for internal Dijkstra computations.
   287     /// It must conform to the \ref lemon::concepts::Heap "Heap" concept,
   288     /// its priority type must be \c Cost and its cross reference type
   289     /// must be \ref RangeMap "RangeMap<int>".
   290     template <typename T>
   291     struct SetHeap
   292       : public CapacityScaling<GR, V, C, SetHeapTraits<T> > {
   293       typedef  CapacityScaling<GR, V, C, SetHeapTraits<T> > Create;
   294     };
   295 
   296     /// @}
   297 
   298   public:
   299 
   300     /// \brief Constructor.
   301     ///
   302     /// The constructor of the class.
   303     ///
   304     /// \param graph The digraph the algorithm runs on.
   305     CapacityScaling(const GR& graph) :
   306       _graph(graph), _node_id(graph), _arc_idf(graph), _arc_idb(graph),
   307       INF(std::numeric_limits<Value>::has_infinity ?
   308           std::numeric_limits<Value>::infinity() :
   309           std::numeric_limits<Value>::max())
   310     {
   311       // Check the number types
   312       LEMON_ASSERT(std::numeric_limits<Value>::is_signed,
   313         "The flow type of CapacityScaling must be signed");
   314       LEMON_ASSERT(std::numeric_limits<Cost>::is_signed,
   315         "The cost type of CapacityScaling must be signed");
   316 
   317       // Reset data structures
   318       reset();
   319     }
   320 
   321     /// \name Parameters
   322     /// The parameters of the algorithm can be specified using these
   323     /// functions.
   324 
   325     /// @{
   326 
   327     /// \brief Set the lower bounds on the arcs.
   328     ///
   329     /// This function sets the lower bounds on the arcs.
   330     /// If it is not used before calling \ref run(), the lower bounds
   331     /// will be set to zero on all arcs.
   332     ///
   333     /// \param map An arc map storing the lower bounds.
   334     /// Its \c Value type must be convertible to the \c Value type
   335     /// of the algorithm.
   336     ///
   337     /// \return <tt>(*this)</tt>
   338     template <typename LowerMap>
   339     CapacityScaling& lowerMap(const LowerMap& map) {
   340       _have_lower = true;
   341       for (ArcIt a(_graph); a != INVALID; ++a) {
   342         _lower[_arc_idf[a]] = map[a];
   343         _lower[_arc_idb[a]] = map[a];
   344       }
   345       return *this;
   346     }
   347 
   348     /// \brief Set the upper bounds (capacities) on the arcs.
   349     ///
   350     /// This function sets the upper bounds (capacities) on the arcs.
   351     /// If it is not used before calling \ref run(), the upper bounds
   352     /// will be set to \ref INF on all arcs (i.e. the flow value will be
   353     /// unbounded from above).
   354     ///
   355     /// \param map An arc map storing the upper bounds.
   356     /// Its \c Value type must be convertible to the \c Value type
   357     /// of the algorithm.
   358     ///
   359     /// \return <tt>(*this)</tt>
   360     template<typename UpperMap>
   361     CapacityScaling& upperMap(const UpperMap& map) {
   362       for (ArcIt a(_graph); a != INVALID; ++a) {
   363         _upper[_arc_idf[a]] = map[a];
   364       }
   365       return *this;
   366     }
   367 
   368     /// \brief Set the costs of the arcs.
   369     ///
   370     /// This function sets the costs of the arcs.
   371     /// If it is not used before calling \ref run(), the costs
   372     /// will be set to \c 1 on all arcs.
   373     ///
   374     /// \param map An arc map storing the costs.
   375     /// Its \c Value type must be convertible to the \c Cost type
   376     /// of the algorithm.
   377     ///
   378     /// \return <tt>(*this)</tt>
   379     template<typename CostMap>
   380     CapacityScaling& costMap(const CostMap& map) {
   381       for (ArcIt a(_graph); a != INVALID; ++a) {
   382         _cost[_arc_idf[a]] =  map[a];
   383         _cost[_arc_idb[a]] = -map[a];
   384       }
   385       return *this;
   386     }
   387 
   388     /// \brief Set the supply values of the nodes.
   389     ///
   390     /// This function sets the supply values of the nodes.
   391     /// If neither this function nor \ref stSupply() is used before
   392     /// calling \ref run(), the supply of each node will be set to zero.
   393     ///
   394     /// \param map A node map storing the supply values.
   395     /// Its \c Value type must be convertible to the \c Value type
   396     /// of the algorithm.
   397     ///
   398     /// \return <tt>(*this)</tt>
   399     template<typename SupplyMap>
   400     CapacityScaling& supplyMap(const SupplyMap& map) {
   401       for (NodeIt n(_graph); n != INVALID; ++n) {
   402         _supply[_node_id[n]] = map[n];
   403       }
   404       return *this;
   405     }
   406 
   407     /// \brief Set single source and target nodes and a supply value.
   408     ///
   409     /// This function sets a single source node and a single target node
   410     /// and the required flow value.
   411     /// If neither this function nor \ref supplyMap() is used before
   412     /// calling \ref run(), the supply of each node will be set to zero.
   413     ///
   414     /// Using this function has the same effect as using \ref supplyMap()
   415     /// with such a map in which \c k is assigned to \c s, \c -k is
   416     /// assigned to \c t and all other nodes have zero supply value.
   417     ///
   418     /// \param s The source node.
   419     /// \param t The target node.
   420     /// \param k The required amount of flow from node \c s to node \c t
   421     /// (i.e. the supply of \c s and the demand of \c t).
   422     ///
   423     /// \return <tt>(*this)</tt>
   424     CapacityScaling& stSupply(const Node& s, const Node& t, Value k) {
   425       for (int i = 0; i != _node_num; ++i) {
   426         _supply[i] = 0;
   427       }
   428       _supply[_node_id[s]] =  k;
   429       _supply[_node_id[t]] = -k;
   430       return *this;
   431     }
   432     
   433     /// @}
   434 
   435     /// \name Execution control
   436     /// The algorithm can be executed using \ref run().
   437 
   438     /// @{
   439 
   440     /// \brief Run the algorithm.
   441     ///
   442     /// This function runs the algorithm.
   443     /// The paramters can be specified using functions \ref lowerMap(),
   444     /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply().
   445     /// For example,
   446     /// \code
   447     ///   CapacityScaling<ListDigraph> cs(graph);
   448     ///   cs.lowerMap(lower).upperMap(upper).costMap(cost)
   449     ///     .supplyMap(sup).run();
   450     /// \endcode
   451     ///
   452     /// This function can be called more than once. All the given parameters
   453     /// are kept for the next call, unless \ref resetParams() or \ref reset()
   454     /// is used, thus only the modified parameters have to be set again.
   455     /// If the underlying digraph was also modified after the construction
   456     /// of the class (or the last \ref reset() call), then the \ref reset()
   457     /// function must be called.
   458     ///
   459     /// \param factor The capacity scaling factor. It must be larger than
   460     /// one to use scaling. If it is less or equal to one, then scaling
   461     /// will be disabled.
   462     ///
   463     /// \return \c INFEASIBLE if no feasible flow exists,
   464     /// \n \c OPTIMAL if the problem has optimal solution
   465     /// (i.e. it is feasible and bounded), and the algorithm has found
   466     /// optimal flow and node potentials (primal and dual solutions),
   467     /// \n \c UNBOUNDED if the digraph contains an arc of negative cost
   468     /// and infinite upper bound. It means that the objective function
   469     /// is unbounded on that arc, however, note that it could actually be
   470     /// bounded over the feasible flows, but this algroithm cannot handle
   471     /// these cases.
   472     ///
   473     /// \see ProblemType
   474     /// \see resetParams(), reset()
   475     ProblemType run(int factor = 4) {
   476       _factor = factor;
   477       ProblemType pt = init();
   478       if (pt != OPTIMAL) return pt;
   479       return start();
   480     }
   481 
   482     /// \brief Reset all the parameters that have been given before.
   483     ///
   484     /// This function resets all the paramaters that have been given
   485     /// before using functions \ref lowerMap(), \ref upperMap(),
   486     /// \ref costMap(), \ref supplyMap(), \ref stSupply().
   487     ///
   488     /// It is useful for multiple \ref run() calls. Basically, all the given
   489     /// parameters are kept for the next \ref run() call, unless
   490     /// \ref resetParams() or \ref reset() is used.
   491     /// If the underlying digraph was also modified after the construction
   492     /// of the class or the last \ref reset() call, then the \ref reset()
   493     /// function must be used, otherwise \ref resetParams() is sufficient.
   494     ///
   495     /// For example,
   496     /// \code
   497     ///   CapacityScaling<ListDigraph> cs(graph);
   498     ///
   499     ///   // First run
   500     ///   cs.lowerMap(lower).upperMap(upper).costMap(cost)
   501     ///     .supplyMap(sup).run();
   502     ///
   503     ///   // Run again with modified cost map (resetParams() is not called,
   504     ///   // so only the cost map have to be set again)
   505     ///   cost[e] += 100;
   506     ///   cs.costMap(cost).run();
   507     ///
   508     ///   // Run again from scratch using resetParams()
   509     ///   // (the lower bounds will be set to zero on all arcs)
   510     ///   cs.resetParams();
   511     ///   cs.upperMap(capacity).costMap(cost)
   512     ///     .supplyMap(sup).run();
   513     /// \endcode
   514     ///
   515     /// \return <tt>(*this)</tt>
   516     ///
   517     /// \see reset(), run()
   518     CapacityScaling& resetParams() {
   519       for (int i = 0; i != _node_num; ++i) {
   520         _supply[i] = 0;
   521       }
   522       for (int j = 0; j != _res_arc_num; ++j) {
   523         _lower[j] = 0;
   524         _upper[j] = INF;
   525         _cost[j] = _forward[j] ? 1 : -1;
   526       }
   527       _have_lower = false;
   528       return *this;
   529     }
   530 
   531     /// \brief Reset the internal data structures and all the parameters
   532     /// that have been given before.
   533     ///
   534     /// This function resets the internal data structures and all the
   535     /// paramaters that have been given before using functions \ref lowerMap(),
   536     /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply().
   537     ///
   538     /// It is useful for multiple \ref run() calls. Basically, all the given
   539     /// parameters are kept for the next \ref run() call, unless
   540     /// \ref resetParams() or \ref reset() is used.
   541     /// If the underlying digraph was also modified after the construction
   542     /// of the class or the last \ref reset() call, then the \ref reset()
   543     /// function must be used, otherwise \ref resetParams() is sufficient.
   544     ///
   545     /// See \ref resetParams() for examples.
   546     ///
   547     /// \return <tt>(*this)</tt>
   548     ///
   549     /// \see resetParams(), run()
   550     CapacityScaling& reset() {
   551       // Resize vectors
   552       _node_num = countNodes(_graph);
   553       _arc_num = countArcs(_graph);
   554       _res_arc_num = 2 * (_arc_num + _node_num);
   555       _root = _node_num;
   556       ++_node_num;
   557 
   558       _first_out.resize(_node_num + 1);
   559       _forward.resize(_res_arc_num);
   560       _source.resize(_res_arc_num);
   561       _target.resize(_res_arc_num);
   562       _reverse.resize(_res_arc_num);
   563 
   564       _lower.resize(_res_arc_num);
   565       _upper.resize(_res_arc_num);
   566       _cost.resize(_res_arc_num);
   567       _supply.resize(_node_num);
   568       
   569       _res_cap.resize(_res_arc_num);
   570       _pi.resize(_node_num);
   571       _excess.resize(_node_num);
   572       _pred.resize(_node_num);
   573 
   574       // Copy the graph
   575       int i = 0, j = 0, k = 2 * _arc_num + _node_num - 1;
   576       for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
   577         _node_id[n] = i;
   578       }
   579       i = 0;
   580       for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
   581         _first_out[i] = j;
   582         for (OutArcIt a(_graph, n); a != INVALID; ++a, ++j) {
   583           _arc_idf[a] = j;
   584           _forward[j] = true;
   585           _source[j] = i;
   586           _target[j] = _node_id[_graph.runningNode(a)];
   587         }
   588         for (InArcIt a(_graph, n); a != INVALID; ++a, ++j) {
   589           _arc_idb[a] = j;
   590           _forward[j] = false;
   591           _source[j] = i;
   592           _target[j] = _node_id[_graph.runningNode(a)];
   593         }
   594         _forward[j] = false;
   595         _source[j] = i;
   596         _target[j] = _root;
   597         _reverse[j] = k;
   598         _forward[k] = true;
   599         _source[k] = _root;
   600         _target[k] = i;
   601         _reverse[k] = j;
   602         ++j; ++k;
   603       }
   604       _first_out[i] = j;
   605       _first_out[_node_num] = k;
   606       for (ArcIt a(_graph); a != INVALID; ++a) {
   607         int fi = _arc_idf[a];
   608         int bi = _arc_idb[a];
   609         _reverse[fi] = bi;
   610         _reverse[bi] = fi;
   611       }
   612       
   613       // Reset parameters
   614       resetParams();
   615       return *this;
   616     }
   617 
   618     /// @}
   619 
   620     /// \name Query Functions
   621     /// The results of the algorithm can be obtained using these
   622     /// functions.\n
   623     /// The \ref run() function must be called before using them.
   624 
   625     /// @{
   626 
   627     /// \brief Return the total cost of the found flow.
   628     ///
   629     /// This function returns the total cost of the found flow.
   630     /// Its complexity is O(e).
   631     ///
   632     /// \note The return type of the function can be specified as a
   633     /// template parameter. For example,
   634     /// \code
   635     ///   cs.totalCost<double>();
   636     /// \endcode
   637     /// It is useful if the total cost cannot be stored in the \c Cost
   638     /// type of the algorithm, which is the default return type of the
   639     /// function.
   640     ///
   641     /// \pre \ref run() must be called before using this function.
   642     template <typename Number>
   643     Number totalCost() const {
   644       Number c = 0;
   645       for (ArcIt a(_graph); a != INVALID; ++a) {
   646         int i = _arc_idb[a];
   647         c += static_cast<Number>(_res_cap[i]) *
   648              (-static_cast<Number>(_cost[i]));
   649       }
   650       return c;
   651     }
   652 
   653 #ifndef DOXYGEN
   654     Cost totalCost() const {
   655       return totalCost<Cost>();
   656     }
   657 #endif
   658 
   659     /// \brief Return the flow on the given arc.
   660     ///
   661     /// This function returns the flow on the given arc.
   662     ///
   663     /// \pre \ref run() must be called before using this function.
   664     Value flow(const Arc& a) const {
   665       return _res_cap[_arc_idb[a]];
   666     }
   667 
   668     /// \brief Return the flow map (the primal solution).
   669     ///
   670     /// This function copies the flow value on each arc into the given
   671     /// map. The \c Value type of the algorithm must be convertible to
   672     /// the \c Value type of the map.
   673     ///
   674     /// \pre \ref run() must be called before using this function.
   675     template <typename FlowMap>
   676     void flowMap(FlowMap &map) const {
   677       for (ArcIt a(_graph); a != INVALID; ++a) {
   678         map.set(a, _res_cap[_arc_idb[a]]);
   679       }
   680     }
   681 
   682     /// \brief Return the potential (dual value) of the given node.
   683     ///
   684     /// This function returns the potential (dual value) of the
   685     /// given node.
   686     ///
   687     /// \pre \ref run() must be called before using this function.
   688     Cost potential(const Node& n) const {
   689       return _pi[_node_id[n]];
   690     }
   691 
   692     /// \brief Return the potential map (the dual solution).
   693     ///
   694     /// This function copies the potential (dual value) of each node
   695     /// into the given map.
   696     /// The \c Cost type of the algorithm must be convertible to the
   697     /// \c Value type of the map.
   698     ///
   699     /// \pre \ref run() must be called before using this function.
   700     template <typename PotentialMap>
   701     void potentialMap(PotentialMap &map) const {
   702       for (NodeIt n(_graph); n != INVALID; ++n) {
   703         map.set(n, _pi[_node_id[n]]);
   704       }
   705     }
   706 
   707     /// @}
   708 
   709   private:
   710 
   711     // Initialize the algorithm
   712     ProblemType init() {
   713       if (_node_num <= 1) return INFEASIBLE;
   714 
   715       // Check the sum of supply values
   716       _sum_supply = 0;
   717       for (int i = 0; i != _root; ++i) {
   718         _sum_supply += _supply[i];
   719       }
   720       if (_sum_supply > 0) return INFEASIBLE;
   721       
   722       // Initialize vectors
   723       for (int i = 0; i != _root; ++i) {
   724         _pi[i] = 0;
   725         _excess[i] = _supply[i];
   726       }
   727 
   728       // Remove non-zero lower bounds
   729       const Value MAX = std::numeric_limits<Value>::max();
   730       int last_out;
   731       if (_have_lower) {
   732         for (int i = 0; i != _root; ++i) {
   733           last_out = _first_out[i+1];
   734           for (int j = _first_out[i]; j != last_out; ++j) {
   735             if (_forward[j]) {
   736               Value c = _lower[j];
   737               if (c >= 0) {
   738                 _res_cap[j] = _upper[j] < MAX ? _upper[j] - c : INF;
   739               } else {
   740                 _res_cap[j] = _upper[j] < MAX + c ? _upper[j] - c : INF;
   741               }
   742               _excess[i] -= c;
   743               _excess[_target[j]] += c;
   744             } else {
   745               _res_cap[j] = 0;
   746             }
   747           }
   748         }
   749       } else {
   750         for (int j = 0; j != _res_arc_num; ++j) {
   751           _res_cap[j] = _forward[j] ? _upper[j] : 0;
   752         }
   753       }
   754 
   755       // Handle negative costs
   756       for (int i = 0; i != _root; ++i) {
   757         last_out = _first_out[i+1] - 1;
   758         for (int j = _first_out[i]; j != last_out; ++j) {
   759           Value rc = _res_cap[j];
   760           if (_cost[j] < 0 && rc > 0) {
   761             if (rc >= MAX) return UNBOUNDED;
   762             _excess[i] -= rc;
   763             _excess[_target[j]] += rc;
   764             _res_cap[j] = 0;
   765             _res_cap[_reverse[j]] += rc;
   766           }
   767         }
   768       }
   769       
   770       // Handle GEQ supply type
   771       if (_sum_supply < 0) {
   772         _pi[_root] = 0;
   773         _excess[_root] = -_sum_supply;
   774         for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
   775           int ra = _reverse[a];
   776           _res_cap[a] = -_sum_supply + 1;
   777           _res_cap[ra] = 0;
   778           _cost[a] = 0;
   779           _cost[ra] = 0;
   780         }
   781       } else {
   782         _pi[_root] = 0;
   783         _excess[_root] = 0;
   784         for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
   785           int ra = _reverse[a];
   786           _res_cap[a] = 1;
   787           _res_cap[ra] = 0;
   788           _cost[a] = 0;
   789           _cost[ra] = 0;
   790         }
   791       }
   792 
   793       // Initialize delta value
   794       if (_factor > 1) {
   795         // With scaling
   796         Value max_sup = 0, max_dem = 0;
   797         for (int i = 0; i != _node_num; ++i) {
   798           Value ex = _excess[i];
   799           if ( ex > max_sup) max_sup =  ex;
   800           if (-ex > max_dem) max_dem = -ex;
   801         }
   802         Value max_cap = 0;
   803         for (int j = 0; j != _res_arc_num; ++j) {
   804           if (_res_cap[j] > max_cap) max_cap = _res_cap[j];
   805         }
   806         max_sup = std::min(std::min(max_sup, max_dem), max_cap);
   807         for (_delta = 1; 2 * _delta <= max_sup; _delta *= 2) ;
   808       } else {
   809         // Without scaling
   810         _delta = 1;
   811       }
   812 
   813       return OPTIMAL;
   814     }
   815 
   816     ProblemType start() {
   817       // Execute the algorithm
   818       ProblemType pt;
   819       if (_delta > 1)
   820         pt = startWithScaling();
   821       else
   822         pt = startWithoutScaling();
   823 
   824       // Handle non-zero lower bounds
   825       if (_have_lower) {
   826         int limit = _first_out[_root];
   827         for (int j = 0; j != limit; ++j) {
   828           if (!_forward[j]) _res_cap[j] += _lower[j];
   829         }
   830       }
   831 
   832       // Shift potentials if necessary
   833       Cost pr = _pi[_root];
   834       if (_sum_supply < 0 || pr > 0) {
   835         for (int i = 0; i != _node_num; ++i) {
   836           _pi[i] -= pr;
   837         }        
   838       }
   839       
   840       return pt;
   841     }
   842 
   843     // Execute the capacity scaling algorithm
   844     ProblemType startWithScaling() {
   845       // Perform capacity scaling phases
   846       int s, t;
   847       ResidualDijkstra _dijkstra(*this);
   848       while (true) {
   849         // Saturate all arcs not satisfying the optimality condition
   850         int last_out;
   851         for (int u = 0; u != _node_num; ++u) {
   852           last_out = _sum_supply < 0 ?
   853             _first_out[u+1] : _first_out[u+1] - 1;
   854           for (int a = _first_out[u]; a != last_out; ++a) {
   855             int v = _target[a];
   856             Cost c = _cost[a] + _pi[u] - _pi[v];
   857             Value rc = _res_cap[a];
   858             if (c < 0 && rc >= _delta) {
   859               _excess[u] -= rc;
   860               _excess[v] += rc;
   861               _res_cap[a] = 0;
   862               _res_cap[_reverse[a]] += rc;
   863             }
   864           }
   865         }
   866 
   867         // Find excess nodes and deficit nodes
   868         _excess_nodes.clear();
   869         _deficit_nodes.clear();
   870         for (int u = 0; u != _node_num; ++u) {
   871           Value ex = _excess[u];
   872           if (ex >=  _delta) _excess_nodes.push_back(u);
   873           if (ex <= -_delta) _deficit_nodes.push_back(u);
   874         }
   875         int next_node = 0, next_def_node = 0;
   876 
   877         // Find augmenting shortest paths
   878         while (next_node < int(_excess_nodes.size())) {
   879           // Check deficit nodes
   880           if (_delta > 1) {
   881             bool delta_deficit = false;
   882             for ( ; next_def_node < int(_deficit_nodes.size());
   883                     ++next_def_node ) {
   884               if (_excess[_deficit_nodes[next_def_node]] <= -_delta) {
   885                 delta_deficit = true;
   886                 break;
   887               }
   888             }
   889             if (!delta_deficit) break;
   890           }
   891 
   892           // Run Dijkstra in the residual network
   893           s = _excess_nodes[next_node];
   894           if ((t = _dijkstra.run(s, _delta)) == -1) {
   895             if (_delta > 1) {
   896               ++next_node;
   897               continue;
   898             }
   899             return INFEASIBLE;
   900           }
   901 
   902           // Augment along a shortest path from s to t
   903           Value d = std::min(_excess[s], -_excess[t]);
   904           int u = t;
   905           int a;
   906           if (d > _delta) {
   907             while ((a = _pred[u]) != -1) {
   908               if (_res_cap[a] < d) d = _res_cap[a];
   909               u = _source[a];
   910             }
   911           }
   912           u = t;
   913           while ((a = _pred[u]) != -1) {
   914             _res_cap[a] -= d;
   915             _res_cap[_reverse[a]] += d;
   916             u = _source[a];
   917           }
   918           _excess[s] -= d;
   919           _excess[t] += d;
   920 
   921           if (_excess[s] < _delta) ++next_node;
   922         }
   923 
   924         if (_delta == 1) break;
   925         _delta = _delta <= _factor ? 1 : _delta / _factor;
   926       }
   927 
   928       return OPTIMAL;
   929     }
   930 
   931     // Execute the successive shortest path algorithm
   932     ProblemType startWithoutScaling() {
   933       // Find excess nodes
   934       _excess_nodes.clear();
   935       for (int i = 0; i != _node_num; ++i) {
   936         if (_excess[i] > 0) _excess_nodes.push_back(i);
   937       }
   938       if (_excess_nodes.size() == 0) return OPTIMAL;
   939       int next_node = 0;
   940 
   941       // Find shortest paths
   942       int s, t;
   943       ResidualDijkstra _dijkstra(*this);
   944       while ( _excess[_excess_nodes[next_node]] > 0 ||
   945               ++next_node < int(_excess_nodes.size()) )
   946       {
   947         // Run Dijkstra in the residual network
   948         s = _excess_nodes[next_node];
   949         if ((t = _dijkstra.run(s)) == -1) return INFEASIBLE;
   950 
   951         // Augment along a shortest path from s to t
   952         Value d = std::min(_excess[s], -_excess[t]);
   953         int u = t;
   954         int a;
   955         if (d > 1) {
   956           while ((a = _pred[u]) != -1) {
   957             if (_res_cap[a] < d) d = _res_cap[a];
   958             u = _source[a];
   959           }
   960         }
   961         u = t;
   962         while ((a = _pred[u]) != -1) {
   963           _res_cap[a] -= d;
   964           _res_cap[_reverse[a]] += d;
   965           u = _source[a];
   966         }
   967         _excess[s] -= d;
   968         _excess[t] += d;
   969       }
   970 
   971       return OPTIMAL;
   972     }
   973 
   974   }; //class CapacityScaling
   975 
   976   ///@}
   977 
   978 } //namespace lemon
   979 
   980 #endif //LEMON_CAPACITY_SCALING_H